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Abstract

This work was focused on the examination of the effect of the pre-stress, namely

tension and pressure, on the wave propagation and acoustic behaviour of com-

posite laminates. The dispersion characteristics of two dimensional layered

and sandwich structures were predicted using Wave Finite Element Method

(WFEM). The structures were examined in non-stressed and pre-stressed sce-

narios. After extracting the mass and stiffness matrix of a small periodic seg-

ment of the structure using commercially available Finite Elements software, a

polynomial eigenvalue problem was formed, the solutions of which consisted

of the propagation constants of the waves of the structure. This way the

wavenumbers and eigenvectors of the out of plane structural displacements were

extracted. These wave propagation magnitudes were then used to calculate im-

portant Statistical Energy Analysis (SEA) quantities, such as modal density

and radiation efficiency. The effect of pre-stress on these quantities, along with

its effect on loss factor of the structure were examined.

Keywords: Wave Finite Element, loss factor, Pre-stress, Sound Transmission

Loss

1. Introduction

Current research in most industries, such as aerospace and automotive, fo-

cuses on materials that offer low density along with superior dynamic and static
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performance. This goal has led to increasing use of sandwich structures and

composite materials in general, whose high stiffness-to-weight ratio along with

the tailoring of their properties that they offer make them quite appealing. This

high stiffness-to-weight ratio they offer, though, comes with a significant cost in

their vibroacoustical behaviour, being responsible for high noise and displace-

ment resonant vibrations. Prompted by that, elevated quality and quantity of

research is about modelling the behaviour of these materials, along with con-

ventional ones, using time and cost efficient computational methods. These

methods are used to reach the goal of enhanced stiffness, weight and vibration

behaviour.

Classical publications [1, 2] offer analytic formulas to predict the wave prop-

agation characteristics of numerous different structures. Classical Laminate

Plate Theory (CLPT) is one of them [3], being developed as an extension of

the Kirchhoff-Love’s theory for isotropic panels and can be applied on thin or-

thotropic plates. Additionally, First-order Shear Deformation Theory (FSDT)

[4] is based on the transverse shear deformation of the panel and can be used for

the prediction of the dispersion characteristics at higher frequencies. Many re-

searchers have used this kind of classical theories producing satisfying outcomes,

such as Leppington et al. [5, 6] who modelled the radiation efficiency and the

vibroacoustic response under a reverberant field. Others [7, 8] have mathemat-

ically improved the existing equations and examined the vibrational behaviour

of laminated plates. Kurtze and Waters [9] were the first to examine the wave

dispersion of thick sandwich structures by developing an asymptotic model. In

their assumptions, though, the core was called incompressible, which kept them

from modelling the deformation of the panel in the thickness sense. Dym and

Lang [10], using the kinematic assumptions of [11] developed a structural model

for an infinite sandwich panel deriving the five equations of motion correspond-

ing to the symmetric and antisymmetric motion of the panel. Sokolinsky et

al. [12] developed a consistent theory (Higher-Order Shear Deformation The-

ory, HSDT) taking into account the core’s shear deformation and Wang et al.

[13, 14] used it to construct a structural model of an infinitely long sandwich
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panel in which the vibroacoustic response within an Statistical Energy Anal-

ysis (SEA) context was calculated. Wave propagation has been major object

of intense research with numerous numerical methods being developed the last

decades. Finnveden in [15] examined hollow beam structures and presented a

method of calculating the wave dispersion in them. In [16] the authors used

Spectral Finite Element (SFE) to predict the wave propagation characteristics,

overcoming the thresholds of CLPT. In [17] the phase constant surfaces of peri-

odic composite and stiffened structures was examined taking advantage of the

periodicity using Periodic Structure Theory (PST) and Finite Elements (FE).

In this work, an expression for the computing of the radiation efficiency was

presented and the STL was expressed through the radiation and mechanical

impedances of the structures. In [18] and [19] the authors used a multi-layer

analytical model based on Mindlin theory to calculate the dispersion character-

istics of layered structures. In this work, though, the symmetric mode of motion

was not naturally expressed. The same authors [20] came back presenting an

approach for taking into account the symmetric wave motion for thick panels.

