
Gu, Feng and Feyereisl, Jan and Oates, Robert and 
Reps, Jenna and Greensmith, Julie and Aickelin, Uwe 
(2011) Quiet in class: classification, noise and the 
dendritic cell algorithm. Lecture Notes in Computer 
Science, 6825 . pp. 173-186. ISSN 0302-9743 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/34130/1/gu2011a.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may 
be reused according to the conditions of the licence.  For more details see: 
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/42493515?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@nottingham.ac.uk


Quiet in Class: Classification, Noise and the

Dendritic Cell Algorithm

Feng Gu, Jan Feyereisl, Robert Oates, Jenna Reps,
Julie Greensmith, and Uwe Aickelin

School of Computer Science, University of Nottingham,
Nottingham, NG8 1BB, UK

fxg@cs.nott.ac.uk

Abstract. Theoretical analyses of the Dendritic Cell Algorithm (DCA)
have yielded several criticisms about its underlying structure and oper-
ation. As a result, several alterations and fixes have been suggested in
the literature to correct for these findings. A contribution of this work
is to investigate the effects of replacing the classification stage of the
DCA (which is known to be flawed) with a traditional machine learning
technique. This work goes on to question the merits of those unique prop-
erties of the DCA that are yet to be thoroughly analysed. If none of these
properties can be found to have a benefit over traditional approaches,
then “fixing” the DCA is arguably less efficient than simply creating a
new algorithm. This work examines the dynamic filtering property of
the DCA and questions the utility of this unique feature for the anomaly
detection problem. It is found that this feature, while advantageous for
noisy, time-ordered classification, is not as useful as a traditional static
filter for processing a synthetic dataset. It is concluded that there are
still unique features of the DCA left to investigate. Areas that may be
of benefit to the Artificial Immune Systems community are suggested.

1 Introduction

The Dendritic Cell Algorithm (DCA) is an immune-inspired algorithm devel-
oped as part of the Danger Project [1]. Despite being applied to a number of
applications, it was originally designed and used as an anomaly detection and
attribution algorithm [9]. For the duration of this work, the anomaly detection
problem is defined as a binary classification problem, performed on (potentially
noisy) discrete time series data. The authors make no assumptions about the
relative persistence of anomalous states and normal states, though the persis-
tence of both states is assumed to be sufficiently long to differentiate them from
noise. It is also assumed that examples of a system’s anomalous behaviour are
available for use as training data. This is in contrast to the many alternate
definitions of the anomaly detection problem, where there can be the implicit
assumption that anomalies are transient or the assumption that only normal
behaviour can be studied a priori, reducing the problem to a single class classifi-
cation. For this investigation a separate, related problem is also defined, termed
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“the anomaly attribution problem”. This is the problem of attributing causal
relationships between the presence of elements in the environment and the oc-
currence of identified anomalies.

Since its first version [9] the DCA has been subject to many modifications
[4,17], empirical tests [2,9,17] and theoretical analyses [12,16,18,22]. This body
of work has identified several interesting properties of the DCA. For example,
it has been shown that the structure of a single dendritic cell within the DCA
is similar in function to the operation of a filter with a dynamically changing
transfer function [18,19]. This property could be potentially useful as it allows the
algorithm to both exploit the temporal ordering of the input data and remove
noisy artefacts from the environmental measurements. However, the effects of
the dynamic filter within the DCA to the anomaly detection problem, beneficial
or otherwise, have never been demonstrated.

Other theoretical work identifies properties of the DCA that are clearly detri-
mental to its application to certain problems. One such property is that its
classification stage is functionally equivalent to a statically weighted, linear clas-
sifier [22]. Such a classifier is neither able to adapt to training data nor mean-
ingfully act on problems which are not linearly separable. Such a criticism is a
severe blow to the utility of the DCA in its current form but only strikes at one
aspect of a multifaceted algorithm. Within the literature, it has been suggested
that replacing the classification stage of the DCA with a trainable, nonlinear,
machine learning algorithm would negate much of the criticism made of the DCA
while preserving its novel properties [13,20,22].

