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Supplementary Fig. S1 Effects of binning time on the distributions of photon counting histogram (PCH) analysis. PCH distribu-
tions (red dots) of an example GFP-ABCG2 data set, fitted against the two-component PCHmodel (black dotted lines) using the
binning times as indicated. 1 ms was chosen as the binning time for subsequent analysis to ensure appropriate photon counts
(e.g. not fewer than 10 or higher than 200) were detected in the PCH analysis.

Supplementary Fig. S2 Comparison of free GFP and tandemGFP-GFP validates PCH analysis of particlemolecular brightness. Da-
tawere obtained using one-component PCH analysis in Zen 2010, and are presented asmean±S.E.M. from at least 25 cells tran-
siently expressing the respective proteins over 3 independent experiments.

Supplementary Fig. S3 Determination of the most appropriate model for PCH analysis. (A) Reduced chi2 values obtained for
CD86-GFP, CD28-GFP, and GFP-ABCG2 data sets using single-component (1-comp) or two-component (2-comp) PCH analysis
in Zen 2010. Two-component PCHmodel improved the fitting of CD28 and ABCG2 data sets, as reduced chi2 values were closer
to one compared to single-component PCH model. However it did not improve the fitting of CD86-GFP data sets in which no
difference was observed in the reduced chi2 values. (B) Two-component PCH analysis did not identify a different component
for CD86-GFP as no difference was observed in the molecular brightness (mean ± S.E.M.) and component fraction (mean ±
S.E.M.) of component 1 (C1) and component 2 (C2). Data were collected from at least 30 cells over 4 independent experiments.

Supplementary Fig. S4 Determination of the most appropriate single oligomeric model for GFP-ABCG2. Various binomial fits as-
suming 10% spot overlap (lines and symbols) were compared against actual GFP-ABCG2 photobleaching step frequency histo-
grams (hatched boxes) using a goodness of fit test (equation 5, section 2.6; Table 1). Dimer, trimer, tetramer and pentamer
models of GFP-ABCG2were generated, with probability of fluorescent GFP, pGFP, (set at 0.50 (panel A), 0.55 (B) or 0.60 (C). Tet-
ramer models in all three panels represented the best fit to the photobleaching data (Table 1).

Supplementary Movie 1 Stepwise photobleaching of GFP-ABCG2. The lower membrane of a HEK293T cell expressing GFP-
ABCG2 at low levelwas illuminated using TIRF 22 configuration and photobleached at high power laser. TIFF video shows a com-
plete 40 s recording sample at 20 frames per second.
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RABCG2 is one of three human ATP binding cassette (ABC) transporters involved in the export from cells of a
chemically and structural diverse range of compounds. Thismultidrug efflux capability, togetherwith a broad tis-
sue distribution in the body, means that ABCG2 exerts a range of effects on normal physiology such as kidney
urate transport, as well as contributing towards the pharmacokinetic profiles of many exogenous drugs. The pri-
mary sequence of ABCG2 contains only half the number of domains required for a functioning ABC transporter
and so it must oligomerise in order to function, yet its oligomeric state in intact cell membranes remains
uncharacterized. We have analysed ABCG2 in living cell membranes using a combination of fluorescence
correlation spectroscopy, photon counting histogram analysis, and stepwise photobleaching to demonstrate a
predominantly tetrameric structure for ABCG2 in the presence or absence of transport substrates. These results
provide the essential basis for exploring pharmacological manipulation of oligomeric state as a strategy to
modulate ABCG2 activity in future selective therapeutics.

© 2015 Published by Elsevier B.V.
51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
N
C
O

R
R
E
C

1. Introduction

Eukaryotic multidrug efflux pumps have physiological relevance in
metabolite and xenobiotic export, in cancer multidrug efflux and in
influencing pharmacokinetics profiles of other pharmaceutical drugs.
In humans, at least three members of the ATP binding cassette (ABC1)
transporter superfamily are capable of multidrug efflux – ABCB1 (P-gly-
coprotein), ABCC1 (multidrug resistance protein-1) and ABCG2 (breast
cancer resistance protein) [1]. The polypeptide chains of ABCB1 and
ABCC1 contain the four core domains expected for a functional ABC
transporter [2], i.e. two nucleotide-binding domains (NBDs) and two
(or three in the case of ABCC1) transmembrane domains (TMDs).
ABCG2's primary sequence is different in two significant respects,
which make any structural inferences from our knowledge of other
ABC transporters difficult [3]. Firstly, the protein has a single NBD and
a single TMD in the polypeptide, leading it to be known as a “half-
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transporter” [4]. Secondly these domains are in the “reverse order”
compared to the majority of ABC transporters, with the NBD being N-
terminal and the TMD being C-terminal.

Having only half the number of domains required for a functional
ABC transporter has led to the assertion that ABCG2 must at least
dimerise in order to function. Knowledge of its oligomeric state is there-
fore an essential element in our understanding of ABCG2 function.

To date, however, biochemical and structural analyses of ABCG2
have presented conflicting evidence of its oligomeric organisation.
Dimer, tetramer, octamer and dodecamer formation of ABCG2 mole-
cules have all been suggested [5–7], but these studies have often been
limited by the need to extract ABCG2 from its membrane environment.
Whilst oligomerisation of ABCG2 has been demonstrated in whole cells
using FRET (fluorescence resonance energy transfer) or BiFC (bimolecu-
lar fluorescence complementation) microscopy [8,9], neither of these
techniques are able to distinguish between dimers and higher order
oligomerisation. There is, therefore, a pressing need to address ABCG2
stoichiometry in the intact membrane context, not only to improve un-
derstanding of the functional basis of this transporter family, but also to
open up newpathways to selective inhibitor development, which target
ABCG2 protein-protein interactions [10], instead of its less selective
drug binding sites [11].

With this ambition in mind, two fluorescence techniques have been
increasingly used to determine membrane protein oligomerisation in
mammalian cells, with potential to resolve higher order protein
complexes. The first, fluorescence correlation spectroscopy (FCS),
d tetrameric organisation of ABCG2 transporters in mammalian cells
://dx.doi.org/10.1016/j.bbamcr.2015.10.002
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records fluorescence fluctuations generated by the diffusion of the
fluorescently-tagged protein through a stationary confocal volume, illu-
minating a focal point of ~0.2 μm2on themembrane [12]. Analysis of the
fluctuation records with respect to mean amplitude, rather than time,
generates a photon counting histogram (PCH) [13], from which the
molecular brightness of the fluorescence particles can be derived to in-
dicate oligomerisation [14–16]. In the second, single fluorescent parti-
cles are resolved using total internal reflection fluorescence (TIRF)
imaging, which provides improved resolution of the lower plasma
membrane fluorescent complexes by limiting the depth of excitation
field (~100 nm). The amplitudes of these particles are monitored over
time in response to high intensity illumination, and the bleaching of in-
dividual subunits within the complex is detected as a series of discrete
steps. This analysis was recently established as a valuable tool to deter-
mine the subunit composition of membrane proteins expressed in
Xenopus laevis oocytes [17–19] and mammalian cells [20–23].

In the current study, we apply both FCS/PCH and stepwise
photobleaching approaches to determine the membrane dynamics
and oligomeric state of GFP-tagged ABCG2 expressed in human origin
HEK293T cells. These data from independent fluorescence techniques
provide novel evidence demonstrating tetrameric organisation of GFP-
ABCG2 in situ in whole cells.

