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In this work we present a new rate type formulation of large deformation generalized
plasticity which is based on the consistent use of the logarithmic rate concept. For this
purpose, the basic constitutive equations are initially established in a local rotation-
ally neutralized configuration which is defined by the logarithmic spin. These are then
rephrased in their spatial form, by employing some standard concepts from the tensor
analysis on manifolds. Such an approach, besides being compatible with the notion of
(hyper)elasticity, offers three basic advantages, namely:

(i) The principle of material frame-indifference is trivially satisfied.

(ii) The structure of the infinitesimal theory remains essentially unaltered.

(iii) The formulation does not preclude anisotropic response.

A general integration scheme for the computational implementation of generalized plas-
ticity models which are based on the logarithmic rate is also discussed. The performance
of the scheme is tested by two representative numerical examples.

Keywords: Generalized plasticity; logarithmic rate; rotationally neutralized configura-
tion; incrementally objective algorithm.

1. Introduction

Since the time of its initial introduction as “a simple theory of plasticity”

[Lubliner, 1974], generalized plasticity has been further elaborated in order to deal

with the yield surface concept [Lubliner, 1975], an axiomatic structure [Lubliner,

1980], the maximum plastic dissipation postulate [Lubliner, 1984], non-isothermal

behavior [Lubliner, 1987], spatial covariance [Panoskaltsis et al., 2008b] and in-

variance principles [Panoskaltsis et al., 2011]. The theory has been also used as a
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practical way of describing the elastic-plastic behavior of metallic materials in both

the infinitesimal, (see, e.g., Lubliner [1991]; Lubliner et al. [1993]; Auricchio and

Taylor [1995]) and the finite regimes, (see, e.g., Panoskaltsis et al. [2008b,a, 2011]).

The paper which constitutes the point of departure for the present work is that

of Panoskaltsis et al. [2008a]. In this, the authors proposed an Eulerian (spatial)

formulation of the theory which was based on the consistent use of the Lie derivative

concept (see, e.g., [Bishop and Goldberg, 1980, pp. 128-132]; [Abraham et al., 1988,

pp. 359-376]; [Szekeres, 2004, pp. 436-440]). The formulation was developed in a rate

form by considering the additive decomposition of the rate of deformation tensor

d into elastic (de) and plastic (dp)parts (see, e.g., Nemat-Nasser [1982]; see also

[Simo and Hughes, 1998, pp. 269-271]), that is

d = de + dp, (1)

as a basic kinematic assumption. The elastic response therein has been assumed to

be given by a rate constitutive equation (see, e.g., Truesdell [1955]; Rivlin [1997])

as

Lvτ = a(τ ) : de (2)

where τ is the Kirchhoff stress tensor, a is the isotropic elastic moduli rank-4 tensor

and Lv(·) stands for the Lie derivative (see also [Marsden and Hughes, 1994, pp.

93-104]; Stumpf and Hoppe [1997]; [Simo and Hughes, 1998, pp. 254-255]). This

approach offered several substantial advantages for the formulation of an elastic-

plastic theory in the finite deformation regime, in the sense that:

(i) Classical plasticity was included as a special case.

(ii) Some anomalies in the solution of the finite shear problem such as the “shear

oscillatory phenomenon” did not appear (see, e.g., Nagtegaal and De Jong

[1982], Dafalias [1983], Atluri [1984], Liu and Hong [2001]).

(iii) The approach could be extended to a covariant one in a straight forward

manner [Simo, 1988; Panoskaltsis et al., 2008b].

Nevertheless, this formulation placed a strong restriction on the basic state func-

tions by requiring them to be isotropic. This requirement stems from the principle

of material frame-indifference (see, e.g., Noll [1973]; see also the very recent devel-

opments given in Frewer [2009], Dafalias [2011], Liu and Sampaio [2014]). Moreover,

special care had to be undertaken in the selection of the rate elastic constitutive

equation (2) for the approach to be compatible with the notion of hyperelasticity

(see, e.g., Simo and Pister [1984]) which requires the existence of a stored energy

function. Elasticity without a stored energy function is difficult to motivate physi-

cally, since it may result in aberrant elastic behavior which may be manifested by
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hysteretic energy dissipation (see, e.g., Bernstein [1960]) and/or residual stresses

after a closed strain path (see, e.g., Lin [2002]; Lin et al. [2003], Meyers et al.

[2003]). In this work, the large strain generalized plasticity theory is revisited and

further extended by introducing the concept of the logarithmic rate that treats the

aforementioned inconsistency.

Inspired by this questionable nature of the elastic response, Bruhns et al. [1999]

suggested a new Eulerian rate type formulation for the description of isotropic

elastic-plastic behaviour which was based on the introduction of the rather newly

discovered concept of the logarithmic rate, (see, e.g., Lehmann et al. [1991]; Rein-

hardt and Dubey [1996]; Xiao et al. [1997]). More specifically, Xiao et al. [1997]

proved that there exists a smooth antisymmetric tensor, the logarithmic spin Ωlog,

and an Eulerian strain measure, the Hencky logarithmic strain e, such as the time

derivative of e in a frame of reference which spins with Ωlog is equal to the rate of

deformation tensor, that is

d = ė + eΩlog −Ωloge. (3)

Moreover, by exploiting Eq. (3) an explicit expression for Ωlog was derived [Xiao

et al., 1997] in terms of the spin (vorticity) tensor w and the principal values bi of

the left Cauchy-Green tensor b, that is

Ωlog = w + Nlog, (4)

where Nlog is the (spatial) antisymmetric tensor

Nlog =


O if b1 = b2 = b3

ν[b,d] if b1 6= b2 = b3

ν1[b,d] + ν2[b2,d] + ν3[b2,d,b] if b1 6= b2 6= b3 6= b1

(5)

in which

ν =
1

b1 − b2
[
1 + b1/b2

1− b1/b2
+

2

ln(b1/b2)
]

νk = − 1

∆

3∑
i = 1

−(bi)
3−k[

1 + εi
1− εi

+
2

ln(εi)
], k = 1,2,3,

ε1 =
b2
b3
, ε2 =

b3
b1
, ε3 =

b1
b2
, ∆ = (b1 - b2)(b2 - b3)(b3 - b1),

Furthermore, [b,d] in relation (5) is the Lie bracket (matrix commutator) of

b and d, i.e. [b,d] = bd − db while the triple bracket is defined as [b2,d,b] =

b2db − bdb2. In turn, Bruhns et al. [1999] suggested that the rate constitutive

equation (2) can be replaced by the rate equation
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de = h(τ ) : τ̂ log, (6)

where τ̂ log is the logarithmic rate of the Kirchhoff stress τ defined as

τ̂ log = τ̇ + τΩlog −Ωlogτ , (7)

and h(τ ) is an isotropic function of τ . Accordingly, they proved that when d = de,

Eq. (6) is exactly integrable - i.e. there exists a scalar function σ = σ̂ (τ ) such as

h (τ ) = ∂2σ
∂τ∂τ . This means that upon integration, Eq. (6) results in a hyperelastic

constitutive equation for the Hencky logarithmic strain tensor, that is

e =
∂σ

∂τ
.

