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Abstract 

 

This study investigates the effect of water pressure on hydrocarbon generation and 

source rock maturation at high maturities for a perhydrous Tertiary Arctic coal, 

Svalbard.  Using a 25 ml Hastalloy vessel, the coal was pyrolysed under low water 

pressure (230-300 bar) and high water pressure (500, 700 and 900 bar) conditions 

between 380 °C and 420 °C for 24 h.  At 380 °C and 420 °C, gas yields were not 

affected by pressure up to 700 bar, but were reduced slightly at 900 bar.  At 380 °C, the 

expelled oil yield was highest at 230 bar, but reduced significantly at 900 bar.  At 420 

°C cracking of expelled oil to gas was retarded at 700 and 900 bar.  As well as direct 

cracking of the coal, the main source of gas generation at high pressure at both 380 °C 

and 420 °C is from bitumen trapped in the coal, indicating that this is a key mechanism 

in high pressure geological basins.  Vitrinite reflectance (VR) was reduced by 0.16 %Ro 

at 380 °C and by 0.27 %Ro at 420 °C at 900 bar compared to the low pressure runs, 

indicating that source rock maturation will be more retarded at higher maturities in high 

pressure geological basins.   

 

Keywords: Coal, hydrocarbon generation, maturation, vitrinite reflectance, hydrous 

pyrolysis, high water pressure. 



  

 3

1. Introduction 

In geological basins hydrocarbon generation is an endothermic process which 

involves the conversion of immature kerogen into gaseous and liquid hydrocarbons, and 

a residual mature solid kerogen.  This conversion results in the product (gas, liquid and 

residual kerogen) final volume being greater than the reactant (immature kerogen) 

initial volume.  Hydrocarbon generation reactions occur under saturated, high water 

pressure conditions and according to chemical theory, reactions like hydrocarbon 

generation whose products occupy a greater volume than its reactant should be 

influenced by pressure.  Previous pyrolysis studies on the role of pressure during 

hydrocarbon generation and source rock maturation have been reviewed in detail by 

Uguna et al. (2012a), with the findings appearing to be in conflict, due to variety of 

pyrolysis methods used.  Most high pressure pyrolysis studies performed under 

confined conditions using gold bags or gold capsules, in which the sample being 

pyrolysed is either not in contact or in contact with only a limited amount of water, 

produced little or no significant pressure effects (e.g. Monthioux et al., 1985, 1986; 

Freund et al., 1993; Michels et al., 1994; Huang, 1996; Knauss et al., 1997; Shuai et al., 

2006; Tao et al., 2010).  In contrast, under high pressure conditions in fixed volume 

vessels, in which the pyrolysed sample is in direct contact with water, pressure has been 

found to significantly retard both hydrocarbon generation and source rock maturation 

(Price and Wenger, 1992; Landais et al., 1994; Michels et al., 1995; Carr et al., 2009; 

Uguna et al., 2012a, b, 2013). 

A recent study by Uguna et al. (2012a) conducted on two coals (an orthohydrous 

Longannet UK coal and a perhydrous Svalbard coal) at 350 °C for 24 h in the pressure 
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range of 175-900 bar, showed that high water pressure retarded hydrocarbon (gas and 

bitumen) generation and source rock maturation as measured by vitrinite reflectance 

(VR).  We also recently showed for Kimmeridge Clay pyrolysis at 350 °C that gas and 

bitumen generation, and VR were all retarded at 500 bar, while at 420 °C VR was 

retarded but gas and the bitumen plus oil yields were not affected by pressure at 450 bar 

when compared to results obtained at lower pressures (Uguna et al., 2012b).  We 

interpreted these results as the effect of pressure being insufficient when temperatures as 

high as 420 °C are used. 

To investigate if the retardation effect of water pressure observed at 350 °C on a 

coal will be the same at 420 °C, experiments were conducted at 380 °C and 420 °C and 

pressures up to 900 bar, that is, higher than the 450 bar previously used by Uguna et al. 

(2012b) for a Kimmeridge clay source rock.  The sample studied is the same Svalbard 

perhydrous coal used by Uguna et al. (2012a).  The results obtained at 380 °C and 420
 

°C will be compared with the results obtained from the same coal at 350
 
°C (Uguna et 

al., 2012a) to assess the effects of pressure and temperature on gas generation, oil 

generation and cracking, and source rock maturation. 