Modifying the DCA to compensate for the weaknesses identified within the
literature, while retaining its original properties, is only a valid course of action
if those properties are clearly beneficial. In summary, it is important to identify
if the overhead of “fixing” the DCA carries sufficient benefit over creating a
new technique for solving the anomaly detection problem. This work is a step
towards validating the usefulness of the DCA’s novel properties by separating the
algorithm into its component parts and assessing their individual contributions.
The structure of the paper is as follows, Section 2 provides an outline of the
related work; Section 3 gives the research aims in the form of hypotheses; Section
4 presents algorithmic details as mathematical functions; Section 5 details the
experimental design; Section 6 shows the results of conducted experiments and
the corresponding analysis; finally Section 7 is a discussion of the findings and
highlights the future steps for this work.

2 Related Work

2.1 The Dendritic Cell Algorithm

Several different versions of the DCA exist within the literature. The determin-
istic DCA (dDCA) that was developed for ease of analysis, will be the version
considered in this work. The algorithmic details can be found in [10].

The first stage of the DCA is an anomaly detection phase, where the popula-
tion’s classification decisions are monitored in order to identify anomalies within
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a given dataset. The second phase attempts to correlate the antigen sampled by
the cells with the occurrence of detected anomalies.

The DCA receives two types of input, namely signal and antigen. Signals are
represented as vectors of real-valued numbers and are periodic measurements of
features within the problem environment. An assumption made by the algorithm
is that the presence or absence of an anomaly can be detected by observing these
features. Antigen are symbols (typically represented as an enumerated type),
which represent items of interest within the environment. It is assumed that
some of the antigen have a causal relationship with observed anomalies.

The DCA is a population-based algorithm, where several heterogenous agents
(cells) monitor the same inputs in parallel. Each cell stores a history of the re-
ceived input signals, while maintaining a sum of their magnitudes. Upon the sum
of the input signal magnitudes reaching a predefined decision threshold, the cell
performs a classification based on the signal history. When the decision has been
recorded, the cell is reset and instantaneously returned to the population. Each
cell is assigned a different decision threshold generated from a uniform distribu-
tion, ensuring that cells observe the data over different time scales.

It is demonstrated in [22] that both the classification boundary and the po-
sition of the decision boundary can be expressed as hyperplanes, akin to those
found in linear classifiers. This premise is used as a foundation for this investi-
gation, so the pertinent machine learning concepts are presented in Section 2.2.
As the classification performed by a cell is performed using the history of the
sampled signals rather than an instantaneous sample of the environmental fea-
tures, it can be shown that the DCA exhibits a filtering property which allows
it to remove high frequency noise from the input signals [18]. This process relies
on the underlying state of the system (normal or anomalous) being persistent
for a long enough period of time to distinguish it from the noise. This filtering
property is also a key premise of this work and shall be discussed in greater
depth in Section 2.3.

2.2 Machine Learning Concepts

In our investigation, the classification stage of the DCA is replaced by a trainable
classifier, which is based on the operation of Support Vector Machines (SVM) [3].
Here we present an introduction to this algorithm and the relevant machine
learning concepts. SVM models can be described using linear discriminant func-
tions [6], quadratic optimisation [7], and kernel methods [21].

Let (x1, y1), ..., (xn, yn) ∈ X×Y be a given training set with n data instances,
where X ⊆ R

d is a d-dimensional input feature space and Y = {±1} is a set of
truths or class labels. For each data instance xi ∈ X where i ∈ [1, n]∩N, a linear
discriminant function is defined as f : R

d → R,

f(xi) = 〈w,xi〉 + b (1)

where 〈·〉 denotes the inner product of two vectors, w is the weight vector and
b is the bias. The decision boundary of classification is given by 〈w,x〉 + b = 0,
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which corresponds to a (d − 1)-dimensional hyperplane within a d-dimensional
feature space. A signed measure of the perpendicular distance r from the decision
surface to a data point x can be calculated as,

r =
f(x)

‖w‖
(2)

where ‖ · ‖ is the norm operator of a vector.
The linear discriminant functions of SVM models are based on the maximal

margin classifier, defined as follows:

〈w,xi〉 + b ≥ +1 if yi = +1 (3)

〈w,xi〉 + b ≤ −1 if yi = −1 (4)

Data points lying on the hyperplane H1 : 〈w,x〉 + b = 1 have a perpendic-
ular distance from the origin |1 − b|/‖w‖. Similarly, data points lying on the
hyperplane H2 : 〈w,x〉 + b = −1 have a perpendicular distance from the origin
| − 1 − b|/‖w‖. The margin between the two hyperplanes H1 and H2 is equal
to 2/‖w‖. An optimal decision boundary, defined by 〈w,x〉+ b = 0, is found by
maximising this margin. It is equidistant and parallel to H1 and H2.

The learning task of SVM can be defined as an optimisation problem,

{

minimisew,b ‖w‖2

subject to yi(〈w,xi〉 + b) − 1 ≥ 0 ∀i
(5)

where the constraints are derived from combining Equation 3 and Equation 4.
Such an optimisation problem becomes much easier to solve if we introduce La-
grangian multipliers. Let αi ≥ 0 be the Lagrangian multipliers, which correspond
to the constraints in Equation 5. A primal Lagrangian of the above optimisation
problem is defined as

LP =
1

2
‖w‖2 −

n
∑

i=1

αi[yi(〈w,xi〉 + b) − 1] (6)

The primal form LP is differentiable with respect to w and b, and an equivalent
dual form, known as the Wolfe dual [7], can be derived. The optimisation becomes
a convex quadratic programming problem, and all data points that satisfy the
constraints also form a convex set [3]. This dual form is defined as

LD =

n
∑

i=1

αi −
1

2

n
∑

i,j=1

αiαjyiyj〈xi,xj〉 (7)

During the training phase of SVM, LD is maximised with respect to all αi. The
solution of 7 contains feature vectors xi such that their corresponding αi �= 0.
These vectors are called support vectors, and they lie on either H1 or H2. For
non-separable cases, additional constraints are required to allow for outliers.
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These constraints are
∑

yiαi = 0 and 0 ≤ αi ≤ C, where C is a parameter
that controls the regularisation term. In addition, 〈xi,xj〉 can be replaced by
〈Φ(xi), Φ(xj)〉 through kernel methods. A kernel function is defined as,

k(xi,xj) = 〈Φ(xi), Φ(xj)〉 (8)

where Φ is a mapping from the original input feature space X to a higher di-
mensional (inner product) feature space F , where nonlinearly separable problems
become more separable [21].

Depending on the applications, a number of kernel functions are available,
including linear kernels, polynomial kernels, and Gaussian kernels [21]. A linear
kernel only involves performing inner product operations with the input data.
Therefore a linear SVM that uses such a kernel is usually simple to train and
use. It is more computationally efficient than other SVM models that use more
complicated kernel functions [8]. The linear SVM is chosen in this work due to
its algorithmic and computational simplicity.

2.3 Signal Processing Concepts

Filters can be viewed as algorithms or structures which apply a gain (ratio of
output to input), to their input signal to produce a new output signal. Where
filters differ from a simple amplifier, is that the gain applied is a function of the
frequency of the input. The mathematical function relating gain to frequency is
referred to as the “transfer function” of the filter. In the field of signal processing
it is common practice to express filters by providing their transfer functions. For
completeness the filters being used for this work will be given here.

The filter with the most analogous behaviour to the DCA is the sliding window
filter [18]. A sliding window filter is so called as it can be viewed as a bounding
box being translated along the input data. At each step t, the output of the
sliding window filter is the average sample size contained within the window.
This is expressed in Equation 9,

ot =
1

W

t
∑

a=(t−W )

ia (9)

where ot is the output of the filter at step t, ia is the input sample at time index
a and W is the width of the window in steps.

The transfer function of the sliding window filter is given in Equation 10 [14],

GS(ω) =
1

W

W−1
∑

g=0

e−jgω (10)

where GS(ω) is the transfer function of the sliding window filter, j is the complex
number constant and ω is the frequency of the input signal.