2. Materials and methods

2.1. Molecular biology and cell culture

An enhanced GFP template containing additional “superfolder”mu-
tationsM135T, V163A, S30R, and Y30N [24], and the A206Kmutation to
prevent fluorescent protein dimerisation [25] was employed. The GFP
sequence was inserted in frame at the N-terminus of the ABCG2 cDNA
in pcDNA3.1zeo (Invitrogen, Paisley, UK; [8]), using XhoI and XbaI
restriction sites. CD28 and CD86 were amplified from vectors kindly
provided by Professor Simon Davis (University of Oxford, UK) with
BamHI/XhoI (CD86) or EcoRI/XhoI (CD28) flanking restriction sites, and
stop codon removal. Both CD28 and CD86 had C-terminal truncations
(at residue arginine 185 and arginine 277 respectively) to avoid poten-
tial cytoplasmic interactions that could affect the oligomeric behaviour
of the controls [26]. Digested PCR products were inserted into
pcDNA3.1zeo containing GFP between XhoI/XbaI, creating CD28-GFP
or CD86-GFP fusion protein cDNAs. The tandem GFP-GFP construct
contained two repeated GFP cDNAs joined in frame by a two-amino
acid linker (Leu-Glu, XhoI site). The identities of all constructs were
confirmed by DNA sequencing.

HEK293T cell passaging and transfection protocols were as
described [8]. Stable cell lines expressing CD28-GFP, CD86-GFP or
GFP-ABCG2 were selected using 200 μg/ml zeocin for 10–15 days until
healthy colonies were observed, and subsequently maintained at
40 μg/ml zeocin. Mixed populations were also dilution cloned and
screened for GFP fluorescence, to allow selection of low expressing
cell lines (FCS/PCH and TIRF studies), through intensity comparisons
under identical acquisition conditions.

2.2. Mitoxantrone accumulation assay

Stable, mixed population HEK293T cells expressing GFP-ABCG2
were seeded on poly-L-lysine coated 96-well plates (655,090, Greiner
Bio-One, Stonehouse, UK). When confluent, cells were incubated with
4 μM mitoxantrone (MX; Sigma-Aldrich, Poole, UK) alone, or in the
presence of ABCG2 inhibitor, 1 μM Ko143 [27] Sigma-Aldrich), for
0–60 min. Following fixation with 4% paraformaldehyde in PBS
(10 min, room temperature), cell nuclei were counterstained with
Hoechst 33,342 (Invitrogen, 2 μg/ml in PBS). Cell images were acquired
(4 sites per well) using an ImageXpress Micro platereader (Molecular
Devices, Wokingham, UK), equipped with a 20× Nikon extra-long
working distance air objective and standard DAPI (nucleus stain
Please cite this article as: K. Wong, et al., Plasma membrane dynamics an
revealed by single particle imaging ..., Biochim. Biophys. Acta (2015), http
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detection), FITC (GFP detection), and Cy5 (MX detection) filter sets as
described previously [8]. Average cellular MX fluorescence intensities
were calculated by analysing the fluorescence images using the Multi-
wavelength Cell Scoring analysis inMetaXpress 5.3 software (Molecular
Devices, Wokingham, UK). Data are presented as an average % of MX
accumulation (normalised against the highest fluorescence intensities
obtained in each experiments) over time in the presence or absence of
Ko143.

2.3. Fluorescence correlation spectroscopy (FCS) and photon counting
histogram analysis (PCH)

Low expressing stable (CD86-GFP, CD28-GFP, and GFP-ABCG2) or
transiently transfected (GFP and tandem GFP-GFP) cells were seeded
and grown on poly-L-lysine coated Nunc LabTek 8-well chambered
cover glasses. Cells were washed with Hank's balanced salt solution
(HBSS) twice and allowed to equilibrate to 22 °C. For FCSmeasurements
acquired on a Confocor 2 (Carl Zeiss GmBH, Jena, Germany), the
confocal volume was positioned at the upper plasma membrane of the
cells by performing a z-scan at low 488 nm Argon laser power
(~0.05 kW/cm2). FCS measurements used 0.25 kW/cm2 laser power in
a single acquisition divided into 3 × 15 s traces, after a 10 s pre-bleach
with 0.60 kW/cm2. Emitted fluorescence was collected via a
505–550 nm bandpass filter. Cells with b100 kHz average fluorescence
intensity were selected to produce autocorrelation decay curves. The
autocorrelation function G(τ) was calculated by considering fluores-
cence intensity fluctuations (δI) from mean intensity b IN, using
Eq. (1) – comparing time-points at time t and t + τ for a range of τ
values. For cytoplasmic GFP and tandem GFP-GFP, autocorrelation
curves were fitted using a one-component 3D model (Eq. (2)). For the
membrane proteins ABCG2, CD86 and CD28, autocorrelation curves
were fitted with a two-component 2D diffusion models (Eq. (3), with
a fast autocorrelation component (τD1 ~ 200–400 μs) assumed to be a
product of FP photophysics [28,29]. This allowed derivation of the
number (N) and dwell times (τD) of the fluorescent particles within
the confocal volume. A pre-exponential term (not shown in
Eqs. (2) and (3) but described in [28]) was also used to describe other
high frequency autocorrelation component (1–10 μs) arising from
fluorophore photophysics.

G τð Þ ¼ 1þ bδI tð Þ:δI tþ τð ÞN
bIN2 ð1Þ

G τð Þ ¼ 1þ A
1
N

1þ τ
τD

� ��1

1þ τ
S2τD

� ��0:5

ð2Þ

G τð Þ ¼ 1þ A
1
N

F1 1þ τ
τD1

� ��1

þ F2 1þ τ
τD2

� ��1
 !

ð3Þ

Autocorrelation curveswere only analysed if they reached a clear as-
ymptote as G(τ) approached 1; typically this key criteria in FCS analysis
rejects measurements affected by low frequency random movement of
plasma membrane, photobleaching during acquisition, or large aggre-
gates of fluorescent particles diffusing through the confocal detection
volume. On each experimental day Rhodamine 6G (20 nM) calibration
experiments were performed prior to cellular measurements to deter-
mine the radius of the confocal volume (r) of the 488 nm laser
employed for the excitation of GFP, as described previously [29]. From
this assessment of the confocal radius r, diffusion coefficients (D) of
the membrane localised fusion proteins were estimated using τD2,
according to D = r2/4τD2.

PCH analysis was performed on all the FCS traces accepted for auto-
correlation analysis, using single-component (for GFP, tandemGFP-GFP,
CD86-GFP) or two-component (for CD28-GFP, GFP-ABCG2) PCH
models. These models derived an additional estimate of the number of
d tetrameric organisation of ABCG2 transporters in mammalian cells
://dx.doi.org/10.1016/j.bbamcr.2015.10.002
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fluorescent particles for each component (N)within the volume, and es-
timated the molecular brightness (ε) of each f component. In order to
account for deviations in the shape of the Gaussian observation volume
as a consequence of single photon excitation, a first order correction fac-
tor (typically 0.15–0.17) was estimated based on Rhodamine 6G cali-
bration for the day's experiment [30]. An optimised binning time of
1 ms for generation of the PCH histogram (Fig. S1) was chosen to ex-
clude the fast autocorrelation component due to GFP photophysics
[29], while ensuring appropriate counts for a single bin. This binning
time of choice also ensures that the membrane proteins of interest
(τD2 of N10ms) remained within the detection volume for the duration
of the sampling period, a key assumption in PCH analysis [31]. PCH anal-
ysis, using one or two component models, was performed in Zen 2010
(Carl Zeiss).

Pooled data are presented as mean ± S.E.M. for n cells; the number
of independent experiments is also indicated where appropriate.
Differences between data sets were assessed for significance using
non-parametric Kruskal–Wallis analysis followed by Dunn's multiple
comparisons post-test in GraphPad Prism 6.0 (GraphPad software, San
Diego, CA, USA).