2. Experimental 

The sample studied is a perhydrous high volatile bituminous coal from the 

Arctic archipelago of Svalbard of Paleocene age (particle size 2-4 mm), with a total 

organic carbon content (TOC) of 78.5%, Hydrogen Index (HI) of 347 mg/g and VR of 

0.68 %Ro (Table 1).  The pyrolysis equipment (Fig. 1) comprised a 25 ml Hastalloy 

cylindrical pressure vessel rated to 1400 bar at 420 °C connected to a pressure gauge 

and rupture disc rated to 950 bar.  The experiments were conducted using 2.0 g of coal 
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at 380 °C and 420 °C (temperature accuracy ±1 °C) for 24 h under low and high water 

pressure conditions.  The low pressure experiments at 380 °C  (230 bar) and 420 °C 

(300 bar) were performed by adding 12 ml and 10 ml water respectively to the vessel, 

while the high water pressure experiments at both temperatures were conducted at 500, 

700 and 900 bar.  The experimental procedure used has been described in detail 

previously (Uguna et al., 2012a) and summarised below. 

The reactor vessel was heated by means of a fluidised sand bath, controlled by 

an external temperature controller.  Temperature was also monitored independently by 

means of a K-Type thermocouple attached to the outside of the vessel and recorded by 

computer every 10 seconds.  The un-extracted coal sample to be pyrolysed was first 

weighed and transferred to the vessel, after which the volume of water needed for the 

experiment was added.  For all experiments the reaction vessel was flushed with 

nitrogen gas to replace air in the reactor head space, after which 2 bar pressure of 

nitrogen was pumped into the pressure vessel to produce an inert atmosphere during the 

pyrolysis runs.  The sand bath (connected to a compressed air source) was pre-heated to 

the required experimental temperature and left to equilibrate, after which the pressure 

vessel was then lowered in to the sand bath by lifting up the sand bath using the jack 

(Fig. 1), and the experiment left to run with a constant air flow through the sand bath.  

The pressure observed for the low pressure experiments, 230 bar and 300 bar at 380 °C 

and 420 °C, respectively, was generated by the vapour of the water 12 ml (230 bar at 

380 °C) and 10 ml (300 bar at 420 °C) added to the vessel at the start of the experiment. 

High liquid water pressure (500, 700 and 900 bar) experiments were performed 

similarly to the low (230 bar and 300 bar) pressure hydrous runs, with the vessel 
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initially filled with 20 ml water.  After lowering the pressure vessel into the sand bath, 

the vessel was connected to the high water pressure line and allowed to attain its 

maximum vapour pressure (in about 30 minutes), before the addition of more water to 

increase the pressure.  This procedure is employed to prevent too much water being 

added to the vessel which might lead to the generation of over pressure in excess of the 

pressure limit of the system.  To apply high liquid water pressure to the system (with the 

aid of a compressed air driven liquid pump), the emergency pressure release valve B 

was first closed, and valve A opened until a pressure slightly higher than the vapour 

pressure of the experiment is displayed on the external pressure gauge.  This was 

undertaken to avoid the loss of any of contents of the vessel when the reactor valve C is 

opened.  High liquid water pressure was then applied to the system by first opening 

valve C and immediately gradually opening valve A to add more distilled water into the 

reaction vessel.  When the required pressure was attained, valve C was closed to isolate 

the reactor from the high water pressure line, and valve A was also closed to prevent 

more water going to the pressure line.  Valve B was opened to vent the excess pressure 

on the line.  The experiment was then allowed to run (leaving valve C tightly closed to 

avoid losing generated products) for the required time, after which the sand bath was 

switched off and left to cool to ambient temperature before product recovery. 

To recover the generated gas, the high water pressure line was disconnected and 

a connector attached to valve C.  The gas was collected with the aid of a gas tight 

syringe via the connector by opening valve C and transferred to a gas bag (after the total 

volume had been recorded), and immediately analysed on a Clarus 580 gas 

chromatograph (GC) fitted with a FID and TCD detectors operating at 200 °C.  100 µl of 

gas samples were injected (split ratio 10:1) at 250 °C with separation performed on an 
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alumina plot fused silica 30 m x 0.32 mm x 10 µm column, with helium as the carrier 

gas.  The oven temperature was programmed from 60 °C (13 min hold) to 180 °C (10 

min hold) at 10 °C/min.  Individual gas yields were determined quantitatively in relation 

to methane (injected separately) as an external gas standard.  The total yield of the 

hydrocarbon gases generated was calculated using the total volume of generated gas 

collected in relation to the aliquot volume of gas introduced to the GC, using relative 

response factors of individual C2-C5 gases to methane predetermined from a standard 

mixture of C1-C5 gases.  The oil floating on top of the water after the experiments 

(collected with a spatula and recovered by washing the spatula in dichloromethane) 

together with oil stuck to the side of the reactor wall (recovered by washing with cold 

dichloromethane) were combined and referred to as expelled oil.  The reacted coals 

were vacuum dried at 45 °C for 3-4 hours, crushed and Soxhlet extracted using 150 ml 

dichloromethane:methanol mixture (93:7 v:v) for 48 hours to recover the bitumen and 

any non-expelled oil retained in the coal, with both being referred to as bitumen. 

