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Thin-film flows encountered in engineering systems such as

aeroengine bearing chambers often exhibit capillary waves

and occur within a moderate to high Weber number range.

Although the depth-averaged simulation of these thin-film

flows is computationally efficient relative to traditional VOF

methods, numerical challenges remain particularly for so-

lutions involving capillary waves and in the higher Weber

number, low surface tension range. A depth-averaged ap-

proximation of the Navier-Stokes equations has been used to

explore the effect of surface tension, grid resolution and in-

ertia on thin-film rimming solution accuracy and numerical

stability. In shock and pooling solutions where capillary rip-

ples are present, solution stability and accuracy are shown

to be highly sensitive to surface tension. The common prac-

tice in analytical studies of enforcing unphysical low Weber

number stability constraints is shown to stabilise the solution

by artificially damping capillary oscillations. This approach

however although providing stable solutions is shown to ad-

versely affect solution accuracy. An alternative grid resolu-

tion based stability criteria is demonstrated and used to ob-

tain numerically stable shock and pooling solutions without

recourse to unphysical surface tension values. This allows

for the accurate simulation of thin-film flows with capillary

waves within the constrained parameter space correspond-

ing to physical material and flow properties. Results ob-

tained using the proposed formulation and solution strategy

show good agreement with available experimental data from
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literature for low Re coating flows and moderate to high Re

falling wavy film flows.

1 Introduction

A thin-film may be described as a layer of liquid par-

tially bounded by a solid substrate, with a free surface where

the liquid is exposed to another fluid - usually a gas [1]. In

many applications, the depth of the thin-film is typically or-

ders of magnitude smaller than the other lateral dimensions

of the liquid expanse. Thin-film flows are central to a num-

ber of industrial and process engineering applications such

as distillation, absorption, condensation, advanced power ex-

traction, photochemistry and surface cooling/heating.

Of particular interest to the present study are the lami-

nar shear-driven thin-film rimming flows inside aero-engine

bearing chambers where thin liquid films are driven by an

inter-facial shear stress in the presence of a gravitational

field, surface tension and pressure gradient forces [2], [3, 4].

The problem of a two-dimensional (2D) classical shear

driven rimming flow, as shown in Figure 1, has been used

to investigate the problem of thin-film flow, assess existing

formulations and based on the findings propose a solution

strategy. In this idealised model of an aero-engine bearing

chamber, a film of liquid is driven over a stationary cylindri-

cal outer wall by an interfacial shear stress in the presence

of gravity. Film liquid properties used in this study are also

described in Table 1, and correspond to a typical aeroengine

bearing chamber problem.

To undertake an optimum engineering design of sys-



Fig. 1: Thin-film rimming flow geometry and coordinate sys-

tem used.

tems involving thin-film flows, engineers require reliable and

computationally efficient numerical tools with which to anal-

yse these thin-film rimming flows. Traditional multiphase

flow techniques such as the volume-of-fluid (VOF) method

[5] have recently been successfully applied to the modelling

of laminar falling wavy films by among others Gao [6] and

Miyara [7]. They used a VOF approach to simulate falling

film flows exhbiting capillary waves and the results showed

good agreement with experimental measurements for film

thickness. A constraint of these methods however is the very

high grid resolution and associated computational cost re-

quired to explicitly resolve film profiles and interface cur-

vature, particularly in a system with a wide range of film

thickness scales. In this context, the numerical simulation of

thin-film flows poses a particular engineering challenge due

to the high computational cost associated with using more

conventional multi-phase flow methods, such as the VOF ap-

proach.

As an alternative to traditional VOF methods, a num-

ber authors such as [8], [9], [10], [10] and [11] have used

depth-averaged numerical approximations to study the be-

haviour of thin-film rimming flows. These methods may be

refered to as the Eulerian Thin-Film Models (ETFM) and by

removing the requirement for the film thickness to be ex-

plicitly resolved using a computational grid, a significant re-

duction in the computational cost is obtained. In the ETFM

Table 1: Domain and fluid properties used in this study

Property Symbol Value Dimensions

Domain radius r0 1.10× 10−1 [m]

Surface tension σ 2.45× 10−2 [N/m]

Density ρ 9.30× 102 [kg/m3]

Viscosity µ 4.83× 10−3 [Pa.s]

Gravity g 9.81 [m/s2]

approach, the three-dimensional (3D) Navier-Stokes equa-

tions are depth-averaged across the film thickness to obtain a

set of 2D thin-film equations. The results from the numerical

work of [8], [9] and [11] show that for 2D rimming flows, de-

pending on the amount of liquid in the film, and the balance

between viscous, gravitational and inter-facial shear stresses,

three different types of steady flow regimes are attainable -

smooth, shock and pool - as illustrated in Figure 2.

(a)

(b)

(c)

Fig. 2: Thin-film rimming flow solution classification into;

(a) shear dominated smooth flow, (b) a transitional shock

flow regime where shear and gravity are in balance, and (c)

gravity dominated pool flow.

