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Abstract

So far the lattice Boltzmann (LB) method has matured as a powerful tool to address

a diversity of heat and mass transfer challenges. For most practical applications, the

variation of thermophysical properties of working media will influence the perfor-

mance of industrial systems substantially. However, nowadays the efforts to improve

the LB method to consider variable thermophysical properties of working media are

quite sparse. In the present work we firstly analyze the shortcomings of the available
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LB approaches for modeling working fluid with variable thermophysical properties.

Based on the analysis, a simple LB model is proposed to overcome these shortcom-

ings. The feasibility and reliability of the new LB model have been validated by

three simple but nontrivial benchmark tests. Although it is originally proposed to

simulate fluid flow with variable thermophysical properties, the present model can

be extended directly to some other research areas where variation of thermophysical

properties of working media should be considered, such as conjugate heat transfer

between solid materials.

Key words: Lattice Boltzmann method; heat and mass transfer; variable

thermophysical properties; heterogeneous media

1 Introduction

With the rapid development of computer science, numerical simulation has be-

come a powerful, sometimes even a unique, tool to address a diversity of chal-

lenges in various practical applications. In the fields relevant to heat and mass

transfer in fluid flow, computational fluid dynamics (CFD) techniques have

been popularly adopted as a cost-effective way for system design, diagnosis

and optimization. Due to the extreme complication of fluid flow in engineering,

during the past decades various modeling approaches and numerical solvers

have been continuously proposed to conquer the difficulties and to present a

clearer physical picture of the investigated problems [1]. Among them, the lat-

tice Boltzmann (LB) method has attracted significant attention owing to its
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some intrinsic advantages, such as modeling interaction, in a mesoscopic lev-

el, between different phases/components in multiphase/multicomponent flow

and a thermodynamics-consistent description of turbulence [2]. Until now, LB-

based approaches have been widely used not only to deepen our insight into

numerous fundamental research areas [3–5], but also to constitute commercial

software to optimize industrial processes [6]. On the topics relevant to heat

transfer, the LB method has reached a great achievement over a wide range,

such as enhanced heat transfer by nanofluid [7–10], micro-scale heat transfer

[11–13] and conjugate heat transfer[14,15].

The LB method is a type of mesoscopic approach which implies it will not

solve macroscopic governing equations directly as conventional CFD tools do,

although macroscopic phenomena can be reproduced by it satisfactorily. Al-

l available LB-based approaches start from the so-called LB equation which

can be regarded as a special discretization of the Boltzmann equation [2].

Through a multiscale expansion, some well-known macroscopic governing e-

quations, such as the Euler and/or Navier-Stokes equation, can be recovered

from the LB equation with different truncated errors [4]. Accordingly, in the re-

covered macroscopic governing equations all parameters representing the ther-

mophysical properties of working media (e.g. specific heat capacity, thermal

conductivity and dynamic viscosity) are determined through the multiscale

expansion. In order to exactly match the macroscopic governing equations

in CFD, a number of macroscopic quantities in the recovered macroscopic e-
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quations, including thermophysical properties of working media, are assumed

to be constant or to vary slightly across the investigated domain. Original-

ly, the LB method was developed as an alternative solver for isothermal low

Mach number flow simulation, so such assumption was tenable. Later, the LB

method was extended to model thermal flow and reaction flow[5]. Surprisingly,

although the thermophysical properties of working media may be significantly

different temporally and/or spatially in those scenarios, the above assumption

has still been adopted implicitly. In spite of acceptable simulation results hav-

ing been reproduced in some scenarios, it is not physical sound. Especially, in

theory the applicable scope of these LB approaches has been limited not to

exceed the relaxation of the above assumption too much, which can not meet

the requirements of most practical applications.