Under the supercritical water conditions (380 °C and 420 °C) used in these 

experiments water will have the properties of an organic solvent, as such it is difficult to 

differentiate oil expulsion during the experiments and solvent extraction of the 

pyrolysed coal after the experiment to obtain the bitumen and non-expelled oil retained 

in the coals.  In order to differentiate the amounts of oil expelled during the experiments 

from the bitumen and non-expelled oil retained in the coals, the floating oil on top of the 

water after the experiments together with those on the side of the reactor wall was called 

expelled oil, and the bitumen and non-expelled oil solvent extracted from the coals 

called bitumen.  
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3. Results 

3.1. Pyrolysis at 380 °C 

The gas yields (mg/g of starting coal) generated at 380 °C are presented in Table 

2 and Fig. 2.  The total (C1-C5) hydrocarbon gas generated at 380 °C was slightly higher 

at 230 bar (34 mg/g) compared to pyrolysis at 500 and 700 bar (31 mg/g), but was 

reduced by 20% to 27 mg/g at 900 bar when compared to the amount generated at 230 

bar.  The methane, ethane and propane gas yields (Table 2) showed reductions between 

230 and 900 bar, while butane and pentane contents (Table 2) were the same at 230 bar 

and 500 bar, both showing small increases at 700 bar, before showing a reduction at 900 

bar.  The unsaturated alkenes contents (Table 2) were found to be highest at 230 bar, but 

decreased significantly as pressure increased to 500, 700 and 900 bar.  The expelled oil 

yields (mg/g of starting coal) generated are presented in Fig. 3, and also listed in Table 

3 together with the bitumen and bitumen plus oil yields.  The oil yield at 380 °C reached 

a maximum at 230 bar (174 mg/g), and was reduced by 22% as the pressure was 

increased to 500 bar and 700 bar (136 mg/g).  At 900 bar the oil yield was reduced 

further to 114 mg/g, which is 34% less than at 230 bar, indicating less generation and 

expulsion at high pressure in the coal chips used here.  The bitumen yield (Fig. 3) was 

similar at 230 bar and 500 bar, but increased going to 700 bar and 900 bar.  The residual 

coal VR values (mean of 100 measurements) obtained are listed in Table 3 and also 

presented in Fig. 4.  The VR values were similar at 230 bar (1.35 %Ro) and 500 bar 

(1.31 %Ro).  A slight reduction in VR was observed with increase in pressure to 700 

bar (1.29 %Ro) compared to 230 bar, while at 900 bar the VR reduced further to 1.19 

%Ro, which is 0.16 %Ro lower than the 230 bar VR value. 
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3.2. Pyrolysis at 420 °C 

The gas yields obtained at 420 °C are listed in Table 2, and also presented in 

Fig. 5.  The total (C1-C5) gas yield increased slightly going from 300 bar (105 mg/g) to 

a maximum at 500 bar (115 mg/g) and 700 bar (111 mg/g), before decreasing slightly at 

900 bar (99 mg/g).  The individual hydrocarbon gas yields (Table 2) show the same 

trend as the total gas yields except for the unsaturated alkenes which decreased 

significantly with an increase in pressure as observed at 380 °C.  The expelled oil yield 

in mg/g TOC of initial coal (Table 3 and Fig. 6) was lowest at 300 bar, and increased by 

66% as the pressure increased to 500 bar pressure.  The oil yield increased further with 

an increase in pressure by 27% and 21% for the 700 bar and 900 bar runs respectively in 

comparison to the 500 bar run.  The bitumen yield (Table 3 and Fig. 6) was lower and 

similar at 300 bar (81 mg/g) and 500 bar (89 mg/g), but reduced at 700 bar (51 mg/g) 

and 900 bar (54 mg/g).  The residual coal VR values (mean of 100 measurement) (Table 

3 and Fig. 4) was 1.76 %Ro at 300 bar, and decreased by 0.15 %Ro at 500 bar (1.60 

%Ro) and 700 bar (1.61 %Ro).  An increase in the pressure to 900 bar caused the VR to 

further decrease to 1.49 %Ro, with the 900 bar value being 0.27 %Ro lower than the 

300 bar value, and 0.11 %Ro and 0.12 %Ro lower than the 500 bar and 700 bar values, 

respectively. 

3.3. Experimental carbon mass balance 

The experimental carbon mass balance obtained previously at 350 °C for 24 h 

(Uguna et al., 2012a) are presented in Table 4, while those obtained for pyrolysis at 380 

°C and 420 °C are presented in Table 5.  The extracted residual coals (carbon content 

determined using the residual TOC of the pyrolysed coals), hydrocarbon gases, oil and 
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bitumen yields were used to determine these balances.  The Svalbard coal bitumen at 

350 °C contained 85% carbon (Uguna et al., 2012a), and this value has been used to 

calculate the carbon contents of the bitumen and oil generated at 380 °C and 420 °C.  

