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HOW TO OBTAIN DIVISION ALGEBRAS USED FOR

FAST-DECODABLE SPACE-TIME BLOCK CODES

Susanne Pumplün

School of Mathematical Sciences

University of Nottingham, University Park

Nottingham NG7 2RD, United Kingdom

Abstract. We present families of unital algebras obtained through a doubling process

from a cyclic central simple algebra D = (K/F, σ, c), employing a K-automorphism τ

and an element d ∈ D×. These algebras appear in the construction of iterated space-

time block codes. We give conditions when these iterated algebras are division which can

be used to construct fully diverse iterated codes. We also briefly look at algebras (and

codes) obtained from variations of this method.

1. Introduction

Space-time coding is used for reliable high rate transmission over wireless digital channels

with multiple antennas at both the transmitter and receiver ends. From the mathematical

point of view, designing space-times codes means to design well-behaved families of matrices

over the complex numbers, often using the representation matrix of the left multiplication

of an algebra. Central simple associative division algebras over number fields, in particular

cyclic division algebras, have been used highly successfully to systematically build space-time

block codes (cf. for instance [1], [2], [3], [4], [5], [6], [7]). Nonassociative division algebras

over number fields, like nonassociative quaternion algebras or cyclic algebras, can also be

used in code design, see for instance [8], [9] or [10].

In [11], Markin and Oggier propose an ad hoc code construction to build 2n × 2n asym-

metric space-time block codes out of a family D of n × n complex matrices coming from a

cyclic division algebra D of degree n over a number field F , and investigate when these new

codes are fully diverse and when they inherit fast-decodability from the code D. The idea

is to use well performing codes D in the construction and double them, hoping not to lose

much if anything of their good performance in the process.

The iterated construction [11] starts with a cyclic division algebra D over a number field

F and a Q-automorphism τ of K, where K is a maximal subfield of the F -algebra D. It
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employs a map

(1) αθ : D ×D → Mat2(K),

(2) αθ : (X, Y ) 7→
[
X Θτ(Y )

Y τ(X)

]
,

where D = λ(D) ⊂ Matn(K) is the canonical embedding of elements of the algebra D into

Matn(K) via left regular representation, and where Θ ∈ D, i.e., θ ∈ D is identified with its

matrix representation Θ = λ(θ). For instance,

Θ =

[
θ0 dσ(θ1)

θ1 σ(θ0)

]

if D = Cay(K, d) = K ⊕ K is a quaternion algebra with canonical involution σ and θ =

θ0 + jθ1 ∈ D. τ(X) simply is the matrix obtained from X by applying τ to each entry of

X. With the right choice of τ and θ ∈ F0 = Fix(τ) ∩ F , the matrices in αθ(D × D) form

a Q-algebra of finite dimension 2n2[F : Q] and are the representation of a central simple

associative algebra.

In this paper we present the algebras behind this iteration process for any choice of θ

and τ : the codebooks αθ(D×D) consist of the matrix representations of left multiplication

of certain algebras over F0 we will call iterated algebras. If θ ∈ D \ F0, these algebras are

nonassociative. By putting the code constructions into a general algebraic framework, we

are able to systematically investigate the codes obtained through the matrices of the left

multiplication in a suitable iterated algebra. We also extend the existing iteration process

for codes to include the case of employing the map

βθ : D ×D → Mat2n(K),

(3) βθ : (X, Y ) 7→
[
X τ(Y )Θ

Y τ(X)

]

instead of αθ. We then give conditions on when a code αθ resp. βθ is fully diverse without

having to restrict the choice of θ to the field F .

The paper is organized as follows: Let F always be a field of characteristic not 2. Nota-

tions and basic definitions used are given in Section 2. Starting with a cyclic central simple

algebra D = (K/F, σ, c) over F of degree n, we define doubling processes involving D,

τ ∈ Aut(K) and d ∈ D× in Section 3. In order to do so, we canonically extend τ to a map τ̃

on D. Depending on where d is placed, these doublings yield new unital algebras Itl(D, τ, d),

Itm(D, τ, d) or Itr(D, τ, d) over F0, which have D = (K/F, σ, c) as a subalgebra. We call

them iterated algebras. If τ and σ commute, an iterated algebra is division if D is division

and ND/F (d) 6= ND/F (zτ̃(z)) for all z ∈ D. In special cases, some iterated algebras are

subalgebras of the tensor product of the cyclic algebra D and a nonassociative quaternion
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algebra. The connection between iterated algebras and code constructions is explored in

Section 4. Most notably, the iterated codes explicitly constructed in the literature so far all

require (apart from one example), apart from τ(c) = c and that τ and σ commute, also that

d ∈ F×, so that d 6∈ F generally is not considered. Since the considerations in [11], Section

IV.A., on iterating the Silver code given by D = (−1,−1)F , F = Q(
√
−7), generalize to

the case that θ ∈ F (i) and not in F , the code αθ(D × D) inherits fast-decodability from

the Silver code, as Lemma 15 in [11] still holds in this setting. This supports the explicit

calculation in [11], Section IV.A., that the decoding complexity for θ = i is O(|S|13). In

particular, we show in Exampe 16 that the code built and simulated in [11], Section IV.A,

with θ = i, is indeed fully diverse and has NVD. Moreover, in Example 17 we build a code

which the same ML-decoding complexity as the 4 × 2 SR-code discussed for instance in

[12] and is fast-decodable. Iterated algebras inside the tensor product of a cyclic division

algebra and a (nonassociative) quaternion algebra are considered in Section 5. These are

the algebras dealt with in the examples for iterated code constructions of [11]. For the sake

of completeness, we briefly consider variations of this doubling process in Section 6, like a

generalized Cayley-Dickson doubling of D based on the same idea, using τ̃ and d ∈ D when

defining the multiplication. For D a quaternion algebra, τ̃ is never the standard involution

on D. The resulting algebras are division under the same conditions as the iterated algebras.

2. Preliminaries

2.1. Nonassociative algebras. Let F be a field. By “F -algebra” we mean a finite dimen-

sional unital nonassociative algebra over F .

A nonassociative algebra A 6= 0 is called a division algebra if for any a ∈ A, a 6= 0, the

left multiplication with a, La(x) = ax, and the right multiplication with a, Ra(x) = xa, are

bijective. A is a division algebra if and only if A has no zero divisors ([17], pp. 15, 16).

For an F -algebra A, associativity in A is measured by the associator [x, y, z] = (xy)z −
x(yz). The left nucleus of A is defined as Nucl(A) = {x ∈ A | [x, A,A] = 0}, the middle

nucleus of A is defined as Nucm(A) = {x ∈ A | [A, x,A] = 0} and the right nucleus of

A is defined as Nucr(A) = {x ∈ A | [A, A, x] = 0}. Their intersection Nuc(A) = {x ∈
A | [x, A,A] = [A, x,A] = [A, A, x] = 0} is the nucleus of A. The nucleus is an associative

subalgebra of A containing F1 and x(yz) = (xy)z whenever one of the elements x, y, z is in

Nuc(A).

2.2. Nonassociative quaternion division algebras. A nonassociative quaternion alge-

bra is a four-dimensional F -algebra A whose nucleus is a separable quadratic field extension

of F [19]. Let S be a quadratic étale algebra over F with canonical involution σ. For every

invertible b ∈ S \F , the vector space Cay(S,b) = S⊕S becomes a nonassociative quaternion

algebra over F with unit element (1, 0) and nucleus S under the multiplication

(u, v)(u′, v′) = (uu′ + bσ(v′)v, v′u + vσ(u))
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for u, u′, v, v′ ∈ S. Given any nonassociative quaternion algebra A over F with nucleus S,

there exists an element b ∈ S \ F such that A ∼= Cay(S, b) [16], Lemma 1.

Nonassociative quaternion algebras are neither power-associative nor quadratic. Cay(S, b)

is a division algebra if and only if S is a separable quadratic field extension of F .

Nonassociative quaternion division algebras were first discovered by Dickson [15] and

Albert [14].