Smooth solutions are obtained when, the surface shear is

sufficient to overcome gravitational forces and circulate the

film around the chamber forming a uniform film profile as

shown in Figure 2a. Although the film is thicker on the ris-

ing side of the chamber where gravity opposes the interfacial

shear, there are no sharp changes in film profile. However, in
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Fig. 3: Thin-film flow dimensionless parameters.

pool cases, the surface shear is no longer sufficient to over-

come gravitational forces and the excess liquid in the film

begins to pool near the bottom of the chamber as shown in

Figure 2c [8]. The shock flow condition essentially repre-

sents a transition point from smooth to pool flow at which

the film flux is equal to a critical flux [11,12]. Both pool and

shock solutions are characterised by the presence of small

amplitude capillary waves adjacent to steep fronts.

The main variables driving the dynamics of the problem

and which ultimately determine the steady state flow regime

include; the volume fraction of liquid or filling fraction (A),

physical properties of the liquid such as dynamic viscosity

(µ) and density (ρ), the mean interfacial shear stress (τi) and

the gravitational acceleration (g).

These variables may be arranged into a set of dimen-

sionless parameters [11, 12] that govern thin-film rimming

flow dynamics namely: Reynolds number, Re; a measure of

the filling fraction, ε; gravity parameter, λ; shear parameter,

τ and capillary number, Ca (or Weber number, We). A defi-

nition of these quantities and the two way mapping between

the dimensionless space they represent and the dimensional

quantities used in this study is illustrated in Figure 3.

A number of numerical challenges have been encoun-

tered in previous studies of thin-film rimming flows partic-

ularly with regard to shock and pool type solutions involv-

ing steep fronts and capillary ripples. A thin-film flow for-

mulation for use in a multi-scale CFD model was presented

in [10,13] and is currently implemented in commercial CFD

code ANSYS [14]. The Wang model has however so far only

been able to reproduce stable smooth solutions and unable to

recover stable shock/pool solutions as anticipated from im-

posed conditions. In this formulation, the advective terms of

the energy and momentum equation are simplified and this

is a possible root cause of the numerical difficulties with re-

gards to shock/pool solutions in which inertia plays a major

role [11, 12].

In mathematical studies such as [8, 9, 15], where a

more rigorous formulation is used, including inertia, stable

smooth, shock and pool solutions were obtainable. In these

studies, a definitive link between solution stability and sur-

face tension was also established. A common practice in

these detailed mathematical studies was to retain surface ten-

sion terms as a stabilising mechanism and use high surface

tension coefficients (corresponding lower Capillary numbers

or Higher Weber numers) that are orders of magnitude be-

yond what is physically unattainable in engineering condi-

tions. For instance, in [11], surface tension was required to

be at the first-order of approximation in order to ensure so-

lution stability of shock/pool solutions; in reality, this corre-

sponds to a surface tension coefficient that is two orders of

magnitude higher than is achievable in practice for a typi-

cal lubricant described in Table 1. Previously experimental

studies by [16] have shown that the presence of even trace

amounts of surface-active agents ( about 5× 10−3% ) can

lead to considerable damping of surface waves and the sup-

pression of ripples. This high sensitivity of solutions to sur-

face tension further calls into question the validity of simply

incorporating high surface tension as a numerical stabilising

term as this is likely to affect solution accuracy. There is

therefore a need to develop a better understanding of the de-

pendency of solution stability on surface tension and its role

in the accuracy of the final stable solution in order to iden-

tify a remedies for numerical instability in the formulation

that do not rely on surface tension based smoothing or lead

to unphysical results.

This paper investigates the linkage between surface ten-

sion, grid resolution and numerical instability for steady thin-

film flow and proposes a solution strategy to ensure numeri-

cal stability. In addition, the role plaid by other factors such

as inertia formulation, grid resolution and the temporal dis-

cretization schemes used in determining solution stability is

explored.

Section 2 describes the film formulation used in the

present study as well as the proposed inertia corrections and

solution approach. The model is then used to carry out a

parametric study, reported in section 3, which covers the

broad range of film flow regimes and demonstrate the nu-

merical difficulties associated with shock/pool solutions as

well as the use of artificially high surface tension as a sta-

bilising term. A proposed solution strategy is used to over-

come these difficulties and obtain stable film solutions within

a parameter space that is consistent with the fluid’s physical

properties. The verified model and proposed solution strat-

egy are finally validated against two test cases; a very Low

Re (Re<< 1) coating flow experiment by [17], and a mod-

erate Re (10 <Re< 100) experiments for a wavy liquid film

falling down an inclined plane by [18].