2.4. Fluorescence recovery after photobleaching (FRAP)

GFP-ABCG2 mixed population cells were seeded on MatTek glass
bottom dishes (thickness 0.16–0.19 mm and refractive index of
1.523), and media replaced by phenol-red free HBSS immediately
prior to imaging. FRAP was performed on a LSM 710 confocal micro-
scope (Carl Zeiss) using a 63× Plan-Apochromat 1.4 NAM27 oil immer-
sion objective. For image acquisition, 488 nm Argon laser excitation
(2% power for normal acquisition; 100% and 30 iterations for
photobleaching) was employed for the excitation of GFP and emission
was collected at 493–598 nm. For FRAP experiments, cells were first left
to equilibrate at 37 °C on the heated stage, 10 images of the cells (lower
plasma membrane) were then acquired (512 × 512 pixels; 1 s/scan),
before a circular region of interest (ROI; radius, r = 2 μm) was
photobleached and FRAP recovery was monitored for 50 s.

Diffusion coefficients and mobile fractions were obtained from
the FRAP experiments as previously described [29]. Briefly, FRAP
recovery curves were fitted to data corrected for background and
representative ROIs (Zen 2010), using a one phase exponential
I(t) = I0 – I1.e-t/T1. I0 is the end value of recovered fluorescence inten-
sity, I1 is the amplitude of the recovered fraction, and half time t1/2 is ob-
tained from T1 by t1/2 = −T1.ln 0.5. The mobile fraction percentage
was estimated by F1= 100 * I1/(IB – IA), where IB is the initial fluores-
cence intensity and IA is the intensity immediately post bleach. As for
FCS measurements, diffusion coefficients (D) were also obtained by
D=r2/4 t1/2. Pooled data are presented asmean± S.E.M. for n cells col-
lected over a number of experiments, as indicated where appropriate.

2.5. TIRF imaging

For single particle imaging, low expressing clonal lines were first
seeded on poly-L-lysine coated MatTek dishes (as above) and fixed
with 4% paraformaldehyde in PBS for 10 min., following 30 min treat-
ment (37 °C) with 4 μM MX or vehicle if required. The lower plasma
membrane of the cell was illuminated under TIRF configuration using
a 488nmTIRF laser to produce an excitationfield depth of approximate-
ly 100 nm. TIRF angles of 62–65° as indicated in the TIRF slider of the
software (Zen 2012, Zeiss) were employed. GFP emission was collected
using an emission bandpass filter 510–542 nm. For cell selection, 4%
acousto-optic tunable filters (AOTF) laser excitation was employed
and the display range of the EMCCD camera (QuantEM 512 from Photo-
metrics, Tucson, AZ, USA) was adjusted to allow selection of low ex-
pressing cells. TIRF photobleaching videos were recorded at 10 Hz for
80 s at high laser power, 80% AOTF. Videos obtained as.zvi files were
converted to 8-bit.tif files using LSM 5 Image Browser and ImageJ [32].
Please cite this article as: K. Wong, et al., Plasma membrane dynamics an
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2.6. Stepwise photobleaching analysis with binomial oligomeric models

The automated PIF algorithm developed in MATLAB (MathWorks,
Natick, MA, USA) kindly provided by Dr. Rikard Blunck (Université de
Montréal, Canada) was employed to analyse the photobleaching char-
acteristics of single particle spots identified in the TIRF videos. The pa-
rameters for the analysis were chosen as described or recommended
in [21]. Briefly,fluorescence intensities (arbitrary units, A.U.) of thefluo-
rescent spots were calculated from a region of 5 × 5 pixels, by fitting the
total initial fluorescence intensity of each spot to a 2D Gaussian profile
and subtracting the base line (estimated from the last 20 frames of re-
cording) from the total intensities. A proximity thresholdwas employed
to ensure that fluorescent spots accepted for analysis were free of
neighbouring spots when the Gaussian profile had reached 20% of its
maximum.

Following automated spot detection, the background intensity
within the individual particle fluorescence traces was removed
using a Laplacian of Gaussian (LoG) kernel-type file incorporated
within the PIF algorithm. Photobleaching steps within the filtered
traces were detected using an iterative process using repetitive as-
sessment of the intensities averaged over short time segments. This
process ensured that photobleaching steps were separated from
the background noise or any blinking event of GFP in the intensity
traces (see [21] for a detailed description). The minimum step to
noise ratio (SNR) threshold was set at 1.6. The lower threshold com-
pared to a previous study [21] is a consequence of not applying a
Chung-Kennedy (CK) filter to the data to increase the fluorescence
signal. The SNR threshold of 1.6 ensured that sufficient traces were
accepted whilst maintaining the accuracy of the detection algorithm,
as shown in [21]. Cells with N20% traces accepted were included in
the final presentation as frequency histograms of the number of
photobleaching steps observed, with the number of cells and exper-
iments indicated where appropriate.

For the interpretation of photobleaching step frequency histograms,
single oligomeric models were first generated using equation (4), in
which the probability of observing x photobleaching steps is predicted
based on the probability of individual GFP molecules within the
complex beingfluorescent (p) and the highest oligomeric stoichiometry
expected (n).

x;n;pð Þ ¼ n!
x! n� xð Þ! � p

x � 1� pð Þn�x ð4Þ

We also assumed 10% overlapping fluorescent spots, modelled
by the proportionate addition of a second binomial component, using
2× n as the highest number oligomeric state. For example for a tetramer
model, 10% of the total fluorescent spots obtained were modelled with
n = 8, whilst the remaining 90% were with n = 4. The final predicted
frequencies for x were calculated by summing the expected frequencies
for the two binomial distributions.

A combined dimer/tetramer model was also employed to fit the
frequency histograms. This model was calculated on a similar basis,
in which expected frequencies were obtained by summations of
dimer and tetramer distributions in appropriate proportions. The
goodness of fit for the different models was assessed by calculation
of the reduced chi2 values (χ2) using equation (5), where O = ob-
served frequencies, E = expected frequencies, and n= highest num-
ber of photobleaching steps expected from the combined binomial
distributions.

χ2 ¼
∑n

O� Eð Þ2
E

" #

n� 1ð Þ ð5Þ
d tetrameric organisation of ABCG2 transporters in mammalian cells
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3. Results

3.1. GFP-tagged ABCG2 is targeted to the membrane and retains
mitoxantrone transport function

N-terminal GFP-tagged ABCG2 was stably expressed in HEK293T
cells in all studies, and used in comparison to transfected cell lines
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T

Fig. 1. Expression, localisation and function of fluorescent constructs when expressed in fixed
confirmed by fluorescence imaging, representative images shown for at least 4 independen
Scale bar =100 μm. (C)Western blot analysis of GFP-fusion proteins. Twenty micrograms (wh
toplasmic proteins (right hand panel, 12% w/v acrylamide) were resolved by SDS-PAGE. All pro
idase conjugated secondary antibodies. (D) Increased accumulation ofmitoxantrone (4 μMMX
HEK293T cells. Data were pooled from four independent experiments (at least 20,000 cells we

Please cite this article as: K. Wong, et al., Plasma membrane dynamics an
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expressing a range of controls – including cytoplasmic GFP or tandem
GFP-GFP, and the transmembrane proteins CD86-GFP (monomeric con-
trol; [33–35]) or CD28-GFP (oligomer control; [34,36,37]. For all tagged
proteins the same variant of GFP was used, containing monomeric and
superfolder mutations (see 2.1). All proteins were expressed at the ex-
pected molecular weights, and the plasma membrane localisation of
GFP-ABCG2, CD28-GFP and CD86-GFP in the mixed transfected
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F

HEK293T cells. (A) Membrane localisation of GFP-ABCG2, CD28-GFP, and CD86-GFP were
t experiments. Scale bar =10 μm. (B) Cytoplasmic localisation of GFP and tandem-GFP.
ole cell lysate) of membrane-localised proteins (left hand panel, 8%w/v acrylamide) or cy-
teins were detected with mouse monoclonal anti-GFP antibodies and horseradish perox-
) in the presence of ABCG2 inhibitor (1 μMKo143) demonstrated functional GFP-ABCG2 in
re analysed) and presented as mean ± S.D.

d tetrameric organisation of ABCG2 transporters in mammalian cells
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populations was confirmed using fluorescence imaging (Fig. 1A–C).
Previous reports indicate that N-terminal tagging of ABCG2 does
not impact upon function [8] and this was demonstrated by showing
U
N
C
O

R
R
E
C
T

Fig. 2. FRAP measurements demonstrate that GFP-ABCG2 lateral mobility is unaffected by tran
FRAP experiment, using the mixed population GFP-ABCG2 cell line, showing the fluorescence
(purple circle), and background region (green circle). The confocal images of lower plasma m
photobleaching) together with the respective regions indicated the in same colour are shown. T
tion of the ROI intensities in Zen 2010. Scale bar =20 μm. Kinetic parameters, e.g. time require
curve, as described in Section 2.4 (B) Pooled and normalised recovery data comparing GFP-A
30 min (C) Summary histograms indicating the calculated GFP-ABCG2 diffusion coefficients
1 μMnocodazole (Noco) or 1 μM cytochalasin D (Cyto D) for at least 20 min. Bar and errors repr
bined from analysis of 33–38 cells in 3 independent experiments.