2.3. Cyclic algebras. Let K/F be a cyclic Galois extension of degree n, with Galois group

Gal(K/F ) = 〈σ〉 and c ∈ F×. A cyclic algebra D = (K/F, σ, c) of degree n over F is an

n-dimensional K-vector space

D = K ⊕ eK ⊕ e2K ⊕ · · · ⊕ en−1K,

with multiplication given by the relations

(4) en = c, xe = eσ(x),

for all x ∈ K. We call {1, e, e2, . . . , en−1} the standard basis of the right K-vector space D.

The left multiplication λy of elements of D with y = y0 + ey1 + · · · + en−1yn−1 ∈ D

induces a representation λ : D → Matn(K) which maps elements of D to matrices of the

form

(5)




y0 cσ(yn−1) cσ2(yn−2) . . . cσn−1(y1)

y1 σ(y0) cσ2(yn−1) . . . cσn−1(y2)
...

...
...

yn−2 σ(yn−3) σ2(yn−4) . . . cσn−1(yn−1)

yn−1 σ(yn−2) σ2(yn−3) . . . σn−1(y0)




where y0, . . . , yn−1 ∈ K. Obviously, we have X ± Y ∈ λ(D) for all X,Y ∈ λ(D). Thus

D = λ(D) is a linear codebook. If D is division, the codebook D = λ(D) is fully diverse. In

the following, we often identify elements x ∈ D with their standard matrix representation

X = λ(x) ∈ D and use upper case letters for them.

For the standard terminology for code design we use, we refer the reader to [11].

3. Iterated algebras

Let K/F be a Galois field extension of F of degree n with Gal(K/F ) = 〈σ〉. Let D =

(K/F, σ, c) be a cyclic algebra over F of degree n with norm ND/F , τ ∈ Aut(K) and

F0 = Fix(τ)∩F . For x = x0 + ex1 + e2x2 + · · ·+ en−1xn−1 ∈ D, define the map τ̃ : D → D

via

τ̃(x) = τ(x0) + eτ(x1) + e2τ(x2) + · · · + en−1τ(xn−1).

τ̃ is Fix(τ)-linear. Let d ∈ D×. Then the 2n-dimensional F -vector space D ⊕ D can be

made into a unital algebra over F0 via the multiplication

(u, v) ·l (u′, v′) = (uu′ + dτ̃(v)v′, vu′ + τ̃(u)v′)
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for u, u′, v, v′ ∈ D. The unit element is given by 1 = (1, 0). An algebra obtained from such

a doubling of D is denoted by Itl(D, τ, d).

If d ∈ D× is not contained in F , we also define multiplications

(u, v) ·m (u′, v′) = (uu′ + τ̃(v)dv′, vu′ + τ̃(u)v′)

resp.

(u, v) ·r (u′, v′) = (uu′ + τ̃(v)v′d, vu′ + τ̃(u)v′)

on D ⊕ D and denote the corresponding F0-algebras by Itm(D, τ, d), resp. Itr(D, τ, d).

Itl(D, τ, d), Itm(D, τ, d) and Itr(D, τ, d) are called iterated algebras.

If d ∈ K, then the 2n-dimensional F -vector space K ⊕ K can be made into an algebra

over F0 with unit element 1 = (1, 0) via the multiplication

(u, v)(u′, v′) = (uu′ + dτ(v)v′, vu′ + τ(u)v′)

for u, u′, v, v′ ∈ K. We denote the algebra by It(K, τ, d). K is a subalgebra of It(K, τ, d).

Note that for d ∈ K, It(K, τ, d) is a subalgebra of Itl(D, τ, d), Itm(D, τ, d) and Itr(D, τ, d).

Remark 1. (i) Let K/Fix(τ) be a Galois field extension of degree 2. Then It(K, τ, d)

is isomorphic to the (associative or nonassociative) quaternion algebra (K/Fix(τ), τ, d) =

Cay(K, d). If d ∈ Fix(τ)×, (K/Fix(τ), σ, d) is an associative quaternion algebra, if d ∈
K \ Fix(τ), it is a nonassociative quaternion algebra (for the definition, see [19]).

(ii) (Steele) For u, v, u′, v′ ∈ D, multiplication in Itl(D, τ, d) can be written as

(u, v) ·l (u′, v′) = (

[
u dτ̃(v)

v τ̃(u)

] [
u′

v′

]
)T ,

and multiplication in Itm(D, τ, d) as

(u, v) ·m (u′, v′) = (

[
u τ̃(v)d

v τ̃(u)

] [
u′

v′

]
)T .

If τ(c) = c, the representation matrices of the left multiplication of Itl(D, τ, d) appear

in the iterated space-time code construction of [11], but were not recognized as matrices

representing left multiplication in a nonassociative algebra.

In the following, let

Al = Itl(D, τ, d), Am = Itm(D, τ, d) or Ar = Itr(D, τ, d).

Clearly, D is a subalgebra of Al, Am and Ar. Put f = (0, 1D). Then f2 = d and the

multiplication in, for instance, Itl(D, τ, d) can also be written as

(u + fv) ·l (u′ + fv′) = (uu′ + dτ̃(v)v′) + f(vu′ + τ̃(u)v′))

for u, u′, v, v′ ∈ D. We call

{1, e, e2, . . . , en−1, f, fe, fe2, . . . , fen−1}

the standard basis of the right K-vector space Ai, i ∈ {l, r,m}.
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For i ∈ {l, r, m}, Ai is a free right D-modules of rank 2, since x(bc) = (xb)c for all b, c ∈ D

and x ∈ Ai. After a choice of D-basis, e.g. {1, f}, we can embed EndD(Ai) into the module

Mat2(D).

Furthermore, for i ∈ {l,m} left multiplication Lx with x ∈ Ai is a right D-module

endomorphism, so that we have a well-defined additive map

L : Ai → EndD(Ai) →֒ Mat2(D), x 7→ Lx 7→ L(x) = X

which is injective if Ai is division.

Lemma 2. (i) For i ∈ {l, r,m}, Ai is not power-associative if τ̃(d) 6= d. In particular, if

d ∈ K then Ai is not power-associative if d 6∈ Fix(τ).

(ii) Let B = (K ′/F, σ′, c′) and D = (K/F, σ, c) be two cyclic algebras over F and f : D → B

an algebra isomorphism. Suppose τ is a K-automorphism and τ ′ a K ′-automorphism, such

that f(τ̃(u)) = τ̃ ′(f(u)) for all u ∈ D. Let a ∈ B×. For u, v ∈ D, the map

G : D ⊕ D → B ⊕ B, G(u, v) = (f(u), a−1f(v))

defines the following algebra isomorphisms:

Itl(D, τ, d) ∼= Itl(B, τ ′, τ̃ ′(a)af(d)),

Itm(D, τ, d) ∼= Itm(B, τ ′, τ̃ ′(a)af(d)),

and

Itr(D, τ, d) ∼= Itr(B, τ ′, τ̃ ′(a)f(d)a).

In particular, for a ∈ Fix(τ)×,

Itl(D, τ, d) ∼= Itl(D, τ, a2d),

Itm(D, τ, d) ∼= Itm(D, τ, a2d)

and

Itr(D, τ, d) ∼= Itr(D, τ, a2d).

Proof. (i) We have f2 = (d, 0) and ff2 = (0, τ̃(d)) while f2f = (0, d). Therefore A is not

power-associative, if τ̃(d) 6= d, i.e. for d ∈ K if d 6∈ Fix(τ).

(ii) is a straightforward calculation. �

Proposition 3. Suppose τ commutes with σ. Let D′ = (K/F, σ, τ(c)) with standard basis

{1, e′, . . . , e′n−1}. For y = y0 + ey1 + · · · + en−1yn−1 ∈ D define a corresponding element

yD′ = y0 + e′y1 + · · · + e′n−1yn−1 ∈ D′. Then

ND/F (τ̃(y)) = τ(ND′/F (yD′)).

If c ∈ Fix(τ) then

ND/F (τ̃(y)) = τ(ND/F (y)),

λ(τ̃(y)) = τ(λ(y)) and τ̃(xy) = τ̃(x)τ̃(y).
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Proof. The left multiplication of elements of D = (K/F, σ, c) with y = y0 + ey1 + · · · +

en−1yn−1 ∈ D induces a representation λ : D → Matn(K) which maps elements of D to

matrices of the form

Y =




y0 cσ(yn−1) cσ2(yn−2) . . . cσn−1(y1)

y1 σ(y0) cσ2(yn−1) . . . cσn−1(y2)
...