2 Numerical formulation and solution approach

The thin-film rimming flow in Figure 1 has been ide-

alised as a two-dimensional (assuming lateral uniformity) in-

compressible Newtonian liquid of density, ρl and viscosity,

µl flowing over a solid substrate and with a free-surface ex-

posed to an incompressible Newtonian gas of ρg and viscos-

ity, µg. The film has a spatially varying height, h(s, t) and

flows with a film velocity u(s,y, t) - where s is the horizontal



flow direction and y is the vertical direction as shown in Fig-

ure 1. The film velocity u(s,y, t) may be decomposed into a

depth-averaged component ū(s, t) and a fluctuating compo-

nent û(s,y, t) as

u(s,y, t) = ū(s, t)+ û(s,y, t), (1)

where the mean film speed, ū(s, t) is computed as

ū(s, t) =
1

h

∫ h

0
u(s,y, t)dy. (2)

A volumetric film flux may then be computed as, q =
ūh. This film flux, q, together with the film height define

the film state and are defined by a balance between viscous,

gravity (g = (gs,gy)), hydrostatic pressure, surface tension

and film inertia. The resulting film flow dynamics over the

solid-substrate are described by the one-dimensional depth

averaged continuity and momentum equations given by

∂h

∂t
+

∂q

∂s
= 0, (3)

∂q

∂t
+

∂

∂s

∫ h

0
u2dy =− h

ρl

∂Pl

∂s
+

h

ρl

∂σκ

∂s
+ gsh+ Sτ. (4)

In Equations (3) and (4), Pl = (Pgas−ρgyh), is the film

pressure which has a component from the interfacial gas

pressure, Pgas and the film hydrostatic pressure, ρgyh. Pl is

used to compute the film hydrostatic pressure gradient term

(S∆P = h
ρl

∂Pl

∂s
) which is the first term on the right hand side

(R.H.S.) of Equation 4.

Surface tension effects are represented in the surface

tension term, Sσ = h
ρl

∂σκ
∂s

, where σ is the surface tension co-

efficient for the liquid-gas interface, and the interface curva-

ture, κ, is estimated according to;

κ =

d2h

dx2

(

1+

(

dh
dx

)2)1.5
. (5)

The third term on the R.H.S. of Equation 4 represents the

momentum source term due to film gravitational body forces

in the direction of the film flow, Sg = gsh. Finally, the fourth

source term on the R.H.S. of Equation 4, Sτ, represents the

balance of viscous shear forces on the film, including contri-

butions from the interfacial shear stress driving the film, τi,

and the wall shear stress resisting fluid flow over the solid

substrate, τw. Using appropriate sub-models to estimate τi

and τw, the viscous source term, Sτ may be computed ac-

cording to:

Sτ =
τi− τw

ρl

. (6)

Representative values of the terms of the thin-film equa-

tions Equations 3 and 4 - the gravity source term (Sg), the

surface tension term (Sσ), the hydrostatic pressure gradient

term (S∆P), the viscosity term (Sτ) and inertia terms (second

term on the L.H.S. of Equation 4) - have been analysed to

determine their relative importance in typical thin-film solu-

tions. This is discussed in more detail in section 3 of this

paper.

The inertia/convective term of Equation 4 has previously

been analytically shown [11, 12] to play an essential role

in ensuring solution stability and that without inertia, stable

shock/pool solutions are unattainable. The correct represen-

tation of the inertia term is therefore key to the development

of a robust thin-film formulation. In a number of thin-film

models such as [10], a uniform velocity profile is assumed

when computing the depth-averaged inertia term, resulting

in a “simplified inertia” representation where it is implic-

itly assumed that ∂
∂s

∫ h
0 u2dy ≈ ∂ h ū ū

∂s
. In this study, rather

than assume a uniform film velocity profile, a more general

quadratic film velocity profile is assumed which is consis-

tent with the assumption of a laminar uni-directional flow.

Higher order cubic and quartic film profiles have also been

implemented in order to capture more complex film flows

with secondary flow re-circulations. In the falling film cases,

the quartic profile was found to give the best agreement with

the experimental observations.

2.1 Numerical schemes

Previously the thin-film model [10] has used a semi-

implicit solution algorithm where an explicit predictor step

is carried out, followed by sequential sub-iterations between

the continuity and momentum equations until convergence

is attained. In this paper, an explicit MacCormack scheme

after [19] has been implemented together with a capillary

time-step constraint after [20]. [20] proposed a new capillary

time-step constraint derived from a combination of the CFL

condition, Nyquist-Shannon sampling theory and the wave

Doppler shift due to counter-travelling waves. For a case

with a bulk flow of velocity Uε, the capillary time step con-

straint may be expressed as [20]:

∆tσ ≤
∆x√

2Cσ +Uε

, (7)

where Cσ is the maximum phase velocity of the resolvable

capillary waves, which for a minimum grid size of ∆x would



be given by;

Cσ =

√

2πσ

∆x(ρl +ρg)
. (8)

A fully-implicit time-scheme is also implemented, sim-

ilar to previous studies such as [11]. In this fully-implicit ap-

proach, both the discretised continuity and momentum equa-

tions are compiled into a monolithic solution matrix and

the resulting non-linear system of equations is solved using

MATLAB’s fsolve algorithm or a Newton-Raphson solver.

A fourth-order central difference scheme is used for all

spatial derivatives, while a first-order implicit scheme is used

for the time discretisation. The solutions are all computed on

a uniform base grid of N=600 cells (∆x = 1.15mm). A grid-

sensitivity study is carried out and results are presented in

Section 3.5. In this study, only globally uniform grids have

been used.