Wave Finite Element Method (WFEM) was firstly introduced in [21]. Its main

aspect is that it takes advantage of the periodicity of the structure and using

existing classical literature’s periodic theory [2] manages to examine a struc-

ture’s wave propagation by modelling only a small periodic part of it using FE

for its analysis. This way the calculation of the wavenumbers and eigenvectors

is achieved with considerably lower cost of time than the previous ones. WFEM

has been used in one dimension [22, 23] and in two dimensions analyses [24]

producing quite satisfying results. Using FE for the structure’s modelling has

given researchers the ability to broaden the potentials of the method, calculat-

ing loss factor [25] with the help of existing theories [26]. In addition to that,

Manconi et al. [27] calculated the effect of the pre-stress on the loss factor and

wavenumbers of structures using two dimensional WFEM. Chronopoulos et al.

in [28] used wave dispersion results of WFEM to calculate a dynamic stiffness

matrix for a honeycomb orthotropic sandwich panel, the results of which were

validated experimentally. Also, the same authors in [29] and [30] using WFEM
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and SEA computed the broadband vibroacoustic response of composite shells

and thick layered panels. Another use of WFEM is the examination of the

potential band gaps in periodic structures. Domadiya et al.[23] used WFEM

to model two different periodic beams to examine the band gaps and had the

results certified with actual experiments. Droz et al. [31] proposed a mathe-

matically improved version of the WFEM and calculated the wave propagation

and band gaps in a periodically stiffened plate.

In this paper the effect of pre-stress on wave propagation and acoustical

behaviour of laminates was examined. Two-dimensional WFEM was used to

calculate the Sound Transmission Loss (STL) of thick structures by accounting

for their symmetric and antisymmetric wave motion. Both non-stressed and pre-

stressed scenarios were examined. Equations from [30] were used to compute the

reverberant field STL of the structures directly derived by their SEA properties.

Finally, the loss factor of each structure was calculated.

The paper is organized as follows: in section 2 the WFEM is described, along

with the calculation of the loss factor and the pre-stressed stiffness matrix Ks.

In Section 3 the calculation of the main SEA quantities is presented. In Section

4 the analysis scenarios are presented, along with the numerical results. Finally,

in Section 5 concluding remarks are written and in Section 6 some thoughts on

future work are presented.

2. The two dimensional WFEM

2.1. Stress stiffening

In this work two different scenarios of pre-stressed structure were examined,

as described in the next section. In these cases, pre-stress stiffness matrix Ks

was calculated. Considering that a static analysis has been solved, the updated

stiffness matrix K was calculated [32]:

K = K0 + Ks (1)
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where K0 the original element stiffness matrix and:

Ks =

∫∫∫
GT τG dx dy dz (2)

where G is a matrix of shape function derivatives and τ is a matrix of the

current Cauchy (true) stresses σ in the global Cartesian system.

The updated matrix K was then used in WFEM to get the wavenumbers

and eigenvectors of the pre-stressed structure.

[Figure 1 about here.]

2.2. Description of the WFEM

In this paper a laminate of Lx length and Ly width was examined. An

FE model of a small segment of the laminate was created. This segment’s

length was dx, while its width was dy (Fig.1). The segment was meshed using

commercially available FEA software. The vector of degrees of freedom (dofs)

q of the segment is given in terms of dofs by [24]

q =
[
qT1 qT2 qT3 qT4

]T
(3)

where T denotes the transpose and qn is the vector of nodal dofs of all the

elements nodes which lie on the nth corner of the element [24]. Following the

same logic, the vector of nodal force is given by

f =
[
fT1 fT2 fT3 fT4

]T
(4)

Conventional FE methods is then used to get the M and K matrices of the

segment. Assuming time-harmonic behaviour and neglecting damping we have

[K− ω2M]q = f (5)

Using Floquet theorem for a rectangular segment and taking edge 1 as ref-

erence we get

q2 = λxq1, q3 = λyq1, q4 = λxλyq1 (6)
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where

λx = e−ikx dx, λy = e−iky dy (7)

with λx and λy being the phase constants and kx and ky being the wavenum-

bers. Thus

q = ΛRq1, ΛR =



I

λxI

λyI

λxλyI


(8)

with I being the identity matrix. Assuming no external excitation, equilib-

rium at node 1 should give zero sum of nodal forces.