...
...

yn−2 σ(yn−3) σ2(yn−4) . . . cσn−1(yn−1)

yn−1 σ(yn−2) σ2(yn−3) . . . σn−1(y0)




where y0, . . . , yn−1 ∈ K. We have det(Y ) = ND/F (y). Thus

ND/F (τ̃(y))

= det(




τ(y0) cσ(τ(yn−1)) cσ2(τ(yn−2)) . . . cσn−1(τ(y1))

τ(y1) σ(τ(y0)) cσ2(τ(yn−1)) . . . cσn−1(y2)
...

...
...

τ(yn−2) σ(τ(yn−3)) σ2(τ(yn−4)) . . . cσn−1(τ(yn−1))

τ(yn−1) σ(τ(yn−2)) σ2(τ(yn−3)) . . . σn−1(τ(y0))




)

=τ(




y0 τ(c)σ(yn−1) τ(c)σ2(yn−2) . . . τ(c)σn−1(y1)

y1 σ(y0) τ(c)σ2(yn−1) . . . τ(c)σn−1(y2)
...

...
...

yn−2 σ(yn−3) σ2(yn−4) . . . τ(c)σn−1(yn−1)

yn−1 σ(yn−2) σ2(yn−3) . . . σn−1(y0)




)

=τ(ND′/F (yD′)).

(6)

The rest is trivial. �

Remark 4. If D = (a, c)F is a quaternion algebra, D′ = (a, τ(c))F , we have ND/F (τ̃(x)) =

ND/F (τ(x0)+ jτ(x1)) = NK/F (τ(x0))− cNK/F (τ(x1)) = τ(x0)σ(τ(x0))− cτ(x1)σ(τ(x1)) =

τ(x0)τ(σ(x0))−cτ(x1)τ(σ(τ(x1)) = τ(NK/F (τ(x0)))−τ(τ(c)NK/F (τ(x1))) = τ(ND′/F (xD′))

as special case.

With this result, we are now able to prove:

Theorem 5. Let D be a cyclic division algebra of degree n over F and d ∈ D×. Suppose

τ ∈ Aut(K) commutes with σ. Let i ∈ {l, r, m}.
(i) Ai is a division algebra if

ND/F (d) 6= ND/F (zτ̃(z))

for all z ∈ D. Conversely, if Ai is a division algebra then d 6= zτ̃(z) for all z ∈ D×.

(ii) Suppose c ∈ Fix(τ). Then:

(a) Ai is a division algebra if and only if d 6= zτ̃(z) for all z ∈ D.
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(b) Ai is a division algebra if ND/F (d) 6= aτ(a) for all a ∈ ND/F (D×).

(iii) Suppose F ⊂ Fix(τ). Then Ai is a division algebra if ND/F (d) 6∈ ND/F (D×)2.

Proof. Consider Al (the other two cases of iterated algebras work analogously unless stated

otherwise).

(i) Suppose

(0, 0) = (u, v) ·l (u′, v′) = (uu′ + dτ̃(v)v′, vu′ + τ̃(u)v′)

for u, v, u′, v′ ∈ D. This is equivalent to

(7) uu′ + dτ̃(v)v′ = 0 and vu′ + τ̃(u)v′ = 0.

Assume v′ = 0, then uu′ = 0 and vu′ = 0. Hence either u′ = 0 and so (u′, v′) = 0 or u′ 6= 0

and u = v = 0. Also, if v = 0 then uu′ = 0 and τ̃(u)v′ = 0, thus u = 0 and (u, v) = 0, or

(u′, v′) = 0 and we are done.

So let v′ 6= 0 and v 6= 0. Then v′ ∈ D× and vu′ = −τ̃(u)v′ yields τ̃(u) = −vu′v′−1, i.e.

u = −τ̃(vu′v′−1). Substituted into the first equation this gives

τ̃(vu′v′−1)u′ = dτ̃(v)v′.

Applying the norm ND/F to both sides of this equation we get

ND/F (τ̃(vu′v′−1))ND/F (u′) = ND/F (d)ND/F (τ̃(v))ND/F (v′).

Employing Proposition 3, we obtain

ND/F (d)τ(ND′/F (vD′))ND/F (v′) = τ(ND′/F (vD′))τ(ND′/F (u′
D′))τ(ND′/F (v′−1

D′ ))ND/F (u′),

so that

(8) ND/F (d) = ND/F (u′)ND/F (v′)−1τ(ND′/F (u′
D′)ND′/F (v′

−1
D ))

= ND/F (u′v′
−1

)τ(ND′/F (u′
Dv′

−1
D )) = ND/F (u′v′

−1
)ND/F (τ̃(u′v′

−1
))

We conclude that Al is division for all d ∈ D× such that

ND/F (d) 6= ND/F (zτ̃(z))

for all z ∈ D. Conversely, if there is z ∈ D× such that d = zτ̃(z), then

(z, 1)(−τ̃(z), 1) = (−zτ̃(z) + d,−τ̃(z) + τ̃(z)) = (0, 0),

so Al contains zero divisors. We conclude that if Al is division then d 6= zτ̃(z) for all z ∈ D.

(ii) (a) From (7) we obtain for v′ 6= 0 that u′ = −v−1τ̃(u)v′ for any of the three types of

algebras.

For Al, hence uv−1τ̃(u)v′ = dτ̃(v)v′. Rearranging gives d = uv−1τ̃(u)τ̃(v−1) = uv−1τ̃(uv−1)

since c ∈ Fix(τ). Therefore Al is division if d 6= zτ̃(z) for all z ∈ D.

For Am this gives uv−1τ̃(u)v′ = τ̃(v)dv′. Rearranging gives d = τ̃(v−1)uv−1τ̃(u) = τ̃(v−1)uτ̃(τ̃(v−1)u)

since c ∈ Fix(τ). Therefore Am is division if d 6= zτ̃(z) for all z ∈ D.
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For Ar this gives uv−1τ̃(u)v′ = τ̃(v)v′d. Rearranging gives d = v′
−1

τ̃(v−1)uv−1τ̃(u)v′.

Therefore Ar is a division algebra if d 6= v−1zτ̃(z)v for all v, z ∈ D.

Since by Lemma 2, we have Ar
∼= Itr(D, τ, v−1dv) for all v ∈ D×, Ar is a division

algebra iff Itr(D, τ, v0dv−1
0 ) is division for all v0 ∈ D×. Suppose Ar is not division, then

Itr(D, τ, v0dv−1
0 ) is not division, so we have v0dv−1

0 = v−1zτ̃(z)v for all v, z ∈ D by the above

calculation, in particular for v = v0 which yields d = zτ̃(z) for all z ∈ D. We conclude that

Ar is a division algebra if and only if d 6= zτ̃(z) for all z ∈ D.

(b) If c ∈ Fix(τ), then (8) becomes

(9) ND/F (d) = ND/F (u′v′
−1

)τ(ND/F (u′v′
−1

))

and so Al is division if

ND/F (d) 6= aτ(a)

for all a ∈ ND/F (D).

(iii) If F ⊂ Fix(τ), (9) becomes

ND/F (d) = ND/F (u′v′−1)τ(ND′/F (u′v′−1)) = ND/F (u′v′−1)2.

For the multiplications in Am and Ar, the order of the factors in the first equation changes,

which however does not affect the proofs. �

Proposition 6. Let K = F [x]/(f(x)) be a Galois field extension of F of degree n with

Gal(K/F ) = 〈σ〉. Let τ ∈ Aut(K) and suppose τ commutes with σ. Then

(i) NK/F (τ(x)) = τ(NK′/F (xK′)), where K ′ = F [x]/(τ(f(x))).

(ii) If c ∈ Fix(τ) then NK/F (τ(x)) = NK/F (x).

(iii) It(K, τ, d) is a division algebra for every d ∈ K, such that NK/F (d) 6= NK/F (zτ(z)) for

all z ∈ K.

