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Derivation of a wear scar geometry-independent coefficient of friction
from fretting loops exhibiting non-Coulomb frictional behaviour

X. Jin, W. Sun, P.H. Shipway

Faculty of Engineering, University of Nottingham, Nottingham, UK

Abstract

One source of variation of the sliding tractional foirte gross-slip fretting cyclés the geometrical
interaction of the developing wear scars on the opposing specimens. Angeristilel has been
developed to include the compliance of the fretting test apparatus. It hds#rudemonstrated that
through the influence on the tractional force, the geometrical development wédnescars affects
the slip amplitude and the dissipation of frictional energy in each loop. A ma&thdetermine a
coefficient of friction which is independent of system stiffness and developmethis geometry of
the wear scars is proposed.

Keywords: friction, ECoF, fretting loop, wear scar

1 Introduction

Fretting is the small amplitude oscillation between two bodies in contaichveccurs in a wide
variety of mechanical systems. Although the amplitude of fretting is sm&0Q<um), fretting can
cause serious local damage of the material through wear and fatigueeftiphg-fatigue usually
occurs when the displacement amplitude is small and there is no relativeetslipen the contact
surfaces for part of the contact. This condition is knowstiak-slip. Fretting wear, on the other hand,
becomes the major cause of fretting damage when the displacement ampliauge enbugh for the
whole contact area to experience relative slip, which is knovgrass sliding The identification of
these different fretting conditions is usually performed by observing the shdpe &ktting loop
which is the plot of the tractional force against the corresponding dismateMingsbo and
Soderberg [1] first identified that Btick-slip, the fretting loop would be elliptical in shape whereas in
gross slidingthe loop would open up to become parallelogram-like.

Figure 1a showsan idealised schematic fretting loop for frettiig gross sliding. The relative
displacement between the bodies is represHoy the symbolA, and the corresponding tractional
force isQ. It should be noted that is measured remotely from the contact itself, and is not the same
as the slip in the contact; the slip amplitude) (s smaller than the applied displacement amplitude
(A*) as there is compliance in the system, associated with elastic deformatton seicimen, the
fixture and the test rig. Together, these can be repeebé@ata system stiffnes§, as indicated in
Figure laasthe slope of the sides of the fretting loop. The actual slip ampliédeannot easily be
measured directly but can be determined from the fretting loop as the dispi@mplitude at zero
tractional load (see Figure 1). The area inside the loop represents the endpptedissy) by
frictional work in the cycle [2]. Alongside the development of the wearisssf (in terms of its size
and nature), the tractional force is commonly used to characterise the belaiviber contact
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evolution of this tractional force is an important tool in that it ba measured throughout the test,
whereas the scar characterisation can only be performed at the end of the test.
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Figure 1 Schematic diagram of (a) idealised fretting loop (b) frettindoop with high tractional force peak at the ends

of gross sliding (c) fretting loop with hook-like increase in tradbnal force during gross sliding; in all cases, terms are
defined in the text.

To allow comparisons between tests conducted under different loading conditions,esedisthie
tractional force during sliding are often normalised against the applied thiseratio ofQ/P is
commonly described as tlweefficient of friction(CoF). However, despite its importance, there is no
general consensus regarding the definition of the CoF in a fretting besCdF is often defined as
the ratio of the maximum tractional forc®%) within a cycle to the applied normal loaH)( This
definition is appropriate for a fretting loop with a shape close toofhiéie ideal (Figure 1a); here, the
flat top and bottom indicate that the dynamic tractional force only deperttie applied load and the
surface conditionaccording to Coulomb’s friction law [3]. However, it has been reported by many
researcher$4—-8] that the tractional force changes significantly across the strokeh@.dgop and
bottom of the loop are not flat); it has been argued that this behaviooréspmevalent with ductile
materials [9]. Such non-Coulomb frictianbehaviour is typically observed in two main ways: (i) it
appearsasa very high peak in the tractional force only at the ends of the stirekéop right and
bottom left of the loop as shown in Figure 1b) [9,10]; (ii) the tractiémade increases during the
whole gross sliding stage and reaches the maximum at the ends of the stroke whiblesea hook-
like feature (see Figurecl[11,12]. In either of these circumstances, the validity of employing the
maximum tractional forced*) to calculate the CoF is questionable.

