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Abstract

A simple, stit, statically and dynamically stable linear oscillator inporating a negative stness element is used as a template to
provide a generic theoretical basis for a novel vibratiomgig and isolation concept. This oscillator is designegdresent the
same overall static $fhess, the same mass and to use the same damping elementaeiacetlassical linear SDoF oscillator.
Thus, no increase of the structure mass or the viscous dgrgaieeded, as in the case of a traditional linear isolatodatrease of
the overall structure dfness is required as in the case of 'zerdkséss’ oscillators with embedded negativéfséss elements. The
difference from these two templates consists entirely in thpgwneedistribution and reallocation of thefBtiess and the damping
elements of the system. Once such an oscillator is optintsigned, it is shown to exhibit an extraordinary apparentping
ratio, which is even several orders of magnitude higher thahof the original SDoF system, especially in cases wheretiginal
damping of the SDoF system is extremely low. This extra@dilamping behavior is a result of the phagéedence between the
positive and the negative ftiess elastic forces, which is in turn a consequence of thgepredistribution of the dtiness and the
damping elements. This fact ensures that an adequate leglkzistic forces exists throughout the entire frequencgeaable to
counteract the inertial and the excitation forces. Coneetlyy a resonance phenomenon, which is inherent in thénatiinear
SDoF system, cannot emerge in the proposed oscillator. Pptiemal parameter selection for the design of the negativBness
oscillator is discussed. To further exhibit the advantabgassuch a design can generate, the suggested oscillataplsmented
within a periodic acoustic metamaterial structure, indgca radical increase in the damping of the propagating diconaves.
The concept may find numerous technological applicatidtiggreas traditional vibration isolators, or within advadacomposite
materials and metamaterials.

Keywords: Damping, Vibration isolation, Viscoelasticity, Negatistffness, Metamaterial

1. Introduction or layers of dfferent constituents, exhibiting either highfisti
ness or high damping [4]. The most important recent research
Damping is an influence that has thigeet of reducing, re-  rend towards this direction, is the design of specific @ass
stricting or preventing the oscillations of a dynamic syste periodic structures, known as metamaterials [5, 6]. Amadreg t
The current engineering and physical perception is thatpdam st fascinating properties of such natural or artificialict
ing is produced by mechanisms responsible to dissipaterthe eyres are their attenuatiorffects. When the frequency of the
ergy stored in the oscillating system. Such mechanismadecl \yayes falls into their 'blind’ zone, the propagation of wave
passive means like friction, hysteresis, drag, hydraulécelec-  forpidden in any direction, forming thus a 'band-gap’.
trical resistance, or active means, often based on smaetrimat However, existing metamaterial types fail to providiee-
als. tive broadband vibration attenuation in the middle to lova su
Concerning the design of materials or continuous strusture g frequency range. Phononic metamaterials, based orgBrag
the most frequently used highly dissipative damping mal®ri  scattering are targeted to high frequency ranges, as forte.g
are characterized by moderate to lowffeiss, which renders tne yitrasonic range, since the dimensions of the latticeg t
them unsuitable for demanding load carrying applicatiors,  require are proportional to the wavelengths of the trartsuhit
coelastic materials being the most prominent example [1, 2}yave [7], and are thus prohibitive to the frequency range-men
Such a limitation is quite restrictive in applications rég  tioned. Acoustic metamaterials [8], intended to cover thss
high stifness and often low weight, the most characteristic eXadvantage, require additional masses, which renders theem a
amples being in the aerospace and automotive sectors [3]. inappropriate for a broad class of applications, due to ti-a
The established approach to address this challenge is thgnga) weight they induce. Even the recent concept of 'meaayg-
compromise of designing composite materials with mullmﬂaseqng’ [9] requires acoustic metamaterials in order to lfe@
tively performed.
, - . Parallel, other periodic cellular structures have beeantegd
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ously incorporate dfiness elements inherently capable to com-oscillators by appropriately redistributing the indivadstiff-
bine positive and negative fitiess behavior [10, 11, 12]. Some ness elements and by reallocating the damping. Despitathe f
underlying physical mechanisms, such as microbucklingdt3 that the proposed oscillator incorporates a negatittasts ele-
slip- stick phenomena [14] have been considered to cornéribu ment, it is designed to be both statically and dynamica#ip kst
to the enhanced dynamic properties of such structures. Section 3 proceeds to a parametric analysis and optimal de-
A quite interesting possibility towards achieving sigrafit ~ sign of the oscillator. Once such a system is designed aicaprd
damping has been demonstrated to exist in materials comprio the approach proposed, it is shown to exhibit an extraargi
ing a negative sfiness phase [4], not only at a material level damping behavior, with an apparent damping ratio to be even
[15], but also at macroscopic devices [16]. Quite interegyi,  several orders of magnitude higher than that of the origipsd
such a behavior is combined with highfBiess properties. A tem, especially in the cases where the original dampingef th
theoretical analysis has been performed for the analydiseof system is extremely low. Although the elastic members of the
static and dynamic stability composites, incorporatingaie  proposed system need to be redesigned withfinetis higher
stiffness elements [17]. than that of the original system, such an increase is witén r
A quite similar approach exists for the design of engineersonable engineering limits. Results in both the frequemdy a
ing structures where vibration damping is achieved by tlee usthe time domain are exhibited and discussed on the respbnse o
of discrete macroscopic elements, such as springs and dempethe suggested oscillator.
It should be noted that the concept of introducing negative s Further analysis in Section 4 indicates that the physicahme
ness elements (or 'anti-springs’) for vibration isolatibas a  anism responsible for the vibration attenuation is sigaifity
long history, being first introduced in the pioneering poaition  different than that of the original SDoF oscillator. It is exteli
of Molyneaux [18] as well as in the milestone developments othat the exceptional damping behaviour of the proposedlasci
Platus [19]. A rich variety of designs have been proposed fotor, is a result of the phaseftérence between the positive and
the realization of negative spring configurations, incogtiog  the negative sfiness elastic forces. Moreover, analysis of the
various structural elements such as post-buckled beaatsspl peak level of the damper force in the proposed oscillatoir ind
shells and precompressed springs, arranged in approgeate cates that its level is significantly lower than that of thalpe
metrical configurations. Some interesting designs arerithest  level of the traditional SDoF system, despite the extrawgi
in [20, 21, 22, 23, 24]. The central concept of these appremch damping behavior introduced. These mechanisms are also con
is to significantly reduce the fithess of the isolator and conse- firmed by conducting a transient energy flow analysis withan t
quently of the natural frequency of the system even at almosnodified oscillator.
zero levels [25]. In this way, the transmissibility of thessy Section 5 proceeds to initial demonstrations on how such
tem for all operating frequencies above the natural frequen oscillators can be arranged in appropriate periodic agousta-
is reduced, resulting to enhanced vibration isolation. AR i material lattices or periodic composite structures, eniman
tial comprehensive review of such designs can be found ih [26 both their damping properties, as well as their band-gap be-
Since then, numerous other applications have been reparted haviour.
a diversity of engineering domains, such as automotiveesusp
sions [27, 28, 29] or seismic isolation [24, 30, 31]. From the
fundamental design point of view, many interesting improve
ments have been proposed, based on the non-linear prapertie
of the elastic force of such designs [32, 33, 34, 35, 36]. HOW 1. Dynamic analysis
ever, all these designs fer from their fundamental require-
ment for a drastic reduction of the ftiess of the structure al-