ΛL



f1

f2

f3

f4


= 0, ΛL =

[
I λ−1x I λ−1y I λ−1x λ−1y I

]
(9)

Dynamic stiffness D is introduced, which is

D = K− ω2M (10)

In case of damping, viscous or structural damping can be taken into account

by the addition of viscous or structural damping matrices C or KI . Then,

dynamic stiffness matrix is given by the following equations

D = K + iωC− ω2M, and D = K + iKI − ω2M (11)

Following the analysis in [24] and substituting Eq.(8) and Eq.(9) in Eq.(5)

we get

D(ω;λx, λy)q1 = 0 (12)
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If the segment dynamic stiffness matrix is partitioned to

D =


D11 D12 D13 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D43 D44

 (13)

then the eigenproblem of Eq.(12) can be written in the following form

[(D11 + D22 + D33 + D44) + (D12 + D34)λx + (D21 + D43)λ−1x

+ (D13 + D24)λy + (D31 + D42)λ−1y + D14λxλy + D41λ
−1
x λ−1y

+ D32λxλ
−1
y + D23λ

−1
x λy]q1 = 0

(14)

In [17] and [24] different methods were presented for solving the eigenproblem

of Eq.(14). In this paper the method that was used in [30] was preferred. In

[30] the frequency and the wavenumber towards y direction were kept fixed

and for each set of ω, kx the ky values were calculated. In addition to this, by

interpolating on the known results values for intermediate ω, kx and ky can be

found. For a set of fixed ω, ky the non-linear eigenproblem of Eq.(14) can be

reduced to

(A2λ
2
x + A1λx + A0)uQ = 0 (15)

where

Ai =


D14λ

2
y + (D12 + D34)λy + D32, i = 2

(D13 + D24)λ2y + (D11 + D22 + D33 + D44)λy + D31 + D42, i = 1

D23λ
2
y + (D21 + D43)λy + D41, i = 0

(16)

This quadratic eigenproblem can be converted [30] into and ordinary linear
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generalized eigenproblem, by introducing a new vector z = λyuQ−A0 0

0 I

uQ

z

 = λy

A1 A2

I 0

uQ

z

 (17)

Then we have

kx =
log(λx)

−i dx
and ky =

log(λy)

−i dy
(18)

2.3. Loss factor

As it is written in Sec. 2 damping can be included in the dynamic stiffness

matrix D in WFEM. In this work, though, our attention was focused on prop-

agating waves in the undamped structure, whose wavenumbers were real (not

complex) numbers and the loss factor as damping measurement.

A physical interpretation of the loss factor is expressed as followed [33]:

η =
1

2π

Wd

Um
=

1

2π

energy dissipated per cycle

maximum strain energy
(19)

Following the analysis in [25], the loss factor ηj as a function of the frequency

was calculated:

ηj(ω, T, φ) =
V∗jK

”
ω,T,φVj

V∗jK
′

ω,T,φVj

(20)

where ∗ stands for the conjugate transpose, T for the temperature, φ for

the angle that is examined, Vj is the displacement vector associated with the

jth propagating wave and is obtained from the wave mode q1j [24] and the

components of the wavenumber kxj and kyj give:

Vj =
[
qT1j e−ikxjLxqT1j e−ikyjLyqT1j e−ikxjLxe−ikyjLyqT1j

]T
(21)

In our case temperature was not accounted for. So we have

ηj(ω, φ) =
V∗jK

”
ωVj

V∗jK
′

ωVj

(22)

8



Also, it is used, along with Ks to calculate the loss factor ηs(j) of the pre-

stressed structure [27]:

ηs(j)(ω, φ) =
V∗jK

”
ωVj

V∗j (Kω + Ks(ω))Vj
(23)

3. Computation of the energy analysis quantities

3.1. Calculation of the modal density

Using the Courant’s formula [34], an equation was produced which expressed

the modal density of each propagating wave type w for each angle φ as a function

of the propagating wavenumber and its corresponding group velocity cg

nw(ω, φ) =
Akw(ω, φ)

2π2|cg,w(ω, φ)|
(24)

where A was the area of the panel and the group velocity was expressed as

cg(ω, φ) =
dω

dk(ω, φ)
(25)

Then, the modal density after having been angularly averaged was given as

a function of frequency:

nw(ω) =

∫ π

0

nw(ω, φ) dφ (26)

3.2. Calculation of the radiation efficiency

Radiation efficiency σ(k(ω)) for each propagating wave type w was calculated

using existing equations in open literature. Mode shapes of sinusoidal form can

be assumed for continuous structures so that any FE discretization errors to be

avoided. For the calculation of σ(k(ω)) the set of asymptotic formulas given

in [5] was used. Working in an SEA context, energy equipartition amongst the

resonant modes was assumed so that:

σrad(ω) =
1

n(ω)

∫ π

0

σ(κ(ω, φ))n(ω, φ) dφ (27)
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For a periodic discontinuous structure the assumption of sinusoidal mode

shapes is no longer valid, which means that the radiation efficiency should be

calculated from the WFEM derived wave mode shapes. Therefore, the radiation

efficiency expression given in [17] can be used. In the next chapter the equations

used to calculate the STL, modal density and radiation efficiency are presented.

3.3. Calculation of the Sound Transmission Loss (STL) of a panel by a SEA

approach

The STL (or TL) is considered to be a property of great importance which

is crucial to examine and quantify the characterisation of the vibroacoustic

performance of a structure. The system examined in this work consisted of two

reverberant chambers separated by the modelled panel which was attached to

a rigid baffle. Any flanking transmission was neglected in the SEA model. In

Fig.2 a graphical representation of the model is depicted, along with the energy

balance of the subsystems of the SEA approach [35], where E1 and E3 are the

acoustic energy of the source room and the receiving room respectively and E2

is the vibrational energy of the panel. Pin is the injected power in the source

room, P1d, P2d and P3d are the power dissipated by each sub-system and P13 is

the non-resonant transmitted power between the rooms.

[Figure 2 about here.]

Considering each wave type w = a, b, c...n propagating within the panel as

a separate SEA subsystem:

P12 =

n∑
w=a

P12,w

P23 =

n∑
w=a

P23,w

(28)

where P12 and P23 stand for the power flow between the rooms and the

panel.

10



The STL was calculated by the equation:

STL = 10 log10

(1

τ

)
(29)

where τ is the transmission coefficient which represents the ratio between

the transmitted and the incident sound powers. τ can be written as the sum of

the resonant and the non-resonant transmission coefficient

τ =
P23 + P13

Pinc
=

n∑
w=a

P23,w

Pinc
+
P13

Pinc
(30)

where Pinc is the acoustic power incident on the panel, which for a reverber-

ant sound field can be expressed as:

Pinc =
〈p21〉A
4pc

(31)

where 〈p21〉 is the mean-square sound pressure. Using the calculations made

in [30] the resonant coefficient for each wave type w was examined. Assuming

no energy exchanges between different wave types within the panel, the energy

balance of a structural wave subsystem can be expressed as:

P12,w = P2d,w + P23,w (32)

The power dissipated was:

P2d,w = E2,wωη2,w (33)

with η2,w being the structural loss factor of the wave type w. The loss factor

is a known property of most of isotropic materials and can be calculated in

layered structures if each layers’ loss factor is known [36]. In this paper, as

shown in Sec. 2.3 the loss factor was calculated as a function of frequency for

both non-stressed and pre-stressed analyses. The vibrational energy of the panel

due to wave type w was written as:

E2,w = ρsA〈υ2w〉 (34)
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where ρs was the mass per unit of area, A was the total area of the panel

and 〈υ2w〉 was the mean-square panel vibration velocity due to wave type w. The

power flow P12,w can be written using the SEA reciprocity rule as:

P12,w = ωη12,ωn1

(
E1

n1
− E2,w

n2,w

)
= ωη21,wn2,w

(
E1

n1
− E2,w

n2,w

)
(35)

where n1 and n2,w are the modal density of the source room and of the wave

type w respectively and η21,w the coupling loss factor between the receiving

room and the wave type w which was written as:

η21,w = η23,w =
ρcσrad,w
ρsω

(36)

where ρ is the acoustic medium density of the room. The total acoustic

energy of the source room is:

E1 =
〈p21〉V
ρc2

(37)

Following the analysis in [30], the total transmission coefficient of the panel

t was expressed as:

τ =

n∑
ω=a

τω +
P13

Pinc
(38)

where

τw =
8ρ2c4πσ2

rad,wn2,w

ρsω2A(ρsωn2,w + 2ρcσrad,w
(39)

The non resonant transmission coefficient τnr = P13/Pinc for a diffused

acoustic field was written as:

P13

Pinc
=

∫ 2pi

0

∫ θmac

0
4Z2

0σ(θ,φ,ω)sinθcos
2θ

|iωρs+2Z0|2
dθ dφ

π(1− cos2θmax)
(40)

in which θ and φ were the incidence angle and the direction angle of the

acoustic wave respectively, and Z0 = ρc/cosθ was the acoustic impedance of

the medium. The term θmax was the maximum incidence angle, accounting for
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the diffuseness of the incident field. In this paper θmax = pi/2 was considered.

The term σ(θ, φ, ω) is the corrected radiation efficiency term, which was used

so that to account for the finite dimensions of the panel by accounting for the

radiation of the mass controlled non-resonant modes, and it was calculated using

a spatial windowing correction technique presented in [37]. In Eq.(38) the total

transmission coefficient of the panel is expressed merely as a function of its SEA

quantities and independently of the room dimensions and modal energies. In

the next section the numerical results of the different scenarios and laminates

examined are presented.

4. Numerical results

Two different laminates, a monolithic and a sandwich, were examined. Both

of them were simulated under a scenario in which the plates were tensioned and

compressed. The sandwich laminate was additionally examined in a different

case where internal pressure was applied in its core, as it is shown in Fig.15. The

mechanical testing characteristics of each material used in the models are listed

in Table 1, where Ei is the modulus of elasticity in direction i, vij is the Poisson’s

ratio for i and j being the directions of extension and contraction, respectively,

ρ is the density and Gij is the shear modulus of elasticity in direction j on

the plane whose normal is in direction i. ANSYS 14.0 was used during the FE

modelling. Linear 8-node ANSYS SOLID45 solid element was chosen for the

segment’s meshing, which comprises a 3D displacement field and three degrees of

freedom per node (translations in the x, y, and z directions) [32]. The maximum

element size was kept below one tenth of the length of the minimum structural

wave propagating in the frequency range of the analysis so that any interpolation

errors were avoided.

[Table 1 about here.]

4.1. Monolithic laminate - Tensioned and Compressed

[Figure 3 about here.]
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Three different scenarios were examined: one with no force applied on the

laminate, one with T=100N tensile force applied in x direction and one with

T=100N compressive force in x direction. Its dimensions were Lx = 2.5m,

Ly = 1.5m the length and width, and h = 0.002m its thickness (Fig.3). Material

I (Table 1) was used in the analysis. The flexural wavenumbers in x direction of

all three scenarios are presented in Fig.4. It can be seen that tension decreases

the magnitude of the wavenumber, while compression increases it. The same

behaviour is noticed in the loss factor behaviour in Fig.5. This can be explained

by the fact that in the first case the structure is stiffened, with the strain energy

associated with the tension increased (in comparison with the bending one)

resulting in decreasing of the loss factor (see Eq.(19)). Eq.(23), also, explains

this behaviour since Ks consists of real positive numbers when the laminate

is tensioned (thus stiffened) and real negative numbers when the laminate is

compressed (thus softened). In Manconi’s work [27] on loss-factor of pre-stressed

structures, results of the same nature were acquired examining pre-stressed

beams and cylinders. It should be noted that these differences are normalized

as frequency gets higher, with 1kHz being the frequency where the values tend

to become equal. The same behaviour is noticed in most of the rest graphs.