(iv) If c ∈ Fix(τ) then It(K, τ, d) is a division algebra if and only if d 6= zτ̃(z) for all z ∈ K.

(v) If F ⊂ Fix(τ), then It(K, τ, d) is a division algebra if NK/F (d) 6∈ NK/F (K×)2.

This is proved analogously as Proposition 3 and Theorem 5.

Corollary 7. Let D = (K/F, σ, c) be a cyclic division algebra and d ∈ D×. Let τ ∈ Aut(K)

and suppose τ commutes with σ. Let i ∈ {l, r,m}.
(i) Ai is a division algebra if ND/F (d) 6∈ ND/F (D×) for all z ∈ D×.

(ii) Suppose c ∈ Fix(τ).

(a) Ai is a division algebra if ND/F (d) 6= aτ(a) for all a ∈ F×.

(b) For d ∈ F×, Ai is a division algebra if d2 6= aτ(a) for all a ∈ F×.

(iii) Suppose F ⊂ Fix(τ).

(a) Ai is a division algebra if ND/F (d) 6∈ F×2.

(b) For d ∈ F×, Ai is a division algebra if d 6∈ ±ND/F (D×).

Note that d 6∈ ±ND/F (D×) is never the case for F = Q ([21], Theorem 1.4, p. 378).
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Example 8. Let K = F (
√

a), D = (a, b)F = Cay(K, b) be a division algebra and Gal(K/F ) =

〈σ〉.
(i) Let F = Q or F = Q(

√
e) with e > 0. Suppose a > 0, b > 0. Then for every

d = x1i + x2j ∈ D with (x1, x2) 6= (0, 0) we know that ND/F (d) = −(ax2
1 + bx2

2) < 0 and

thus not a square in F , thus Itl(D,σ, d), Itm(D,σ, d) and Itr(D,σ, d) are division algebras

over F .

(ii) Let F = Q and a < 0, b < 0. Then D is always a division algebra. Itl(D,σ, d),

Itm(D,σ, d) and Itr(D,σ, d) are division algebras for all d = x0 + x1i + x2j + x3k, such that

the positive rational number ND/Q(d) = x2
0 − ax2

1 − bx2
2 + abx2

3 is not a square in Q.

(iii) Let F = Q. If D = (−1, p)Q, p 6≡ 1(4) an odd prime, D is a division algebra and

we may for instance choose d = x2i + x3k with x2, x3 ∈ Q, (x1, x2) 6= (0, 0). Then

ND/Q(d) = −p(x2
2 + x2

3) < 0, hence Itl(D,σ, d), Itm(D,σ, d) and Itr(D,σ, d) are division

algebras.

If D = (−2, p)Q, p ≡ 1, 3 (8) an odd prime, D is a division algebra and we may again

choose d = x2i+x3k with x2, x3 ∈ Q, (x1, x2) 6= (0, 0). Then ND/Q(c) = −(px2
2 +2px2

3) < 0,

hence Itl(D,σ, d), Itm(D,σ, d) and Itr(D,σ, d) are division algebras.

We obtain the following more general rule:

Lemma 9. Let F be an ordered field (such that −1 is in particular not a square) and (a, b)F

a division algebra over F with a < 0 and b > 0.

(i) Itl(D,σ, d), Itm(D,σ, d) and Itr(D,σ, d) are division algebras, for every d = x2i+x3k ∈ D

with (x1, x2) 6= (0, 0).

(ii) Suppose τ commutes with σ and F ⊂ Fix(τ). Then Itl(D, τ, d), Itm(D, τ, d) and

Itr(D, τ, d) are division algebras, for every d = x2i + x3k ∈ D with (x1, x2) 6= (0, 0).

Proof. We have ND/F (d) = −b(x2
2 − ax2

3) < 0. �

4. Connection with iterated codes

In the following, let K/F be a cyclic Galois extension of degree n with Galois group

Gal(K/F ) = 〈σ〉. Let D = (K/F, σ, c) be a cyclic associative division algebra of degree n

over F and d ∈ D×. Let τ be an automorphism of K such that τ(c) = c and τσ = στ .

Write d = d0+ed1+ · · ·+en−1dn−1 (di ∈ K) and identify d with its matrix representation

Θ = λ(d) ∈ D = λ(D) which is given by a matrix as in (5) with entries yi replaced by di.

In the iterative construction of [11], the map

αd : Matn(K) × Matn(K) → Mat2n(K),

(10) αd : (X, Y ) 7→
[
X Θτ(Y )

Y τ(X)

]
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is used to build a new code αd(D×D) out of D, where in the top right block we mean matrix

multiplication. The matrices in αd(D×D) turn out to be the matrices of left multiplication

in Al = Itl(D, τ, d), provided that τ(c) = c.

An iterated algebra Ai, i ∈ {l,m, r}, is a K-vector space. After a choice of K-basis for

Ai, we can embed EndK(Ai) into the vector space Matn(K).

For Al = Itl(D, τ, d) and Am = Itm(D, τ, d), left multiplication λx : y 7→ xy with an

element x is a K-linear map (since (xy)a = x(ya) for all x, y ∈ Ai, a ∈ K, i ∈ {l,m}).
So consider Ai as a right K-vector space and assume that Ai is a division algebra, i ∈

{l,m}. Since λx(y) = λx′(y) for all y ∈ Ai implies (x − x′)y = 0 for all y ∈ Ai and thus

x = x′, λ : Ai →֒ EndK(Ai), x 7→ λx is a well-defined injective additive map for i ∈ {l,m}.
Thus we get an injective additive map

λ : Ai →֒ Matr(K), x 7→ X,

where X = λ(x) is the matrix representing left multiplication with x. Ai = λ(Ai) constitutes

a linear codebook, since for all X, X ′ ∈ λ(Ai), we have X ± X ′ = λ(x) ± λ(x′) = λ(x ±
x′) ∈ λ(Ai). We point out that the fact that a nonassociative algebra is division does not

automatically imply that there is an associated fully diverse codebook Ai = λ(Ai) one can

obtain from the matrices representing its left representation. This is only true in certain

cases and turns out to be correct for the codes obtained from left multiplication in Al or

Am treated in this paper.

For Am (or Al = Itl(D, τ, d) with d ∈ K×) division, we have (ax)y = a(xy) for all a ∈ K,

x, y ∈ Ai, so

λax(y) = (ax)y = a(xy) = aλx(y)

for all x, y ∈ Ai, a ∈ K, hence λ : Ai →֒ EndK(Ai), x 7→ λx is even an embedding of

K-vector spaces, i ∈ {l,m}. For our code constructions, however, it suffices that λ is an

injective additive map.

Remark 10. It may be worth noting here that the codes described in the iterated code

construction of [11] all have d ∈ K×, so that λ(Al) is a K-vector space. If one wants the

matrices of the codebook to be a K-vector space for any d ∈ D×, it could make sense to

rather look at the codes λ(Am) (where the matrix Θ = λ(d) appears on the right hand side

in the right upper block matrix instead of on the left hand side). However, all considerations

in [11] only require λ(Ai) to be an F -vector space, which is true for i ∈ {l,m}.

To avoid confusion we will use upper case letters to denote the image of elements x of

an algebra A in λ(A), i.e. λ(x) = X. Codebooks obtained from an algebra A, C, D, . . .

respectively, will be denoted by A = λ(A), C = λ(C), D = λ(D),...

Theorem 11. Let D = (K/F, σ, c) be a cyclic division algebra over F and d ∈ D×. Let

τ ∈ Aut(K) such that τ(c) = c and τσ = στ.
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(i) The codebook defined by αd(D ×D),

αd : (X, Y ) →
[
X Θτ(Y )

Y τ(X)

]
,

is fully diverse, if and only if d 6= zτ̃(z) for all z ∈ D.

(ii) The codebook defined by βd(D ×D),

βd : (X, Y ) 7→
[
X τ(Y )Θ

Y τ(X)

]
,

is fully diverse, if and only if d 6= zτ̃(z) for all z ∈ D.

The determinant of a matrix in αd(D ×D), resp. βd(D ×D), is an element of F .