Please cite this article as: K. Wong, et al., Plasma membrane dynamics an
revealed by single particle imaging ..., Biochim. Biophys. Acta (2015), http
that that export of the fluorescence substrate mitoxantrone from
GFP-ABCG2 cells was prevented by the selective ABCG2 inhibitor
Ko143 (Fig. 1D).
E
D
 P

R
O

O
F

sport substrate or pharmacological manipulation of the cytoskeleton. (A) representative
intensities of the bleach region of interest (ROI, 2 μm radius, red circles), reference region
embrane of the cells at 3 different time points (before, immediately after, and 50 s after
he fluorescence intensities of the reference and background regions were used for correc-
d for 50% recovery (t1/2) and mobile fraction were obtained using the corrected recovery
BCG2 cells pretreated with vehicle (0.02% v/v DMSO) or 4 μM mitoxantrone for at least
and % mobile fraction following pre-incubation with vehicle, 4 μM mitoxantrone (MX),
esent themean± S.E.M. of the individual cell data points. All pooled data shown are com-

d tetrameric organisation of ABCG2 transporters in mammalian cells
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3.2. Diffusion of GFP-tagged proteins investigated by fluorescence recovery
after photobleaching and fluorescence correlation spectroscopy

Initial measurements of GFP-ABCG2 lateral mobility were made
using FRAP analysis of single living cells from the mixed stable
HEK293T cell lines. Fluorescence recovery was monitored over 50 s fol-
lowing bleaching of a 2 μm radius circular ROI within the lower plasma
membrane (Fig. 2A), and these traces were sufficiently fittedwith a sin-
gle phase exponential assuming single component diffusion (Fig. 2B).
These experiments demonstrated that GFP-ABCG2 was predominantly
a mobile species (82.4 ± 0.7% in the mobile fraction, n = 59 cells from
3 experiments), with the half-time for recovery yielding an estimate
of its diffusion co-efficient D as 0.18 ± 0.00 μm2 s−1, The presence of
substrate (4 μM mitoxantrone), or of disruptors of tubulin (1 μM
nocodazole) or actin (1 μM cytochalasin D) did not alter diffusion co-
efficient or % mobile fraction significantly (Fig. 2C).

Lateral mobilities of the various GFP-tagged proteins were then
analysed by recording fluorescence fluctuations over time using
FCS measurements, with the stationary confocal volume positioned
on the upper plasma membrane, using low expressing clonal cell
lines (Figs. 3A and B). In comparison to FRAP, these measurements
are restricted to mobile particles only (since immobile proteins do
not generate time-dependent intensity fluctuations), and to the
much smaller membrane region illuminated by the confocal volume
(~0.2 μm2). For membrane localised GFP-ABCG2, and the single pass
transmembrane protein controls CD28-GFP and CD86-GFP, autocor-
relation analysis used a two-component 2Dmodel (Fig. 3C), in which
dwell time τD1 (200–400 μs) was assumed to be a photophysical
component [27,28] and τD2 was thus representative of the diffusion
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Fig. 3. Characterisation of themembrane dynamics of ABCG2 using fluorescence correlation spe
upper plasmamembrane (UM) of the HEK293T cell to measure the fluctuations of the fluoresce
scan (z-scan)was first performed to reveal the fluorescence intensity (count rate, kHz) peaks fo
peak corresponding to the UM. (C) Fluorescence intensity fluctuations recorded over time wer
autocorrelation curves from GFP-ABCG2 (red), CD28-GFP (green) and CD86-GFP (blue) expres

Please cite this article as: K. Wong, et al., Plasma membrane dynamics an
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of the tagged protein. From this parameter, a diffusion coefficient
was derived of 0.11 ± 0.03 μm2 s−1 for GFP-ABCG2, 2.4–2.6 fold
slower than for CD28-GFP (0.27 ± 0.10 μm2 s−1) or CD86-GFP
(0.29 ± 0.09 μm2 s−1; data were collected from at least 30 cells
from 4 experiments). Thus despite the very different spatial scales
used for FCS and FRAP assessments, the derived values of GFP-
ABCG2 D were within a 2-fold difference. Mobilities of the tagged
membrane proteins were in turn 100 fold slower than those for cyto-
plasmic free GFP (35.6 ± 5.1 μm2 s−1) or tandem GFP-GFP (21.3 ±
3.7 μm2 s−1), in this case calculated via a single component 3D auto-
correlation model (more than 25 cells, three experiments).

3.3. PCH analysis supports oligomerisation of ABCG2 in live cells

While the slow mobility of GFP-ABCG2 could suggest oligomeric
complexes, molecular weight alone has a relatively minor influence on
diffusion coefficients, in comparison to other factors that might restrict
diffusion in the plasma membrane [38]. For example when considering
otherwise unrestricted diffusion, a 2 fold change inDwould only be pre-
dicted following an8 fold change inmolecularmass. However PCHanal-
ysis, which instead considers fluctuations around the mean intensity
amplitude within FCS records, provides a means to directly estimate
themolecular brightness (ε) of fluorescent particles within the confocal
volume – and this should be directly proportional to the number of GFP
moleculeswithin thefluorescent complex. Thismethod thus has greater
potential to resolve ABCG2 stoichiometry in living cells. As described in
2.3, an optimised trace bin time of 1 ms was used to divide FCS record-
ings, and the frequency of bins containing different numbers of photon
counts (k) was the basis for construction of the PCH histogram. The
E
D

ctroscopy (FCS). (A) Prior to FCSmeasurements, the confocal volumewas positioned at the
nt molecules (green) in the plasma membrane, within the confocal volume. (B) A vertical
r the UM and lower plasmamembrane, LM and the confocal volumewas positioned at the
e analysed using autocorrelation models (Section 2.3) and examples of raw FCS traces and
sing cells were shown along with the fit deviation of the model.

d tetrameric organisation of ABCG2 transporters in mammalian cells
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Fig. 4.PCHbrightness analysis in live cells demonstrates oligomerisation of ABCG2 and CD28. (A) Examples of one-componentmodelfitting (dotted curve) of PCHdistribution obtained for
CD86-GFP (blue, right panel) and two-component PCH model fitting (dotted curve) of PCH distribution obtained for GFP-ABCG2 (red, left panel) and CD28-GFP (green, middle panel).
(B) Relative component fractions of component 1 (C1) and component 2 (C2) for CD28-GFP and GFP-ABCG2 determined from two-component PCH analysis, while (C) indicates the cor-
respondingmolecular brightness ratios of C1 and C2 obtained for CD28-GFP and GFP-ABCG2, relative to themolecular brightness of CD86-GFP obtained during the same experiment. PCH
data were collected from at least 30 cells over 4 independent experiments.
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distributionwithin this histogramdeviates froman expected Poissonian
in amanner which depends on the number andmolecular brightness of
the fluorescent particles within the confocal volume. As indicated in
Fig. S2, a single component PCH model was sufficient to describe
data from cytoplasmic GFP, and tandem GFP-GFP controls, and as
expected, molecular brightness measurements differed by 1.86
fold (ε = 8506 ± 145 cpm s−1 for GFP compared to 15,809 ±
484 cpm s−1 for GFP-GFP; at least 25 cells, 3 experiments). A single
component model was also most appropriate to describe the CD86-
GFP data set (ε =12,828 ± 889 cpm s−1), in line with the prediction
of a predominantly monomeric transmembrane protein (Fig. 4A).