3 Parametric study

A parametric study has been carried out to investigate

the stability behaviour of smooth, shock and pool solutions

and its dependence on film surface tension. A characteristic

film height in the range of 0.5 - 1.0 mm has been used with

uniform interface shear stresses in the range of 1.0 - 10.0 Pa.

The interface shear stress and characteristic film height are

then varied so as to achieve smooth, shock or pool flow con-

ditions within the domain. For the rimming flow simulations,

the fluid properties and domain size are described in Tabl1.

In the parametric study, the surface tension is varied

from the physical value of 0.0245 N/m to a value one or-

der of magnitude higher. For each of the smooth, shock and

pool solution conditions, a simulation is also carried out with

the surface tension term ignored. A summary of the simula-

tion cases performed is presented in Table 2 along with the

corresponding Re and We number.

Cases A1 - A3 were used to test for the sensitivity of

smooth flow solutions to the surface tension parameter, while

Cases B1 - B5 and C1 - C2 were used to test shock and pool

solutions respectively for sensitivity to surface tension. Val-

ues of surface tension up to two orders of magnitude larger

than the liquid surface tension specified in Table 1 have been

tested, which are consistent with the very low capillary num-

bers used in [11] for example. The goal of this set of simula-

tions, as listed in Table 2 was to explore the range of possi-

ble solutions and allow a more detailed understanding of the

stability behaviour of these solutions and the role plaid by

surface tension and other key terms.

3.1 Smooth solutions

Smooth flow Cases A1, A2 and A3 of Table 2 were suc-

cessfully simulated using a full-inertia representation and a

full-implicit time scheme. The resulting film thickness and

velocity distributions are illustrated in Figure 4a and 4b.

Table 2: Description of simulation cases

Case h0 U0 τi σ Re We

[mm] [m/s] [Pa] [N/m]

A1

0.55 0.512 9.0

0.0245

54.2

5.479

A2 0.5 0.268

A3 - -

B1

0.7 0.652 9.0

0.0245

54.2

11.296

B2 0.5 0.553

B3 - -

C1

0.7 0.109 1.5

0.0245

54.2

0.314

C2 0.5 0.015

C3 - -

These smooth solutions may be characterised as very

large wavelength disturbances (of the order of chamber size)

in which gravity is the dominant restoring term and surface

tension plays a relatively negligible role in the solution. To

illustrate this, representative values of some of the key source

terms in the thin-film formulation are shown in Figure 4c for

a stable smooth solutio. The results in Figure 4c show that

in these smooth flow solutions, viscous and gravity forces

dominate, while pressure gradient and surface tension play a

relatively negligible role.

The surface tension parameter was varied by up to one

order of magnitude greater than in the fluid in Table 1 to test

for sensitivity. Surface tension was found to have a negligi-

ble effect on smooth solution stability or accuracy, with the

high surface tension Case A2 showing the exact same result

as Case A1. Indeed, a stable smooth film profile was even

attainable in Case A3 where no surface tension was present

(i.e. when the surface tension term was ignored).

3.2 Shock solutions

Cases B1, B2 and B3, described in Table 2, represent a

region where a shock solution is expected. Surface tension

has been varied from the base value of 0.0245 N/m, Table

1, used in Case B1 to Case B3 where surface tension is ig-

nored and Case B2 where the surface tension coefficient is

one order of magnitude larger than in Case B1. The results

in Figures 5a and 5b illustrate that when surface tension is

neglected (Case B3) or is of the order of magnitude that is

expected for the fluid in Table 1 (Case B1), a stable shock

solution is unattainable on the base N=600 grid used. The

unstable solutions in these cases are characterised by spuri-

ous oscillations which are often accompanied by significant

numerical error leading to a loss of mass conservation.

A stable shock solution was only attainable for Cases

B2 which had surface tension values of atleast one order of

magnitude larger than is physically attainable for the fluid
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Fig. 4: (a) Film height profiles, (b) velocity distribution

and (c) momentum source terms for smooth solutions in

Cases A1 - A3.
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Fig. 5: (a) Film height profiles in Cases B1 - B3, (b) veloc-

ity distribution in Cases B1 - B3 and (c) momentum source

terms for the stable shock solution in Case B2.



in Table 1. The stable shock solution is characterised by a

smooth global solution that contains a localised shock region

with a sharp change in film profile. Also present upstream

of the shock front are small wavelength disturbances which

are within the capillary range where surface tension forces

are of the same order as gravity forces. For a stable solution,

the wavelength of these capillary-gravity waves is sensitive

to the surface tension value used. Further discussion on grid

sensitivity in Section 3.5 highlights that the presence of these

capillary waves and the need to resolve them provides a link

between grid resolution, surface tension and solution stabil-

ity.

Representative values for the key source terms in the sta-

ble shock solutions are shown in Figure 5c. As in the analysis

of terms for smooth solutions illustrated in Figure 4c, gravity

and viscous terms play a major role in shock solution. How-

ever a major difference is the pronounced role played by the

surface tension term in the shock solutions where steep gra-

dients and very small wavelength disturbances are present.