[Figure 4 about here.]

[Figure 5 about here.]

In Fig.6 the modal density of the three scenarios are depicted. It can be seen

that, although both pre-stressed cases exhibit different behaviour than the non-

stressed one, their results are identical in tensioned and compressed laminate.

[Figure 6 about here.]

On the other hand, in Fig.7 we see that in tensioned case the radiation effi-

ciency is higher than in non-stressed case, while in compressed case the opposite

is obvious, with radiation efficiency having lower values. As mentioned before,

these differences are normalized as frequency gets higher.
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[Figure 7 about here.]

In Fig.8 the TL of the three scenarios are shown. Again, in tensioning case

the TL is lower that the non-stressed in low frequencies. In compressive case,

though, there is no significant difference compared to the non-stressed.

[Figure 8 about here.]

4.2. Sandwich laminate

[Figure 9 about here.]

A sandwich laminate with the same dimensions as the monolithic one (length

Lx = 2.5m, width Ly = 1.5m) was modelled. Material II was used for the skin

and Material III for the core. The core’s thickness was hc = 0.0127m and the

skins’ one was hs = 0.0012m (Fig.9).

4.2.1. Tensioned-Compressed

As in Subsec. 4.1 three different scenarios were examined, with no force ap-

plied on the sandwich laminate and both tension and compression, T = ±100N .

In Fig.10 the wavenumbers are depicted. In this case the same behaviour as in

Fig.4 is noticed, but the differences are of smaller scale.

[Figure 10 about here.]

In Fig.11 the loss factors are depicted. Again it is shown that the same

behaviour as in Fig.5 is noticed in sandwich laminate occasion. As it was written

in 4.1, this is explained by the change in strain energy of the laminate.

[Figure 11 about here.]

In Fig.12, 13 and 14 the modal density, radiation efficiency and TL distri-

butions are shown. In this cases the differences between the three scenarios are

quite insignificant. Also, it should be noted that all three of them are charac-

terised by smoother curves than the monolithic laminate ones.
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[Figure 12 about here.]

[Figure 13 about here.]

[Figure 14 about here.]

4.2.2. Internally pressurised

[Figure 15 about here.]

The second case of the sandwich laminate consists of internal pressure in the

core, as it is shown in Fig.15. Two different pressures, p = 10bar and p = 100bar

were applied. In all the curves it can be seen that the first pressure scenario’s

results were quite close to the non-pressurised one’s, as opposed to the second

pressure scenario’s ones. More specifically, in Fig.16 the wavenumbers of the

three scenarios are depicted. In this case, in low frequencies the wavenumbers of

the high pressurised sandwich are significantly different than the low pressurised

and the non-pressurised. The same behaviour is noticed in Fig.17. Having

Eq.(19) in mind, this behaviour can be explained, since when internal pressure

is applied to the sandwich laminate’s core, its strain energy is increased, thus

the loss factor is decreased. Also, the pressure in the second pressure scenario

is higher, and so is the strain increase which leads to lower loss factor. Another

behaviour that it is noticed is that in the higher pressure scenario the loss factor

remains lower than the non-pressurised all over the frequency range, with the

difference diminishing as the frequency gets higher, though.

[Figure 16 about here.]

[Figure 17 about here.]

In Fig.18, 19 and 20, the same behaviour is noticed in modal density, radi-

ation efficiency and TL dispersion curves. In these results it should, also, be

noted that the higher pressure depicts different numerical results from the non-

pressurised and the low pressure scenario through almost the whole frequency

range that was examined.
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[Figure 18 about here.]

[Figure 19 about here.]

[Figure 20 about here.]