In response to this issue, it was first suggested by Fouvry et al. [9]¢hadks in tractional force at
the motion extremes iafretting cycle (Figure i) are caused by the physical interaction between the
edges of the wear scar; they termed the ploughing effect Ploughing usually occurs during fretting
between ductile materials where material build-up due to bulk plastic flowrat the wear scar
edges. This has been further supported by Dick et al. [10], who observed significamlrbatld up
at the edges of the wear scar with a cylinder-on-flat configuration, artdalfinite element model
which successfully modelled the increase in tractional force at the ent®e dfetting stroke
Mulvihill et al. [11] argued that it may not just be the interaction betwheretiges but also the
interaction between specific regions within the contact that cause therteddtrce to rise in this
way. To minimise the influence of the ploughing effect in calculating tbE, Gouvry et al. [9]
proposed the concept of the energy coefficient of friction (EGgF)This method uses the energy



dissipation over a fretting loofEy) and the slip amplituded§) to calculate an averaged Cab
follows:

Eq
4 P 5%

HE = 1)
Whilst being attractive in its simplicity, this method simply provid@sedhod for deriving an average
CoF, and does not seek to separate the observed CoF into its various physical contnitauielys(i)
the contact CoF and (ii) geometrical effects. In this regard, Mulvihill et al. [11] deadsdogimplified
mechanical model of geometrical interactions which would serve to aid in tiedodeent of this
understanding. They presented a one-degree-of-freedom wear-scar interaction nogelpwoiit
contact between a rigid round-ended body and a groove (the groove represented théhatofile
develops in a specimen pair due to the process of fretting wear). By oxgiltet round-ended body,
they successfully predicted fretting loops wétvariation in the tractional force across the whole
gross sliding stage (as shown schematically in Figa)yetiey were thus able to argue robustly that
is the physical slope of the wear scars (and the associated normal displacethentwaf bodies
relative to each other) which causes the variation in tractional fovee the contact slip
Experimental evidence to support this concept has recently been provided byaHimtétk[12] who
measured the displacements between the specimens normal to the fretting moticloumtiethat
when non-Coulomb friction behaviour is observed, specimens are also observed to exhibit cycl
motion normal to the fretting direction and demonstrated that the effective gradiene afotitact
(defined as the ratio of the normal displacement amplitude and the slip amphtgieglated to the
magnitude of the non-Coulomb effect (i.e. the deviation of the shape of the ftetimdrom the
ideal Coulomb-type loop illustrated in Figure la towards that illustratedFigure 1c) [12]
Furthermore, Mulvihill et al. [11] demonstrated that the energy dissipatedfietting loop E;)
where geometrical features were resulting in non-Coulomb behaviour would be gneatehat
dissipated in a loop with no geometrical factors influencing the tractione¢,fand thus that the
ECoF so derived has a dependence on the geometry of the wearsssach, it is clear that further
development is required to provide a method which allows a geometry-independent CoErtedue d
from a fretting loop.

In the model of Mulvihill et al. [11], the systems making up the frgttontact are rigid, leading to
the applied displacement amplitud& and the slip amplitude® being identical. However, if the
compliance of the rig is considef (which means thad* > §*), it is clear that an increase in the
tractional force associated with geometrical developments of the scdeadsoto a reduction in the
slip amplitude [13]. In most experimental fretting apparatus, it is the digpk amplitude (rather
than the slip amplitude) which is measured and controlled, and thus a method which addresses the
effects of geometrical changes on the CoF derived from a fretting loop memsarkdtting rig with

a system compliance is required. In the current work, the wear-scar itenactdel of Mulvihill et

al. [11] will be extended by including the compliance of the system in the midaisis will be
performed to examine the effect of the shape of the wear scar and the compliancestéth@sythe
slip amplitude and the ECoF wharconstant displacement amplitude is applied. Most significantly,
an improved method for deriving the geometry-independent CoF from a grossiiyg fi@op will

be poposed.