The surface tension term is shown to be of the same order

of magnitude as the viscous and gravity terms local to the

shock region in contrast to smooth solutions where this term

was found to be negligible. The pressure gradient term ex-

hibits a slight increase in magnitude in the shock region but

remains negligible relative to the other terms.

3.3 Pool solutions

Pool Cases C1, C2 and C3 as described in Table 2, were

also simulated using varying surface tension values with the

very high surface tension used in Case C2 being an order of

magnitude higher than in the typical engineering fluid used in

Case C1. Surface tension was neglected in Case C3. Similar

to the shock solution results in Figure 5, the pool solution

results shown in Figure 6 show that within practical limits on

surface tension (or with no surface tension included), stable

pool solutions are unattainable on the base grid. However, by

increasing surface tension by one order of magnitude on the

same grid, stable pool solutions were attainable in Case C2.

This stability behaviour demonstrated the stabilising role of

surface tension in pool solutions.

Where stable pool solutions exist, they are characterised

by a sharp changes in film profile that occurs close to the

bottom of the chamber. As the surface shear is insufficient to

overcome gravity and distribute the film evenly throughout

the domain, the excess oil in the film pools at the bottom of

the cylinder. A thinner film is then drawn out of this pool and

circulated across the domain.

The representative values of the source terms in the sta-

ble pool solution were also analysed and are presented in

Figure 6c. In common with the shock case, contributions

from gravity, viscous and surface tension terms were found

to play a major role in the final stable pool solution. In ad-

dition, the pressure gradient term (which was negligible for

smooth and shock solutions) is shown to be of the same order

as gravity and viscous terms due to the presence of a deep

pool to thin-film transition. Therefore in order to simulate

realistic pool solutions, the formulation requires gravity, vis-
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Fig. 6: (a) Film height profiles in Cases C1 - C2, (b) veloc-

ity distribution in Cases C1 - C2 and (c) momentum source

terms for the stable pool solutions in Case C2.



cous, surface tension and pressure gradient terms accurately

modelled. The findings from this analysis of terms therefore

validates previous specifications for an ideal thin-film such

as in [10].

3.4 Effect of Weber number

The results presented in sections 3.1 - 3.3 highlight that

surface tension plays a significant stabilising role in shock

and pool solutions where steep film profiles are present,

while it remains negligible for smooth solutions. This sta-

bilising role of surface tension for shock pool cases has pre-

viously been discussed by, among others, [8], [15] and [11].

In these studies, surface tension was retained as a stabilising

term, with high (artificial) surface tension values typically

used to ensure stability of the solutions. In the cases so far

presented in this paper, stable shock or pool solution on the

base grid of N=600 are only attainable using large surface

tension values that are at least one order of magnitude higher

than those found in a typical engineering application with

say oil or water (see Table 1).

Augmenting the surface tension leads to an artificial

smoothing of the solution, creating larger wavelength and

low amplitude capillary waves that are easily resolvable on a

coarse computational grid. This tends to result in a more sta-

ble solution that is easily attainable. On the other hand, with

low surface tension solutions, low wavelength and high am-

plitude capillary waves are produced which require a much

finer spatial grid resolution. Using a large surface tension

coefficients however introduces uncertainty and may lead to

excessing damping of the film profile. This is illustrated by

the results in Figure 7 where using very high surface ten-

sion values (e.g. three orders of magnitude above the physi-

cal surface tension) results in a modified shock position and

peak film thickness. The use of solution strategies depending

on high surface tension should therefore be carried out with

caution as significant artificial smoothing of the solution may

result.

3.5 Mesh sensitivity

Further more, in addition to confining stable solutions

to an unphysical parameter space, these surface tension

based stability criteria have been found in the present study

to be sensitive to grid resolution. The results of a grid-

independence study are illustrated in Figure 8. Results in

Figure8a show that for a moderate grid spacing of ∆x =
1.15 mm cells, a surface tension coefficient of atleast 0.5

N/m is required to ensure stability of the shock solution in

Case B2. Further refinement of the grid to ∆x = 0.58 mm,

Case B2f1, and ∆x = 0.29 mm, Cases B2f2, is shown to

result in no change to the final stable solution, confirming

the independence of the stable solutions to grid refinement.

However, using this same surface tension coefficient of 0.5

N/m, if the grid resolution is coarsened to ∆x = 2.30 mm, as

in Case B2c, then the solution is shown to become unstable.

Similarly, by using a finer grid of ∆x= 0.14 mm cells in Case

B1f3, which has a relatively low but realistic surface tension

coefficient of 0.0245 N/m (consistent with that of oil) it was

Fig. 7: Polar plot of film solution illustrating the artificial

smoothing of pool solutions due to the use of very high sur-

face tension coefficients.

found that a stable shock solution could be obtained where

in Case B1 ∆x = 1.15 mm it could not; this stable shock so-

lution was then independent of further grid refinement.