Finally, in Fig.21 and 22 the tensioned and pressurised results of the sand-

wich plate are compared. It can be seen that 10bar pressure and 100N tensile

force had almost identical effect on the loss factor and TL of the plate. More par-

ticularly, both scenarios’ maximum TL reduction was ∼ 2.8dB(15%) and at the

same frequency (∼ 950Hz), while pressurised sandwich’s loss factor reduction

was ∼ 0.03(33%) and the tensioned one’s was ∼ 0.02(21%) at low frequencies.

On the other hand, 100bar pressure affects largely both magnitudes. Concern-

ing TL, the maximum decrease was ∼ 10dB(43%) and it should be noted that

it is observed at different frequency (∼ 650Hz) than the other two scenarios.

As for the loss factor, the decrease was quite large, with ∼ 0.07(88%) being the

largest one at low frequencies. This behaviour of the pressurised and tensioned

sandwich laminates raises some concerns about the vibroacoustic performance

of pre-stressed structures which has not been widely examined.

[Figure 21 about here.]

[Figure 22 about here.]

5. Conclusions

The effect of pre-stress on the wave propagation and acoustic transmission

properties of pressurised and pre-stressed composite structures was examined

in this paper. WFEM was used for the modelling of two different laminates,

a monolithic and a sandwich one. The pre-stress effect was calculated using

commercially available FE software, extracting the pre-stressed stiffness ma-

trices and using them in WFEM. The monolithic laminate was examined in

both tension and compression, while the sandwich laminate was examined in

internal (core) pressure scenarios, too, along with the tension and compression

17



ones. The loss factor and important SEA quantities were calculated, namely

the modal density, the TL and the radiation efficiency of the panels following

the calculation of their dispersion characteristics. Existing literature equations

were used for these calculations.

It was noticed that pre-stress affects the loss factor and the wave dispersion

curves, which results in the alteration of the modal density, radiation efficiency

and TL behaviour. More specifically, it was shown that the tension and compres-

sion of the laminates alter the wave dispersion and loss factor in low frequencies,

with the monolithic laminate case depicting more significant alterations in the

results. In the internal core pressure of the sandwich, it was shown that if the

pressure is high enough, quite significant alteration in vibroacoustic behaviour

can be achieved, potentially in wide range of frequency.

6. Future work

The WFEM taking into account the pre-stress effect on the structures offers

wide range of potentials concerning the vibroacoustic analysis of structures. The

effect of different scenarios of pre-stress can be examined, such as hydrothermal

stress. Also, as Manconi et al. [27] did concerning cylindrical pressure ves-

sels, research might focus on the adaptation of the method on more complex

geometries. Another promising aspect of WFEM is the research of the possible

effect of pre-stress on band-gaps , since the method has already been used in

[23] and [31] on stiffened plates and beams. Wave dispersion graph of periodi-

cally pressured beam has been generated (see Fig.23), with the stress exceeding

known materials’ limits, though, without any useful conclusions yet. Neverthe-

less, these results are the base of current research on band-gaps on periodically

pressurised structures.