These ideas led to the concept of the self-consistent (elastic-plastic) model, which

may be defined as one which in the absence of plastic deformation, results in hy-

perelastic (conservative) response [Bruhns et al., 1999]. Using these derivations as a

starting point further research has been conducted dealing with the elastic-plastic

torsion problem [Bruhns et al., 2001], the application of the Sturm’s comparison

theorem in the finite shear problem Liu and Hong [2001] and the Lie symmetries

of the governing equations [Liu, 2004]. Very recent developments are those by Zhu

et al. [2014]; Xiao et al. [2014] dealing with the constitutive modeling of metals

under cyclic loadings and Brepols et al. [2014] dealing with a material model which

can be used in industrial metal forming processes. Related is also the recent work

by Shutov and Ihlemann [2014], where the idea of the logarithmic rate is discussed

within a recently introduced symmetry concept, namely that of weak invariance.

In this work, the concept of the logarithmic rate is introduced within the gener-

alized plasticity framework. In addition, a general integration scheme is established

for the computational implementation of generalized plasticity models.

The introduction of the logarithmic rate in the generalized plasticity is based

on the defining property of the logarithmic spin and the corresponding logarithmic

rotation Rlog, that is by exploiting the solutions of the evolution equation

Ωlog(x, t) = ṘlogT(x, t)Rlog(x, t),

Rlog(x, 0) = I,
(8)

where x stand for spatial coordinates and t is the time. In this way, a local ro-

tationally neutralized configuration is introduced which is unaffected by rigid body

motions superposed onto the spatial configuration. As a result any tensorial quan-

tity defined in this configuration will be material frame-indifferent such that the

homonym principle is trivially satisfied.

Next, motivated by the material rotated description of elasticity (see Green and

McInnis [1967]; Simo and Marsden [1984a,b]; see also [Simo and Hughes, 1998, pp.

271-275] for the elastic-plastic case), this configuration is identified as a reference
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one for the development of the theory. The approach presented herein, besides

enforcing automatically material frame-indifference, has two additional advantages,

namely

(i) The structure of the infinitesimal theory remains essentially unaltered.

(ii) The formulation does not preclude anisotropic response.

The computational implementation procedure is underlined by the interpretation

of the logarithmic rate as a Lie derivative; as a direct consequence the proposed

scheme falls within the context of the so-called incrementally objective algorithms

[Hughes and Winget, 1980; Rubinstein and Atluri, 1983; Pinsky et al., 1983]. The

performance of the scheme is tested by two representative numerical examples.

This manuscript is organized as follows. In Section 2, the basic relations and the

corresponding notions implemented in this work are introduced to facilitate sub-

sequent derivations. Next, the concept of the logarithmic strain rate is introduced

within the generalized plasticity framework and the corresponding material frame-

indifferent constitutive relations are presented in Section 3. The computational as-

pects of the proposed formulation are presented in Section 4, where a methodology

is proposed for the integration of the derived governing equations. Finally, applica-

tions are presented in Section 5 to demonstrate the efficiency and versatility of the

proposed formulation.

2. Notation-Basic Relations

As a starting point we consider a homogeneous body which occupies a region Ω

in the Euclidean ambient space E3 with points X labeled by
(
X1, X2, X3

)
. The

region Ω is identified by the body reference (material) configuration and we define

a motion of the body within E3 as an one-parameter family of mappings

ϕt : Ω→ E3,x = ϕt(X) = ϕ(X, t), i.e., xi = ϕi(XI , t) = xi(XI , t). (9)

Since in this work we deal with large plastic deformations and material frame-

indifference, it is advantageous to follow a geometrical approach (see, e.g., [Marsden

and Hughes, 1994, pp. 25-75,93-119]; Stumpf and Hoppe [1997]) and consider both

Ω and E3 as (Riemannian) manifolds with metrics the Euclidean ones I and i

respectively (see, e.g., [Bishop and Goldberg, 1980, pp. 22-23]; [Szekeres, 2004, p.

413]).

The deformation gradient is the two point tensor defined as the tangent map of

relation (9), that is

F = Tϕ : TXΩ→ TxE3,

i.e.

F(X.t) =
∂ϕ(X, t)

∂t
, i.e., FiI =

∂ϕi(XA, t)

∂XI
=
∂xi(XA, t)

∂XI
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where TXΩ and TxE3 stand for the tangent spaces at X ∈ Ω and x ∈ E3, re-

spectively. The mapping ϕt is assumed invertible and orientation preserving, i.e.,

J = det F (X, t) > 0, where J is the determinant of F. The deformation gradient F

maps the material line element dX ∈ TXΩ to the ambient space (spatial) element

dx ∈ TxE3 such as

dx = FdX, i.e., dxi =
∂xi
∂XI

dXI .

Furthermore, the material velocity V : Ω→ R3 is defined as

Vt(X) = V(X, t) =
∂ϕ(X, t)

∂t
,

while the spatial velocity v : ϕt(Ω)→ R3 is defined as

vt = Vt ◦ ϕ−1t .

The velocity gradient is defined as the 2-rank tensor l : TxE3 × TxE3 → R as

l =
∂v

∂x
, i.e., lij =

∂vi
∂xj

or l = ḞF−1, i.e, lij = ḞiIFIj

which can be additively decomposed into the symmetric rate of deformation tensor

d : TxE3 × TxE3 → R and the antisymmetric spin tensor w : TxE3 × TxE3 → R
such as the standard relations

l = d + w,d =
1

2
(l + lT),w =

1

2
(l− lT),

hold.

The polar decomposition theorem states that for each X ∈ Ω there ex-

ists an orthogonal transformation R(X) : TXΩ → TxE, i.e., R(X)TR(X) =

I, R(X)R(X)T = i such that

F = RU, i.e., F(X) = R(X) ◦U(X)

F = VR, i.e., F(X) = V(X) ◦R(X)
(10)

where R is the rotation tensor and U : TXΩ× TXΩ→ R, V : TxE3 × TxE3 → R
stand for symmetric positive-definite tensors which are known as the right and left

stretch tensors, respectively.

Any spatial antisymmetric tensor Ω′:TxE3 × TxE3 → R constitutes an in-

finitesimal generator of a one parameter subgroup G of the special orthogonal group

SO(3,R) (see, e.g., [Szekeres, 2004, p. 170-172]), which is defined by means of the

following evolution equation

Ω′(x, t) = Ṙ
′T(x, t)R′(x, t),

R′(x, 0) = I,
(11)
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In turn, the group G, that is

G = {R′ ∈ SO(3,R)/R′ is a solution of Eq. (11)} (12)

has a (left) action on the ambient space E which can be interpreted in two physi-

cally different - but mathematically equivalent - ways (see Frewer [2009], Dafalias

[2011]). These are related by the so-called alias-alibi viewpoint of coordinates in

differentiable manifolds, (see, e.g., [Bishop and Goldberg, 1980, p. 72]). According

to the alias point of view, the group action is interpreted as a (time-dependent)

change of the spatial basis so that the material line element dx in the new (primed)

basis is perceived as

dx′ = R′dx, i.e., dx′j′ = R′j′idxi,

while a n-rank tensor a : TxE3 × ...× TxE3︸ ︷︷ ︸
ncopies

→ R with components ai1...in is per-

ceived as

aj′1...j′n = R′j′1i1 ...R
′
j′nin

ai1...in .