The balances exclude lower molecular weight hydrocarbons e.g. gasoline (C6 – C12) 

hydrocarbons, together with CO and CO2 which were not measured.  The gasoline 

hydrocarbons could not be recovered due to evaporative losses during products recovery 

and solvent extraction of the pyrolysed coals to recover the bitumen and non-expelled 

oil, while CO and CO2 generation was not investigated in the study. 

At 350 °C (bitumen generation stage) the carbon recoveries was 93-96% of the 

initial starting coal.  At 380 °C and 420 °C the carbon recoveries were 84-90% and 84-

88% respectively.  The drop in recovery at 380 °C and 420 °C compared to 350 °C is 

due to an increased generation of lighter hydrocarbons that could not be recovered as 

the bitumen is cracked to oil at higher temperature.  The carbon recoveries would have 

been greater if CO and CO2 could have been included.  The high carbon recoveries 

obtained considering the fact that light hydrocarbons, CO and CO2 were not included 

indicate that product recovery in our experiments is good.  The similar carbon recovery 

obtained under low and high pressure conditions at 350, 380 and 420 °C shows that the 

changes in product yields observed with pressure increase is due to pressure effect and 

not loss of product either during the experiments or product recovery after the 

experiments. 

4. Discussion 

The bitumen, gas and VR results obtained previously for the same Svalbard coal 

at 350 °C for 24 h and already published (Uguna et al., 2012a) will be discussed 
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together with those obtained at 380 and 420 °C.  The gas and bitumen yields (mg/g of 

starting coal) obtained at 350 °C for 24 h are presented in Table 6 and Fig. 7.  At 350 °C 

only bitumen was generated, as oil generation and expulsion had not yet commenced.  

However given the starting maturity of the coal (0.68 %Ro), extending the duration of 

heating in excess of 24 h, might well have resulted in the onset of oil generation from 

this coal.  The bitumen yield was higher at 175 bar, and reduced by only about 10% at 

900 bar in relation to 175 bar.  The small reduction in bitumen yield observed with 

increase in pressure to 900 bar indicates that pressure has a slight retardation effect on 

bitumen generation.  At 380 °C the coal had started to generate and expel oil.  The 

higher oil yield obtained at 230 bar shows that more oil was generated and expelled 

under low pressure conditions, and the reduction in oil yield observed going from 230 

bar to 500, 700 and 900 bar is due to pressure retarding the generation and expulsion of 

oil.  This is due to both the rate at which bitumen is converting to oil and the rate at 

which oil is expelled from the coal being slower under high water pressure conditions, 

which resulted in more bitumen remaining in the coal pyrolysed at 900 bar (124 mg/g 

TOC) compared to 230 bar (102 mg/g TOC).  An increase in the temperature to 420 °C 

resulted in a decrease in the oil and bitumen yields at all pressures compared to 380 °C, 

and is due to increased cracking.  The increase in oil yield observed going from 300 bar 

to high pressures (500-900 bar) is due to maximum oil generation having been shifted to 

high pressures at 420 °C. 

At 350 °C the total (C1-C4) gas yield (Fig. 7 and Table 6) was higher at 175 bar 

and decreased by 22% and 55% going from 175 bar to 500 and 900 bar, respectively.  

The huge reduction in gas yields observed with increase in pressure indicates that 

pressure significantly retarded gas generation, and the 10% reduction in bitumen yield 
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in comparison to the 55% reduction in gas yield observed at 900 bar, shows that the 

retardation effect of pressure is more significant for gas than bitumen generation.  The 

huge retardation effect of pressure on gas generation relative to bitumen generation 

observed at 350 °C going from 175 to 900 bar arises from the volume expansion 

required to accommodate the gaseous product (Uguna et al., 2012a).  With gas having a 

lower density and higher volume than bitumen, the energy (pV work) required to 

displace the surrounding water at 900 bar to create the volume needed to accommodate 

the generated gas is far greater than that required to create the volume needed to 

accommodate the bitumen within the coal, hence pressure retardation effect is less for 

bitumen than gas generation (Uguna et al., 2012a). 

At 380 °C the total (C1-C5) gas yield was reduced at 900 bar by 20% in 

comparison to 230 bar, while at 420 °C the gas yield only reduced slightly by 14% at 

900 bar compared to the maximum yield generated at 500 bar.  At both 380 °C and 420 

°C the unsaturated alkene gases were reduced under high water pressure to a much 

greater extent than the saturated alkane gases.  This is due to the retardation of alkene 

gas generation by pressure or hydrogenation of alkenes to alkanes, or the addition of 

free radicals to alkenes to form branched short chain alkanes being favoured under high 

water pressure.  The reduction in the yields of alkene gases with pressure increase 

observed in this study might explain why alkenes are not formed under pressure 

conditions in geological basins.  Overall, the results indicate that at 380 °C and 420 °C, 

gas yields are not markedly affected by pressure as observed at 350 °C, and this is 

considered to be a combination of two factors.  Firstly, the increase in temperature 

results in the physical retardation induced by 900 bar pressure, becoming less 

significant, due to the increased chemical reactions between the supercritical water and 
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kerogen, such that gas generation was not significantly retarded as observed at 350 °C.  