However the PCH histograms derived from CD28-GFP and GFP-
ABCG2 expressing cells required the assumption of two particle popula-
tions of differing brightness (components C1 and C2; Fig. 4B and C), as
determined by reduced chi2 comparison with the one-component
model (Fig. S3). Two-component PCH analysis revealed that the second
component, C2, identified for CD28-GFP and GFP-ABCG2 accounted for
~30% of the total particles (Fi. 4B), whereas this method did not reveal
a second fluorescent species in CD86-GFP (Fig. S3). Molecular bright-
ness values for C1 and C2 components of CD28-GFP and GFP-ABCG2
were normalised against the average ε of CD86-GFP acquired on the
same day (Fig. 4C). Component 1 (C1) brightness values for CD28-GFP
and GFP-ABCG2 were similar to that of CD86-GFP (ε ratios of 0.9 and
0.7, respectively; Fig. 4C), whilst the C2 ε measurements of CD28-GFP
and GFP-ABCG2 were 2–3 fold higher than CD86-GFP, indicating that
this component represented oligomers of fluorescent species (Fig. 4C).
Furthermore, C2: C1 ratios for CD28-GFP and GFP-ABCG2, calculated
Please cite this article as: K. Wong, et al., Plasma membrane dynamics an
revealed by single particle imaging ..., Biochim. Biophys. Acta (2015), http
on the basis of paired individual measurements, were 3.9 ± 0.4 and
4.0 ± 0.4 respectively. Thus ABCG2 and CD28 C2 particle complexes
appear to represent tetramers of the “unit”particles identified byC1. As-
suming this unit particle represents themonomers of ABCG2 and CD28,
then the “molecular ratios” calculated using the component fractions
(Fig. 4B) and the C2: C1 “fluorescence ratios” suggest that approximate-
ly 69% of ABCG2 and 63%of CD28molecules form tetrameric complexes.

3.4. Tetrameric organisation of ABCG2 is also indicated by single particle
imaging and stepwise photobleaching analysis

PCH analysis thus provided quantitativemeasurement of the bright-
ness of the fluorescent ABCG2 and CD28 species, from which the pres-
ence of oligomers, and their potential stoichiometry, could be inferred.
However these measurements, while attributed to single particles, are
inferred indirectly from statistical analysis and there are limitations to
the fitted models – for example, in unambiguously resolving more
than two components within a heterogeneous membrane population.
To obtain further evidence for ABCG2 oligomerisation, TIRF imaging of
individual lower plasma membrane fluorescent particles was per-
formed, in combination with stepwise photobleaching analysis. This
analysis was carried out on fixed cells, from the same low expressing
clones used for FCS, to immobilise the fluorescent spots, which allowed
their improved automated detection by avoiding the need for tracking
movement over time [39]. Both GFP-ABCG2 and CD28-GFP expressing
cells could be investigated using this method; however single mem-
brane fluorescent spots in CD86-GFP cell lines were not resolved by
d tetrameric organisation of ABCG2 transporters in mammalian cells
://dx.doi.org/10.1016/j.bbamcr.2015.10.002
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Fig. 5. Single particle TIRF imaging and stepwise photobleaching analysis reveals that ABCG2 forms tetramers. (A) A thin layer of excitation (yellow) in the lowermembrane of HEK293T
cell in aqueous mediumwas obtained through the generation of an evanescent field during total internal reflection. Laser excitation arrives at the glass-aqueous interface at a large angle
(θ) and is reflected back into glass, instead of propagating through the aqueousmedium or the sample. This phenomenonwas achieved using high numerical aperture (NA) objective, NA
of 1.45, and positioning the excitation laser away from the optical axis. (B) The lower membrane of HEK293T cells expressing GFP-ABCG2 at low levels was illuminated using TIRF con-
figuration and photobleached at high power laser, recording video images at 10 Hz throughout. Complete photobleaching was observed after 15 s. (C) Stepwise photobleaching analysis
of the TIRF video in (B) using the PIF algorithm [21], in which the fluorescent spots are first detected (left panel) and their fluorescence intensity traces calculated (middle panel).
Photobleaching steps were finally determined using an iterative process (right panel). Frequency histograms (D) were then determined from pooled data for CD28-GFP, GFP-ABCG2,
and GFP-ABCG2 cells pre-treated with substrate 4 μM mitoxantrone for 30 min prior to fixation. These were fitted with dimer/tetramer models accounting for equal portion of dimers
and tetramers (CD28; green curve, D), or 10% dimers and 90% tetramers (ABCG2; red curves, D). At least 30 cells were analysed over 5 (CD28, ABCG2 control), or 4 (ABCG2 incubated
with MX) independent experiments.
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UTIRF (even at low expression levels), and this control was not consid-
ered further. TIRF imagingwasfirst used to define individualfluorescent
spots on the lower membrane (Fig. 5A), and a cell expressing GFP-
ABCG2 is shown as a representative example (Fig. 5B; Supplementary
Movie 1). During acquisition cells were photobleached with high
power laser under TIRF configuration (Fig. 5B), and these videos over
time were analysed using a fully automated spot detection algorithm
developed previously [21] with the entire cell, and all associated spots,
selected as the region of interest. Fluorescence intensity traces associat-
ed with individual spots (corrected for background) decayed in a
series of discrete steps, interpreted as the successive bleaching of
individual fluorescent GFP molecules within the particle complex
(Fig. 5C). The algorithm accepted traces for analysis (see 2.6) and
Please cite this article as: K. Wong, et al., Plasma membrane dynamics an
revealed by single particle imaging ..., Biochim. Biophys. Acta (2015), http
identified the number of photobleaching steps within each trace in an
unbiased manner.

Data representing all accepted spots from CD28-GFP or GFP-ABCG2
experiments were then pooled as step frequency histograms (Fig. 5D).
Rather than showing a unique step number, these histograms demon-
strated a range of different photobleaching step frequencies, as previ-
ously reported for other membrane proteins [19,23]. This variation
can be attributed to at least three influences. Firstly, the presence of
non-fluorescent GFP molecules within the oligomeric complex (e.g.
those forced into a dark state following high power laser excitation
used for TIRF)will lead to fewer than expected bleaching steps for any
given complex stoichiometry. Second, the presence of any overlapping
fluorescent spots that are unresolved by the automated detection will
d tetrameric organisation of ABCG2 transporters in mammalian cells
://dx.doi.org/10.1016/j.bbamcr.2015.10.002
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overestimate bleaching steps and stoichiometry. Finally it is also
possible, indeed likely, that the CD28 and ABCG2 may exist as multiple
populations with differing oligomeric states.