2 Development of the modified wear scar interaction model

Figure 2 Cylinder-on-flat specimen arrangement employed in fretting testfl 4]
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Figure 3 Examples of loops and wear scar profiles from cylindeon-flat fretting tests illustrating behaviour as shown

in Figure 1a and Figure 1c. In both cases, P = 450 N* = 50 um, cycles = 500 000, frequency = 20 Hz: (a) measured
fretting loops from the end of the test; (b) wear scar profiles fronthe flat specimen.

Many experimental researchers into fretting utilise con-conforming contact gepnypically a
sphere-on-flat or a cylinder-on-flat geometry. At the University of Ngktam, the bulk of our work
has utilised the latter, often with a 6 mm radius cylinder. Specimenssembled in a cylinder-on-
flat arrangement (Figure 2) which generates a line condriof 10 mm in length (see the work of
Warmuth et al. fom detaiked description of the test apparatus [14]). A normal |&ads applied to the
upper (moving) specimen through a dead-weight with the fretting motion being applied rriaend
to the axis of the cylindrical specimen. Fretting loops with different shapes havelissrved, with
the shapes being dependent upon the materials and test conditions employed. Figure 3 shows
measured fretting loops from two fretting tests illustrating #mge of behaviour observelxample

1 exhibits a typical flat-topped loop (similar to the schematic diagrafigofre 1a) whilsExample 2
exhibits a typical hook-shaped loop (similar to the schematic diagram of Bigurk can be seen in
Figure 3a thatExample 2exhibits a maximum tractional force which is much larger than the
maximum tractional force observed Bixample 1 Although the displacement amplitud&*) is the



same for both tests, because of system compliance and this higher trdotiomdxample 2has a
lower slip amplitude &) thanExample 1 Figure 3b shows the comparison of the wear scar profiles
on the flat specimen; it can be seen that theisdaxample 2is much deeper and narrower than that
observed irExample 1 These observations align with the conclusion drawn by Mulvihill et ], [
namely that it is the physical slope of the wear scar which causes thtowain tractional force.
However, the change in slip amplitude is associated with the change in @#stimation associated
with the differences in tractional force (associated with the change i@)stbs was not accounted
for in the model of Mulvihill et al. [11], since they assumed an infinisgiliy system. To understand
better the differences in the loop of the type presented in Figure 3, the weaateseation model of
Mulvihill et al. [11] will be modified with the inclusion of the system stiffneSs (

Figure 4 lllustration of wear-scar interaction model with inclusion of the stiffnessof the rig (based upon the model of
Mulvihill et al. [11]).

To simplify the analysis of the fretting contact, Mulvihill et al. [iiddelled the wear scar interaction
as a one-point interaction between two rigid bodies. The rigid bodies both have one degree of freedom
(see Figure 4). A vertical forc®) is applied to the pad with the groove which represents the applied
load in a fretting test; this pad can only move vertically. The grooved paddntact with a round-
ended pad which can only move horizontally. A spring with stiffi®ggpresenting the stiffness of
the system) is attached to the round-ended pad. The oscillatory displacer(representing the
applied displacement in fretting tes applied to the end of the spring. The resulting displacement of
the round-ended pad)(represents the contact slip in fretting. The position of the contact pai(ass
indicated in Figure 4). Since both of the pads are themselves rigid, it is observed that:

x=06 (2)

z=2,(2) 3)



wherez, is the depth and, is the half width of the groove, is set to be equal to the displacement
amplitude &, = A*) andz, represents the displacement normal to the oscillation when,. As
indicated in Figure 4, the normal force between the two bodi€sasd the corresponding friction
force isuF,, whereu is the contact CoF (independent of geometry). Dynamic effects are neglected in
this model. Therefore, by applying static force equilibrium, the following equations cartelreedb

dz/dx 3| 1
b —=—+—F, =-P 4
1+ (dz/dx)? 6 V1+ (dz/dx)?
1 ) dz/d
| | E z/dx

——— U4 F = 5
uh J1+ (dz/dx)% 8 " J1+ (dz/dx)? ¢ )