Note that the condition d 6= zτ̃(z) for all z ∈ D is equivalent to Θ 6= Zτ(Z) for all Z ∈ D
here, since τ(c) = c.

Proof. (i) If X ∈ D or Y ∈ D is the zero matrix, αd(X, Y ) is invertible, so assume X, Y ∈ D
are both non-zero matrices. Then the determinant of αd is given by

det(X) det(τ(X) − Y X−1Θτ(Y )).

Suppose det(αd(X, Y )) = 0, then, since det(X) is nonzero, we must have det(τ(X) −
Y X−1Θτ(Y )) = 0. Since τ(c) = c, we have

λ(τ̃(x)) = τ(λ(x)).

Thus

τ(X) − Y X−1Θτ(Y )

=τ(λ(x)) − λ(y)λ(x−1)λ(θ)τ(λ(y))

=λ(τ̃(x)) − λ(y)λ(x−1)λ(θ)λ(τ̃(y))

=λ(τ̃(x) − yx−1θτ̃(y))

(11)

and so

det(τ(X) − Y X−1Θτ(Y )) = det(λ(τ̃(x) − yx−1θτ̃(y))) = ND/F (τ̃(x) − yx−1θτ̃(y)).

Since D is division, we know ND/F (z) = 0 iff z = 0 for all z ∈ D, therefore τ̃(x) −
yx−1θτ̃(y) = 0, i.e. τ̃(x) = yx−1θτ̃(y). Rearranging gives

θ = xy−1τ̃(x)τ̃(y)−1 = zτ̃(z),

where z = xy−1, a contradiction of our hypothesis. Moreover, the determinant of αd(X, Y )

can be written as

ND/F (x)ND/F (τ̃(x) − yx1θτ̃(y)),

and therefore takes values in F .
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Conversely, if d = zτ̃(z) for some z ∈ D then αd(Z, In) has determinant zero, because

det(τ(Z)) = det(det(λ(τ̃(z) − z−1zτ̃(z))) = 0.

(ii) is proved analogously as (i). Note that the determinant of βd(X, Y ) can be written as

ND/F (x)ND/F (τ(x) − yx1τ(y)d),

and thus takes values in F . �

Theorem 11 together with Theorem 5 and Remark 1(ii) yields:

Theorem 12. Let D = (K/F, σ, c) be a cyclic division algebra over F and d ∈ D×. Let

τ ∈ Aut(K) such that τ(c) = c and τσ = στ. Then the following are equivalent:

(i) Al (resp., Am) is a division algebra.

(ii) d 6= zτ̃(z) for all z ∈ D.

(iii) The codebook αd(D × D) (resp., βd(D × D)) is fully diverse and its matrices are the

representation matrices of left multiplication in Al (resp., of left multiplication in Am).

4.1. 4×4 iterated codes from Al. Let D = (a, b)F and K = F (
√

a) with Gal(K/F ) = 〈σ〉.
Take the standard basis 1, j, f, fj of the K-vector space Al = Itl(D, τ, d). Let τ̃(x) =

τ(x0) + jτ(x1) for all x = x0 + jx1 ∈ D, where τ is an automorphism of K commuting with

σ. and τ(b) = b. Note that for x = x0 + jx1, X = λ(x) ∈ Mat2(K) is given by

λ(x) =

[
x0 bσ(x1)

x1 σ(x0)

]
.

For multiplication in Al we have to observe that for all x ∈ K, d = d0 + jd1 ∈ D×, di ∈ K:

(1) xf = fτ(x),

(2) (fx)j = (fj)σ(x),

(3) ((fj)x)f = jσ(d0)τ(x) + bσ(d1)τ(x),

(4) ((fj)x)j = fbσ(x),

(5) (jx)f = (fj)τ(x),

(6) (fx)f = σ(d)τ(x) = d0τ(x) + jd1τ(x),

(7) x(fj) = (fj)τ(σ(x)),

(8) (jx)(fj) = fbτ(σ(x)),

(9) ((fj)x)(fj) = d0bτ(σ(x)) + jd1bτ(σ(x)),

(10) (fx)(fj) = jσ(d0)τ(σ(x)) + bσ(d1)τ(σ(x)),

(11) x(fj) = (fj)τ(σ(x)).

Then the matrix representing left multiplication λx in Al is given by




x0 bσ(x1) f1 f2

x1 σ(x0) f3 f4

y0 bσ(y1) τ(x0) bτ(σ(x1))

y1 σ(y0) τ(x1) τ(σ(x0))
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with xi, yi ∈ K and

[
f1 f2

f3 f4

]
=

[
d0τ(x2) + bσ(d1)τ(x3) b(d0στ(x3) + σ(d1)στ(x2))

d1τ(x2) + σ(d0)τ(x3) d1bστ(x3) + σ(d0)στ(x2)

]
.

Denote the linear codebook containing these matrices by A.

For X, Y ∈ Mat2(K), d = d0 + jd1 ∈ D, Θ = λ(d), define

αd(X, Y ) =

[
X Θτ(Y )

Y τ(X)

]
,

as in [11], where in the top right block we mean matrix multiplication, i.e.,

Θτ(Y ) =

[
d0τ(x2) + bσ(d1)τ(x3) b(d0στ(x3) + σ(d1)στ(x2))

d1τ(x2) + σ(d0)τ(x3) d1bστ(x3) + σ(d0)στ(x2)

]
=

[
f1 f2

f3 f4

]
.

Then

(12) αd(

[
x0 bσ(x1)

x1 σ(x0)

]
,

[
y0 bσ(y1)

y1 σ(y0)

]
) =




x0 bσ(x1) f1 f2

x1 σ(x0) f3 f4

y0 bσ(y1) τ(x0) τ(b)τ(σ(x1))

y1 σ(y0) τ(x1) τ(σ(x0))




,

therefore αd(D × D) = A, since τ(b) = b. For d ∈ K×, the representation matrix of left

multiplication in Al is given by




x0 bσ(x1) dτσ(x2) dbτσ(x3)

x1 σ(x0) σ(d)τσ(x3) σ(d)τσ(x2)

x2 bσ(x3) σ(x0) bσ(x1)

x3 σ(x2) σ(x1) σ(x0)




with xi ∈ K = F (
√

a).

As consequence of Theorem 12 we obtain:

Corollary 13. Let D = (a, b)F be a division algebra, K = F (
√

a) with Gal(K/F ) = 〈σ〉
and d ∈ D×. Let τ ∈ Aut(K) such that τ(b) = b and τσ = στ . Let Al = Itl(D, τ, d). Then

the following are equivalent:

(i) The codebook A in (12) is fully diverse.

(ii) d 6= zτ̃(z) for all z ∈ D.

(iii) Al is a division algebra.

Moreover, the determinant of a matrix in A is an element of F .

Example 14. Let F = Q or F = Q(
√

e) with e > 0. Let L = F (
√

a,
√

b), K = F (
√

b)

with 〈σ〉 = Gal(L/K) and D = (a, c)K a quaternion division algebra over K with c ∈ F×.

Let 〈τ〉 = Gal(L/F (
√

a)). For d ∈ K×, the representation matrix of left multiplication in
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Itl((a, c)K , τ, d) (or Itm((a, c)K , τ, d), see below) has the form




x0 cσ(x1) dτ(x2) dcτ(σ(x3))

x1 σ(x0) dτ(x3) dτ(σ(x2))

x2 cσ(x3) τ(x0) cτ(x1)

x3 σ(x2) τ(x1) τ(x0)




.

For d ∈ L \ F (
√

b), it is




x0 cσ(x1) dτ(x2) dcτ(σ(x3))

x1 σ(x0) σ(d)τ(x3) σ(d)τ(σ(x2))

x2 cσ(x3) τ(x0) cτ(x1)

x3 σ(x2) τ(x1) τ(x0)




with all xi ∈ L (using the standard basis both times). Let c > 0. Suppose a > 0, c > 0.

Then for every d = d1i + d2j ∈ D with (d1, d2) 6= (0, 0) (we do not need to restrict this to

d ∈ L×, only that the matrix representing left multiplication loses its nice form for other d)

we know that ND/K(d) = −(ad2
1 + cd2

2) < 0, i.e ND/K(d) 6∈ ND/K(D×)2. Hence Itl(D, τ, d),

Itm(D, τ, d) and Itr(D, τ, d) are division algebras over K.