For the purpose of obtaining analysis that remained robust, model-
ling the photobleaching step histogram data was restricted to consider-
ing a homogenous population with a single stoichiometry, or two
discrete oligomeric states in varying proportions. In both cases a
binomial distribution was employed to account for the presence of
non-fluorescent GFP molecules may be present within the complex.
This distribution assigned a probability (pGFP) that individual GFP mol-
ecules contained within these complexes are fluorescent (see 2.6;
[21]), with an optimised pGFP of 0.55 (Fig. S4; Table 1). Of the single
and dual component models that were considered, a dimer: tetramer
model best described the CD28-GFP histograms, with an pGFP = 0.55
and equal (1: 1) proportions of dimer: tetramer particles (Fig. 5D,
Table 1). To account for the low number of traces with more than four
bleaching steps, the model also assumed that 10% fluorescent particles
overlapped; alternatively this assumption could be interpreted as a
minor population of higher order CD28-GFP complexes. The same
dimer: tetramer model (pGFP = 0.55, 10% spot overlap) was then
optimised for the GFP-ABCG2 data. This demonstrated that in contrast
to CD28-GFP, ABCG2 was organised predominantly as a tetramer
(90%), with only a minority dimer population indicated (10%, Fig. 5D;
Table 1). The distribution of GFP-ABCG2 photobleaching step frequen-
cies did not change following treatment with substrate mitoxantrone
(Fig. 5D; Table 1).

4. Discussion

The relationship between structural organisation and function in the
ABCG transporters has proved problematic due to their nature as
“half transporters” –with a single NBD and TMD assumed to be insuffi-
cient for substrate export, compared to other members of the ABC
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Table 1
Goodness of fit assessment to determine the best fit binomial oligomericmodels. The best
models (Fig. 5, main text) were determined after a sequential goodness of fit analysis
using χ2 calculations. (A) Single oligomeric model analysis revealed that a tetramer (4-
component) and a trimer (3-component) binomial models, accounting for 55% of fluores-
cent GFPmolecules (pGFP = 0.55), best described the GFP-ABCG2 and CD28-GFP frequen-
cy histograms respectively, in which the lowest combined χ2 were observed, suggesting
that the binomial models of pGFP= 0.55 with 4-component or less can be used to describe
the frequency histograms. (B) As ABCG2 and CD28 are known to formminimum complex
of dimers, combineddimer/tetramermodelswith varying dimer: tetramer ratioswere cal-
culated to describe the frequency histograms. The best-fit dimer/tetramer models were
determined using the lowest χ2 obtained (highlighted in bold).

A

When pGFP = 0.50 GFP-ABCG2 CD28-GFP
Dimer model 1162 254
Trimer model 83 4
Tetramer model 10 20
Pentamer model 10 57
When pGFP = 0.55 GFP-ABCG2 CD28-GFP
Dimer model 850 180
Trimer model 52 5
Tetramer model 6 39
Pentamer model 27 101
When pGFP = 0.60 GFP-ABCG2 CD28-GFP
Dimer model 638 128
Trimer model 34 13
Tetramer model 12 70
Pentamer model 56 169

B

Dimer:Tetramer (%) CD28-GFP GFP-ABCG2 GFP-ABCG2 + MX

75:25 97 7 58
50:50 31 2 19
25:75 9 12 6
10:90 5 25 5
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family [3,4]. In this study we resolved tetrameric organisation of
ABCG2 complexes in whole cell membranes for the first time, using
two complementary fluorescence approaches. This provides the essen-
tial basis for exploration of both ABCG2 function, and novel pharmaco-
logical approaches to target transporter oligomerisation and combat
the development of multidrug resistance associated with overexpres-
sion of this transporter.

The advantages of our fluorescent approaches to examine ABCG2
distribution in intact cell membranes are highlighted by previous stud-
ies, which have presented mixed evidence for the ABCG2 oligomeric
state. Although a dimeric functional unit for ABCG2 was suggested by
some [5,40], others have proposed higher order ABCG2 stoichiometry
[6,7]. Additionally, a previous electron microscopy study, using purified
ABCG2 protein samples, suggested that tetrameric organisationwas one
oligomeric form of ABCG2, amongst others [41]. These studieswere lim-
ited by the use of purified proteins, and/or the use of non-mammalian
expression systems, e.g. baculovirus [6]. Furthermore, oligomeric
organisation could be affected by the process of protein extraction or
experimental conditions [7]. In contrast, we have investigated
oligomerisation of ABCG2 in living or fixed non-polarised HEK293T
cells (although ABCG2 is also expressed in some polarised cell types).
We have presented evidence of tetrameric organisation of ABCG2, and
reinforced these observations by the contrast with key controls such
as the monomeric transmembrane protein CD86 in PCH analysis, and
assessment of CD28 oligomers. A fluorescence recovery after
photobleaching study suggested that CD28 is an obligate dimer [34],
and this was supported in our stepwise photobleaching analysis
through observation of an increased proportion of dimers, compared
to tetramers, in the fitted model compared to ABCG2. Nevertheless,
both PCH and TIRF photobleaching methods indicated higher order
stoichiometry for CD28 as well, as suggested by others [36,42]. Further-
more, removal of the intermolecular disulphide interactions responsible
for formation of CD28 dimers does not disrupt its oligomerisation [43],
indicating the existence of plausible additional interactions that might
contribute to higher order CD28 stoichiometry as well as dimers.

The use of two advanced fluorescence techniques strengthens our
assessment of ABCG2 stoichiometry, because each has different
strengths and weaknesses. PCH analysis allowed oligomerisation of
ABCG2 to be demonstrated in plasma membrane of living mammalian
cells, through the increase in molecular brightness when compared to
the monomeric control CD86. Tandem GFP-GFP and GFP cytoplasmic
controls (Fig. S2) illustrated the feasibility of this technique in identify-
ing the direct relationship between brightness and the stoichiometry of
the diffusingfluorescent protein complex. Furthermore, our conclusions
derived from PCH for the more complex transmembrane fluorescent
proteins rely on reasonable assumptions, such as that the ε of compo-
nent 1, and of the CD86 control, indeed relate to a monomeric unit, in
agreement with the published literature for this protein (Fig. S3).
Modelling of the super Poissonian PCH distribution is also limited to a
realistic maximum of two components to define a heterogeneous un-
derlyingfluorescent protein population, and the behaviour of individual
particles is statistically inferred, rather than directly observed using this
technique.

In contrast, stepwise photobleaching analyses particles which are
resolved as individual entities by TIRF. In this case fixed cells were re-
quired, as immobile fluorescent particles were preferred for the auto-
mated photobleaching analysis [34], which conferred more objective
assessment of the photobleaching steps. This technique also required
a key assumption that not all GFP molecules present in an ABCG2 com-
plex under these experimental conditions were fluorescent, modelling
this probability (pGFP) as 0.55. This agreed well with equivalent studies
reported elsewhere [21,44], though higher maturation rates have been
reported for oocyte expression systems [19,23]. Dependent on illumina-
tion conditions, a fraction of GFP molecules exist in a dark state [19],
while quenching of fluorophores caused by changes in microenviron-
ment (e.g. pH) or fixation, could contribute to a proportion of non-
d tetrameric organisation of ABCG2 transporters in mammalian cells
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fluorescent GFP [45–47]. These factors may explain why accounting for
a GFP fluorescent probability was unnecessary in PCH analysis of the
same GFP-ABCG2 and CD28-GFP cell lines. In particular, the use of
high power TIRF excitation to acquire and photobleach fluorescent
particles would lead to a much greater proportion of dark state GFP
molecules, compared to the conditions of low laser power acquisition
used for FCS and PCHexperiments. Itwas also necessary to consider var-
ious binomial models of oligomerisation when fitting the stepwise
photobleaching frequency histograms (Table 1). Nevertheless, selection
of the dimer: tetramer model was supported both statistically (Table 1)
and by prior knowledge that ABCG2 and CD28 proteins can form dimers
as a minimum functional unit [8,9,34]. Thus overall PCH demonstrated
clear oligomerisation of ABCG2 and indicated potential tetrameric
stoichiometry, whilst TIRF stepwise photobleaching analysis showed
that ABCG2 tetramers were predominant.