On the other hand, according to the alibi point of view the group action is interpreted

as a remapping of the ambient space E3 , that is

x′ = x′t(x) = x′(x, t), i.e., x′i = x′i(xa, t), (13)

with tangent map

R′ = Tx′ : TxE3 → Tx′E. (14)

Accordingly, it may be assumed that Eqs. (13) and (14) define locally a second

(spatial) configuration ω′ which is perceived from the original spatial basis. Since

R′ is an orthogonal tensor, the inverse mapping

x = xt(x
′) = x(x′, t), i.e., xi = xi(x

′
b, t),

always exists and R′ maps the spatial line element dx ∈ TxE to the (spatial) line

element dx′ ∈ Tx′ω
′ such as the relations

dx′ = R′dx, i.e., dx′i = R′ijdxj ,

and

dx = R′
T
dx′, i.e., dxi = R′ijdx

′
j ,

exist for all t in the domain 0 ≤ t ≤ tc for all finite tc.
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The push-forward x′∗(a) of the tensor a (see, e.g., [Abraham et al., 1988, pp.

265,266]; [Marsden and Hughes, 1994, p.67]; Stumpf and Hoppe [1997]) is the (n-

rank) tensor a′ : Tx′ω
′ × ...× Tx′ω

′︸ ︷︷ ︸
ncopies

→ R defined in the primed configuration as

a′i1...in = R′i1j1 ...R
′
injnaj1...jn , (15)

while the pull-back of tensor a′ is defined to be the spatial tensor

x′
∗
(a) = x′

−1
∗ (a) = x∗(a). (16)

The salient feature of this paper relies crucially on the fact that the primed con-

figuration which is defined by the orthogonal group (12) , is a rotationally relaxed

(neutralized) one and accordingly it will be unaffected by rigid body motions super-

posed onto the (original) spatial configuration. As a direct consequence the principle

of material frame-indifference will be trivially satisfied in this configuration, so that

the later can play the role of a reference configuration for the development of an

elastic-plastic theory. This will become clear in the forthcoming section where the

theory of rate-independent generalized plasticity is developed in a rotationally neu-

tralized configuration which is defined by means of the logarithmic spin.

3. Material frame-indifferent generalized plasticity

Since the theory presented in this work is based on the concept of the logarithmic

spin, we identify the spin tensor Ω′ by Ωlog, such as the corresponding reference

configuration is determined by the solutions of the evolution equation (8). Then the

basic kinematical assumption (Eq. (1)) in the Rlog− rotated (reference) configura-

tion reads

d′ = d′e + d′p, (17)

where d′,d′e and d′p are the pull-backs by x (see Eqs. (15), (16)) of d,de and dp

respectively. The pull-back of d assumes the following form

d′ = x∗(d) = RlogT∗(d) = (RlogT)Td(RlogT) = RlogdRlogT

while similar expressions hold for d′e and d′p, as well.

Remark 3.1. Note that the evolution Eq. (8) which determines the Rlog− rotated

configuration can be written in the form

Ṙlog(x, t) = −Rlog(x, t)Ωlog(x, t),

Rlog(x, 0) = I,
(18)
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The unique solution of the differential Eq. (18) is the exponential map denoted

exp : glog → Glog, where glog stands for the Lie algebra of the one-parameter

subgroup

Glog = {Rlog ∈ SO(3,R)/Rlog is a solution of Eg. (18)}

having the ordinary matrix commutator as its Lie bracket (see, e.g., [Szekeres, 2004,

pp. 166-177]). The corresponding expression for Rlog reads

Rlog = exp[t(−Ωlog)] = I−tΩlog +
1

2!
t2(Ωlog)2− 1

3!
t3(Ωlog)3+ ...,Ωlog ∈ glog. (19)

Remark 3.2. The derivations presented in this context are based on the introduc-

tion of the new (Rlog− rotated) configuration. Accordingly, the alibi point of view

of coordinates in E3 is adopted; this approach to the logarithmic rate concept is

different from the original one as it is given for instance in Xiao et al. [1997]. In this,

rather than considering the idea of a new configuration, the alias point of view has

been adopted by identifying the original spatial coordinate system to be a “fixed

background frame” and the primed system as one which spins with respect to this

frame by Ωlog.

Generalized plasticity is a local internal variable theory of rate-independent be-

havior which is based on the assumption that plastic deformation takes place on

loading but not on unloading [Lubliner, 1974, 1975, 1980]. The local state at the

point x′ of the reference configuration is assumed to be determined by the couple

(τ ′,a′) where τ ′ : Tx′ω
′ × Tx′ω

′ → R is the (Rlog−rotated) Kirchhoff stress tensor

which is defined as the pull-back of the Kirchhoff stress τ : TxE3 × TxE3 → R i.e.

τ ′ = x∗(τ ) = RlogT∗(τ ) = (RlogT)−1τ (Rlog)−T = RlogτRlogT, (20)

and a′ : Tx′ω
′ × ...× Tx′ω

′︸ ︷︷ ︸
ncopies

→ 1R stands for the components of the internal variable

vector.

A local process ψ′ (at the point x′) is defined as a curve in the state space

S′ ⊂ (Tx′ω
′ × Tx′ω

′) × (Tx′ω
′ × ...× Tx′ω

′︸ ︷︷ ︸
ncopies

), i.e. as a mapping ψ′ : I ∈ R → S′,

with ψ′(t) = (τ ′(t),a′(t)). The direction and the speed of the process are determined

by the tangent vector ψ̇′ : S′ → TS′, with ψ̇′ = (τ̇ ′, ȧ′), where TS′ is the tangent

space of S′. Since the stress rate τ̇ ′is assumed to be known under stress control, the

component ȧ′ of ψ̇′ has to be determined.

The determination procedure is closely tied to the concept of the elastic range

(see, e.g., Lubliner [1980, 1991]), which is defined at any material state as the region

in the stress space T ′ ⊂ S′ comprising the stresses which can be attained elastically

(i.e. with no change in the internal variable vector) from the current stress state.

It is assumed that the elastic range is a regular set in the sense that is the closure
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of an open set. The boundary of this set may be defined as a loading surface (see,

e.g, Lubliner [1975, 1980, 1991]). In turn a material state may be defined as elastic

if it is an interior point of its elastic range and plastic if it is a boundary point of

its elastic range; in the latter case the material state lies in a loading surface. Note

that the notion of a process is introduced implicitly here.