Lemma 15. For any F = Q(
√

e), x = a +
√

eb ∈ F with a, b ∈ Q, we have

F× 2 = {(a2 + eb2) + 2ab
√

e | a, b ∈ Q}.

To obtain examples of well-performing (i.e., fast-decodable) codes from Al, it seems prefer-

able to choose F as a totally imaginary number field and K ⊂ D such that the Galois

automorphism σ of K/F commutes with complex conjugation, see [11], p. 21.

Example 16. (i) Let D = (−1,−1)F with F = Q(
√
−7), K = Q(

√
−7)(i) and σ(x0+ix1) =

x0 − ix1 for all xi ∈ F as in [11], Section IV.A. D is the division algebra over F used to

construct the Silver Code.

d = −17 is not a square in K (loc. cit.) and by [11], Lemma 11, Itl(D,σ,−17) is a

division algebra (associative in this case, see loc. cit.).

Suppose d = i ∈ K \ F . By Theorem 13, Itl(D,σ, i) is a division algebra if and only if

i 6= zσ̃(z) for all z ∈ D. Now for z = z0 + jz1 we get

zσ̃(z) = NK/F (z0) − σ(z1)
2 + jσ(z0)TK/F (z1)

and a straightforward calculation shows that i 6= zσ̃(z) for all z ∈ D. Thus the the iterated

Silver code built in [11], Section IV.A., arising from αi, i.e. given by




c −σ(d) iσ(e) −if

d σ(c) −iσ(f) −ie

e −σ(f) σ(c) −d

f σ(e) σ(d) c




,
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with c, d, e, f ∈ K, is fully diverse and has NVD by Corollary 13. More generally, for all

d ∈ D× such that

ND/F (d) 6∈ F×2 = {(a2 − 7b2) + 2ab
√
−7 | a, b ∈ Q},

Itl(D,σ, d) is a division algebra. For instance, choose d = 1+ i+ j then ND/F (1+ i+ j) = 3

and assuming 3 = (a2 − 7b2) + 2ab
√
−7 yields a = 0 or b = 0, hence that 3 is a square in

Q, a contradiction, or that −3/7 = b2, again a contradiction. Therefore Itl(D,σ, 1 + i + j)

is a division algebra, and analogously, so would be for instance also Itl(D,σ, 1 + i + ij),

Itl(D,σ, i+ j) etc. If, for coding theoretical purposes, we want to only consider d ∈ K, then

a similar argument yields that Itl(D,σ, 1 + i) is division (2 is not a square in Q, and neither

is −2/7). All these choices yield fully diverse codes.

(ii) As in [11], Section IV.B., let F = Q(i), K = Q(i)(
√

5), D = (5, i)F with standard basis

1, I, J, IJ , and σ(
√

5) = −
√

5. Then Itl(D,σ, d) is division for all d = x0 +Ix1 +Jx2 +IJx3,

such that ND/Q(i)(d) = x2
0 − 5x2

1 − ix2
2 + 5ix2

3 is not a square in F = Q(i). We have

F× 2 = {(a2 − b2) + 2abi | a, b ∈ Q}.

Now ND/Q(i)(1 + I + J) = −4 − i and assuming that −4 − i = (a2 − b2) + 2abi yields

a = b = 0, a contradiction. Hence Itl(D,σ, 1 +
√

5 + J) is a division algebra. Similarly, so

is Itl(D,σ, 1+
√

5
2 ), using the Golden number for d (as -1 is not a square in Q). Therefore by

Corollary 13, the iterated Golden code arising from αd with d = 1+
√

5
2 is fully diverse and

has NVD.

(iii) Let D = (−1,−1)Q. Then Itl(D,σ, d) is division for all d = x0 + x1i + x2j + x3k, such

that the positive rational number ND/Q(d) = x2
0 + x2

1 + x2
2 + x2

3 is not a square in Q, e.g.

for d = 1 + i. Its matrix representation of left multiplication yields a fully diverse codebook

which however is not full-rate.

Example 17. Let F = Q(
√

5), D = (−1,−1)Q(
√

5) and τ : Q(i,
√

5) → Q(i,
√

5) given by

τ(
√

5) = −
√

5, τ(i) = i, the generator of the cyclic Galois group of Q(i,
√

5)/Q(
√

5). Then

Itl(D, τ, d) is division for all d ∈ D×, such that d 6= zτ̃(z) for all z ∈ D. This is for instance

true for d = i, by an analogous argument as used in [12], Section IV.B. The corresponding

code 


c −σ(d) iτ(e) −iτσ(f)

d σ(c) −iτ(f) −iτσ(e)

e −σ(f) τ(c) −τσ(d)

f σ(e) τ(d) τσ(c)




,

with c, d, e, f ∈ Q(i,
√

5) chosen in the ring of integers OK as usual, is hence fully di-

verse. Since analogous considerations as in [12] hold for this code (the proofs carry over

verbatim), this iterated code has the same ML-decoding complexity as the SR-code and is

fast-decodable. Note that the SR-code has the lowest ML-decoding complexity (O(M4.5) for
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square M -QAM) among currently known rate-2 space-time codes for a 4× 2-MIDO system

[12].

Despite looking very similar to the SR-code [13], discussed for instance in [12], Section

IV.B., as it only differs by two minus signs (one minus sign in entry (2, 3), one in (2, 4))

from the SR-code, this code, however, does not seem to have NVD as its matrices have

determinant in F by Corollary 13, which distinguishes it from the SR-code which has NVD.

We observe that for all a ∈ F×, a = a0 +
√

5a1 with ai ∈ Q, we have aτ(a) = (a0 +√
5a1)(a0 −

√
5a1) = a2

0 − 5a2
1 ∈ Q, and that for x = x0 + ix1 + jx2 + ijx3 ∈ D with

xi ∈ Q(
√

5), we get NK/F (x) = x2
0 + x2

1 + x2
2 + x2

3 ∈ Q(
√

5). By Theorem 5 (b), hence any

d ∈ D× such that NK/F (d) 6∈ Q will yield a division algebra Itl(D, τ, d) and therefore a fully

diverse code. E.g., any d ∈ F×, d = d0 +
√

5d1 with d0, d1 ∈ Q both nonzero will yield

a division algebra Itl(D, τ, d). The determinants of the matrices in codes associated to the

left multiplication in algebras Itl(D, τ, d) with d ∈ F are in Q(i) which implies these codes

would have NVD. Since analogous considerations on the ML-decoding complexity as in [12]

hold for these codes, they are fast-decodable as well.

Remark 18. The considerations on iterating the Silver code given in [11], Section IV.

(where d is called θ), by employing the map αd with τ = σ and d ∈ F× = Q(
√
−7)× in the

base field, also generalize to the case that d ∈ F (i) \ F , considered in Example 16 (i). This

mean that the code αd(D × D) inherits fast-decodability from the Silver code, as Lemma

15 in [11] still holds in this setting. This confirms the explicit calculation in [11], Section

IV.A., that the decoding complexity for d = i is O(|S|13).

4.2. 4× 4 codes obtained from Am. Let D = (a, b)F and K = F (
√

a) with Gal(K/F ) =

〈σ〉. Take the standard basis 1, j, f, fj of the right K-vector space Am = Itm(D, τ, d). Let

τ̃(x) = τ(x0)+jτ(x1) for all x = x0+jx1 ∈ D, where τ is an automorphism of K commuting

with σ.

For multiplication in Am we have to observe that for all x ∈ K, d = d0 + jd1, di ∈ K:

(1) xf = fτ(x),

(2) (fx)j = (fj)σ(x),

(3) ((fj)x)f = jτ(x)d0 + bτ(σ(x))d1,

(4) ((fj)x)j = fbσ(x),

(5) (jx)f = (fj)τ(x),

(6) (fx)f = τ(x)d0 + jτ(σ(x))d1,

(7) x(fj) = (fj)τ(σ(x)),

(8) (jx)(fj) = fbτ(σ(x)),

(9) ((fj)x)(fj) = bτ(σ(x))σ(d0) + jτ(x)σ(d1)b,

(10) (fx)(fj) = jτ(σ(x))σ(d0) + bτ(x)σ(d1),

(11) x(fj) = (fj)τ(σ(x)).
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Thus the representation matrix of left multiplication is given by

[
A τ(B)Θ

B τ(A)

]
,

with A, B ∈ D and Θ = λ(d) as before.