In both Equation (4) and (5),is the velocity of the round-ended pad. The t{athS represents the
direction of motion of the round-ended pathen the pad travels in positive direction (from left to
right), it will result in a positive friction force on the groopad (and vice versa). Dividing Equation
(5) by Equation (4)Q can be written as:

)
|6—.|,u +dz/dx
Q=P 3] (6)
1- ?y dz/dx
Differentiation of Equation (3) reveals that:
dz 2z, ;
dx  x2 x 7

Accordingly, Equation (6) can be rewritten as follows:

0 p |g—-|,u.+(2x%-x) @

Therefore,

(6 >0)

©)

(6 <0)

1+u (ziz"x)

The relation between the applied displacemaptqd the real slipdj can be formulated as follows:



§=A- (10)

Q
S
To model the condition that in most fretting tests the displacement amplitude is contybliedet as
aconstant in the analysis.

Based on &U” shaped wear scar profile which is commonly observed in cylinder-on-flat fretting tests
(the contact configuration we usually applied in our work at the UniversitiNaifingham)
Conversion of the contact conditions in a real wear scar into the round endednpginobve contact
interaction model can be achieved via a simple assumption that the rafjocpis equal to the ratio
of the depth of the scabj over the half width of the scaWj as follows:

z, D

o _ - 11

X W (11)
Sincex, = A*, the corresponding groove dimensions, &ndz,) can be calculated according to
Equation (11) for each wear scar.

3 Effects of sysem stiffness and groove shape on friction behaviour

The effects of the system stiffness and the groove shape on the tractional behdw@tting will be
analysed via the point contact model in this section, with the response beingeuteseierms of
fretting loops. The analysis has been performed with the following p&sssn which are
representative of those employed in our work at the University of Nb#mg displacement
amplitude A*, of 50 um, normal load?, of 450 N, system stiffnesS, of 35 MN /m and contact CoF,
u, of 0.8.

Q/P

----8§=35MN/m|

Rigid

_2 1 1 1 | 1

-1.5 -1 -0.5 0 0.5 1 1.5
AT A*

Figure 5 Comparison of the fretting loops from a rigid model anda model with a stiffness of 33MN / m (x, = A* =

50 um, P =450 Nz,/x, = 0.2, 1 = 0.8).

Figure 5shows a comparison of the models withidigody and with a system stiffness of 35 MN/m
under the applied displacement amplitudg) ©of 50 pn. Thez,/x, value is chosen to be 0.2 as it is
very close to thé® /W value ofExample 2(see Figure 3b). The rigid model fretting loop has been



reported in the work oMulvihill et al. [11]; this loop has vertical sideshich means the slip
amplitude ¢*) is the same as the displacement amplitdd® {The inclusion of the stiffness of the rig
results in elastic deformation making up a fraction of the total appigiadement which results in
the actual slip distanced)(being smaller than the applied displaceme¥)t Due to the geometrical
effects, the tractional force increases across the region of gross stidingtli cases; however, the
maximum tractional force is lower when the system stiffness is included bechti®e smaller slip
amplitude. In addition, it can also be seen that the dissipated energy (the arehénbieltirig loop)
is smaller.

It can also be observed that the top and the bottom of the fretting lobjzh (W@present the gross
sliding) are not symmetric about the mid-point of the slip, despitgtbove itself being symmetric
about that point. This is because the applied tractional force incrémesesntact force (and thus
increagsthe frictional force itse)fwhen|8| /8 has the same sign ds/dx (and decreases it when
|8|/8 has the opposite sign ttx/dx). Moreover, the magnitude of this change increases as the
magnitude ofdz/dx increases (i.e. as the displacement from the centre of the groove increases).
Therefore, the increase and decrease in tractional force either side rofdtpeint of slip do not
cancel each other out, which results in the increase in dissipated energy éxbrapar Coulomb
friction behaviour fretting loop) as reported in the work of Mulvihill et al. [11].
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Figure 6 Comparison of fretting loops with grooves of different aspeatatios (x, = A* =50 um, P = 450 N, S = 35

MN / m, p =0.8).