This stability trend suggests that by providing sufficient

grid refinement, stable shock/pool solutions may be obtained

within practical engineering limits on the surface tension pa-

rameter. This minimum grid resolution may be objectively

estimated based on the fluid properties and the flow features

present in the solution. This is mainly because the grid sen-

sitive stability behaviour observed is thought to be rooted in

the flow features present in shock solutions, such as steep

fronts and capillary waves, which need to be resolved by the

computational grid in order to ensure solution stability.

In smooth solutions, only large wavelength disturbances

(of the order of the size of the bearing chamber) are present

in which gravity is the main restoring force. In these cases,

surface tension plays no significant role, except perhaps in

stabilising any short wavelength ripples that might emerge

during the process of solution. However, as illustrated in

Figure 5a, stable thin-film shock/pool solutions are charac-

terised by the presence of steep fronts in the solution and

short wavelength disturbances that may occur adjacent of the

shock front. Figure 9 shows that the wavelength of these

disturbances is also sensitive to the value of surface tension

used.

These short wavelength disturbances which occur in a

region where surface tension forces are of the same order

as viscous and gravity forces (see Figure 5c) are consistent

with capillary waves. An objective method of classification

of these disturbances was presented in [21] that proposed a

critical wavelength, ℓcrit, given by
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Fig. 8: Results of the grid sensitivity studies for (a) Case B2

(∆x = 1.15 mm), Case B2f1 (∆x = 0.58 mm), Cases B2f2

(∆x = 0.29 mm), Case B2c (∆x = 2.30 mm) and (b) Case B1
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ℓcrit = 2π

(

σ

(ρliquid−ρgas)g

)
1
2

. (9)

Any given disturbance may be classified according to

if

{

ℓ << ℓcrit, Capillary wave

ℓ >> ℓcrit, Gravity wave
(10)

Using values of surface tension and density shown in Ta-

ble 1, the critical wavelength is estimated as, ℓcrit ≈ 10.3 mm.

The main source of instability within shock/pool solution is
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Fig. 9: Sensitivity of small-wavelength disturbances in stable

Cases B1 (σ = 0.0245N/m) and B2 (σ = 0.5N/m) to surface

tension.

linked to capillary waves whose wavelength is so small that

their dynamics are dominated by surface tension which is of

the same order of magnitude as gravity (see Figure 5c). In

order to obtain a stable shock solution, it is therefore neces-

sary that sufficient grid resolution be provided to resolve the

expected short wavelength disturbances, otherwise the solu-

tion becomes numerical unstable. Results from simulations

performed in the present research suggest an empirically de-

rived maximum grid size, ∆xmax may be estimated as

∆xmax ≈
ℓc

60
. (11)

This mesh sensitivity partly explains the success of past

approaches such as [11] (also demonstrated in Sections 3.2

and 3.3) where a high surface tension value is used to ensure

numerical stability of the solution on a grid of moderate spac-

ing spacing. A direct consequence of numerically increasing

the surface tension coefficient is that the critical wavelength,

ℓc defined by Equation 9, is also increased. Consequently, a

coarser grid resolution may be successfully used to resolve

the key feature and obtain a stable solution. However, for

a fixed surface tension coefficient corresponding to the fluid

used in this study, Equations 9 and 11 suggest that the grid

should be of N=400 (∆x ≈ 0.17mm) or finer in order to en-

sure numerical stability of shock solutions. The same would

be valid for a deep pool simply because, starting from a uni-

form film profile, the solution may transit through a shock

condition before reaching a steady pool state. If sufficient

resolution is not provided to resolve the solution transition

through a shock, a stable pool solution is then unlikely to be

reached.

3.5.1 Proposed mesh-based solution strategy

Based on the linkage between surface tension, capillary

waves and grid resolution, a new solution strategy is pro-

posed for pool and shock type solutions. In order to obtain



stable shock/pool solutions within a constrained parameter

space, it is suggested that;

firstly, sufficient grid refinement to resolve capillary

waves is provided;

secondly, in order to rapidly obtain the steady solution, a

solution may be obtained using artificially high surface

tension values which may then be progressively relaxed

to match fluid properties (Table 1) in the final solution.

The grid resolution requirement is determined accord-

ing to Equations 9 and 11. Although a uniform grid has

been used for all simulations in this paper, the grid size cri-

teria may be applied to the shock region only using a non-

uniform/adaptive meshing approach. For the low surface

tension cases, in order to improve convergence times, an ini-

tial solution is obtained quickly using a high surface tension

value to start with; the surface tension is then progressively

relaxed until the conditions in Table 1 are reached. This strat-

egy is shown to be grid independent provided the minimum

grid resolution suggested by Equation 11 is provided. Fur-

ther grid refinement beyond this level was shown to have no

impact on the solution as shown in Figure 8a.

The proposed grid-refinement solution strategy is there-

fore identified as a more objective alternative to the surface

tension smoothing strategy. Surface tension based smooth-

ing strategies, when chosen as the preferred approach due

to grid size considerations, should be used with caution and

it is recommended that a grid and surface tension sensitiv-

ity study always be performed as film solutions can be very

sensitive to surface tension [16], [22].