[Figure 23 about here.]
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Figure 1: Representation of the modelled internally pressurised periodic segment with its
edges 1,2,3 and 4
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Figure 2: The SEA model
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Figure 3: Laminate
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Figure 4: Comparison of the bending wavenumber (x-direction) of the monolithic laminate:
(-) non-stressed, (x) pre-stressed, tensile force T=100N in x direction, (o) pre-stressed, com-
pressive force T=-100N in x direction
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Figure 5: Comparison of the loss factor of the monolithic laminate: (-) non-stressed, (x) pre-
stressed, tensile force T=100N in x direction, (o) pre-stressed, compressive force T=-100N in
x direction
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Figure 6: Comparison of the modal density of the monolithic laminate: (-) non-stressed, (x)
pre-stressed, tensile force T=100N in x direction, (o) pre-stressed, compressive force T=-100N
in x direction
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Figure 7: Comparison of the radiation efficiency of the monolithic laminate: (-) non-stressed,
(x) pre-stressed, tensile force T=100N in x direction, (o) pre-stressed, compressive force T=-
100N in x direction
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Figure 8: Comparison of the transmission loss of the monolithic laminate: (-) non-stressed, (x)
pre-stressed, tensile force T=100N in x direction, (o) pre-stressed, compressive force T=-100N
in x direction
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Figure 9: Representation of the sandwich laminate
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Figure 10: Comparison of the bending wavenumber (x-direction) of the sandwich plate: (-)
non-stressed, (x) pre-stressed, tensile force T=100N in x direction, (o) pre-stressed, compres-
sive force T=-100N in x direction
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Figure 11: Comparison of the loss factor of the sandwich plate: (-) non-stressed, (x) pre-
stressed, tensile force T=100N in x direction, (o) pre-stressed, compressive force T=-100N in
x direction
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Figure 12: Comparison of the modal density of the sandwich plate: (-) non-stressed, (x) pre-
stressed, tensile force T=100N in x direction, (o) pre-stressed, compressive force T=-100N in
x direction
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Figure 13: Comparison of the radiation efficiency of the sandwich plate: (-) non-stressed, (x)
pre-stressed, tensile force T=100N in x direction, (o) pre-stressed, compressive force T=-100N
in x direction
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Figure 14: Comparison of the transmission loss of the sandwich plate: (-) non-stressed, (x)
pre-stressed, tensile force T=100N in x direction, (o) pre-stressed, compressive force T=-100N
in x direction
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Figure 15: Representation of the internally pressurised sandwich laminate
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Figure 16: Comparison of the bending wavenumber (x-direction) of the sandwich plate: (-)
non-pressurised, (x) pre-stressed, internal pressure p=10bar, (o) pre-stressed, internal pressure
p=100bar
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Figure 17: Comparison of the loss factor of the sandwich plate: (-) non-pressurised, (x) pre-
stressed, internal pressure p=10bar, (o) pre-stressed, internal pressure p=100bar
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Figure 18: Comparison of the modal density of the sandwich plate: (-) non-pressurised, (x)
pre-stressed, internal pressure p=10bar, (o) pre-stressed, internal pressure p=100bar
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Figure 19: Comparison of the radiation efficiency of the sandwich plate: (-) non-pressurised,
(x) pre-stressed, internal pressure p=10bar, (o) pre-stressed, internal pressure p=100bar
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Figure 20: Comparison of the transmission loss of the sandwich plate: (-) non-pressurised, (x)
pre-stressed, internal pressure p=10bar, (o) pre-stressed, internal pressure p=100bar
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Figure 21: Comparison of the transmission loss of the sandwich plate: (-) non-stressed, (x)
pre-stressed, internal pressure p=10bar, (o) pre-stressed, internal pressure p=100bar, (+)
pre-stressed, tensile force T=100N
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Figure 22: Comparison of the transmission loss of the sandwich plate: (-) non-stressed, (x)
pre-stressed, internal pressure p=10bar, (o) pre-stressed, internal pressure p=100bar, (+)
pre-stressed, tensile force T=100N
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Figure 23: Wave dispersion graph of periodically pressured beam
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Table 1: Material properties

Material I Material II Material III
ρ = 1870kg/m3 ρ = 1550kg/m3 ρ = 110kg/m3

Ex = 60e9Pa Ex = 48e9Pa Ex = 145e6Pa
Ey = 60e9Pa Ey = 48e9Pa Ey = 145e6Pa
Ez = 40e9Pa Ez = 48e9Pa Ez = 145e6Pa
νxy = 0.25 νxy = 0.3 νxy = 0.45
νyz = 0.4 νyz = 0.3 νyz = 0.45
νxz = 0.4 νxz = 0.3 νxz = 0.45

Gxy = 3.6e9Pa Gxy = 2.8e9Pa Gxy = 50e6Pa
Gyz = 1.2e9Pa Gyz = 1.0e9Pa Gyz = 50e6Pa
Gxz = 1.2e9Pa Gxz = 1.0e9Pa Gxz = 50e6Pa
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