The additional 30 °C provides the thermal energy to enable the system to have sufficient 

energy available to undertake both the bond breakage (to generate the hydrocarbons) 

and pV work to create the space in the pressurised water to accommodate the additional 

volume required by the generated hydrocarbons.  Secondly, due to high water pressure 

delaying the conversion of bitumen to oil and the expulsion of oil from the coal, some 

cracking of bitumen and/or oil retained in the coal to gas and gasoline hydrocarbons 

occurred at high pressures.  The cracking of bitumen and/or oil to gas and gasoline 

hydrocarbons, explains why the increase in extracted bitumen yield with an increase in 

pressure going from 230 bar to 900 bar at 380 °C is relatively small when the reduction 

in oil yield is considered.  This means that the retained bitumen is decreasing due to 

cracking to gas and gasoline range hydrocarbons, as oil generation is retarded by 

pressure.  At 380 °C the 500, 700 and 900 bar gas yields did not show any significant 

increase due to cracking of bitumen, suggesting that gasoline hydrocarbons, which were 

prevented from cracking further to gas under high pressures were the main products 

from the cracking of bitumen and/or oil retained in the coal at high pressures.  The 

formation of more gasoline hydrocarbons from cracking of retained bitumen and/or oil 

in the coal at high pressures is evident from carbon mass balance obtained at 380 °C 

(Table 5) which showed a steady decrease in total recovered carbon from 90% (at 230 

bar) to 84% (at 900 bar).  The decrease in total recovered carbon being due mainly to 

the loss of unrecovered gasoline hydrocarbons and CO2.  The cracking of the retained 

bitumen and/or oil at high pressure is also supported by the small gradual increase in 

TOC at 380 °C going from 230 bar (77.6%) to 500 bar (78.9%), 700 bar (78.8%), and 

900 bar (80.5%), which is due to pyrobitumen formation.  The lower residual TOC 
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obtained at 230 bar indicate that less pyrobitumen was formed, suggesting that oil was 

generated and expelled at a faster rate, which in turn reduced the rate at which bitumen 

and/or oil in the coal was cracked directly to gas.  This explains why the expelled oil 

yield at 380 °C (Table 3 and Fig. 3) was higher at 230 bar in comparison to the 500, 700 

and 900 bar results. 

At 420 °C the oil yield increased with increasing pressure going from 300 bar 

(29 mg/g) to 500 (85 mg/g), 700 (117 mg/g) and 900 bar (108 mg/g), while the bitumen 

yield decreased going from 300 bar (81 mg/g) and 500 bar (89 mg/g) to 700 bar (51 

mg/g) and 900 bar (54 mg/g).  The trend in oil and bitumen yield is opposite to that 

observed at 380 °C, and might be due to enhanced generation and expulsion of oil with 

increase in pressure resulting in less extractable bitumen remaining in the coal at 700 

bar and 900 bar.  Alternatively it might be due to direct cracking of bitumen and/or oil 

retained in the coal, while pressure is also preserving the expelled oil from further 

cracking to gas at 700 bar and 900 bar.  We believe that the alternative direct cracking is 

the more likely reason why the oil yields were higher and the bitumen yields lower at 

700 bar and 900 bar.  This can be explained using the residual coal TOC (Table 3), 

which was higher at 300 bar (79.5%), reduced by 5.6% to a minimum at 500 bar 

(73.9%) before increasing again by 4.8% and 5.1% to 700 bar (78.7%) and 900 bar 

(79.0%), respectively.  Under 300 bar conditions 10 ml water was used and the 

experiment was under superheated steam conditions which might not have favoured oil 

generation and expulsion, resulting in the bitumen and/or oil retained in the coal being 

cracked mainly to gas, with the formation of pyrobitumen or coke as shown by the 

highest residual TOC obtained.  At 500 bar pressure the lower residual TOC is due to 

less pyrobitumen or coke being formed, which is as a result of oil generation and 
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expulsion being favoured due to the moderate pressure, supercritical water conditions as 

a result of the additional water in the vessel.  The lower residual TOC observed at 420 

°C under 500 bar conditions is entirely consistent with the lowest residual TOC 

observed for the 230 bar experiment, under which pressure the maximum amount of oil 

was generated at 380 °C.  This suggests that maximum oil generation and expulsion 

occurred under 500 bar conditions at 420 °C, indicating that the lower expelled oil yield 

obtained at 500 bar in relation to 700 bar and 900 bar values is due to cracking of oil to 

gas and gasolines. 