On the basis of some basic axioms and results from set theory and the involve-

ment of Caratheodory’s theorem [Lubliner, 1975] - see also [Lubliner, 1980, 1991] -

showed that the component ȧ′of the tangent vector can be given by an equation of

the form

ȧ′ = h′µ′(τ ′,a′)
〈
ν′ : τ̇ ′

〉
, (21)

where h′ : S′ → R is a scalar function of the state variables, µ′ : S′ → TS′ is a

non-vanishing (tensorial) function, ν′ is the outward normal to the loading surface

and 〈·〉stands for the Macauley bracket defined as 〈x〉 = x+|x|
2 .

The inner product ν′ : τ̇ ′of the tangent vector τ̇ ′ ∈ TT ′ with the normal vector

ν′( ∈ TT ′) in Eq. (21) is defined as the loading rate. The loading rate determines

the velocity and the direction of a process from a plastic state relative to its elastic

range. If ν′ : τ̇ ′ < 0, then the elastic range remains invariant under the flow of τ̇ ′

(see, e.g., [Abraham et al., 1988, p. 257]) and the process results in elastic response.

If ν′ : τ̇ ′ > 0, then the elastic domain is not invariant anymore, and a new plastic

state at a new value of a′ is initiated. The limiting case, where ν′ : τ̇ ′ = 0, follows

from the continuity of the material [Lubliner, 1980] and results in elastic response;

such a process is referred as neutral loading.

Furthermore, the values of the function h′ in equation (21) enforce the defining

property of a plastic state; accordingly these values must be positive at a plas-

tic state and zero at an elastic one. Moreover, the set defined by the equation

h′(τ ′,a′) = 0, which in turn comprises all elastic states may be defined as the

elastic domain, and its boundary constitutes the yield hypersurface [Lubliner, 1975;

Panoskaltsis et al., 2008b]. The projection of the elastic domain onto a hyper-plane

defined by a′ = const. is called the elastic domain at a′, and its boundary consti-

tutes the yield surface. Since the elastic domain (at a′) comprises only elastic states,

it is a subset of the elastic range; the particular case when these two sets coincide

corresponds to classical plasticity and the yield surface coincides with the initial

loading surface [Lubliner, 1975; Panoskaltsis et al., 2008b].

It remains to specify an additional equation for the plastic rate of deformation

tensor d′p (flow rule). This is performed on the basis of the aforementioned analysis

so that such an equation may be written as

d′p = h′λ′(τ ′,a′)
〈
ν′ : τ̇ ′

〉
, (22)

where λ′ : S → TS is a tensorial function of the state variables which is associated

which the direction of the plastic flow. The particular case where λ′ = ν′corresponds

to normality or associative plasticity.
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The loading-unloading criteria in the rotated configuration can be defined ex-

plicitly by means of Eqs. (21) and (22) as
h′ = 0 elastic state,

h′ > 0 and


ν′ : τ̇

′
elastic unloading,

ν′ : τ̇
′

= 0 neutral loading,

ν′ : τ̇
′
> 0 plastic loading,

We note that the present description of generalized plasticity in the

Rlog−rotated configuration leaves the infinitesimal structure of the theory [Lubliner,

1991], essentially unaltered. The basic difference between the two approaches has

its origins in the basic kinematic assumption (17) which results in the flow rule (22)

in terms of the plastic rate of deformation tensor d′p; nevertheless, this flow rule is

identical to that of the infinitesimal theory - see further Lubliner [1991] - if d′p is

replaced by the rate of the infinitesimal plastic strain rate tensor ε̇p. To demonstrate

the concepts discussed in this section, the following application is presented.

Example 3.1. We revisit within the present context the model discussed in

Lubliner et al. [1993], which is motivated by classical metal plasticity. In this case

the loading surfaces are assumed to be given by a von-Mises type expression

f(τ ′, a′,q′) = ‖τ ′ − q′‖ −
√

2

3
(σ′y +Ka′) = const., (23)

where a′ is a scalar internal variable which controls the isotropic hardening of the

von-Mises loading surface and q′ is a (purely deviatoric) tensorial internal variable,

usually named back stress which defines the center of the loading surface in stress

space and accordingly controls its kinematic hardening. Finally, in Eq. (23) σ′y
stands for the uniaxial (Rlog−rotated) yield stress and K is the isotropic hardening

modulus. The scalar function h′ is assumed to be given as in Lubliner et al. [1993]

h′ =
〈f ′〉

(K +H)β +R(β − f ′)
,

where H is the kinematic hardening modulus and R and β are two additional model

parameters. The (associative) flow rule can be assumed to be given as

d′p = h′ν′
〈
ν′ : τ̇ ′

〉
, (24)

while the rate equations for the internal variables are given as

ȧ′ =

√
2

3
h′
〈
ν′ : τ̇ ′

〉
, (25)

q̇′ =
2

3
Hd′p. (26)
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Remark 3.3. The formulation in the Rlog− rotated (reference) configuration does

not preclude anisotropic response, since there is no requirement for the basic state

functions h′,λ′ and µ′ to be isotropic ones, (see, e.g., [Simo and Hughes, 1998, pp.

260-261,270]). For instance, in the material model discussed in Example 3.1, the

(isotropic) von-Mises expression (23) for the loading surfaces can be replaced by

any other anisotropic expression. A possible choice can be a Hill’s type expression

which within the present context reads

f ′(τ ′, a′,q′) =

∥∥∥∥1

2
Ai′j′k′l′(τ

′
i′j′ − q′i′j′)(τ ′k′l′ − q′k′l′)

∥∥∥∥−
√

2

3
(σ′y +Ka′) = const.,

where A is a 4-rank tensor which possesses the same symmetries with the elasticity

tensors, (see, e.g., [Simo and Hughes, 1998, pp. 256,257]).

Next, the derived theory is re-formulated in the spatial configuration, by inter-

preting the logarithmic rate as a Lie derivative. The procedure is illustrated through

a representative example for brevity.