most to negligible levels, limiting thus the static load aafty tinction to a classical linear SDoF oscillator, as well ashe

of such structures. . . .
; . known negative sfiness designs. Moreover, Fig. 2 presents
This paper proposes an approach on how to optimally de-

. . . . . . By a conceptual design of a vibration isolator designed adéegrd
sign a simple linear oscillator incorporating a negativérstss . L .
. o . - . to the proposed oscillator, in distinction to the known riega
element, which can exhibit extraordinary-damping prdpert

without presenting the drawbacks of the traditional linesx stiffness oscillators.

cillator, or of the 'zero-stthess’ designs. Section 2 presents The static stinessksm of the modified oscillator can be
. . . . expressed as
the basic dynamic analysis and design concept of such an oS-

2. Design approach for a stiff, statically and dynamically
stableoscillator incor por ating a negative stiffness element

The design of the considered oscillator with the inclusion
of a negative sffness element. is introduced in Fig. 1, in dis-

cillator. The oscillator is designed to present the sameaidive KeKc

(static) stifness, as a traditional reference original oscillator, in Kstm = Ks + Ke + K¢ @
order to overcome the inherent disadvantage of the known neg )

ative stifness oscillators in requiring fitiess reduction. More- [Figure 1 about here.]

over, it does not require any increase in the mass or thewssco
damping of the original oscillator in order to increase tiea-
tion isolation properties, as it is the case of the tradaldimear
vibration isolators. However, it ffiers both from the the origi-
nal SDoF oscillator as well as from the known negativiérstiss

In order to ensure that the damping and isolation propeofies
the oscillator considered do not result to any advefieceto
the overall stifness and load carrying capacity of the structure,
the static sfiness of the modified system will be set equal to
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ko throughout this work, thugy = «xs;m. The two systems also and two complex poles in which case its transfer function can
comprise the same damping element offionts. also be expressed as