The key questions that remain unanswered are the mechanisms by
which ABCG2 forms tetrameric complexes and the extent to which
this contributes to function. Indeed the relevance of tetrameric units
might also be addressed more generally in the ABC transporter family,
including the “full length” multidrug efflux pumps ABCB1 and ABCC1,
which may still dimerise [48]. To our knowledge, there are no reliable
mutations (within ABCG2) or compounds that can modify the
oligomerisation of ABCG2. The ability to resolve ABCG2 stoichiometry
in native cells using PCH and stepwise photobleaching techniques will
therefore provide future impetus for exploring pharmacological manip-
ulation of ABCG2 oligomerisation, and its consequences for transporter
function.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbamcr.2015.10.002.
T

669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
E
C

Acknowledgements

KWwas funded by a University of Nottingham PhD studentship. We
thank Tim Self and colleagues in the School of Life Sciences Imaging unit
(Nottingham) for technical assistance with FCS and TIRF, and Deborah
Briggs and Marleen Groenen for molecular biology assistance. We
thank Simon Davis (Oxford) for the gift of CD28 and CD86-containing
plasmids and Rikard Blunck (Montreal) for assistance with the PIF algo-
rithm. The authors are grateful to the Cell Signalling Research Group for
useful discussions.
 R

685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
U
N
C
O

RReferences

[1] G. Szakacs, J.K. Paterson, J.A. Ludwig, C. Booth-Genthe, M.M. Gottesman, Targeting
multidrug resistance in cancer, Nat. Rev. Drug Discov. 5 (2006) 219–234.

[2] C.F. Higgins, ABC transporters: from microorganisms to man, Annu. Rev. Cell Biol. 8
(1992) 67–113.

[3] I.D. Kerr, A.J. Haider, I.C. Gelissen, The ABCG family of membrane-associated trans-
porters: you don't have to be big to be mighty, Br. J. Pharmacol. 164 (2011)
1767–1779.

[4] L.A. Doyle, W. Yang, L.V. Abruzzo, T. Krogmann, Y. Gao, A.K. Rishi, D.D. Ross, A mul-
tidrug resistance transporter from human MCF-7 breast cancer cells, Proc. Natl.
Acad. Sci. U. S. A. 95 (1998) 15665–15670.

[5] A. Bhatia, H.J. Schafer, C.A. Hrycyna, Oligomerization of the human ABC transporter
ABCG2: evaluation of the native protein and chimeric dimers, Biochemistry 44
(2005) 10893–10904.

[6] C.A. McDevitt, R.F. Collins, M. Conway, S. Modok, J. Storm, I.D. Kerr, R.C. Ford, R.
Callaghan, Purification and 3D structural analysis of oligomeric human multidrug
transporter ABCG2, Structure 14 (2006) 1623–1632.

[7] J. Xu, Y. Liu, Y. Yang, S. Bates, J.T. Zhang, Characterization of oligomeric human half-
ABC transporter ATP-binding cassette G2, J. Biol. Chem. 279 (2004) 19781–19789.

[8] A.J. Haider, D. Briggs, T.J. Self, H.L. Chilvers, N.D. Holliday, I.D. Kerr, Dimerization of
ABCG2 analysed by bimolecular fluorescence complementation, PLoS One 6
(2011), e25818.

[9] Z. Ni, M.E. Mark, X. Cai, Q. Mao, Fluorescence resonance energy transfer (FRET) anal-
ysis demonstrates dimer/oligomer formation of the human breast cancer resistance
protein (BCRP/ABCG2) in intact cells, Int. J. Biochem. Mol. Biol. 1 (2010) 1–11.

[10] M.R. Arkin, Y. Tang, J.A. Wells, Small-molecule inhibitors of protein-protein interac-
tions: progressing toward the reality, Chem. Biol. 21 (2014) 1102–1114.

[11] R. Clark, I.D. Kerr, R. Callaghan, Multiple drug binding sites on the R482G isoform of
the ABCG2 transporter, Br. J. Pharmacol. 149 (2006) 506–515.
Please cite this article as: K. Wong, et al., Plasma membrane dynamics an
revealed by single particle imaging ..., Biochim. Biophys. Acta (2015), http
E
D
 P

R
O

O
F

[12] S.J. Briddon, S.J. Hill, Pharmacology under the microscope: the use of fluorescence
correlation spectroscopy to determine the properties of ligand-receptor complexes,
Trends Pharmacol. Sci. 28 (2007) 637–645.

[13] Y. Chen, J.D. Muller, P.T. So, E. Gratton, The photon counting histogram in fluores-
cence fluctuation spectroscopy, Biophys. J. 77 (1999) 553–567.

[14] Y. Chen, L.N. Wei, J.D. Muller, Probing protein oligomerization in living cells with
fluorescence fluctuation spectroscopy, Proc. Natl. Acad. Sci. U. S. A. 100 (2003)
15492–15497.

[15] K. Herrick-Davis, E. Grinde, A. Cowan, J.E. Mazurkiewicz, Fluorescence correlation
spectroscopy analysis of serotonin, adrenergic, muscarinic, and dopamine receptor
dimerization: the oligomer number puzzle, Mol. Pharmacol. 84 (2013) 630–642.

[16] G. Malengo, A. Andolfo, N. Sidenius, E. Gratton, M. Zamai, V.R. Caiolfa, Fluorescence
correlation spectroscopy and photon counting histogram on membrane proteins:
functional dynamics of the glycosylphosphatidylinositol-anchored urokinase plas-
minogen activator receptor, J. Biomed. Opt. 13 (2008) 031215.

[17] A. Reiner, R.J. Arant, E.Y. Isacoff, Assembly stoichiometry of the GluK2/GluK5 kainate
receptor complex, Cell Rep. 1 (2012) 234–240.

[18] K. Nakajo, M.H. Ulbrich, Y. Kubo, E.Y. Isacoff, Stoichiometry of the KCNQ1 – KCNE1
ion channel complex, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 18862–18867.

[19] M.H. Ulbrich, E.Y. Isacoff, Subunit counting in membrane-bound proteins, Nat.
Methods 4 (2007) 319–321.

[20] A. Demuro, A. Penna, O. Safrina, A.V. Yeromin, A. Amcheslavsky, M.D. Cahalan, I.
Parker, Subunit stoichiometry of human Orai1 and Orai3 channels in closed and
open states, Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 17832–17837.

[21] H. McGuire, M.R. Aurousseau, D. Bowie, R. Blunck, Automating single subunit
counting of membrane proteins in mammalian cells, J. Biol. Chem. 287 (2012)
35912–35921.

[22] W. Zhang, Y. Jiang, Q. Wang, X. Ma, Z. Xiao, W. Zuo, X. Fang, Y.G. Chen, Single-
molecule imaging reveals transforming growth factor-beta-induced type II receptor
dimerization, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 15679–15683.

[23] K.O. Nagata, C. Nakada, R.S. Kasai, A. Kusumi, K. Ueda, ABCA1 dimer-monomer inter-
conversion during HDL generation revealed by single-molecule imaging, Proc. Natl.
Acad. Sci. U. S. A. 110 (2013) 5034–5039.

[24] J.D. Pedelacq, S. Cabantous, T. Tran, T.C. Terwilliger, G.S. Waldo, Engineering and
characterization of a superfolder green fluorescent protein, Nat. Biotechnol. 24
(2006) 79–88.

[25] D.A. Zacharias, J.D. Violin, A.C. Newton, R.Y. Tsien, Partitioning of lipid-modified mo-
nomeric GFPs into membrane microdomains of live cells, Science 296 (2002)
913–916.

[26] J.R. James, S.S. White, R.W. Clarke, A.M. Johansen, P.D. Dunne, D.L. Sleep, W.J.
Fitzgerald, S.J. Davis, D. Klenerman, Single-molecule level analysis of the subunit
composition of the T cell receptor on live T cells, Proc. Natl. Acad. Sci. U. S. A. 104
(2007) 17662–17667.