Example 3.2. Starting from Eq. (20), the pull- back of the Kirchhoff stress tensor

τ , that is the Rlog−rotated stress tensor is defined as

τ ′ = RlogτRlogT.

while its corresponding time-derivative is derived as

τ̇ ′ = ṘlogτRlogT + Rlogτ̇RlogT + Rlogτ ṘlogT

Pushing forward τ̇ ′ onto the spatial configuration the following relation is es-

tablished

x∗(τ̇
′) = (x′

−1
∗ (τ̇ ′)) = RlogTτ̇ ′Rlog

= RlogT(ṘlogτRlogT + Rlogτ̇RlogT + Rlogτ ṘlogT)Rlog

= τ̇ + RlogTṘlogτ + τ ṘlogTRlog

which in view of Eq. (7) results in

x∗(τ
′) = τ̇ −Ωlogτ + τΩlog (27)

that is

τ̂ log = Lwlog(τ ) = x∗[
d

dt
x∗(τ )] (28)

where wlog : x(ω′) → 1R3 is the (spatial) velocity of x with respect to the

Rlog−rotated configuration, that is wlog = Wlog ◦ x−1, in which Wlogstands for

the (material) velocity in ω′ i.e. Wlog
t : ω′ → 1R3 where Wlog

t (x′) = Wlog(x′, t) =
∂x(x′,t)
∂t .
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Remark 3.4. A clearer interpretation of the logarithmic rate as a Lie derivative

can be given by noting that the space of 2-rank tensors TxE3 × TxE3 → R, is iso-

morphic to the general linear group GL(3,R) and accordingly both τ and Ωlog can

be considered as (time-dependent) vector fields in GL(3,R). Then the logarithmic

rate in terms of the Lie bracket of τ and Ωlog reads

τ̂ log = L−Ωlogτ = τ̇ + [−Ωlog, τ ].

In this expression, τ̇ stands for the local rate of change of τ , while the (au-

tonomous) part [−Ωlog, τ ] stands for the co-rotational rate of change of τ . Note that

in the case where the alibi point of view is adopted in the description,−Ωlog = ΩlogT

equals the spin of the original spatial configuration with respect to the Rlog− ro-

tated configuration, while in the case where the alias point of view is adopted ΩlogT

is just the spin of the original spatial basis as perceived in the new (Rlog−rotated)

one.

On the basis of these ideas we can extend the concept of the logarithmic rate in

order to deal with an arbitrary n-rank tensor a : TxE3 × ...× TxE3︸ ︷︷ ︸
ncopies

→ R as

âlog = Lwlog(a) = x∗[
d

dt
x∗(a)]. (29)

Note that if this is the case the logarithmic rate âlog is defined solely in terms of

the corresponding logarithmic rotation Rlog.

By means of this interpretation we can show in a straight forward manner that

the primed configuration is unaffected by arbitrary rigid body motions superposed

onto the spatial configuration. Such a motion, (see, e.g., [Simo and Hughes, 1998,

pp. 252-255]) will be of the form x∗ = Λ(t)x + j(t), where Λ(t) is an orthogonal

tensor and j(t) is a vector in E3 . Then the primed configuration ω′ is mapped to

the stared configuration ω∗ by means of the (orthogonal) tensor

RlogT∗ : Tx′ω
′ → Tx∗ω

∗,RlogT∗ = ΛRlogT, , i.e., Rlog ∗
αa = ΛαiR

log
ia ,

so that the time derivative of the n-rank tensor a′ : Tx′ω
′ × ...× Tx′ω

′︸ ︷︷ ︸
ncopies

→ R upon

the superposed motion in view of Eq. (29), reads

(a′
∗
)ab...m = Rlog ∗

αa Rlog ∗
βb ...Rlog ∗

µm (âlog)∗αβ...µ

= ΛαiR
log
ia ΛβjR

log
jb ...ΛµmR

log
mmΛαkΛβl...Λµq(â

log)kl...q

= δikδjl...δmqR
log
ia R

log
jb ...R

log
mm(âlog)kl...q

= Rlog
kaR

log
lb ...R

log
qm(âlog)kl...q

= (ȧ)ab...m
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Remark 3.5. wlog can be determined by noting that wlog(x, t) is a time dependent

Killing vector field (see, e.g., [Szekeres, 2004, pp. 578-583]; [Marsden and Hughes,

1994, p. 19]), that is one which preserves the Euclidean metric i. The corresponding

Killing’s equation is Lwlog(i) = 0, which within the context of the Euclidean space

E3 can be rephrased in the form, (see, e.g., [Szekeres, 2004, pp. 578, 580])

∂wlog
i

∂xj
+
∂wlog

j

∂xi
= 0.

The solutions of this equation within the present setting are given as

wlog
i = −Ωlog

ij xj + ci,

where ci is a (time-dependent) vector field in E.

The general form of the mapping x = x(x′,t) - see, e.g., problem 6.1 in p. 99 in

Marsden and Hughes [1994] - can be found to be

xi(x, t) = RlogT
ij (t)x′j(t) + di(t),

where the di
′s are the components of a curve d : R→ E. Note that the Rlog−rotated

configuration is undetermined up to a rigid body translation.

The equivalent development of the theory in the spatial configuration can be

derived by performing a push-forward operation to the basic Eqs. (21) and (22) as

âlog = hµ(τ ,a,Rlog)
〈
ν : τ̂ log

〉
, (30)

dp = hλ(τ ,a,Rlog)
〈
ν : τ̂ log

〉
, (31)

where a and ν stand for the push-forwards in the spatial configuration of a′ and

ν′, h stands for the equivalent expression of the (scalar invariant) function h′ in

terms of the spatial variables τ ,a and the logarithmic rotation Rlog, and λ,µ are

defined as the push-forwards of the functions λ′ and µ′. It is noted that the (scalar

invariant) loading rate ν′ : τ̇ ′ is transformed in the spatial configuration to ν : τ̂ log.

We further note the presence of the logarithmic rotation tensor Rlog among the

arguments of λ and µ due to the push-forward operation by which Eqs. (30) and

(31) have been derived from Eqs. (21) and (22), respectively. In the particular case

where the functions and µ′ are chosen to be isotropic functions of their arguments,

then the expressions of λ and µ will be identical to those of λ′and µ′, respectively.

Finally, the loading-unloading criteria in the spatial description in view of Eqs. (30)

and (31) read 
h = 0 elastic state,

h > 0


ν : τ̂ log elastic unloading,

ν : τ̂ log = 0 neutral loading,

ν : τ̂ log > 0 plastic loading,
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which are identical with those which have been discussed in the approach of Bruhns

et al. [1999].

Example 3.3. The equivalent spatial setting of the model discussed in Example

3.1, can be found by a push-forward operation to Eqs. (23), (24), (25) and (26).

The resulting equations are:

(i) Von-Mises type expression for the loading surfaces

f(τ , a,q) = ‖τ − q‖ −
√

2

3
(σy +Ka) = const., (32)

(ii) Associative flow rule

dp = hν
〈
ν : τ̂ log

〉
, (33)

(iii) Hardening laws

ȧ =

√
2

3
h
〈
ν : τ̂ log

〉
, (34)

q̂log =
2

3
Hdp. (35)

Since the expression for the loading surfaces is an isotropic function of the

Rlog−rotated variables τ ′, a′,q′, that is

f ′(τ ′, a′,q′) = f ′(τ , a,q) = f(τ , a,q),

the following identities hold

h = h′,ν =
∂f

∂τ
=
∂f ′

∂τ ′
= ν′.