The increase in the residual TOC with increasing pressure to 700 bar and 900 

bar at 420 °C is ascribed to pyrobitumen or coke formation resulting from the direct 

cracking of trapped bitumen and/or oil to gas, entirely consistent with lower bitumen 

yields at 700 bar and 900 bar.  The fact that pressure retarded oil generation and 

expulsion at 420 °C under 700 bar and 900 bar pressure conditions suggests that the 

higher expelled oil yield obtained in comparison to the 500 bar value, is due to pressure 

retarding oil cracking to gas, consistent with the slight reduction in gas yield observed at 

900 bar.  Although some cracking of retained bitumen and/or oil occurred at 420 °C 

under 500 bar conditions, the fact that oil cracking to gas is evident suggests that oil 

cracking was a significant contributor to gas generation at 500 bar.  On the other hand 

the fact that oil cracking to gas is retarded at 700 bar and 900 bar at 420 °C is further 

evidence that gas generation at 700 bar and 900 bar was mainly from the cracking of 

bitumen, although direct generation of gas from kerogen due to high temperature is a 

possible alternative, without requiring the bitumen intermediate to be formed.  The 

contribution of bitumen and/or oil retained in the coals to gas generation and the 

retardation of the expelled oil from cracking to gas at 700 bar and 900 bar observed in 
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this study, suggest that in geological basins bitumen or oil trapped in source rocks to 

high maturities can be converted to gas at a later period.  This potentially might occur as 

a result of a combination of increased heat flow required during uplift (all gas shales 

currently in production occur in inverted basins), with the reduction in pressure. 

The residual coal VR values (mean of 100 measurements) obtained previously at 

350 °C for 24 h and already published (Uguna et al., 2012a) are presented in Table 6 

and Fig. 4.  The VR follow the same trend as those obtained in this study at 380 °C and 

420 °C, reducing by 0.15 %Ro from maximum at 175 bar (1.07 %Ro) hydrous 

conditions to a minimum at 900 bar (0.92 %Ro).  The reduction in VR observed at 350, 

380 and 420 °C with an increase in pressure is due to high water pressure retarding 

source rock maturation, which is as a result of the rate of aromatisation reactions being 

reduced under high water pressure conditions (Uguna et al., 2012a).  Comparison of the 

VR results (Fig. 4, Tables 3 and 6) obtained at all three temperatures shows that VR was 

reduced by the same value at 350 °C (0.15 %Ro) and 380 °C (0.16 %Ro) going from 

low pressure hydrous to 900 bar water pressure.  However, at 420 °C the VR reduced by 

0.27 %Ro at 900 bar compared to the 300 bar VR.  This indicates that the retardation 

effect of pressure on source rock maturation becomes more significant with increase in 

source rock maturity, and is due to the coal becoming less reactive at higher maturities 

due to loss of volatiles. 

The increase in gas yield at 420 °C going from 300bar  to 500 bar before 

reducing going to 900 bar, and the retardation of VR between 500 bar and 900 bar at 

350 °C to 420 °C observed in this study has been observed previously for oil cracking 

conducted at 350 °C and 400 °C (Hill et al., 1996) and coal pyrolysed at 300 °C and 340 
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°C (Hill et al., 1994) using the anhydrous, confined gold bag pyrolysis method.  Both 

studies showed that hydrocarbon gas yield and VR increased to a maximum at 690 bar 

before decreasing at 2000 bar.  The high pressure (2000 bar) reached by Hill et al. 

(1996, 1994) using gold bags before pressure retardation occurred compares with this 

study, in which pressure retardation was observed between 500 bar and 900 bar.  This 

difference has been attributed to the different pyrolysis methods used (Landais et al., 

1994; Michels et al., 1995).  As mentioned earlier in the introduction, pressure 

retardation effects have been shown to be generally more significant for high water 

pressure unconfined pyrolysis than high pressure confined gold bag pyrolysis.  The high 

retardation effect of pressure observed under high water pressure pyrolysis conditions 

has been attributed to the pressurising medium (water) been in contact with the sample 

been pyrolysed (Landais et al., 1994; Michels et al., 1995).  On the other hand under 

confined gold bag pyrolysis the sample is not in contact with the pressurising medium, 

and the pressure applied to the outside of the gold bag may be reduced by the pressure 

generated from products generation, hence the pressure retardation effect is less (Uguna 

et al., 2012a, b). 

In the transition state theory, reaction rates are controlled by the activation 

volume (∆
‡
V

o
) which is the volume difference between the activated complex and 

reactant.  If the reaction is bimolecular (where the volume of the transition state is 

smaller than the sum of the volumes of the reactants) ∆
‡
V

o
 is negative and the reaction 

rate constantly increases with increasing pressure, thus reaction is enhanced.  