Nowadays, the available open literature, attempting to model temporally/spatially

different thermophysical properties of working media by the LB method, is

quite sparse. Guo and Zhao [16] perhaps are the pioneers to consider how

to model changeable dynamic viscosity of working fluid in the framework of

the LB method. In Ref.[16], natural convection of a fluid with temperature-

dependent viscosity was simulated. The influence of variable viscosity on heat

transfer has been presented by the authors and it was observed the standard

LB model’s prediction, in which constant viscosity assumption adopted, would

significantly deviate the real phenomena. However, there are still two implic-

it assumptions in Guo’s LB model: (1) the density change of working fluid
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should be very small and (2) the specific heat capacity and thermal conduc-

tivity of working fluid should be constant. Unfortunately, in many industrial

applications (e.g. combustion), these two assumptions can hardly be met. Re-

cently, some scholars discussed how to model conjugate heat transfer by the

LB method [17–22]. For conjugate heat transfer, the investigated domain is

consisted of several different medium layers, and the specific heat capacity

and/or thermal conductivity of the medium layers may be different with each

other. However, their LB approaches can not treat spatially consecutive varia-

tion of thermophysical properties within any medium layer as in their models

the thermophysical properties of each medium layer must to be spatially iden-

tical. On the other words, these LB models for conjugate heat transfer aim to

handle interfaces between heterogeneous medium layers rather than to model

variable thermophysical properties of working media.

This drawback has hampered the maturation of the LB method as an industrial-

level CFD tool. In order to bridge this gap, in this work we try to establish a

LB model which can deal with variable thermophysical properties of working

media simply and efficiently. As shown by the above literature survey, this is-

sue has been ignored by the LB community although it is extremely critical for

practical applications. What should be emphasized is although in the present

study we only take a single-relaxation-time LB model as an example to show

how to address the variation of thermophysical properties of working medi-

a, the extension to its multiple-relaxation-time counterpart is straightforward
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[5,18].

2 LB model considering variation of thermophysical properties

The standard macroscopic governing equations for industrial fluid flow with

variable thermophysical properties, in their tensor formulation, read [1]:

∂tρ+∇αρuα = 0, (1)

∂tρuα +∇βρuαuβ = −∇αp+∇βµ(∇αuβ +∇βuα), (2)

∂tρCpT +∇αρCpTuα = ∇αλ∇αT. (3)

where ρ, uα, p and T are the density, velocity, pressure and temperature of

working fluid. In addition, µ, λ and Cp are the thermophysical properties of

working fluid and they denotes the dynamic viscosity, thermal conductivity

and constant pressure specific heat capacity, respectively.

However, the recovered macroscopic governing equations by the standard LB

method read[2,4]:

∂tρ+∇αρuα = 0, (4)

∂tρuα +∇βρuαuβ = −∇αp+∇βν(∇αρuβ +∇βρuα), (5)

∂tρCpT +∇αρCpTuα = ∇ακ∇αρCpT. (6)

where ν = µ/ρ and κ = λ/(ρCp) are the kinematic viscosity and thermal
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diffusivity of working fluid, respectively. One can observe there are obvious

differences between the recovered macroscopic governing equations Eqs.(5)-

(6) and the standard macroscopic governing equations Eqs.(2)-(3): firstly, the

second term on the right side of Eq.(5) does not match that in Eq.(2) exactly;

secondly, the last term of Eq.(6) is not the same as that in Eq.(3).

The second term on the right side of Eq.(5) ∇βν(∇αρuβ + ∇βρuα) can be

transformed as

∇βν(∇αρuβ +∇βρuα) = ∇βµ(∇αuβ +∇βuα) +∇βν(uβ∇αρ+ uα∇βρ). (7)

Therefore, Eq.(5) can approximate to Eq.(2) only when the spatial derivation

of density is slight. For example, for isothermal low Mach number flow, there

is O(∇αρ) ∼ O(Ma2) [23], so the equality Eq.(7) can be written as

∇βν(∇αρuβ +∇βρuα) = ∇βµ(∇αuβ +∇βuα) +O(Ma2). (8)

where Ma is the Mach number. What should be emphasized is that the equal-

ity Eq.(8) may collapse in some low Mach number scenarios, such as in low

Mach number combustion where the spatial derivation of density is large [24].

In the LB community, there is a commonly found mistake that many scholars

take the low Mach number flow equivalent to O(∇αρ) ∼ O(Ma2). Strictly,

such equivalence can stand only in isothermal low Mach number flow.
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The last term in Eq.(6) can be rewritten as

∇ακ∇αρCpT = ∇αλ∇αT +∇ακT∇αρCp. (9)

Accordingly, Eq.(6) can match Eq.(3) exactly only when ∇αρCp = 0 which

implies at least Cp should be a constant across the investigated domain. As

discussed below, it is the reason why it is difficult to adopt the standard LB

approach to treat conjugate heat transfer.