Figure 6 shows the comparison of fretting loops with different shapes of the doomatant width

(x,) with different depthsz)). The displacement amplitude, the contact CoF and the sgétBrass

are the same in each case. It can be seen that both the slip amplitude and the variationtadrtak trac
force during sliding are significantly influenced by the shape of the grésve, /x, increases, the
slip amplitude § - which is equivalent to the loop semi-width whgAP = 0) is observed to get
smaller and the tractional force varies in an increasingly non-linear manneitsvipeak value
becoming larger. This behaviour is very similar to difference inirigetbops betweeixample land
Example 2(Figure 3a), which indicates that in the casé&egdmple 2 both the higher variation in



tractional force and the reduction in slip amplitude are caused by geomeiris efsociated with
wear scar wittamuch higher depth to width ratio (Figure 3b).

4 Difference between the contact coefficient of frictiong) and the energy

coefficient of friction (ug)
The analysis performed in the previous section shows the tractional force measurettiing test is
made up of not only a frictional component but also a geometric component. It yeaes) the
ECoF method has been applied as a means of determining a representative CoFwherasts
tractional force was observed to vary across the region of slip. Howewan, lite seen from Figure 5
and Figure 6 that both the slip amplitude and the variation of the tractmnoal during sliding are
affected by (i) the stiffness of the system and (ii) the geomettyeofjitoove. The energy dissipated
per cycle E;), and thus the value of ECoF derived from it, are dependent on thes®rvizined
effects. Detailed analystanbe performed with the one-point contact analytical model to examine the
effects of thez, /x, value together with the stiffness of the system on E@gJlly comparingt with
the real contact CoFu]. The dissipated energy per cycle can be calculated by integrating the
tractional force with respedb x for the whole fretting cycle. Since, the fretting loop is symmetric
about the origin, the dissipated energy per cycle can be expeefsdws:

6*
E; = zf Q dx (12)
x=-8*

Note that this integral is with respectamver the range of the slip)(and not over the applied
displacement/) and thus is not readily visualised from the fretting loop.

On substituting Equation (9) into Equation Y12

2Z
o wr ()
Ed=zpf — 0 7
e

Integrating this yields,

x:  xZ (1 2z, 1 13
2z, 2uz, " # xgx ,ux (13)

x=—56"

and thus:

ppm2p-f(= 222 5% i (1- w25 ) —n (14 u P50 )| - 25 14
4 2z, 2uz, " ng " 'uxg i a4

ECoF can therefore be calculated from Equation (1) as follows:

S B (xo % (o He) (1 nZes)| L as
HE=4ps ™ 4z,6*  4uz,6* " - " oz U (15)

o o




The displacement amplitudg can be calculated from Equations (9) and (10) with the boundary
condition thatc = §* whenA = A*.

p u+(2—zz‘"5*)

(16)
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Figure 7 Effects of the groove aspect ratioz(,/x,) and system stiffness (S) on (a) slip amplitude and (b) dissipated
energy per cycle £, = A* = 50 um, P =450 N, pu = 0.8).

Figure 7a shows the effects of thg/x, ratio of the groove on the slip amplitude when a constant
displacement amplitude is applied. It can be seen that when the systeid, ithegslip amplitude
does not change with thg/x, ratio, ands equal to the displacement amplitude. However, when the
system is not rigid, the slip amplitude decreases ag,jhg ratio increases, with the rate of decrease
increasing as the system stiffness gets lower. Figure 7b shows that the dissipateedribity a
more complex response; for a given valueffc,, a higher system stiffness always results in a
higher dissipated energy. However, the dissipated energy increases, fxihwhen the system
stiffness is above a certain value and reduceszyjth, when the system stiffness is below that value.
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Figure 8 The effects of the groove aspect ratiz{/x,) and system stiffness (S) on the ratio of (ECoFp) (x, = A* =

50 um, P = 450 N, p = 0.8).