A dendritic cell acts like a sliding window filter which only reports its output
every W steps [18]. The transfer function for such a filter is given in Equation 11,

GD(ω) =
1

W 2

W−1
∑

g=0

W−1
∑

b=0

e−jb((ω+(2gπ))) (11)
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where GD(ω) is the transfer function of the dendritic cell. However, this transfer
function assumes a constant window size W . For a dendritic cell the window size
is a function of the magnitude of the input signal being filtered and the decision
boundary assigned to the cell. This makes expressing a cell’s transfer function
extremely difficult as the magnitude of the signal cannot be known a priori. With
a given training set, a suitable value to use for the decision boundary could be
found by minimising the classification error. However, it is not known if this
dynamically changing window size is of any benefit to the algorithm.

3 Research Aims

To justify future work on the DCA it is necessary to assess the importance of
its novel features. In the literature, three novel properties of the DCA remain
unvalidated: the effect of antigen; the effect of the dynamic filtering; and the
effect of having a population of classifiers. Of these, it is arguable that the effect
of the dynamic filtering is the most important. This is because the antigen effect
is unlikely to yield positive results if the anomaly detection phase is insufficient
and the classifier population is unlikely to yield positive results if the dynamic
filters used by that population prove to be insufficient.

In order to verify the need for a filter of any kind, it is important to determine
if filtering the output from a classifier improves the results of classification when
using a time-ordered, noisy dataset. The following null hypothesis will be the
first step in this investigation.

H 1 Filtering the results of a linear classifier presented with time

ordered, noisy input data will not result in significant difference

of the classification performance.

This is obviously dependent on designing an appropriate filter as part of the
experimental setup.

In order to justify the additional implementation complexity, the dynamic
filters should outperform a suitably tuned static counterpart. This yields the
following testable null hypothesis.

H 2 The results from a linear classifier filtered by a dynamic moving

window function will have no significant difference to the results

from the same classifier using a static moving window function.

While this investigation is not primarily focussed on the other novel features
of the DCA it is of interest to compare the output from the original DCA to that
of a filtered and an unfiltered classifier. A trained classifier may have the advan-
tage of being able to adapt to the input data, but the DCA has the additional
antigen and multiple perspectives properties, so it will be difficult to definitively
identify the reasons for relative performance. However, should the DCA outper-
form a filtered classifier, it shows that the other properties of the DCA add some
information to the decision making process. If on the other hand the DCA is
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outperformed by a filtered classifier, it would suggest that the benefits of adding
a training phase, at the very least, outweigh the possible benefits of the other
novel aspects of the algorithm. In either case more experiments would need to
be done to assess the merits of the other algorithmic properties. The testable
hypothesis from this investigation’s perspective is as follows.

H 3 The classification performance of the DCA will not be signifi-

cantly different to that of a linear classifier, filtered or otherwise

on a time-ordered, noisy dataset.

If it is possible to reject all of these null hypotheses, then a second set of
statistical tests can be performed, assessing the relative benefit of using one
technique over the other for the dataset used.

4 Algorithmic Details

To investigate the merits of the sliding window effect of the DCA, it is necessary
to separate it from the rest of the algorithm, and use it in conjunction with a
better understood classifier. For this investigation, two moving window functions
are used as filters for processing the decisions made by a linear SVM. For a given
training set, the linear SVM finds an optimal decision boundary and returns the
signed orthogonal distance from the decision boundary to each data point, as
defined in Equation 2. The moving window functions initialise either a set of
window sizes or a set of decision thresholds, and label the data instances within
every moving window created. An error function is used to find the optimal
window size or decision threshold. The knowledge obtained through training is
then applied to classify data instances within the testing set.

For clarity, the algorithmic combinations of a linear SVM with a static and
dynamic moving window function that are used in the experiments are defined
in the subsequent sections. As the dynamic moving window function cannot be
easily defined in a continuous frequency domain, we define both moving window
functions in a discrete time domain. For this section time is indexed by i ∈
[1, n] ∩ N i.e. the index of a data instance in the feature space.