The considerations from Example 16 can easily be adjusted now to yield fully diverse

codes of type βd(D ×D). Whenever d ∈ D \K, these codes will be of a different form than

the ones obtained via αd(D ×D).

4.3. 6 × 3 case. The following setup is treated in [11], Section V for n = 3: Let L be a

Galois extension with Galois group Gal(L/F ) = C2 × Cn (i.e., ∼= C2n, if n odd), where σ

generates Cn and τ generates C2. Let K = Fix(σ), then Gal(L/K) = 〈σ〉. Let K = F (
√

a)

and D = (L/K, σ, c) a cyclic division algebra over K of degree n. Let d ∈ D× (only d ∈ K

is studied in in [11], Section V). Then Al = Itl(D, τ, d) is division over K if

ND/K(d) 6= ND/K(zτ̃(z))

for all z ∈ D. If c ∈ Fix(τ) as in all the examples treated in [11], Section V, then Al is a

division algebra if and only if d 6= zτ̃(z) for all z ∈ D by Theorem 12.

Example 19. Let ζ7 be a primitive 7th root of unity.

(i) D = (Q(ζ7, i)/Q(
√
−7, i), σ, 1 + i) is a cyclic division algebra of degree 3 over K =

Q(
√
−7, i) = Q(

√
7, i) with σ : ζ7 7→ ζ2

7 . Let F = Q(i) and τ(
√

7) = −
√

7, τ(i) = i as in

[11], Example 4. For a = a1 + ia1 +
√

7a2 +
√
−7ia3 ∈ K, ai ∈ Q we have

aτ(a) = (a2
0 − a2

1 − 7a2
2 − 7a2

3) + 2(a0a1 − 7a1a3)i.

By Corollary 7, Al = Itl(D, τ, d) is division if

ND/K(d) 6= aτ(a)

for all a ∈ K×. It was already shown in [11] that Itl(D, τ, i
√

7) is an associative division

algebra. The induced code has NVD and is fast-decodable. It is easy to see that for instance

also Itl(D, τ, ζ7) is a division algebra.

(ii) D = (Q(ζ7)/Q(
√
−7), σ, 3) is a cyclic division algebra of degree 3 over K = Q(

√
−7)

with σ : ζ7 7→ ζ2
7 . Let F = Q(i) and τ(

√
−7) = −

√
−7, as in [11], Example 5. For

a = a0 +
√
−7a1 ∈ Q(

√
−7), ai ∈ Q, we have

aτ̃(a) = a2
0 + 7a2

1 > 0.

By Corollary 7, Itl(D, τ, d) is a division algebra over K if ND/K(d) 6= aτ(a) for all a ∈
ND/K(D×). Now d = ζ7 ∈ Q(ζ7) \ Q(

√
−7) has ND/K(ζ7) = ζ6

7 . Hence Itl(D, τ, ζ7) is

division.
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5. Iterated algebras inside the tensor product of a cyclic division algebra

and a (nonassociative) quaternion algebra

The following two results deal with the setup treated in [11], Sections IV. and V.

Theorem 20. Let K/F be a cyclic field extension of degree n = 2m with Gal(K/F ) = 〈σ〉
and K1 = F (

√
a) the subfield of K with Gal(K1/F ) = 〈σm〉. Let D = (K/F, σ, c) be a cyclic

division algebra and d ∈ K×
1 . Then

Itl(D,σm, d)

is a subalgebra of the tensor product

A = D ⊗F Cay(K1, d)

of D and the (perhaps nonassociative) quaternion algebra Cay(K1, d) over F .

In particular, if d ∈ F× then Itl(D,σm, d) is associative.

Proof. (K/F, σ, c) is an n-dimensional K-vector space with basis {1, e, e2, . . . , en−1}, where

en = c, and Cay(K1, d) a two-dimensional K1-vector space with basis {1, j}, where j2 = d.

Since R = K ⊗F K1 ⊂ Nuc(A), A is a free right R-algebra of dimension 2n with R-basis

{1 ⊗ 1, e ⊗ 1, . . . , en−1 ⊗ 1, 1 ⊗ j, e ⊗ j, en−1 ⊗ j}.

and we can identify

A = R ⊕ eR ⊕ · · · ⊕ en−1R ⊕ jR ⊕ ejR ⊕ · · · ⊕ en−1jR.

Since R ⊂ Nuc(A), Lx ∈ EndR(A) and λ : A → EndR(A) →֒ Mat2n(R), x 7→ Lx 7→ λ(x) =

X an R-linear map. An element in λ(A) has the form
[
Y Θσm(Z)

Z σm(Y )

]
.

with Θ = λ(d), Y,Z ∈ Matn(R), such that when restricting the entries of Y , Z, xi, yi ∈ R,

to elements in K, we obtain X, Y ∈ D and a codebook A = αd(D ×D), where

αd(X, Y ) =

[
Y Θσmσ(Z)

Z σmσ(Y )

]

Restricting the matrices and only allow entries in K amounts to computing the matrix

representing left multiplication with an element in A0 for the subspace

A0 = K ⊕ eK ⊕ · · · ⊕ en−1K ⊕ jK ⊕ ejK ⊕ · · · ⊕ en−1jK

of A. This has dimension 2n2 as F -vector space. If Cay(K1, d) is associative, i.e. d ∈ F×,

A is the representation of a central simple algebra A over F [18].

A0 is a nonassociative F0-subalgebra of A. Its representation matrix of left multiplication

equals the one of Itl(D,σm, d) by Theorem 12, so A0 = Itl(D,σm, d). �
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Theorem 21. Let L be a Galois extension with Galois group Gal(L/F ) = C2 × Cn (i.e.,

∼= C2n, if n is odd), where σ generates Cn and τ generates C2. Let K = Fix(σ), then

Gal(L/K) = 〈σ〉. Let K = F (
√

a), d ∈ K, and Gal(K/F ) = 〈τ〉. Let D = (L/K, σ, c) be

a cyclic division algebra over K of degree n. Then Itl(D, τ, d) is a subalgebra of the tensor

product

D ⊗K (Cay(K, d) ⊗F K)

of D with the (perhaps nonassociative) split quaternion algebra Cay(K, d) ⊗F K over K.

In particular, if d ∈ F× then Itl(D, τ, d) is associative.

Proof. The K-algebra Cay(K, d) ⊗F K contains the split quadratic étale K-algebra T =

K ⊗F K ∼= K × K. D = (L/K, σ, c) is an n-dimensional L-vector space with basis

{1, e, e2, . . . , en−1} and Cay(K, d) ⊗F K = T ⊕ jT a two-dimensional right T -module with

basis {1, j}, where j2 = d. A = (L/K, σ, c)⊗K (Cay(F (
√

a), d)⊗F K) contains the K-algebra

R = L ⊗K T ∼= L × L ⊂ Nuc(A). A is a free right R-algebra of dimension 2n with R-basis

{1 ⊗ 1, e ⊗ 1, . . . , en−1 ⊗ 1, 1 ⊗ j, e ⊗ j, en−1 ⊗ j} and we identify

A = R ⊕ eR ⊕ · · · ⊕ en−1R ⊕ jR ⊕ ejR ⊕ · · · ⊕ en−1jR.

Since R ⊂ Nuc(A), Lx ∈ EndR(A) and λ : A → EndR(A) →֒ Mat2n(R), x 7→ Lx 7→ λ(x) =

X an R-linear map. An element in λ(A) has the form
[
Y Θτσ(Z)

Z τσ(Y )

]

with Θ = λ(d), Y,Z ∈ Matn(R), such that when restricting the matrix entries of Y , Z to

elements in L ⊂ R, we obtain X, Y ∈ D. Restricting the elements to have entries in L

amounts to computing the matrix representing left multiplication λx in the subspace

A0 = L ⊕ eL ⊕ · · · ⊕ en−1K ⊕ jL ⊕ ejL ⊕ · · · ⊕ en−1jL ⊂ A,

using elements x, y ∈ A0 only. A0 is an F0-subalgebra of A. Its representation matrix of left

multiplication equals the one of Itl(D, τ, d) by Theorem 12, so A0 = Itl(D, τ, d).