Example 3.4. A particular case of interest arises where the function h is a non-

vanishing (e.g. exponential, hyperbolic) function of its arguments; accordingly there

are no elastic states and the elastic domain is degenerated to a single surface which

may be defined as a quasi-yield surface Lubliner [1975]. Such a case appears in the

recent paper by Xiao et al. [2014] where the flow rule is formulated as

dp =
y(τ, a,q)

h(τ, a,q)
ν
〈
ν : τ̂ log

〉
where h is a positive function of the denoted arguments - see Eq. (18) and Appendix

in Xiao et al. [2014] - and the (positive) function is defined in a way that tends to

zero at very small stress levels, that is

y(τ, a,q) =
g(τ, a,q)

r(a,q)
exp{−m[1− g(τ, a,q)

r(a,q)
]}
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where m is a model parameter and r, g are two additional state functions which are

related to the von-Mises loading surface by a relation of the form

f(τ, a,q) = g(τ, a,q)− r(a,q)

Due to this formulation the model by [Xiao et al., 2014] has the ability to predict

plastic strains at any stress level no matter how small it is.

In closing we state the following remarks:

Remark 3.6. By recalling the basic kinematic assumption (1), the hyperelastic

rate constitutive equation (5), and by noting that ν = devτ
‖devτ‖ where dev(·) stands

for the deviatoric part, the model of Example 3.3 can be written in the following

format

d = de + dp,

de =
∂2σ

∂τ∂τ
: τ̂ log,

dp =
〈f〉

(K +H)β +R(β − f)

devτ

‖devτ‖

〈
devτ

‖devτ‖
: τ̂ log

〉
,

ȧ =
〈f〉

(K +H)β +R(β − f)

〈
devτ

‖devτ‖
: τ̂ log

〉
,

q̂log =
2

3
Hdp.

The particular case in which β = 0 and the material state is constrained to lie

on the yield surface defined by f = 0 corresponds to classical plasticity [Lubliner

et al., 1993]. Another particular case of interest arises where R = 0. Then upon

taking the limit as β → 0 and by involving the consistency condition ḟ = 0, it

can be proved [Panoskaltsis et al., 2011] that the material model has as a limit the

standard linear elastic-plastic model.

Remark 3.7. It is instructive to turn back in the original approach introduced

in Xiao et al. [1997] and exploit the formulation of the governing equations by

adopting the alias point of view. If this is the case Eqs. (17), (21) and (22) can be

interpreted as the basic equations of the theory as perceived in the rotating frame,

while Eqs. (1), (30) and (31) are their counterparts in the fixed background frame.

Note that both triplets of equations are essentially of the same format, with the

basic difference between them relying in the presence of some extra terms in Eqs.

(30), (31). These terms have no apparent source in identifiable physical sources, in
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particular matter; they just appear due to the relative spin (Ωlog) between the two

frames.

Remark 3.8. Note that the present formulation, which is based on choosing a

preferred configuration where the governing equations take their simplest form and

interpreting the basic kinematical quantity as a Lie derivative, has its origins in the

covariant approach to generalized plasticity as it is discussed in Panoskaltsis et al.

[2008b]; (see also Panoskaltsis et al. [2011]). Nevertheless, the present formulation

is not a covariant one, since it employs the logarithmic rate which is invariant only

with respect to arbitrary superposed spatial rigid motions (isometries) and not with

respect to arbitrary spatial diffeomorphisms, as required by the spatial covariance

concept, (see, e.g., [Marsden and Hughes, 1994, pp. 99-102]). Accordingly, we term

the present formulation as material frame-indifferent.

4. Computational aspects

In this section the numerical implementation of a generalized plasticity model within

the context of the logarithmic rate is presented. The implementation procedure

may in principle be formulated equivalently with respect to the Rlog−rotated or

the spatial configuration. Since the theory presented herein considers the case of

large scale plastic flow, the kinematics of the problem, together with the principle

of spatial covariance (see Remark 3.8), suggest that a numerical formulation in

terms of the Kirchhoff stress and its logarithmic derivative is more fundamental.

Moreover, the spatial approach has an additional advantage since it leads to an

algorithm which falls within the context of the well-known incrementally objective

algorithms (see, e.g., the related discussion in [Simo and Hughes, 1998, pp. 276-

278]; see also Hughes and Winget [1980], Rubinstein and Atluri [1983], Pinsky et al.

[1983]).

As a first step the governing equation of the formulation, (i.e. Eqs. (1), (6), (30)

and (31)) are rephrased in a format which is well suited for computational use. This

is achieved by substituting from Eqs. (6) and (30) into Eq. (1), so that the following

relations are retrieved

d =
∂2σ

∂τ∂τ
: τ̂ log + hλ(τ ,a,Rlog)

〈
ν : τ̂ log

〉
, (36)

âlog = hµ(τ ,a,Rlog)
〈
ν : τ̂ log

〉
. (37)

For known rate of deformation d, Eqs. (36) and (37), form a system of two

equations with respect to τ and a. This system can be solved upon time discretiza-

tion within the framework of a predictor-corrector algorithm [Panoskaltsis et al.,

2008b,a]. The details of the implementation procedure follow.
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Let J ∈ [0,T ] be the time interval of interest. It is assumed that at time tn ∈ J, the

configuration of the body of interest ωn = ϕn(Ω), i.e. ωn ≡ {xn = xn(X)/X ∈ Ω},
along with the state variables {τ n,an}, are known.

Assume a time increment ∆tn, which drives the time to tn+1 and the body

configuration to

ωn+1 ≡ {xn+1 = xn+1(X)/X ∈ Ω},

where

xn+1(X) = xn(X) + u(xn(X)),

and u stands for the incremental displacement field which is assumed to be given.

The corresponding deformation gradient reads

Fn+1(X) =
∂xn+1

∂X
.

Then the algorithmic problem at hand is to update the stress tensor and the

internal variable vector to the time step tn+1 in a manner consistent with the (time

continuous) Eqs. (36), (37). To this end the continuous equations will be time dis-

cretized by the backward Euler scheme which is first order accurate and uncondition-

ally stable. Because of the presence of the logarithmic rates within the continuous

equations, algorithmic approximations for these objects are derived on the basis of

our interpretation of the logarithmic rate as a Lie derivative. In order to accomplish

this goal we exploit Eq. (29) which at the ωn+1 configuration reads

âlog
n+1 = Lwlog(a)n+1 = xn+1∗[

d

dt
x∗n+1(an+1)]. (38)

By performing a pull-back operation, Eq. (38) can be written consecutively as

x∗n + 1(âlog
n + 1) =

∂

∂t
[x∗n + 1(an + 1)] = ȧ′n + 1 =

1

∆tn
(a′n + 1 − a′n)

which in turn may be written in component form as

(Rlogj1i1)
n+1

...(Rlogjmim)
n+1

(âlogi1...im)
n+1

=
1

∆tn
[(a′j1...jm)n+1 − (a′j1...jm)n] =

1

∆tn
[(Rlogj1i1)

n+1
...(Rlogjmim)

n+1
(ai1...im)n+1 − (Rlogj1i1)

n
...(Rlogjmim)

n
(ai1...im)n]

from which (âlogi1...im)n+1 can be determined as

(âlogi1...im)
n+1

=
1

∆tn
[(ai1...im)n+1 − (Rlogi1j1)

n+1
(Rlogj1l1)

n
...(Rlogimjm)

n+1
(Rlogjmlm)

n
(al1...lm)n] =

1

∆tn
[(ai1...im)n+1 − (rlogi1l1)

n+1
...(rlogimlm)

n+1
(al1...lm)n]