Conversely, if a reaction is unimolecular (where the volume of the transition state is 

larger than the volume of the initial species) high pressure will reduce the reaction rates, 

thus retarding the reaction (Al Darouich et al., 2006).  Hill et al. (1996) using gold bags 
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to study oil cracking calculated (∆
‡
V

o
) values of +47 cm

3
/mol in the 90-483 bar range at 

400 °C, while between 345 and 690 bar at 350 and 380 °C, and 483 and 690 bar at 400 

°C, (∆
‡
V

o
) is 14 cm

3
/mol.  Al Darouich et al. (2006) also using gold bags to study oil 

cracking, calculated (∆
‡
V

o
) values in the range 40-140 cm

3
/mol.  Given the relatively 

large size of the molecules in kerogen and petroleum, it would be realistic to expect 

quite large changes upon activation, depending upon the exact nature of the activated 

complex (Uguna et al., 2012a).  The situation is complicated by the fact that ∆
‡
V

o
 (like 

all volume parameters) must be pressure dependent, but no theory is currently available 

to predict the variation in activation volume with pressure.  Consequently in the case of 

such complex reactions such as the conversion of kerogen into bitumen, oil, gas, 

pyrobitumen and modified kerogens, an alternative approach is required, if the 

relationship between ∆
‡
V

o
 cannot be derived. 

 

5. Conclusions and implications 

 

5.1. Conclusions 

At 350 °C under 900 bar pressure conditions gas and bitumen generation, and 

source rock maturation were all retarded by pressure, with the retardation effect of 

pressure being more significant for gas generation and source rock maturation than 

bitumen generation. 

At 380 °C and 420 °C gas generation was retarded by pressure to a lesser extent 

than at 350 °C, due to a combination of the higher temperature (which reduced the 

effect of pressure) and the cracking of bitumen retained in the coal to gas. 
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However at 380 °C, high water pressure significantly retarded oil generation and 

expulsion by delaying bitumen conversion to oil.  At 420 °C, oil cracking to gas was 

retarded at 700 bar and 900 bar. 

At 350 and 380 °C VR was retarded by 0.15 %Ro going from low pressure to 

900 bar, and at 420 °C VR was retarded by  0.27 %Ro going from low pressure to 900 

bar. 

5.2. Implications 

Gas and oil generation, oil cracking to gas and source rock maturation will be 

retarded to a greater extent than bitumen generation in high pressure geological basins 

for perhydrous coals, in common with Type II source rocks. 

The retardation effect of pressure observed in this study implies that in addition 

to temperature and time, pressure will have a significant control on the extent of 

hydrocarbon (oil and gas) generation and source rock maturation in geological basins. 

The retardation effect of pressure could be more significant in geological basins 

than shown in this study, because in geological basins, temperatures are much lower and 

the pressures can be much higher than the temperatures and pressure used in this study. 

The un-expelled oil and preserved bitumen retained in the coal as bitumen which 

contributed to gas generation in the high pressure experiments and the observed 

pressure retardation of oil cracking to gas suggests that in geological basins oil and 

bitumen preserved in source rocks to the gas window will potentially generate more gas 

due to kerogen and mineral matter interaction than expelled oil. 
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The higher retardation of VR (source rock maturation) observed at 420 °C in 

comparison to 350 °C and 380 °C under high pressure suggest that in geological basins 

the retardation effect of pressure on source rock maturation will be more significant at 

higher maturities. 
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Figure captions 

Fig. 1. Schematic diagram of pyrolysis equipment. 

Fig. 2. Total hydrocarbon (C1-C5) gas yields (mg/g TOC) for pyrolysis at 380 °C. 

Fig. 3. Expelled oil and bitumen yields (mg/g TOC) for pyrolysis at 380 °C. 

Fig. 4. Vitrinite reflectance for pyrolysis at 350, 380 and 420 °C. 

Fig. 5. Total hydrocarbon (C1-C5) gas yields (mg/g TOC) for pyrolysis at 420 °C. 

Fig. 6. Expelled Oil and bitumen yields (mg/g TOC) for pyrolysis at 420 °C. 

Fig. 7. Bitumen and total hydrocarbon (C1–C4) gas yields (mg/g TOC) for pyrolysis at 

350 °C from Uguna et al., (2012a). 
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Table 1. Initial Svalbard coal data. 

 

TOC 

(%) 

S1 

(mg/g) 

S2 

(mg/g) 

HI 

(mg/g)

Tmax 

(°C) 

Mean VR 

(%Ro) 

Vitrinite 

(%) 

Liptinite 

(%) 

Inertinite 

(%) 

78.5 12.0 273 347 440 0.68 92.6 4.0 3.4 

 

 

Table 2. C1–C5 hydrocarbon gas yields (mg/g TOC of initial coal TOC) for pyrolysis at 

380 °C and 420 °C for 24 h. 