[Figure 2 about here.] _ [s7 + (ke + xc)] F (10)
My(s+ p)(S* + 2nwnS + wf)

with p the real pole of the characteristic equatidginthe new

damping ratio of the modified system ang its new resonant

frequency. At this point it should be noted that the mags

The equations of motion for the Dok y of the modified
system illustrated in Fig. 1 can be written as

mX + '7():( - 3._’) + KX+ Kke(X—Y) = f (28)  associated with the internal DoFhas been safely omitted as-

n(X=Y) +ke(X—y) —kcy =0 (2b)  suming tham > m,. Accounting for a non-zero mass for the
or by combining Egs. 2a, 2b y DoF would induce a fourth _order charg_cteristic equgtipn for
Eq. 9 and therefore an additional condition to be satisfied fo
M+ keX + key = f 3) the stability of the oscillator. A second mass would also in-

_ _ - _ duce a second resonance for the two DoF system, which would
with f being the external excitation applied to the "apparent'however be frequency-wise much higher than the fundamental

DoF x. Itis evident that an internal DoF hereby nanyeatises  resonance. Comparing the denominators in Egs. 9, 10 it can be
for the modified system in order to describe the displacemient gpserved that

thex, stiffness element. The system can therefore be character-

ized as an oscillator with one apparent and one internadi¢iyl 0+ 2nton = £ = Ke + Ke (11a)
DoF, taking into account Eq. 2b. ‘
With the application of a Laplace transform the above sys- Dplnwn + WE = Ks + Kc (11b)
e n—

tem can be expressed as
pwp = Ewl (11c)

SMX+ (X = Y) + kX + ke(X = Y) = F (4a) In order for the system to be dynamically stable the follayvin
(X =Y) + ke(X=Y) = kY =0 (4b)  conditions should be satisfied

Rearranging the terms in Eqgs. 4a, 4b gives

p=0 (12a)
mX+ X + (ks + ko)X — (7 + ke)Y = F (5a) =0 (12b)
___Sitke (5b) wn>0 (12c)
7+ (Ke + &) Egs. 11, 12 define the basic requirements and concepts for the
and by inserting Eq. 5b in 5a design of the proposed oscillator. First, as a direct cansece
of Eq. 12, it results that
+ 2
[Szm+37+(Ks+Ke)]X—%X:F (6) E>00 ke+k >0 (13)

. . Furthermore, in order that the new oscillator exhibits maxin
In order to brlng the transfer function of the SySte(r]F to damping' the terngnwn should be maximum. Therefore, for a
a convenient form from which the pOleS of the system can b%onstant‘:’ and in view of Eq 118{? should be close to zero.

computed Eq. 6 is written as In view of Eq. 11c, this in turn implies that, and«, should
3 2 be positive but close to zero. That is, the system should be
CS +CS +GS+CGy ¢ (7)  designed close to the neutral stability point
[s7 + (ke + k)]
with ko= Kst —ol =0 (14)
Ke + K¢
C1 =1y (8a)  2.2. suggested engineering design
C2 = M(ke + Kc) (8b) In order for the modified system to be equivalent to the
C3 = n(ks + Kc) (8c)  SDoF oscillator the following relation is true for the staiiff-
Ca = k(Ko + Ke) + Keke (8d)  nesses of the two configurations
Therefore Ko = K + —C (15)
S Ke + K¢
[s7 + (ke + &)

(9)  Theright part of Eq. 15 contains three unknowffgtiss terms.

In order to proceed to a concrete design of the modified system
with ¢; 2 + c»5? + Cc3S + ¢4 being the characteristic equation of two additional relations are sought fey, k. and«e. The first
the modified system. The system will therefore have one reaine will be assuming a linear relation betwagm@ndx, as

TSP+ G + C3S+ Gy
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3.1. Selection of the gfiness design values
Ks = aKo (16) The approach involves the examination of tiieet of the
design parametes, n ande on the stifness valuess, k. and
k¢ of the oscillator considered.
The results on the dependencexpfon a are presented in

with @ > 1. It is evident that forr=1 the system will converge
to the SDoF oscillator behaviour and that for greater vabfes
a the negative ternf== will be responsible for reestablishing _
Eq. 15. The second relation is derived by considering that ah'9: 3-
engineering safety margin should exist for the selection of

2 R [Figure 3 about here.]
ke, prohibiting it to reach its limit value, that would resuit &

statically unstable structure: It is observed that increasingwill demand a higher fi-
ness forke in order for a certain static fihess¢ to be retained.
S M =0 (17) This difference is as significant as 500% when comparing the
(1 +&)kc + ke values betweeg=1.5%, £=10%, fora=10. It is also shown

For the system to be statically stable it is assumed ¢hat  thatke increases monotonically witky.
0. Solving the system of Egs. 15-17 the design values for the

stiffnesses are obtained as [Figure 4 about here.]