In order to recover the macroscopic governing equations Eqs.(1)-(3) exactly

without the above restrictions, in the present study a double-distribution-

function LB model is proposed. The present model is partially based on our

previous LB model developed for low Mach number combustion simulation[24],

in which the flow and scale (e.g. temperature) fields are solved by two sets of

distribution functions, respectively.

2.1 Flow field

The evolving equation for the flow field reads

fk(xα + ceαk∆t, t+∆t)− fk(xα, t) = −τ−1
u [fk(xα, t)− f

(eq)
k (xα, t)]. (10)

where fk(xα, t) is the distribution function at space xα and time t with velocity

ceαk and f
(eq)
k (x, t) is the corresponding equilibrium distribution. eαk is the
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discrete velocity direction, which depends on the lattice model adopted and

k = 0 represents the stationary fluid particle. ∆x, ∆t and τu are the lattice

grid spacing, evolving time step and dimensionless relaxation time for the flow

field, respectively. c = ∆x/∆t is the pseudo-fluid particle speed.

The equilibrium distribution in the present model is defined by

f
(eq)
k = χkp+ ρsk(uα), (11)

where

sk(uα) = ζk[
cekαuα

c2s
+

(cekαuα)(cekβuβ)

2c4s
− uαuα

2c2s
].

In the above equation ζk represents the weight coefficients which are the same

as those in the standard LB method [2,4], and the parameter cs satisfies

c2sδαβ =
∑
k
ζkc

2ekαekβ [24]. The parameter χk is given by [24]

χk|k ̸=0 = ζk/c
2
s, χ0 =

ρ

ρ
+

ζ0 − 1

c2s
. (12)

The pressure, momentum and dynamic viscosity of working fluid can be ob-

tained by [24]

p = c2s
1−ζ0

[
∑
k ̸=0

fk + ρs0(uα)]
, (13)

ρuα =
∑
k

cekαfk, (14)

9



µ(T ) = ρ(τu − 1/2)c2s∆t. (15)

With the aid of the state equation p = c2sρ, the density and velocity of flow

field can be calculated out.

The symbol µ(T ) in Eq.(15) denotes the dynamic viscosity is changeable and

here it is a function of temperature of working media as in most practical ap-

plications the dynamic viscosity of working fluid is only highly temperature-

dependent [1]. However, it is not difficult to extend the present model to

consider other influences on variation of the dynamic viscosity (e.g. compo-

sition fluctuation in multicomponent flow) [24]. Furthermore, as pointed out

in Ref.[24], the relaxation time τu in Eq.(10) is a field variable which depend-

s on local temperature in the present work. Make an comparison between

Eqs.(10)-(11) in the present work and Eqs.(11)-(12) in Ref.[24], one can find

that for flow field simulation, the present approach is nearly the same as that

in Ref.[24] because Eqs.(1)-(2) can be recovered exactly from Eqs.(11)-(12) in

Ref.[24], without the assumption that spatial derivation of density should be a

slight quantity. In the present work the step of rescaling pseudo-fluid particle

speed that proposed in Ref.[24] is not included as such rescaling step is only

required for combustion simulation. In addition, if in the investigated domain

O(∇αρ) ∼ O(Ma2) always can be met, a standard LB model can also be used

for flow field simulation, as demonstrated in Ref.[24], Eqs.(10)-(11) will reduce

to an incompressible LB model for fluid flow simulation.
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In the following section the evolving equation for temperature field will be

discussed. In fact, the major difference between the present model and the LB

approach designed in Ref.[24] is reflected by temperature field modeling as in

Ref.[24] Cp and λ both were assumed constant.

2.2 Temperature field

In order to treat the variation of Cp and λ across the investigated domain, a

new evolving equation for temperature field is proposed in the present study,

which reads

gj(xα + ceα,j∆t, t+∆t)− gj(xα, t) = −τ−1
T [gj(xα, t)− g

(eq)
j (xα, t)]. (16)

In Eq.(16) τT is the dimensionless relaxation time for temperature field simu-

lation.