 

Sample 
Temp 

(°C) 
CH4 C2H4 C2H6 C3H6 C3H8 

C4 

alkenes

C4 

alkanes 

C5 

alkenes 

C5 

alkanes 

Total 

C1-C5 

230 bar 380 14.0 0.06 8.9 0.38 6.1 0.42 2.8 0.30 1.3 34 

500 bar 380 13.2 0.02 7.9 0.10 5.8 0.13 2.8 0.10 1.3 31 

700 bar 380 12.6 0.01 7.7 0.09 5.7 0.13 2.9 0.11 1.5 31 

900 bar 380 11.2 0.01 6.9 0.07 5.1 0.09 2.6 0.07 1.2 27 

300 bar 420 42.9 0.11 24.2 0.69 19.6 0.92 10.8 0.72 5.3 105 

500 bar 420 45.1 0.05 25.2 0.50 21.5 0.87 13.4 0.84 7.1 115 

700 bar 420 45.0 0.04 25.0 0.35 20.8 0.57 12.5 0.52 6.0 111 

900 bar 420 40.9 0.03 22.1 0.30 18.2 0.52 10.8 0.48 5.4 99 

 

 

Table 3. Expelled oil, bitumen and bitumen plus oil yields (mg/g TOC of initial coal 

TOC), residual coal TOC and VR values for pyrolysis at 380 °C and 420 °C.  

 

Sample Temp 

(°C) 

Expelled 

oil 

Bitumen Bitumen 

plus oil 

Residual coal 

TOC (%) 

Mean VR 

( %Ro) 

SD
a
 

230 bar 380 174 102 276 77.6 1.35 0.12 

500 bar 380 136 105 241 78.9 1.31 0.14 

700 bar 380 136 117 253 78.8 1.29 0.16 

900 bar 380 114 124 238 80.5 1.19 0.12 

300 bar 420 29 81 110 79.5 1.76 0.23 

500 bar 420 85 89 174 73.9 1.60 0.23 

700 bar 420 117 51 168 78.7 1.61 0.33 

900 bar 420 108 54 162 79.0 1.49 0.33 
a
 Standard deviation of the 100 VR measurements of each sample. 

 

 

Table 4. Carbon balances (products and residues in mg of carbon/g of initial TOC) for 

pyrolysis at 350 °C for 24 h from Uguna et al., (2012a). 

 

Sample C1-C4 Bitumen Residual 

Rock 

Total 

Recovered 

(%) 

Recovery 

175 bar 4.80 295 631 928 93 

500 bar 3.73 292 660 956 96 

900 bar 2.19 264 664 930 93 
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Table 5. Carbon balances (products and residues in mg of carbon/g of initial TOC) for 

pyrolysis at 380 °C and 420 °C. 

 

Sample Temp 

(°C) 

C1-C5 Oil Bitumen Residual 

Rock 

Total 

Recovered 

(%) 

Recovery 

230 bar 380 27 148 87 641 902 90 

500 bar 380 25 115 89 640 869 87 

700 bar 380 24 115 99 616 855 86 

900 bar 380 21 97 105 621 844 84 

300 bar 420 83 25 69 707 883 88 

500 bar 420 91 72 76 602 841 84 

700 bar 420 87 99 43 642 872 87 

900 bar 420 78 92 46 633 848 85 

 

 

Table 6. Bitumen, C1–C4 hydrocarbon gas yields (mg/g TOC of initial coal TOC) and 

VR values for pyrolysis at 350 °C for 24 h from Uguna et al., (2012a). 

 

Sample CH4 C2H4 C2H6 C3H6 C3H8 C4H10 C1-C4 Bitumen 
Mean VR 

( %Ro) 

Initial coal - - - - - - - 128 0.68 

175 bar 2.65 0.01 1.75 0.09 1.21 0.41 6.12 348 1.07 

500 bar 2.04 0.00 1.30 0.02 1.02 0.37 4.75 344 0.94 

900 bar 1.19 0.00 0.76 0.01 0.60 0.23 2.79 311 0.92 
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Fig. 1 

 

Pressure gauge

Compressed air inlet

Distilled water 
tank

High pressure 
liquid  pump

External pressure 
gauge

Pressure vent

A

B

Pressure regulator

C

Rupture disk

Reactor vessel

Temperature control

Jack

Compressed air inlet

Fluidised sand 
bath

Valve

High water pressure line

Water inlet

Thermocouple 



  

F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figg. 2 (3880 °°C gass yieeld) 
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Figg. 3 (3880 °°C exppellled oil andd biitummenn yiieldds)
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Figg. 4 (3550, 3800 annd 44200 °CC VVR) 
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Figg. 5 (4220 °°C gass yieeld) 

 



  

F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figg. 6 (4220 °°C exppellled oil andd biitummenn yiieldds)
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