In Fig. 4 similar results are exhibited, this time forfitess

-1 2 . . o

Ke = Ko% (18a) k. Againitis observed thatin order for a certain statiffiséss

;a‘?a__ai) Ko to be retained a more significant negativefséss will be
Kec = —Ko———— (18b)  demanded fokc. It can therefore generally be concluded that

. 1+ considering the design of the oscillator it is more pradtioa

From Eq. 18 and fow > 1 it can be observed that choose a love values.

ke>00 1l+e>ac© a< 1+e (19a) 3.2 Parametric damping analysis of the proposed oscitlato

& One of the most important design objectives for the oscil-
Ket+ke>0 (19b)

lator is maximizing its damping characteristics. The dargpi
are implied design limitations of the system. Itis inteiregto  ratio £, of the modified system can be calculated as a function
notice that Egs. 18,19 fully satisfy the necessary arfficgent ~ of the poles of the characteristic equation of the system. In
conditions for static stability, independently derived1i]. Fig. 5 the values of,, as a function ofr and for various: val-

ues are presented. The results are given as the ratjotothe

i io of the SDoF
3. Optimal parameter selection and analysisof theresponse damping ratio of the SDoF system

of the proposed oscillator n

2+/Mko
It is shown that for every value an optimad value exists for
maximizing{n. The lower thes value, the greater the optimal

alue of the attained,. For highera values,, converges to
the statically equivalent SDoF system. It can also be catedlu
that increasing will significantly decrease the optimal

o= (20)

It would be strongly beneficial for the designer to directly
derive the design parameters for thefassess, e, kc as a
function of xp, wp, M, n and the desired values ¢f and wy,.
This can indeed be done by introducing Egs. 17,18 in Eq. 1
and subsequently solve fgy andwy, as a function of the design
variablesa, £ and the characteristics of the SDoF oscillatgr
n, m. Due to the complexity of the resulting equations however [Figure 5 about here.]
this optimisation procedure is outside the scope of thikwor

Eqg. 10 implies that the new considered oscillator is dynami- A similar graph exhibiting the attained damping rafidor
cally equivalent to a SDoF oscillator with a new apparentplam various values of the damping dfieientr of the dashpot is
ing ratio ¢, and natural frequency,, since the value of is ~ shown in Fig. 6. Again an optimat value seems to exist for
always positive. Moreover, Egs. 18, 19 imply that the altgolu anyn in order to maximize the damping ratio of the system. As
values of the sffness elements, «e, . are greater than the expected, increasingincreaseg,; however this increase is not
stiffnesskp of the original oscillator. linear. Taking a look at the maximugy values it is observed

Consequently, a parametric analysis is performed to exanthat increasing by a factor of 100 will only increase the max-
ine the dfect of the freely selectable parametersands on  imum ¢, by a factor of 4. Comparing the maximuh values
the resulting values of the filness elements, as well as on theto {p it is observed that fofo = 1% the damping ratio is ampli-
apparent dynamic parametess and/,. The analysis is per- fied by a factor of 18, while fofo = 0.1% the damping ratio is
formed for a reference initial linear oscillator with noiwgnsionalincreased by a factor of 100. It can therefore be concludatd th
value ofwo= 27 rad'sec,p=0.01 andk= 1 N/m. an impressive improvement of the damping capabilitiesgake

place for the modified system,; this improvement is greater fo
lightly damped systems.

[Figure 6 about here.]



3.3. Impact of the design on the natural frequency of thd-osci Inserting Eq. 2b into 2a and rearranging the terms
lator

It is hereby stressed that the natural frequeagyof the
modified oscillator is also dependent@and can be calculated
as afunction of the poles of the characteristic equatiofidn7 Y =X+ ke(X—Y) —ky © Y =X+ E(x —-y) - ﬁy (23b)
the ratioQ = w,/wg is exhibited as a function af for various n n
€ values. It is observed that decreasmgicreases2. ThiS  Therefore the derivatives can be written as
increase becomes more significant when getting closer to the
stability limit lime — 0. For greaterr valuesQ converges X1 = Xo (24a)
to unity and the configuration is deprived of any exceptional

MX + kX + kY = f © X=(f —ksX—key)/m  (23a)

damping behavior. Xo = (f = ksXa = keX3)/M (24b)
In Fig. 8,Q is plotted as a function af for various values X3 = Xo + @(x1 — X3) — EXs (24c)
of o. It is shown that a greaterwill increase the natural fre- n n

guency of the modified system. Again, for highewaluesQ  The results can eventually be obtained by applying a Runge-

converges back to unity. Kutta numerical approach. A unitary initial velocity is id-
ered fory simulating thus a vibro-impact situation. The initial
[Figure 7 about here.] displacements are both set to zero. The vakgem andn for
_ the equivalent SDoF system are the same as aforementioned in
[Figure 8 about here.] Sec. 3.
) In Fig. 10 the results for the time dependent response of °
3.4. Frequency domain response y are exhibited. ArQ optimala value is hereby considered. It
Using Eq. 7 the frequency response function FRF of thecan be observed that the values attaineq bye much greater

responseX can be expressed as than the ones fox as expected from th¥/X transfer function