The equilibrium distribution in Eq.(16) reads

g
(eq)
j =


ρT (Cp − Cp0) + ωjCpT (

ρ0Cp0

Cp
+ ρcejαuα

c2s
), j = 0

ωjCpT (
ρ0Cp0

Cp
+ ρcejαuα

c2s
), j ̸= 0

(17)

where ωj represents the weight coefficients and ej denotes the discrete ve-

locity direction. ρ0 and Cp0 are the density and constant pressure specific

heat capacity at the reference temperature T0. The parameter cs satisfies
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c2sδαβ =
∑
j
ωjc

2ejαejβ. One can observe the lattice used for solving temperature

field is different from that for velocity field as Eq.(3) is an advection-diffusion

equation for which a simpler lattice is sufficient [2,4]. For example, a D2Q5

lattice for two-dimensional problems and a D3Q7 lattice for three-dimensional

domains [18,24]. Such choice can save computational cost efficiently, which is

crucial for industrial-level simulation, as explained in our previous work [24].

If one would like to use the same lattice for flow field simulation to solve

temperature field, the equilibrium distribution in Eq.(16) will read

g
(eq)
j =


ρT (Cp − Cp0) + ζjCpT{ρ0Cp0

Cp
+ ρ[ cejαuα

c2s
+

(cekαuα)(cekβuβ)

2c4s
− uαuα

2c2s
]}, j = 0

ζjCpT{ρ0Cp0

Cp
+ ρ[ cejαuα

c2s
+

(cekαuα)(cekβuβ)

2c4s
− uαuα

2c2s
]}, j ̸= 0

(18)

The temperature T is obtained by

T =

∑
j
gj

ρCp

. (19)

and the thermal conductivity λ is given by

λ = (τT − 1/2)c2s∆tρ0Cp0. (20)

where τT must be a field variable as λmay vary across the investigated domain.
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2.3 Multiscale expansion and recovered macroscopic equations

The detailed process to recover Eqs.(1)-(2) from the evolving equations Eqs.(10)-

(11) has been presented in Ref.[24], so it is not repeated here for simplicity. In

this section we focus on how to recover Eq. (3) through multiscale expansion

of Eqs. (16)-(17).

Equation (16) can be expanded in Taylor series as [2]

∆t(∂t + cejα∇α)gj +
∆t2

2
(∂t + cejα∇α)

2gj +
1

τT
[gj − geqj ] = O(∆t3). (21)

Introducing the multiscale expansion ∂t = ϵ∂t1 + ϵ2∂t2, ∇α = ϵ∇α1 and gj =

g
(eq)
j + ϵg

(1)
j + ϵ2g

(2)
j +O(ϵ3) [4], we can sort Eq. (21) in terms of ϵ and ϵ2 as

(∂t1 + cejα∇α1)g
(eq)
j = −

g
(1)
j

∆tτT
+O(ϵ). (22)

∂t2g
(eq)
j + (∂t1 + cejα∇α1)[(1−

1

2τT
)g

(1)
j ] = −

g
(2)
j

∆tτT
+O(ϵ2). (23)

As mentioned above, for temperature field modeling there are two choices on

lattice model, here we adopt a simpler one whose equilibrium distribution is

described by Eq.(17) (the process is similar if Eq.(18) adopted). With the

symmetry properties of the lattice
∑
j
ωjcejα = 0 and

∑
j
ωjcejαcejβ = c2sδαβ we

can obtain

∑
j

g(eq) = ρCpT, (24)
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∑
j

cejαg
(eq) = ρCpTuα, (25)

∑
j

cejαcejβg
(eq) = ρ0Cp0Tc

2
sδαβ. (26)

Please bear in mind that the second moment of g(eq) (namely Eq.(26)) is

different from that of the standard LB method. We will discuss it below.