3.6 Effects of inertia representations

As has been discussed in Section ?? for thin-film com-

putations, the simplification of the non-linear inertial term

can lead to significant inaccuracies or numerical instability

of the solution. However this effect has hitherto not been in-

vestigated, and by presenting the thin-film formulation in a

form that is easily convertible into a full-inertia formulation

(as in [11]) or the simplified inertia formulation (as in [10]),

the effects of inertia representation on smooth, shock and

pool solutions can be assessed.

Case A1 (smooth solution), Case B2 (shock solution)

and Case C2 (pool solution) were simulated using both a

simplified- and a full-inertia representation in order to as-

sess the role this plays in solution stability. The results of

this sensitivity test for inertia representation are illustrated in

Figure 10.

Stable smooth solutions for Case A1 were obtained for

both the simplified-inertia and full-inertia as shown in Figure

10a. A comparable performance confirms that inertia terms

and correspontingly their representations do not play a major

role in smooth solutions. The inertia correction source term

is negligible in these smooth solutions as shown for represen-

tative values of the smooth solution source terms in Figure

4c.

The inertia representation sensitivity results for a shock

solution, Case B1, are shown in Figure 10b. Results for the
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Fig. 10: Effect of inertia representation on (a) smooth solu-

tion A1, (b) shock solution B2 and (c) pool solution C2.



simplified inertia case show significantly larger shock height

than those obtained when the corrective source term is in-

cluded to recover a full inertia formulation. Inertia effects

affect the accuracy of shock solution considerably with the

simplified inertia formulation shown to introduce significant

errors. However, it should be noted that a stable solution is

still obtainable using simplified inertia, hence inertia repre-

sentation appears to affect solution accuracy but not the over-

all stability. The representative values for the source terms

in the shock case with full inertia show that the corrective

source term is of the same order of magnitude as surface ten-

sion, gravity and viscous terms.

Similar findings to the shock solutions are observed for

pool solutions in Case C2 as shown in Figure 10c. The cor-

rective source term in the case of these pool solutions is

shown in Figure 6c to be of comparable order as viscous,

gravity, surface tension and pressure gradient terms.

Computational results demonstrate that provided the

proposed solution strategy is employed together with an im-

plicit time scheme, a simplified inertia approach primar-

ily effects accuracy but not stability of smooth, shock or

pool solutions. In addition, the successful recovery of full-

inertia using a corrective source term is demonstrated as

a non-intrusive method of including full-inertia in existing

simplified-inertia formulations such as [11].

3.7 Effects of time-scheme

Results so far presented have been carried out using a

fully-implicit time scheme as described in section 2.1. The

results demonstrate that using a fully-implicit time scheme,

stable smooth, shock and pool solutions are obtained, even in

cases where simplified inertia representations are used. For

the rimming flow cases where the steady solution is a station-

ary wave front, the capillary time constraint proposed by [20]

was found not to be a necessary condition for numerical sta-

bility.

With the explicit schemes, very low Courant-Friedrichs-

Lewy (CFL) numbers (less than 1E-2 ) were required in order

to get stable solutions for the rimming flow problem, regard-

less of the inertia formulation used. The solution exhibits

significant mass loss as well as spurious oscillations.

While the implicit solver was found to give a consider-

able saving in computational cost for solutions involving sta-

tionary wave fronts (e.g. the case of a rimming flow shock

solution) this was not the case for travelling wave fronts

(e.g. falling film cases) where the capillary time-step con-

straint [20] was a necessary condition for stability. As a re-

sult of the low CFL requirement, the explicit MacCormack

scheme was found to give a more computationally efficient

solution to travelling wave cases than the implicit scheme.

The choice of an efficient time-scheme is therefore depen-

dent on the physics of the flow being simulated.

4 Model Validation

The proposed model and solution strategy has been vali-

dated against available experimental datasets from literature.

Two test cases are selected; firstly a thin-film coating flow

inside a rotating cylinder by [17] and secondly a wavy liquid

film flowing down an inclined plane by [18].

4.1 Coating flow simulations

In the coating flow experiment reported in [17], a small

amount of viscous liquid completely coats a horizontal rotat-

ing cylinder. The cylinder was rotated at a very slow speed

and high viscosity liquid used so as to ensure that the flow

remained within the creeping flow regime (Re<< 1). The

resulting film solution is therefore the result of a balance be-

tween viscous, inertia, gravity and surface tension forces.

The experiment [17] was performed in a 0.27 m long

Plexiglass cylinder of 0.05 m diameter. These dimensions

have also been used in the thin-film simulations presented

here. The liquid used was a combination of TritonX-100,

ZnCl2 and water with a viscosity of 4.0 Pa.s, density of 1172

kg/m3 and surface tension of 0.031 N/m. In all the exper-

iments, the Reynolds number, Re= (Ωh0
2)/ν) was always

less than 10−2, where h0 is the mean thickness of the film.