_ results presented in Fig. 12. The phas@edéence in the two
X iwn + (ke + Kc)

e i : (21)  curvesis also evident.
F c(iw)d + c(iw)? + cs(iw) + ¢4

with the codficientsc; given by Eq. 8. [Figure 10 about here ]

Observing Figs. 5-8 itis evident that among others, two de- In Fig. 11 the corresponding results for the time dependent

sign options exist for minimizing the response of the SySteMsyrces applied within the modified system are exhibited. The

the first one being the choice of a value tothat will maxi- 50 gerence between the Stiess forces and the inertial
mize ¢,. The second option would be selecting a valuedor forces can be observed

that would maximize the resonance frequency of the system, i

which case the resonance band of the SDoF system would be [Figure 11 about here.]
transformed into a low frequentipw response regime.

In Figs. 5,7, it can be observed that minimiziangill result

in increased? and{, values for the system. It can therefore
be assumed that an optimal performance will be attained fof 1. The importance of the emergent phad@x
lime — 0. In Fig. 9 a low value foe of 1% is inserted in the
calculations. The results show a drastic reduction of thE FR phases oK, Y were equal them(X — y) = 0 which means

X/F. For anQ optimala a r_naximum reduction of 2_109% _in that the damping force and therefore the energy absorbed by
the response of the system is observed. The reduction ielglig the damping mechanism would inevitably be nil. The transfer

less impressive for &, maximizinga parameter. In the high unctionY/X can be deduced by Eq. 5b while the FRFF can
frequency range the responses seems to converge to that of

4. The physical background of the damping mechanism

In view of Eq. 2, it is evident that if the amplitudes and

e written as
SDoF system.
[Figure 9 about here.] Y iwn+ke 3 iwn + Ke
Fooiwn+ (ketke)  Ciiw)® + Coiw)? + Caliw) + Cq
3.5. Transient response and impact isolation capacities (25)

The first part of the numerical case studies is dedicated t§ Fig- 12 the transfer functioi/X is shown for a range of
investigating the time domain response of the system. larord ¢ values. In Fig. 13 similar graphs for the phases of transfer

to solve for the time dependent response the system of equiinctions<X/F andZY/F are plotted. For high values (much

tions in Eq. 2 will be expressed in a state-space form with greater that the ones in the optimal range) the transfetifumc
Y/X will converge to unity, suggesting that the response will

_ converge towards the one of the original SDoF oscillator.
Xp = X (22a) - . .

_ On the other hand when an optimal design parametisr
X2 =X (22b)  selected the transfer functiofiX attains greater values, imply-
X3 =Y (22c)  ing that small displacements of can induce great intern



displacements. FurthermoreX/F and £Y/F diverge even in is increased compared to the SDoF system. About the energy
the low frequency range with a maximum divergence of approxflow it is known that
imately 1 radian which is in favour of maximizirg. dE
. L p(x—-y)% = fx (27)
[Figure 12 about here.] dt

) with E; the total mechanical energy in the oscillator defined as
[Figure 13 about here.]

It can generally be concluded that the impressive reduction Ei=Ep+Em (28a)
of the X/F response of the modified system observed in Fig. 9 En= }m)-(z (28b)
is underpinned by two factors, with the first one being the am- 2

plification of the internal responsé of the system for low re-  with E, the total kinetic energy anH,, the total potential en-
sponses oK. The second one exhibited in Fig. 13 being theergy calculated as
emergence of a phasefdirence between the FRFsXfF and

Y/F, which increases the time averaged relative velociy - Ep=Es+Ee+Ec (29a)
The physical mechanism, responsible for the extraordinary 1,
vibration damping is better revealed by the analysis ofthesfs Es = SksX (29b)
developed during the operation of the system. The forces can 1 )
be calculated as Ee = Ske(x-Y) (29¢)
1
Fm=MX = Fn = (iw)mX (26a) Ee = Skey? (29d)
Fs=kex = Fgr = keX (26b) _ )
Further elaboration of equation Eqg. 29 leads to
Fc= kcy = Fet = kY (260)

Fe=ke(x—y) = Fer = keZ (26d) .