With the aid of Eqs.(24)-(26), as well as
∑
j
g
(1)
j =

∑
j
g
(2)
j = 0, the summation

of Eqs.(22)-(23) over the discrete direction ejα reads

∂t1ρCpT +∇α1ρCpTuα = 0 +O(ϵ), (27)

∂t2ρCpT +∇α1[c
2
s(
1

2
− τT )∆t∇α1ρ0Cp0T ] = 0 +O(ϵ2). (28)

Because ρ0 and Cp0 are constant across the whole investigated domain,∇α1ρ0Cp0T =

ρ0Cp0∇α1T . Accordingly Eq.(28) can be re-written as

∂t2ρCpT +∇α1[c
2
s(
1

2
− τT )∆tρ0Cp0∇α1T ] = 0 +O(ϵ2). (29)

Combining Eqs.(27) and (29), we can obtain the final recovered macroscopic

governing equation for temperature field

∂tρCpT +∇αρCpTuα = ∇αλ∇αT +O(ϵ2). (30)

where λ = c2s(τT − 1
2
)∆tρ0Cp0. It is obvious that Eq.(30) can match Eq.(3)

exactly, no matter how λ and/or Cp vary spatially.
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The advantage of the present model benefits from Eq.(26). In all available LB

models, the second moment of the equilibrium distribution always generates

∑
j
cejαcejβg

(eq) = ρCpTc
2
sδαβ + O(ϵ2), so the recovered macroscopic equation

reads

∂tρCpT +∇αρCpTuα = ∇α[c
2
s(τT − 1

2
)∆t∇αρCpT ] +O(ϵ2). (31)

which implies if ∇αρCp ̸= 0, namely ρ and/or Cp varying spatially across

the investigated domain, the quantity that really evolves in the previous L-

B models is ρCpT rather than T . Therefore, for conjugate heat transfer, in

the framework of the standard LB framework, across the interface between

heterogeneous working media only the continuity of ρCpT can be guaranteed,

rather than that of T .

Although originally it is design to treat variation of thermophysical properties

of working fluid, the present model can be used to model heat transfer in solid

material with variable thermophysical properties, by turning off Eq.(10) and

setting uα = 0 in the equilibrium distribution Eq.(32). Moreover, the present

model can be directly used for conjugate heat transfer simulation, without

any modification. Compared with some of the available LB approaches for

conjugate heat transfer simulation [17–20], the present model is easier to be

implemented as here no interface should be treated explicitly. Although the

complexity induced by interface treatment can be avoided in several previous
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LB models [21,22], they suffer a number of obvious shortcomings. In Ref.[21],

to meet the conjugate heat transfer condition, a source term was designed

and added to the LB evolving equation. However, the source term is a non-

local operator with only first-order accuracy. In addition, how to determine

the source term will become a great challenge if the interface is not located

at the half-way between two lattice grids. At first glance, the present mod-

el looks a little similar with that proposed by Huang et al.[22], but in their

model the density of each component of working media should be identical.

Such limitation restricts the applicable range of Huang’s model as in practical

applications the density of different working media usually is not the same.

More important, except crossing the interface, thermophysical properties of

working media can not vary spatially/temporally in almost all of the afore-

mentioned models. These disadvantages have been remedied by the present

model through a straightforward way and it will be demonstrated in the next

section. If the step of re-scaling pseudo-fluid particle speed that proposed in

Ref.[24] is included, the present model can be extended straightforwardly for

low Mach number combustion simulation where ρ, µ, Cp and λ all may vary

significantly in the vicinity of flames.
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3 Numerical validation

In order to validate the present model, three simple but non-trivial benchmark

tests are adopted. The D2Q9 lattice is used for solving flow field and the D2Q5

lattice is employed to compute temperature field, similar with our previous

work [24].

3.1 Planar thermal Poiseuille flow with two immiscible fluids

Figure 1 illustrates the schematic configuration of the planar thermal Poiseuille

flow with two immiscible fluids. The temperature on top wall of the channel is

T2 and that on the bottom wall is T1. Here we set T2/T1 = 2. These two fluids

have the same density and dynamic viscosity, namely ρ1 = ρ2 and µ1 = µ2. It

is assumed the flow can keep straight stably, so a stable horizontal interface

,represented by the red dashed line in Fig. 2, between the immiscible fluids

can be formed. However, their pressure specific heat capacity and thermal

conductivity may be different.