For different combinations of filling fraction, F , and ro-

tational parameter α = (Ων/gR)1/2, the film thickness mea-

surements are taken along the circumference of the cylinder

in the central portion of the cylinder using a needle attached

to the end of a rod. The experimentally measured film thick-

ness were then integrated over the cylinder circumference to

obtain the local filling fraction, F , at a given axial location

as in [17].

Table 3 gives a summary of the three experimental cases

simulated using the thin-film model. The results from these

simulations are plotted together with corresponding exper-

imental measurements in Figure 11. Results show good

agreement between the thin-film model and the experimental

measurements by [17] for the creeping flow (Re<< 1) con-

ditions of the experiment. The thin-film model is therefore

proven to give a reliable prediction for film thickness in low

Re rimming flow conditions.

Table 3: Selected coating flow experimental cases [17] sim-

ulated using the thin-film model

Case Rotational Pa-

rameter, α
Filling frac-

tion, F

Re

Case 1 0.0341 0.1625 1.03E-3

Case 2 0.0376 0.1198 6.08E-4

Case 3 0.0568 0.1126 1.16E-3

4.2 Wavy falling liquid film flow

In the second test case, the thin-film model is used to

simulate the flow of a thin liquid film down a 6.4◦ inclined

plane after the experiment by [18]. The film in [18] is made
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Fig. 11: Experimental and thin-film predicted film thickness

distributions for (a)

up of aqueous solutions of glycerine (54 % by weight) with

density 1136.2 kg/m3, dynamic viscosity 0.00713 Pa.s and

surface tension of 0.067 N/m. The flow inlet is acoustically

excited in order to generate small amplitude monochromatic

oscillations. For moderate frequencies, as the film flows

down the plane, these oscillations evolve into large ampli-

tude solitary waves with steep fronts which are preceded by

capillary ripples. These solitary waves are physiologically

similar to the shock type rimming solutions discussed in Sec-

tion 3.2 and offer a validation case for the performance of

the thin-film model in these types of solutions. For the case

simulated, an inlet forcing frequency of 1.5 Hz and Re = 29

were evaluated using both simplified and full inertia approx-

imations.

Figure 12 shows the simulation results. The simplified

inertia formulation is shown to significantly over-predict the

peak film thickness although the wave separation is accu-

rately predicted. Using the full inertia formulation, both the

peak film thickness and wave separation are shown to give

good agreement to the experimental data from [18].

Fig. 12: ETFM predictions for solitary waves travelling

down a 6.4◦ slope with Re = 29 and inlet forcing frequency of

1.5Hz. ETFM model results for both simplified and full in-

ertia representations are shown together with equivalent ex-

perimental measurements from [18]

The results from the validation cases highlight that us-

ing the proposed numerical formulation and solution strat-

egy, stable solutions can be obtained for pooling and shock

type solutions and that these solutions are in good agreement

with experimental measurements.



5 Conclusion

A depth-averaged Eulerian Thin Film modelling ap-

proach has been successfully applied to the numerical simu-

lation of smooth, shock and pool type solutions. In this for-

mulation, gravity, viscous, pressure gradient, surface tension

forces and inertia are accounted for.

In smooth solutions, both pressure gradient and surface

tension terms are shown to be negligible compared to gravity

and viscous terms. While in shock and pool solutions, sur-

face tension and pressure gradients are found to play a signif-

icant role in the solutions and are of the same order as gravity

and viscous terms. Smooth solutions have been shown to be

insensitive to the surface tension parameter while the numer-

ical stability of shock/pool solutions has been shown to be

dependent on the value of surface tension used and the pro-

vision of sufficient grid refinement to resolve steep fronts and

capillary waves present. The wave-length of the disturbances

in this capillary wave region are shown to be dependent on

the surface tension coefficient used, with high surface ten-

sion leading to large wavelength and low amplitude capillary

waves and vice-versa.

Solutions strategies that rely on using large surface ten-

sion values (low Ca or high We) to guarantee stability do

so by damping the waves in the capillary region to one that

is resolvable on the available grid. This however introduced

additional uncertainty as surface tension smoothing may pro-

duce un-physical results due to excessive damping. As an

alternative, this study has demonstrated grid-based solution

strategy for obtaining numerically stable solutions within the

constraints imposed by the fluid properties has been success-

fully.

The effect of inertia representation has also been ex-

plored and stable shock, smooth and pool solutions are

shown to be obtainable using both the simplified and full in-

ertia formulations. However for shock and pool solutions,

the simplified inertia formulation affects solution accuracy

in the shock/pool region - leading to an over-predicted peak

film thickness.

An assessment of implicit, and explicit time schemes has

revealed that for stationary wave fronts such as in the case

of rimming flows, fully implicit schemes offer considerable

computational saving and the capillary time-step constraint

is not a necessary condition for stability in these cases. How-

ever, for travelling wave fronts as in the case of falling wavy

films, the capillary time-step constraint must be observed and

this results in very low CFL for which the explicit MacCor-

mack scheme is more efficient than a full implicit scheme.
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