�

6. Generalized Cayley-Dickson algebras

Let K/F be a cyclic field extension of degree n with Gal(K/F ) = 〈σ〉. Let D = (K/F, σ, c)

be a cyclic algebra over F of degree n, τ ∈ Aut(K), F0 = Fix(τ) ∩ F and d ∈ D×.

The previously discussed way to define a multiplication on the 2n-dimensional F -vector

space D ⊕ D can be changed by randomly permuting the factors inside the definition.

Since the proof of Theorem 5 is independent of theses permutations, this yields algebras

which are division under the same condition as the iterated ones and which display similar

behaviour. What makes the iterated algebras Al and Am stand out from the others, and

important for developing space-time block codes, is the fact that they are right D-modules

with λx ∈ EndD(Ai) for i ∈ {l,m}.
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To demonstrate this, we consider one case, where the factors are arranged as in the

classical Cayley-Dickson doubling process. Then the 2n-dimensional F -vector space D ⊕ D

is made into an algebra over F0 with unit element 1 = (1, 0) via the multiplication

(u, v) ◦l (u′, v′) = (uu′ + dτ̃(v′)v, v′u + vτ̃(u′))

for u, u′, v, v′ ∈ D. An algebra obtained from such a doubling of D is denoted by Cayl(D, τ, d).

If d ∈ D× is not contained in F , define

(u, v) ◦m (u′, v′) = (uu′ + τ̃(v′)dv, v′u + vτ̃(u′))

resp.

(u, v) ◦r (u′, v′) = (uu′ + τ̃(v′)vd, v′u + vτ̃(u′))

on D ⊕ D and denote the corresponding F0-algebras by Caym(D, τ, d), resp.

Cayr(D, τ, d). (Even if τ = σ, d ∈ F× and D is a quaternion algebra, this is not the

classical Cayley-Dickson process, as τ̃ is not the canonical involution on D: τ̃(j) = j,

whereas σ(j) = −j.)

In the following, write

Cl = Cayl(D, τ, d), Cm = Caym(D, τ, d), Cr = Cayr(D, τ, d).

Clearly, D is a subalgebra of Ci for i ∈ {l,m, r}. Ci is a K-vector space, however, here Lx is

not always a K-linear map. Thus these algebras are less interesting for code constructions.

Put f = (0, 1D). Then for instance the multiplication in Cl can be written as

(u + fv) ◦l (u′ + fv′) = (uu′ + dτ̃(v′)v) + f(v′u + vτ̃(u′))

for u, u′, v, v′ ∈ D.

Let K = F [x]/(f(x)) be a field extension of F of degree n with Gal(K/F ) = 〈σ〉, τ ∈
Aut(K) and d ∈ K×. Then the 2n-dimensional F -vector space K ⊕K can be made into an

algebra over F0 with unit element 1 = (1, 0) via the multiplication

(u, v)(u′, v′) = (uu′ + dτ(v′)v, v′u + vτ(u′))

for u, u′, v, v′ ∈ K. This algebra is denoted by Cay(K, τ, d). For d ∈ K×, Cay(K, τ, d) is

a subalgebra of Ci, i ∈ {l,m, r}. If K is a quadratic field extension and τ its non-trivial

automorphism, Cay(K, τ, d) is the classical Cayley-Dickson doubling Cay(K, d) of K and

hence an (associative or nonassociative) quaternion algebra.

Lemma 22. (i) Ci, i ∈ {l,m, r}, is not power-associative if τ̃(d) 6= d. In particular, if

d ∈ K then Ci is not power-associative if d 6∈ Fix(τ).

(ii) Let B = (K ′/F, σ′, c′) and D = (K/F, σ, c) be two cyclic algebras over F and f : D → B

an algebra isomorphism. Suppose τ ∈ Aut(K) and τ ′ ∈ Aut(K ′), such that f(τ̃(u)) =

τ̃ ′(f(u)) for all u ∈ D. Let a ∈ B×. For u, v ∈ D, the map

G : D ⊕ D → B ⊕ B, G(u, v) = (f(u), a−1f(v))
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defines the following algebra isomorphisms:

Cayl(D, τ, d) ∼= Cayl(B, τ ′, τ̃ ′(a)af(d)),

Caym(D, τ, d) ∼= Caym(B, τ ′, τ̃ ′(a)af(d)),

and

Cayr(D, τ, d) ∼= Cayr(B, τ ′, τ̃ ′(a)f(d)a).

In particular, for a ∈ F×,

Cayl(D, τ, d) ∼= Cayl(D, τ, a2d),

Caym(D, τ, d) ∼= Caym(D, τ, a2d),

Cayr(D, τ, d) ∼= Cayr(D, τ, a2d).

The proof is analogous to the one of Lemma 2. Analogous to Theorem 5 we can prove:

Theorem 23. Let D be a cyclic division algebra of degree n over F and d ∈ D×. Let

τ ∈ Aut(K) and suppose τ commutes with σ. Let i ∈ {l, r, m}.
(i) Ci is a division algebra if

ND/F (d) 6= ND/F (zτ̃(z))

for all z ∈ D. Conversely, if Ci is a division algebra then d 6= zτ̃(z) for all z ∈ D×.

(ii) Suppose c ∈ Fix(τ). Then Ci is a division algebra if ND/F (d) 6= aτ(a) for all a ∈
ND/F (D×).

(iii) Suppose F ⊂ Fix(τ). Then Ci is a division algebra if ND/F (d) 6∈ ND/F (D×)2.

With analogous proofs as before, we obtain that corresponding versions of Corollary 7,

Example 8 and Lemma 9 also hold for Ci, i ∈ {l, r,m}.

Remark 24. Another rather canonical way to define a unital algebra structure on D ⊕ D

would be to choose

(u, v)(u′, v′) = (uu′ + vdτ̃(v′), uv′ + vτ̃(u′))

or

(u, v)(u′, v′) = (uu′ + vτ̃(v′)d, uv′ + vτ̃(u′)).

(For u, v, u′, v′ ∈ K, K/F quadratic and τ its non-trivial automorphism, this would be the

multiplication in the associative or nonassociative quaternion algebra Cay(K, d).) Then

(u, v)(u′, v′) = (u, v)

[
u′ v′

dτ̃(v′) τ̃(u′)

]

resp.,

(u, v)(u′, v′) = (u, v)

[
u′ v′

τ̃(v′)d τ̃(u′)

]
.

Now we would have left D-modules and look at matrices representing right multiplication

instead. Concerning code constructions, these would not yield anything new, though.



HOW TO OBTAIN ALGEBRAS USED FOR FAST-DECODABLE SPACE-TIME BLOCK CODES 23

References

[1] P. Elia, A. Sethuraman, P. V. Kumar, Perfect space-time codes with minimum and non-minimum

delay for any number of antennas. Proc. Wireless Com 2005, International Conference on Wireless

Networks, Communications and Mobile Computing.

[2] B. A. Sethuraman, B. S. Rajan, V. Sashidhar, Full diversity, high rate space time block codes from

division algebras. IEEE Trans. Inf. Theory 49, Oct. 2003, 2596-2616.

[3] C. Hollanti, J. Lahtonen, K. Rauto, R. Vehkalahti, Optimal lattices for MIMO codes from division

algebras. IEEE International Symposium on Information Theory, July 9 - 14, 2006, Seattle, USA,

783-787.

[4] G. Berhuy, F. Oggier, On the existence of perfect space-time codes. IEEE Trans. Inf. Theory 55

(5) May 2009, 2078-2082.

[5] G. Berhuy, F. Oggier, Introduction to central simple algebras and their applications to wireless

communication. AMS Surveys and Monographs, 2013.

[6] G. Berhuy, F. Oggier, Space-time codes from crossed product algebras of degree 4. S. Boztaş and
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