(39)
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that is

âlog
n+1 =

1

∆tn
g(an+1,an, r

log
n+1),

where g is a (tensorial) function of the denoted arguments, where the (orthogonal)

tensor rlogn+1 : Txn+1E
3 × Txn+1E

3 →, rlogn+1 = RlogT
n+1 Rlog

n , with components

(rlogiklk)n+1 = (Rlog
ikjk

)n+1(Rlog
jklk

)n,

is defined to be as the relative Rlog−rotation tensor with respect to the configuration

ωn+1. By means of Eq. (39) an algorithmic approximation to the logarithmic rate

of the 2-rank Kirchhoff stress tensor can be found to be

τ̂ log
n+1 =

1

∆tn
(τ n+1 − rn+1τ nrT

n+1),

We note also the presence of the rate of deformation tensor d within the basic

equations. An algorithmic approximation to d can be found in a manner identical

with the one for the approximation of the logarithmic rate [Simo and Hughes, 1998,

pp. 282-285]; [Panoskaltsis et al., 2008a] this approximation reads

dn+1 =
1

2∆tn
[i− (fn+1f

T
n+1)−1],

where fn+1is the relative deformation gradient, which is defined to be fn+1 =

Fn+1F
−1
n .

On the basis of these developments the time discrete counterparts of Eqs. (36)

and (34) read

1

2∆tn
[i− (fn + 1f

T
n + 1)

−1
] =

1

∆tn
[
∂2σ(τ n + 1)

∂τ n+1∂τ n+1
: (τ n + 1 − rlogn + 1τ nrlogTn + 1)

+ hn + 1λ(τ n + 1,an + 1,R
log
n + 1)

〈
νn + 1 : (τ n + 1 − rlogn + 1τ nrlogTn + 1)

〉
]

(40)

and

1

∆tn
g(an + 1,an, r

log
n + 1) =

1

∆tn
hn + 1µ(τ n + 1,an + 1,R

log
n + 1)

〈
νn + 1 : (τ n + 1 − rlogn + 1τ nrlogTn + 1)

〉 (41)

respectively, where the quantities hn+1 = hn+1(τ n+1,an+1,R
log
n+1) and νn+1 =

∂f
∂τ (τ n+1,an+1,R

log
n+1), in which f = f(τ n+1,an+1,R

log
n+1) = const. is the time dis-

crete expression for the loading surfaces, can be all expressed in terms of the basic

variables. The details of the solution procedure of the system of Eqs. (40), (41) can

be found in Panoskaltsis et al. [2008a].

Remark 4.1. It is emphasized that the functions λ, µ and constitute the push-

forwards of the functions λ′, µ′ and ν′ in the spatial configuration. Accordingly,
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the dependence of these functions on Rlog cannot be arbitrary, since it must be

consistent with the corresponding push-forward operation.

Remark 4.2. The logarithmic spin which in fact defines the logarithmic rotation

matrix can be found by means of the time discrete counterpart of Eq. (4), by noting

that

(i) The spin tensor wn+1 at the time step tn+1 in terms of the (time discrete)

velocity gradient ln+1 = (Fn+1 − Fn)F−1n+1 reads

wn+1 =
1

2∆tn
(ln+1 − lTn+1),

(ii) The left Cauchy-Green tensor bn+1 at the time step tn+1 is defined in terms

of the deformation gradient Fn+1 as bn+1 = Fn+1F
T
n+1.

A closed form solution for determining the eigenvalues of bn+1 can be found in

Bruhns et al. [1999]. This solution is also used in the framework introduced in the

present work. The evaluation of the left Cauchy-Green tensor introduces an addi-

tional complexity within a finite element computational framework. However, the

advantages of the logarithmic spin concept for the simulation of large strain pro-

cesses render such an approach highly advantageous in terms of simulation fidelity

[Xiao et al., 2001; Balieu et al., 2013]. Furthermore, the numerical implementation

of the method within a generalized plasticity - thus yield surface-free setting - re-

sults in computational gains pertaining to the absence of a constrain equation as

described in Section 4 of this paper.

Remark 4.3. The most critical step in the algorithmic procedure is the determi-

nation of the logarithmic rotation Rlog
n+1 by means of the exponential mapping (see

Eqs. (18), (19)) whenever the logarithmic spin Ωlog
n+1 is known. There are several

approaches for computing the exponential map; see for instance the classical pa-

per by Moler and Loan [2003]. Within the contemporary literature of continuum

mechanics the exponential of matrix is usually computed either by means of the

so-called Rodrigues formula (see, e.g., [Simo and Hughes, 1998, p. 295]), or by the

quaternion approach (see further in [Simo and Hughes, 1998, pp. 296-297]. A for-

mal comparison between these two approaches, where special emphasis is paid to

computer graphics, can be found in Grassia [1998]. Further information can also be

found in Stuelpnagel [1964].

Remark 4.4. It is reminded that generalized plasticity does not employ the yield

surface concept as a basic ingredient. Thus, unlike the classical elastic-plastic case,

the basic variables (τ ,a) are no longer constrained to lie within the closure of this

elastic domain; accordingly, unlike the classic elastic-plastic case where the evolution

equations define a unilaterally constrained problem of evolution, (see, e.g., [Simo

and Hughes, 1998, pp. 273-275, 293]) in the present case the evolution equations
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just form the differential system of Eqs. (40) and (41). Due to this fundamental

difference, the consistency condition and accordingly the consistency parameter are

absent from the model governing equations. From an algorithmic point of view this

absence results in a simpler algorithm and more computer power is preserved.

Remark 4.5. It is interesting to note that the particular case of a quasi-yield

surface based model - recall Example 3.4 - offers an additional computational ad-

vantage. More specifically, solution of the aforementioned system in general - see,

e.g., [Panoskaltsis et al., 2008a] - is pursued by an (elastic) predictor-(plastic) cor-

rector algorithm. Thus, an elastic solution is sought in the predictor phase upon

freezing the plastic flow. This check is based on the time-discrete loading unloading-

conditions, i.e. on examining whether the material state is elastic or plastic and also

whether elastic or plastic loading takes place. For a quasi-yield surface model, since

there are no elastic states the first check is entirely bypassed.

Example 4.1. If we further assume that the potential σ has the following particular

form [Bruhns et al., 1999]

2σ =
1 + ν

E
: ‖τ‖2 − ν

E
(trτ )2,

where E is the Young modulus and ν is the Poisson ratio, then the hyperelastic rate

stress-deformation relations (5) reads

de =
1 + ν

E
τ̂ log − ν

E
trτ̇ i.