Firstly, we set Cp1 = Cp2 and λ1 = λ2, so it is equivalent to single-phase planar

thermal Poiseuille flow and an analytic solution is available [25]. Figure 2 plots

the numerical data obtain by the present model, compared with the analytic

results. The numerical prediction agrees well with the analytic data.

Then we set Cp2 = 3Cp1 and λ2 = 10λ1. Figure 3 shows the numerical results
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obtain by the present model, compared with that by the finite volume method

(FVM) [1]. There is a good agreement between them.

3.2 Conjugate heat transfer between solid media

If the motional working fluids in Fig.1 are replaced by two different types of

stationary solid material, then it becomes another benchmark test, namely

conjugate heat transfer between solid media, as discussed in Ref.[17]. In Re-

f.[17], ρ2Cp2 = 1.5ρ1Cp1 and λ2 = 3λ1. The corresponding analytic solution of

temperature profile reads [17]

T (y) =



3y
2H

(T2 − T1) + T1, 0 ≤ y ≤ 0.5H.

( y
2H

+ 0.5)(T2 − T1) + T1, 0.5H ≤ y ≤ H.

For the LB model designed in Ref.[22], the density of each component of

working media should be identical. The present model is not subject to such

limitation and can work well when ρ1 ̸= ρ2.

Figure 4 illustrates the numerical data obtain by the present model, compared

with the analytic results. There is no obvious difference between them. The

continuity of temperature and of temperature gradient across the interface

of solid media can be guaranteed exactly in the present numerical prediction,

which is important for conjugate heat transfer simulation[17–21]. Furthermore,
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in the models proposed in Refs.[17–21], the thermophysical properties of each

solid material layer should be assumed spatially identical, but such assumption

may not meet the requirements of real situations. In the present model, such

restriction does not exist and the thermophysical properties of each solid ma-

terial layer can vary arbitrarily. Taking the above benchmark as an example,

here we assume Cp and λ of each solid layer both are temperature-dependent

and their relationships read

Cp1(T ) = −5.56(T − T1) + Cp1(T1), λ1(T ) = Tλ1(T1)/T1.

Cp2(T ) = 15.79(T − T1) + Cp2(T1), λ2(T ) = Tλ2(T1)/T1.

where Cp2(T1) = 1.5Cp1(T1) and λ2(T1) = 3λ1(T1). Namely, the initial and

boundary conditions are the same as those in the above case but now Cp

and λ of each solid layer will change across the domain. Figure 5 depicts

the temperature profile, compared with its counterpart assuming constant

thermophysical properties. It can be observed there is an obvious difference

caused by variable thermophysical properties of solid materials.

3.3 Forced convection in lid-driven square cavity

The configuration of lid-driven forced convection in a square cavity is shown

by Fig.6, where T0 = 1.0 and u0 = 1.0.
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Firstly, we assume the thermophysical properties of working fluid are constant.

Figure 7 illustrates the profiles of temperature and velocity obtained by the

present method, compared with those presented in our previous publication

by a vorticity-streamfunction approach [26]. The Reynolds number is defined

as Re = ρ0u0H/µ0, where µ0 is the dynamic viscosity of working fluid at T0.

The present prediction agrees well with that by the vorticity-streamfunction

approach proposed in Ref.[26].

In succession, we consider the influence of variable thermophysical properties

of working fluid on flow and heat transfer. We assume µ, Cp and λ all are

temperature-dependent, and

µ(T ) = 0.5Tµ0/T0,

Cp(T ) = 0.5632(T − T0) + Cp0,

λ(T ) = Tλ0/T0.

In the present work we set Cp0 = 2.5.

Figure 8 plots the streamlines and isotherm lines. One can observe the flow

field and temperature field with variable thermophysical properties are obvi-

ously different from their counterparts with constant thermophysical proper-

ties. Compared with its counterpart with constant thermophysical properties,

the vortex at the bottom-right corner of the square cavity will be compressed

due to variable thermophysical properties. Meanwhile, a secondary small vor-
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tex will emerge at the bottom-left corner, which is not obvious in its counter-

part with constant thermophysical properties. In addition, the isothermal lines

in the vicinity of the left and bottom walls are much denser in the case with

variable thermophysical properties, which implies more intensive heat transfer.