Figure 8 shows the ratio @f;/u as a function of,/x, for a range of system stiffnesses,
deviations from unity indicate the level to which ECqlg)(fails to accurately represent the true
contact CoF g). It can be seen that the ratig/u increases as both /x, and S increase. The
increase inug/u with z,/x, is greater as the system stiffness increases since lower system stiffness
results in a reduction in slip amplitude with increasipgx, (see Figure 7a) which partly cancels out
the effect of the rise in tractional force on ECoF. Under the conditioBsaohple 2(S ~ 35 MN /m,
z,/x, =~ 0.2 (according to Figure 3b)), it can be seen thais only around 4% higher than. It
should be noted that amongst the fretting wear scars observed following aangke of tests
performed at Nottingham, the scarEample 2has a particularly high aspect ratio (i.e. it results in a
high value ofz, /x,), which means most of other tests are expected to have difference bgjvwaeeh

u of less than 4%. However, it is also recognised that gjf)e, may change during a fretting test,
there may be changes in ECoF associated with that change which may be misintaspretedes in
the true contact Cofgj.

5 A new method to derive the coefficient of fricton

It has been demonstrated in the previous section that the ECoF method cannot akeiretgdunt of

the geometric component in the tractional force, and thus results in a value qf;Fofich is not

the true contact CoRJ. In light of this discrepancy, a new method is proposed here to degiteiéh
contact CoF from the fretting loops which is not influenced by the geomedgealopments of the
contact surfaces. It can be seen from Figure 6 that the fretting loops fietierti groove shapes all
intersect at two points, at which the tractional force is equal tprttwuct of the normal loadP) and

the true contact CoRuJ. This relates to the point when the round-ended pad passes the centre of the
groove (i.e. the point of zero gradient). This can be demonstrated by substitutind® into
Equation (8):

5| .2
%w%
uP = o >x=0 17)
PN 2
0 X5



Substitutex = 0 into Equation 10):

0=A—%:>Q=SA (18)

As such, the true contact CoF is defined as the ratjy 8fat the point where the slope of the contact
itself is zero; this point in the fretting loop is that which alss lon the on the lin@ = SA, as
indicated in Figure 6. By applying this methtmleach fretting loop throughout a fretting test, the
evolution of the true contact CoF can be evaluated (this will be termed theetgedamdependent
coefficient of friction (GICoF)).

(a) - | (b)

09 1 091
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e
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Cocfficient of friction

=
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GICoF — GICoF

A L e T S S T B B
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Figure 9 Comparison of the evolution of ECoF andI CoF for the two tests presented in Figure 3: (a) Example 1 (b)
Example 2.
Figure 9 shows the comparison of applying the ECoF and GICoF method fdExaotiple 1(a) and
Example 2(b). It can be seen that feEaxample 1 both of the methods give very similar outcome in
terms of the CoF. However, f@xample 2 the value derived by the ECoF method is clearly higher
than that derived by the GICoF (more than 5% for about 80% of theTbist)is in accord with the
conclusions drawn in the previous sections, namely that the geometyxaimple 2exerts a
significant influence on tractional force in light of its high aspetb.rét should also be noted that
ECoF and GICoF are very close at the early stagexample 2(i.e. almost the same at the beginning
of the test) when the wear scar itself is less fully developed. Furthertnsheuid be noted that the
application of the GICoF method does not require any analysis of the shape of tiseameand can
be derived simply from the fretting loop alone.

12
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Figure 10 Comparison of the experimentdly measured and modelled fretting loops for (a) Example 1, (b) Exate 2.

The measured loops are the final loops in the respective tests.