Fn=n(X—V) = Fr = (iw)yZ (26€) Es+ Ee+ Ec + Em + (X - ¥)? = fX (302)
with Z = X — Y. In Fig. 14 the resulting real parts of the devel- Es = ksXX o (30b)
oped forces are exhibited for the conventional SDoF osoilla Ee = ke(x-y)(X-Yy)  (30c)
Since the applied external excitation is of unit amplituthe, Ec = koYY (30d)
sum of the real parts of the forces has to be equal to unitylfor a Enn = keXX (30e)

frequencies. In accordance to the classical theory of treali

SDoF oscillator, the real part of the elastic and inertiatés while the corresponding equation for the original refeeenc
become zero in the vicinity of the resonance leaving soledy t SDoF oscillator is

damping force to counteract the external excitation.

The results for the suggested configuration when an optimal Epo + Emo + %@ = X (31a)
a design value is chosen are shown in Fig. 15. The external ex- _ d(koxX2/2)
citation curve (equal to unity throughout the frequencygen Epo = bt sl KoXX (31b)
is omitted for the sake of conciseness. It is observed that in d,tz
the vicinity of the new resonance of the systemthe positive Emo = d(mx’/2) = MXX (31c)
stiffness and inertial forces become zero, however in this case dt

it is the the real part of the force provided by the negatiifé-st Fig. 16 depicts the rate of change of the potential energy, of

nessk that contributes to counterbalancing the external excita,fhe kinetic energy and of the power dissipated in the damger f
tion. This ph_enomenon can be attributed to the phaerence the equivalent original linear oscillator. A phaséfeience of
£X/F described above. 180 exists between the rate of change of the total potential en-
ergy and the kinetic energy. Thus, in view of Eqg. 31, a minimal

[Figure 14 about here.] amount of power is absorbed in the damper.

[Figure 15 about here.] [Figure 16 about here.]

A further interesting result of Figs. 14, 15 is the fact thn t
peak real part of the damping force of the considered oscillat
tor is significantly less than that of the reference SDoFesyist
despite the extraordinary damping behaviour.

Fig. 17 depicts the rate of change of the potential enerdies o
he oscillator having negative tiess inclusions. As it can be
observed, a phaseftérence exists between the rate of change
of the potential energy of the positive fitiess elements, as a
consequence of the phasdfdience betweer andy. More-
over, the negative gthess element results to a phaséettence

A transient energy flow analysis is further considered in orof almost 180 between the rate of change of the potential en-
der to give further insight on how the damping of the osailfat ergy of the negative $thess spring and the rate of change of

6
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the potential energies of the positiveftess springs. This in-  with u{, ué being the displacements of masses 1, 2 belonging
dicates that the role of the negativeistess spring in the energy to thejth lattice. For the infinite periodic medium Bloch’s theo-
transfer is similar more to that of an inertial element, ttwathat ~ rem [37] can be engaged in order to write a generalized oslati

of a conventional spring. for the displacements as
[Figure 17 about here.] uﬂ]”‘ = gkt (33a)
Fig. 18 depicts the rate of change of the total potential en- U = @ty (33b)

ergy, of the kinetic energy and of the power dissipated in the i _ ety 33
damper. Similarly to Fig. 16, a phasefdrence of almost 180 uh B h (33c)
exists between the rate of change of the total potentialggner v =elv (33d)

and the one of the kinetic energy. In view of Eq. 30, this rssul i h—1 2 standing for the index of the considered mass,

to the activation of the damping forces and thus, a significanis he total distance from the reference lattjte the considered
amount of power is absorbed in the damper. lattice j +n; Up, V are the wave motion amplituddstepresents
the wavenumber antlis a complex frequency function permit-
ting time induced wave attenuation. In the absence of dagnpin
A = +iw so that the usual form of Bloch’s theorem is recov-
5. Application to a periodic acoustic metamaterial lattice ered. In the presence of damping the real part ofpresents

. . . . . the attenuation of the wave in which case
In this numerical example section acoustic metamaterials

are considered, in which one atom is replaced by the sugheste :
oscillator configuration incorporating a negativefatss ele- Aw(K) = ~w(KJwu(k) + iwa(k) (34)
ment. Such metamaterials are shown to exhibit an extraangin with &, the damping ratio of the considered wave typandwgy
damping behavior, with a damping ratio to be even orders ofhe frequency at which the assumed wavenumber value for the
magnitude higher than that of the original system. The cphce damped wave is occurring and where the values,pé, andy
proposed is general enough, able to lead to designs not baly aare defined as follows

material level, but far more important, at the design ofistial

engineering structures with periodic lattices, exhilgjtixtraor- d =g, (35a)
dinary damping behavior, with absolutely no compromiseat t ikl _ 35h
structural stitness. € =& (35b)

The 1D wave propagation within an infinite sequence of pe- v =2(1- €+ €n) = 2(1- coskl) (35¢)
riodic lattices with negative stness inclusions is hereby exam- The system in Eq. 32 can be reformulated by considering
ined. The negative sthess atom is used to replace the secondhe following state space representation
linear oscillator (atom) used, in such a way that it retaies t

[Figure 18 about here.]

same static dfiness and the same damping element, however z=U; (36a)

properly redesigned as per Sec. 2. The corresponding diesign 2 =U; (36b)
presented in Fig. 19.