[27] J.D. Allen, A. van Loevezijn, J.M. Lakhai, M. van der Valk, O. van Tellingen, G. Reid, J.H.
Schellens, G.J. Koomen, A.H. Schinkel, Potent and specific inhibition of the breast
cancer resistance protein multidrug transporter in vitro and in mouse intestine by
a novel analogue of fumitremorgin C, Mol. Cancer Ther. 1 (2002) 417–425.

[28] S.J. Briddon, R.J. Middleton, Y. Cordeaux, F.M. Flavin, J.A. Weinstein, M.W. George, B.
Kellam, S.J. Hill, Quantitative analysis of the formation and diffusion of A1-adenosine
receptor-antagonist complexes in single living cells, Proc. Natl. Acad. Sci. U. S. A. 101
(2004) 4673–4678.

[29] L.E. Kilpatrick, S.J. Briddon, N.D. Holliday, Fluorescence correlation spectroscopy,
combined with bimolecular fluorescence complementation, reveals the effects of
beta-arrestin complexes and endocytic targeting on the membrane mobility of neu-
ropeptide Y receptors, Biochim. Biophys. Acta 1823 (2012) 1068–1081.

[30] B. Huang, T.D. Perroud, R.N. Zare, Photon counting histogram: one-photon excita-
tion, Chemphyschem 5 (2004) 1523–1531.

[31] P. Macdonald, J. Johnson, E. Smith, Y. Chen, J.D. Mueller, Brightness analysis,
Methods Enzymol. 518 (2013) 71–98.

[32] C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH image to ImageJ: 25 years of image
analysis, Nat. Methods 9 (2012) 671–675.

[33] S. Bhatia, M. Edidin, S.C. Almo, S.G. Nathenson, Different cell surface oligomeric
states of B7-1 and B7-2: implications for signaling, Proc. Natl. Acad. Sci. U. S. A.
102 (2005) 15569–15574.

[34] S. Dorsch, K.N. Klotz, S. Engelhardt, M.J. Lohse, M. Bunemann, Analysis of receptor
oligomerization by FRAP microscopy, Nat. Methods 6 (2009) 225–230.

[35] X. Zhang, J.C. Schwartz, S.C. Almo, S.G. Nathenson, Crystal structure of the receptor-
binding domain of human B7-2: insights into organization and signaling, Proc. Natl.
Acad. Sci. U. S. A. 100 (2003) 2586–2591.

[36] M. Tacke, G. Hanke, T. Hanke, T. Hunig, CD28-mediated induction of proliferation in
resting T cells in vitro and in vivo without engagement of the T cell receptor: evi-
dence for functionally distinct forms of CD28, Eur. J. Immunol. 27 (1997) 239–247.

[37] A. Aruffo, B. Seed, Molecular cloning of a CD28 cDNA by a high-efficiency COS cell
expression system, Proc. Natl. Acad. Sci. U. S. A. 84 (1987) 8573–8577.

[38] M.J. Saxton, Lateral diffusion of lipids and proteins, Membrane Permeabililty
100 years since Ernest Overton, Academic Press 1999, pp. 229–282.

[39] R.J. Arant, M.H. Ulbrich, Deciphering the subunit composition of multimeric proteins
by counting photobleaching steps, Chemphyschem: a European journal of chemical
physics and physical chemistry 15 (2014) 600–605.

[40] U. Henriksen, J.U. Fog, T. Litman, U. Gether, Identification of intra- and intermolecu-
lar disulfide bridges in the multidrug resistance transporter ABCG2, J Biol Chem 280
(2005) 36926–36934.

[41] M. Dezi, P.F. Fribourg, A. Di Cicco, O. Arnaud, S. Marco, P. Falson, A. Di Pietro, D. Levy,
The multidrug resistance half-transporter ABCG2 is purified as a tetramer upon se-
lective extraction from membranes, Biochim. Biophys. Acta 1798 (2010)
2094–2101.
d tetrameric organisation of ABCG2 transporters in mammalian cells
://dx.doi.org/10.1016/j.bbamcr.2015.10.002

http://dx.doi.org/10.1016/j.bbamcr.2015.10.002
http://dx.doi.org/10.1016/j.bbamcr.2015.10.002
http://dx.doi.org/10.1016/j.bbamcr.2015.10.002
Original text:
Inserted Text
"‐ "



717
718
719
720
721
722
723
724
725
726
727

728
729
730
731
732
733

11K. Wong et al. / Biochimica et Biophysica Acta xxx (2015) xxx–xxx
[42] J.L. Greene, G.M. Leytze, J. Emswiler, R. Peach, J. Bajorath, W. Cosand, P.S. Linsley, Co-
valent dimerization of CD28/CTLA-4 and oligomerization of CD80/CD86 regulate T
cell costimulatory interactions, J Biol Chem 271 (1996) 26762–26771.

[43] E. Lazar-Molnar, S.C. Almo, S.G. Nathenson, The interchain disulfide linkage is not a
prerequisite but enhances CD28 costimulatory function, Cell. Immunol. 244 (2006)
125–129.

[44] B. Coste, B. Xiao, J.S. Santos, R. Syeda, J. Grandl, K.S. Spencer, S.E. Kim, M. Schmidt, J.
Mathur, A.E. Dubin, M. Montal, A. Patapoutian, Piezo proteins are pore-forming sub-
units of mechanically activated channels, Nature 483 (2012) 176–181.

[45] N. Brewis, A. Phelan, J. Webb, J. Drew, G. Elliott, P. O'Hare, Evaluation of VP22 spread
in tissue culture, J. Virol. 74 (2000) 1051–1056.
U
N
C
O

R
R
E
C
T

Please cite this article as: K. Wong, et al., Plasma membrane dynamics an
revealed by single particle imaging ..., Biochim. Biophys. Acta (2015), http
[46] Y. Chen, J. Johnson, P. Macdonald, B.Wu, J.D. Mueller, Observing protein interactions
and their stoichiometry in living cells by brightness analysis of fluorescence fluctu-
ation experiments, Methods Enzymol. 472 (2010) 345–363.

[47] S. Ganguly, A.H. Clayton, A. Chattopadhyay, Fixation alters fluorescence lifetime and
anisotropy of cells expressing EYFP-tagged serotonin1A receptor, Biochem. Biophys.
Res. Commun. 405 (2011) 234–237.

[48] Y. Yang, Y. Liu, Z. Dong, J. Xu, H. Peng, Z. Liu, J.T. Zhang, Regulation of function by di-
merization through the amino-terminal membrane-spanning domain of human
ABCC1/MRP1, J Biol Chem 282 (2007) 8821–8830.
E
D
 P

R
O

O
F

d tetrameric organisation of ABCG2 transporters in mammalian cells
://dx.doi.org/10.1016/j.bbamcr.2015.10.002

http://dx.doi.org/10.1016/j.bbamcr.2015.10.002

	Plasma membrane dynamics and tetrameric organisation of ABCG2 transporters in mammalian cells revealed by single particle i...
	1. Introduction
	2. Materials and methods
	2.1. Molecular biology and cell culture
	2.2. Mitoxantrone accumulation assay
	2.3. Fluorescence correlation spectroscopy �(FCS) and photon counting histogram analysis �(PCH)...
	2.4. Fluorescence recovery after photobleaching (FRAP)
	2.5. TIRF imaging
	2.6. Stepwise photobleaching analysis with binomial oligomeric models

	3. Results
	3.1. GFP-tagged ABCG2 is targeted to the membrane and retains mitoxantrone transport function
	3.2. Diffusion of GFP-tagged proteins investigated by fluorescence recovery after photobleaching and fluorescence correlati...
	3.3. PCH analysis supports oligomerisation of ABCG2 in live cells
	3.4. Tetrameric organisation of ABCG2 is also indicated by single particle imaging and stepwise photobleaching analysis

	4. Discussion
	Acknowledgements
	References