The corresponding time discrete counterpart of the model reads

1

2
[i− (fn + 1f

T
n + 1)

−1
] = [

1 + ν

E
(τ n + 1 − rlogn + 1τ nrlogTn + 1)− ν

E
tr(τ n + 1 − τ n)i

+
〈fn+1〉

(K +H)β +R(β − f)

devτ n + 1

‖devτ n + 1‖

〈
devτ n + 1

‖devτ n + 1‖
: (τ n + 1 − rlogn + 1τ nrlogTn + 1)

〉
,

(42)

an+1 − an =
〈fn+1〉

(K +H)β +R(β − f)

〈
devτ n+1

‖devτ n+1‖
: (τ n+1 − rlogn+1τ nrlogT

n+1 )

〉
, (43)

(qn + 1 − rlogn + 1qnrlogTn + 1) =

2

3
H

〈fn+1〉
(K +H)β +R(β − f)

devτ n + 1

‖devτ n + 1‖

〈
devτ n + 1

‖devτ n + 1‖
: (τ n + 1 − rlogn + 1τ nrlogTn + 1)

〉
(44)

where fn+1 stands for the time discrete counterpart of the expression for the

loading surfaces, that is

fn+1 = f(τn+1, an+1,qn+1) = ‖τn+1 − qn+1‖ −
√

2

3
(σy +Kan+1) = const.
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Note that in this particular case, Eqs. (42), (43) and (44) constitute a system of

three equations in the three unknowns τn+1, an+1 and qn+1.

5. Numerical simulations

As a final step, we check the performance of the proposed algorithmic scheme by

implementing numerically the material model discussed in Examples 3.1, 3.2 and

4.1. We consider two problems of large scale plastic flow, namely a simple shear test

and an additional test in which the material is subjected to a smooth strain cycle.

In both tests the deformation can be assumed as homogeneous so that the model

will be implemented within a standard MATLAB environment.

The model parameters which are used in both tests are those considered in

Lubliner et al. [1993], that is

E=300 v=0.30 σy=10 β = 5.00 R=30.00

Kinematic Hardening Only: H = E/10

5.1. Simple shear

The simple shear problem is a classical one within the context of large defor-

mation plasticity (see, e.g., Nagtegaal and De Jong [1982],Dafalias [1983],Atluri

[1984],Bruhns et al. [1999], Liu and Hong [2001], Eshraghi et al. [2013] and also the

theoretical developments given in Liu [2004], Liu and Hong [2001], Cheviakov et al.

[2013]) and is defined as

x1 = X1 + γX2,x2 = X2, x3 = X3,

where γ is the shearing parameter.

The predictions of the model for three different values of the kinematic harden-

ing modulus are shown in Fig. 1 and Fig. 2 for the shear τ 12 and normal τ 11 stress

components respectively. By referring to these figures we note that the model pre-

dicts monotonic stress-strain curves for both the cases of a strain hardening and an

elastic-perfectly plastic material. Moreover, the unique ability of the present model

in predicting strain softening response for negative values of hardening modulus (in

this case H = −15) is verified [Lubliner et al., 1993].

The predictions of the model for the particular cases where R = 0, which cor-

responds to the simple model presented in Lubliner [1991], and β = 0 which is the

limiting case corresponding to classical plasticity are also shown, in Fig. 3 and Fig.

4, respectively. The linear stress-strain relation predicted by the model for β = 0 is

noteworthy.
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5.2. Response under a strain cycle

As a second application, we consider a problem which has been used as an identifi-

cation problem for the logarithmic rate within the context of a (hypo)elastic formu-

lation [Meyers et al., 2003]. A similar problem has been considered also within the

context of an elastic - viscoplastic material in the very recent paper by Jabareen

[2015]. More precisely a square material element of size H ×H is imposed onto a

strain cycle where both upper corners rotate along a cycle with radius. The strain-

ing is applied in a way such that the element is subjected to combined extension

in X2− direction and shear in theX1 −X2−direction but remains parallelogram in

shape (see Figure 1 in [Meyers et al., 2003]). This deformation process is defined as

x1 = X1 +
sinϕ r

H

1+(1−cosϕ) r
H
X2,

x2 = 1 + (1− cosϕ) rHX2,

x3 = X3,

where ϕ is the rotation angle.

The stress curves for the elastic case and for a relatively high value of the ratio
r
H , are shown in Fig. 5; the corresponding elastic-plastic curves predicted the model

and the back stresses are shown in Fig. 6 and Fig. 7 respectively. By comparing

these results, we note that the elastic-plastic stress curves have the same qualitative

characteristics with the elastic ones; nevertheless, due to the dissipative properties

of the material, the resulting stresses do not vanish at the end of the cycle and a

stress ratcheting effect appears.

This ratchetting effect is better illustrated in the case of repeated cyclic loading

as shown in Fig. 8 and Fig. 9 where seven cycles of imposed deformation are shown.

In Fig. 8 the stress components for a generalized plasticity case with a value R =

30.00 are shown. In Fig. 9 the limiting case resulting for β = 0 is also presented. The

plots show the expected results for a generalized plasticity based model [Lubliner,

1975; Auricchio and Taylor, 1995], i.e. the stress curves exhibit a ratcheting effect

which is stabilized after a few cycles.

6. Concluding remarks

The main thrust of this paper is the presentation of a spatial (Eulerian) version of

the theory of rate independent generalized plasticity, which is based on the rather

newly discovered concept of the logarithmic rate. In particular in this paper:

(i) Based on the logarithmic spin and the corresponding logarithmic rotation we

have introduced a rotationally neutralized configuration which is unaffected

by spatial rigid body motions, so that the fulfillment of the material frame-

indifference principle is automatically ensured.

(ii) We have developed the theory in the rotationally neutralized configuration. In

particular we have shown that the structure of the theory in this configuration
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is essentially identical to that of the infinitesimal theory.

(iii) We have derived the equivalent Eulerian version of the theory by applying a

(standard) push-forward operation.

Moreover, in the course of the development of the theory we have identified

the logarithmic rate by a Lie derivative. Building on this we have proposed an

incrementally objective algorithm for the numerical implementation of generalized

plasticity based models. We have also tested the performance of the algorithm by

two representative numerical examples.
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Fig. 1. Simple shear for different values of the kinematic hardening modulus H. Shear stress vs.
shear strain
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Fig. 2. Simple shear for different values of the kinematic hardening modulus H. Normal stress
vs. shear strain
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Fig. 3. Simple shear for the limiting cases Shear stress vs. shear strain strain
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Fig. 5. Response under a strain cycle (elastic case) Stresses vs. angle of rotation
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Fig. 6. Response under a strain cycle (elastic-plastic case). Stresses vs. angle of rotation
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Fig. 7. Response under a strain cycle (elastic-plastic case). Back stresses vs. angle of rotation
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Fig. 8. Response under a strain cycle (elastic-plastic case; R = 30.00) Stresses vs. angle of rotation
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