3 =U> (36C)

[Figure 19 about here.] z=U, (36d)

The periodic segment, illustrated in Fig. 19 comprises a 5=V (36e)

mass-in-mass configuration as in [9, 26] with the lumped masas a result, it can be cast into the following state space term
m)! being included and connectedrtd. The«) elementused  |ation

to connect the two masses in [9] is hereby replaced by the sug-

gested oscillator containing a negativefsiss element a¥.

The equations of motion for the modified system are as follows 2 M 0 1 0 0 0 M
1 _yk¥+/<2"+k2" ﬂ g 0 ﬂ VAl
) m! % mj! mj! Y]
L L i—1 i+l L i i—1 M _ 1
mi i} + (o] - 0] - el - o) + (] - ul - SN O R s
1 ST S _ks ke

- K]'\./I (uj]I_Jr - ujll_) - KQA (Ué - Ui) - Kgll (VJ - ujll_) =0 Z5 Zlgl 0 Kg/}g/l 1 Kg}%@ﬂ Z5

My + kg' (uy = p) + k' (V) — ug) = 0 7 7 T an
MU =) + kU - v - kv - ud) = 0 The complex values of" that satisfy Eq. 37 can be sought

by solving the resulting eigenvalue problem
(322) MM = AMZM o detii™l - AM] =0 (38)

(32b)  the solutions of which will provide the angular frequency of
(32c)  propagationugy and the damping ratig,, of a certain wave



typew having a wavenumber equalkg and inducing structural elastic members of the proposed system need to be redesigned
displacements in the metamaterial lattice impliedz}y in order to present a higher ftiess than that of the original

Numerical results considering the wavenumbers as well asystem, such an increase is kept within reasonable engigeer
the damping ratios for each wave type propagating within thdimits.
configuration presented in Fig. 19 will hereby be presented. (c) The damping element in the proposed oscillator is able
For the sake of comparison, results computed for the sligtica to generate a phasefitirence between the elastic forces of the
equivalent structures with no negativefistess inclusions (as positive and the negative fitiess elements of the system. As
presented in [9]) will also be exhibited alongside. The adns a result, the forces either of the positiveffstess elements, or
ered AM configuration has)! = 4.182x 10%, k' = «M/5 = of the negative sfiness element, or both of them, are of an
8.364x 10°, mM=1 andm}! = 5m)'=5. The damping cd&-  adequate level to balance the inertia and the excitatiarefoin
cientis chosen ag"=1. A value fore=3% was selected for the the entire frequency range.
design of the system and a parametric survey was conducted to (d) A resonance phenomenon, although inherent and clas-
decide the optimal corresponding value &e£2.5 which maxi-  sically observed in linear SDOF systems, cannot emergeein th
mizes its damping properties. proposed linear oscillator.

The dispersion curves of the waves propagating within the (e) Such an oscillator concept presents the potential for nu
infinite waveguide are presented in Fig. 20. It can be obskervemerous implementations in a large variety of technologagal
that in the low frequency range the acoustic wave brancheglications, either as a discrete vibration isolator, otie form
coincide for the two configurations with and without negativ of periodic metamaterials and composite structures. M@eo
stiffness inclusions. The most interesting finding is the signiffurther applications may emerge in a multiphysics envirentn
icant increase of the band-gap between the propagatingswavéor instance in active vibration systems, or in electridedwits
especially in the low wavenumber range where the 'dead zonetith 'negative’ capacitance elements.
has increased by 50% from 100 fselc to 150 ratbec. Both the
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Figure 1: (a): A typical (reference) SDoF dynamic systemsggiing of a mass, a sttthess«p and a dashpaf. The system exhibits a natural frequenay and

a damping ratiQp. (b): A 'zero stifness’ oscillator. A negative #finess element is connected in parallel to the existirfiness element of the oscillator, in order
to reduce the natural frequency. (c): A single DoF systerorpporating a negative $fhess element.. It is equivalent to the reference SDoF system, when the
values of the sfiness elements are selected according to Eq. 1. (d): Thedevedilinear oscillator, resulting by the reallocation e tlamping element and the

introduction of an internal (hidden) DOF.
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Figure 2: Realisations of negative fhtiess configurations. (a): A ’zero ftiess’ isolator. The 'zero $fhess’ spring is realised by two horizontal springs in
precompression, providing a negativefsiss in the vertical direction. (b): The considered iso)atsulting by an appropriate redistribution of theéfagss and
damping elements. (c): A 3D realisation of the considerethier.
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Figure 3: The relation of the ratia/ko to the design parameter = ks/kp in order for the considered system to retain a static eqerivatitnessxg for various

values of the safety margin design parameter=1.5% ( - - ), e=5% (- -),e=10% (-). All computations conducted witp=0.01.
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Figure 4: The relation of the ratia,/ko to « in order for the considered system to retain a static eqgivadtitness«g: e=1.5% (), e=5% (--),e=10% (-). All
computations conducted witja=0.01.