Validations of the one-point contact analytical model, the conversion method (femhveear scar to

a groove shape in the model) and application of the GICoF method have been performed by
comparing the modelled fretting loops with the measured ones foERathple landExample 2 In

the converted one-point contact models, the widths of the grooves are set to be aguyabtpm)

for both cases; and the depth of the corresponding gragyés(calculated to be 1.8 um fexample

1 and 80 um for Example 2 The value of the contact CoH)(are set to be equal to the GICoF
obtained from the measured loops (0.825 for both cases). The system stiffi$:saes dpplied
according to the measured loops to be 45 MN / mEf@ample land 35 MN / m forExample 2

Figure 10 shows the comparisons of the measured and modelled fretting loops for both tests. Good
agreements have been obtained for both cases, providing confidence in the valldith ahe
analytical model and the GICoF method.

6 Discussion

The difference in the measured fretting loop&rdmple landExample 2(Figure 3a) shows that the
fretting loop shape can be very different although the same normal load andedisgia@mplitude

are applied. A wear scar of the type presente&xample 2will result in a higher variationni
tractional force; the higher peak tractional force will result iméigelastic deformation of the whole
system which accounts for a larger part of the applied displacement thus rédusts amplitude

(see Figure 6). Since most experimental fretting rigs reported in the lieecatotrol the displacement
amplitude rather than the slip amplitude; it is therefore necessanglté the system stiffness into

such analysis. Compared to the fretting loop derived from a rigid intavactodel, a significant
difference can be observed in the tractional force and slip amplitude when same displacement
amplitude is applied (see Figurg 5

In research reported in the literature, the ECoF method has been widely apmiedatiempt to
address variations in the tractional force over the region of slip in iadrégbp. Although it has been
effective in addressing the high peak tractional force effects, it has been showmahgrederived

from the ECoF method) is somewhat dependent upon both scar geometry and system stiffness (rather
than independent of these as would be desired). To eliminate fully the geometric infneteréved

values of CoF, the GICoF method has been introduced.
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Figure 11 Effects of both the stiffness of the system (S) and the depth oweidth ratio (z,/ x,) on the ratio of (ug/p)
for (@) A* = 25 pm (b)A* = 50 um (1 = 0.8). Contours ofig/p are plotted with the values indicated within the

contours themselves.

Whilst it is recommended that the GICoF method should be used in future fgsiardl fretting
loops, it is also recognized that many data already in the literature haverbeessed via the ECoF
method. As such, it is appropriate to examine the magnitude of differences betevepeftltients
derived via the two methods. The combined effects of the system stif)eswl(the value of,/x,

on the ratio ofuz/u are plotted in Figure 11, in the form @f/u contours. It can be seen from
Equation (15) that the ECoF is only influenced by the slip amplitdfewhenz,, x,, andu are
constants. Furthermore, the slip amplitude is dependei®®/Srwhen constand* is applied (see
Equation (1§). Therefore, the ratio of the stiffness to the applied I6d@) is utilised in the maps to
represent the system stiffness effects. Figure 11 shows the cases™whes um (Figurella) and
A* = 50 um (Figure 11b), indicating that the contours are also dependent upon applied disptacem
amplitude. These contours allow an assessment to be made as to the sigrofidhecdifference
betweeru; andu. It can be seen that the differences increase with increasggxin S/P andA*.
The maps in Figure 11 cover regions which are representative of tests cormdubetniversity of
Nottingham, and variations of up to 13% are seen in the most extreme cases. Howastralsarbe

recognized that the majority of tests reside in the region where the differeweetet andu is less
than 0.

7 Conclusions

An analytical mode{based on Mulvihill’s wear scar interaction model) has been developed to analyse
the interactive effects of the stiffness of the syst§mf(d the wear scar geometry on the tractional
forces measured in experimental fretting tests. The results show that bsyistdra stiffness and the
shape of scar can have significant influences on (i) the variation of thestjdisg tractional force

and (ii) the slip amplitude, when constant displacement amplitude is applied rtiesfretting tests

are performed under this condition). These effects can cause the EQdb be different from the

real contact CoRu). However, this difference is typically (under conditions representative ofdtse te
conducted at the University of Nottinghpmxpected to be less than 5%. To eliminate better the
geometric component on the CoF, the GICoF method is introduced to calculate the@oRt@gtas

the ratio ofQ /P where the contact itself is at the point of zero slope.
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