The observation can be supported by Table 1, where the subscript l, r, t and b

denote the left, right, top and bottom wall, respectively. Due to the variation

of thermophysical properties, heat exchange on the left, top and bottom wall

will be enhanced significantly, especially Nul and Nub are almost three times

as large as their counterpart in constant thermophysical property situation.

However, on the right wall heat exchange will be suppressed seriously. Such

changes are crucial for heat exchanger design in industries.

Figure 9 illustrates the profiles of temperature and velocity along the cen-

terlines of the cavity. Through this figure, the influence of variation of ther-

mophysical properties on flow and temperature field can be observed more

clearly, especially through the comparison between the temperature profiles.

4 Conclusion

For most practical applications, the variation of thermophysical properties of

working media will critically influence the performance of industrial systems.

Until now the LB method has matured as a powerful tool to address a diversity

of challenges in industries, besides in basic research. However, so far the efforts
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to improve the LB method considering variable thermophysical properties of

working media are still few. This drawback has hampered the LB method to

become an industrial-level accepted numerical tool. In the present work we

firstly analyze the shortcomings of the available LB approaches when they are

used to simulate heat and mass transfer of working media with changeable

thermophysical properties. In succession, based on the analysis, a simple LB

model is proposed to overcome these shortcomings. The feasibility and relia-

bility of the new LB model has been validated by three simple but nontrivial

benchmark tests. The numerical results demonstrate the present model can

capture the influences of variable thermophysical properties of working media

exactly and effectively. Especially, the present model can be extended directly

to investigate some other topics where variation of thermophysical properties

of working media should be considered, such as conjugate heat transfer. Com-

pared with the available LB models for conjugate heat transfer simulation, the

present model is more efficient as complicated interface treatment is avoided.

The present model can also be used to simulate heat and mass transfer re-

stricted by complicated domains if the available curved boundary treatment

schemes [5] are incorporated. Furthermore, the present model can be adopted

straightforwardly to simulate low Mach number combustion [24] as in com-

bustion thermophysical properties of reactants will change substantially.

Finally, although in the present study we only take a single-relaxation-time

LB model as an example to show how to address the variation of thermophys-
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ical properties of working media, the extension to its multiple-relaxation-time

counterpart is straightforward [5,18]. It will be considered in our future work.
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Fig. 1. Schematic configuration of planar thermal Poiseuille flow with horizontal
interface.
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Fig. 2. Temperature profile when Cp1 = Cp2, µ1 = µ2: black dot-analytic results,
red line-numerical data.
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Fig. 3. Temperature profile when Cp2 = 3Cp1, λ2 = 10λ1: black dot-FVM results,
red line-the present LB prediction.
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Fig. 4. Temperature profile of conjugate heat transfer between solid media: black
dot-analytic results, red line-numerical data.
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Fig. 5. Temperature profile of conjugate heat transfer between solid media: black
dashed line-constant thermophysical properties, red solid line-variable thermophys-
ical properties.
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Fig. 7. Profiles of temperature and velocity along the centerlines of the cavity at
Re = 400: red line-present LB model, black dot-vorticity streamfunction approach
[26].
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Fig. 8. Streamlines and Isotherm lines at Re = 400: left-constant thermophysical
properties, right-variable thermophysical properties.

34



0.0 0.2 0.4 0.6 0.8 1.0
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

 

 

u/
u 0

y/H

(a)

0.0 0.2 0.4 0.6 0.8 1.0
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4

 

 

v/
u 0

x/H

(b)

0.0 0.2 0.4 0.6 0.8 1.0
1

2

3

4

5

 

 

T
/T

0

y/H

(c)

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

3.0

3.5

4.0

 

 

T
/T

0

x/H

(d)

Fig. 9. Profiles of temperature and velocity along the centerlines of the cavity at
Re = 400: red dasehed line-constant thermophysical properties, blue solid line-vari-
able thermophysical properties.
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Table 1
Nusselt number on walls.

Nul Nur Nut Nub

constant case 6.8424 -64.4271 42.5907 13.7958

variable case 19.4976 -37.1711 88.4859 31.1700
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