15



40

35+ il

20F s

2 1%,

Figure 5: The impact of the parameter on the damping ratio enhancenggfat of the considered systera=1.5% (- ), e=5% (- -),e=10% (-). All computations
conducted with/p=0.01.
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Figure 6: The impact af on the damping ratio enhancementp of the considered systertp=0.1 ( - - ), £p=0.01 (- -),£p=0.001 (-). All computations conducted
with e=3%.
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Figure 7: The impact of the parameter on the ratiQ = wn/wo of the considered systera=1.5% (- - ), e=5% (--),e=10% (-). All computations conducted with
£0=0.01.
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Figure 8: The impact of the damping dbeientn = 2{p /Mko on the ratioQ = wn/wp of the considered systendp=0.1 (- -), {o=0.01 (--),{p=0.001 (-). All
computations conducted wit=3%.
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Figure 9: An attempt to minimise the displacement PRF) of the considered systemap: i) By choosing a2 optimala=8.6 (-). ii) By choosing &, optimal
a=10.2 (--). i) By choosing an intermediate valwe9.4 (- -). Also exhibited the original SDoF system response)-All computations conducted witfp=0.01,

£=1%.
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Figure 10: Time dependent velocitigsandy of the modified system under a unit impulge(-), x (--). All computations conducted with=5%, p=0.01,a=2.4
(Q optimal)
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Figure 11: Time dependent forces of the modified system umdeit impulse:Fys (—), Fm (--), Fiec (- -+
(Q optimal)

~

. All computations conducted wit#t=5%, {p=0.01,a=2.4
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Figure 12: The magnitude of the transfer functisff)/X(f) for the considered systerw=2 (-), @=2.4 (Q optimal) (--),@=3 (¢, optimal) (--), a=9 (---). All

computations conducted witlp=0.01,e=5%.
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Figure 13: The phase of(f) (--) andY(f) (---) for @=2.4 (Q optimal) and phase (-) of(f) for the original SDoF system. All computations conductathw
£0=0.01,6=5%.
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Figure 14: Real part of forces applied in the conventionabBEBystem: External forcé (=), Elastic force (--), Inertial force (--), Damping force: (-). All
computations conducted with=2.4 (Q optimal),p=0.01,&=5%.
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Figure 15: Real part of forces applied in the modified oscittaPositive stiftness force=¢; (- - -), Inertial forceFy (- -), Damping forceFp; (- - - ), Negative stiness
force F¢t (). All computations conducted wittr=2.4 (Q optimal), £p=0.01,e=5%
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Figure 16: Rate of change of the energies within the origBiadF oscillator: Rate of change of the potential energy, Rate of change of the kinetic energy-(),

Power dissipated in the damper (-).
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Figure 17: Rate of change of the potential energies witharstiggested oscillator: Rate of change of the potentiabgrdiks (- - - ), Rate of change of the potential
energy ofkc (- - -), Rate of change of the potential energyef- -), Rate of change of the total potential energy (-).
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Figure 18: Rate of change of the energies within the sugdexeillator: Rate of change of the total potential energy, (Rate of change of the kinetic energy
(---), Power dissipated in the damper (-).
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Figure 19: Left: lllustration of an Acoustic Metamateridd) configuration as presented in [9]. Dashed line enclosesdmsidered periodic segment. Right: The
modified Acoustic Metamaterial lattice with the secondeiinal) atom being replaced by a the proposed oscillatooyjrrating a negative siiness element af!.
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Figure 20: Wavenumbec as a function ofvg for the acoustic wave within the acoustic metamaterialcttine: Present approach with negativéiséss elements
(--+), No negative sffness inclusions (--). Wavenumbek as a function otug for the optical propagating wave: Present approach (—hduitnegative sfiness

(--). All computations conducted with=2.5,7M=1, £=3%.
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Figure 21: Damping ratig as a function ok for the acoustic wave within the acoustic metamaterialcsting: Present approach with negativefséss elements
(), No negative sfiness inclusions (--). Damping ratia¢ as a function ok for the optical wave: Present approach (--), Without negastitness (- -). Total
damping ratio as a function &f Present approaciil), Without negative sfiness §). All computations conducted with=2.5,7M=1, £=3%.
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