4.1 Static Moving Window Function

Let A = {αl | αl ∈ N} be a set of m initial window sizes where l ∈ [1, m]∩N, and
k ∈ [1, ⌈ n

αl
⌉] ∩ N be the index of a moving window depending on αl, where ⌈·⌉

denotes the ceiling function. Let Sk = [1 + (k− 1)αl, kαl]∩N be a set of indexes
of the data instances contained within a static moving window. This divides the
entire interval [1, n] ∩ N into ⌈ n

αl
⌉ partitions. The function for determining the

class label of each data instance with respect to a window size αl is defined as
c : R

n × N × N → {±1},

c(f(x), αl, i) =

⌈ n
αl

⌉
∑

k=1

�Sk
(i) sgn

(

n
∑

s=1

f(xs)

‖w‖
�Sk

(s)

)

(12)



180 F. Gu et al.

where �X(x) defines an indicator function that returns one if x ∈ X holds and
zero otherwise, and sgn(·) denotes a sign function of real numbers defined as,

sgn(x) =

{

+1 if x ≥ 0
−1 otherwise

(13)

where x ∈ R. For each window size αl, the function c firstly calculates the cumu-
lative distance of all data points, within a generated window, with respect to the
decision boundary. It then labels each data instance within such window accord-
ing to the sign of the calculated cumulative distance. This process is iterative
for all the windows generated with respect to a window size.

A mean square error based function is used for evaluating the effectiveness of
each window size with respect to the class label, defined as e : N → R.

e(αl) =
1

n

n
∑

i=1

‖c(f(x), αl, i) − yi‖
2 (14)

The static moving window function returns an optimal window size αopt ∈ A
that minimises the resulting classification error, defined as

αopt = arg min
αl∈A

{e(αl)} (15)

4.2 Dynamic Moving Window Function

Let B = {βl | βl ∈ R} where l ∈ [1, m]∩N be a set of m initial decision thresholds

(lifespans), and k ∈ [1, ⌊
∑

f(xi)
βl

⌋]∩N be the index of a moving window depending

on the decision threshold βl, where ⌊·⌋ denotes the floor function. For each
decision threshold βl, the moving windows are found by the following inequality,

bk+1
l = arg max

a∈N

⎧

⎨

⎩

a ∈ (bk
l , n] |

a
∑

i=bk
l

∣

∣

∣

∣

f(xi)

‖w‖

∣

∣

∣

∣

≤ βl

⎫

⎬

⎭

∀k (16)

where | · | is the absolute operator, and each dynamic moving window is bounded
by [bk

l , bk+1
l ]∩N ⊆ [1, n]∩N, where bk

l and bk+1
l are the beginning and end points

of the kth moving window and b1
l = 1. The dynamic window size of a decision

threshold βl is bounded by the cumulative absolute distances |ri| = |f(xi)/‖w‖|
from the optimal decision boundary to all the points within it. This is due to
the magnitude of |ri| being closely related to the degree of confidence (sufficient
information) for making a decision regarding classification. Let S̃k = [bk

l , bk+1
l ]∩N

be a set of indexes of the data instances contained within a dynamic moving

window. This divides the entire interval [1, n] ∩ N into ⌈
∑

f(xi)
βl

⌉ partitions. A
similar function to Equation 12 for labelling each data instance with respect to
a decision threshold βl is defined as c̃ : R

n × R × N → {±1}.

c̃(f(x), βl, i) =

⌊
∑

f(xi)

βl
⌋

∑

k=1

�S̃k
(i) sgn

(

n
∑

s=1

f(xs)

‖w‖
�S̃k

(s)

)

(17)
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Similar to Equation 14, a mean square error based function with respect to
the class label is used for assessing the effectiveness of each decision threshold,
defined as ẽ : R → R.

ẽ(βl) =
1

n

n
∑

i=1

‖c̃(f(x), βl, i) − yi‖
2 (18)

The dynamic moving window function returns an optimal decision threshold
βopt ∈ B that minimises the resulting classification error, defined as

βopt = arg min
βl∈B

{ẽ(βl)} (19)

5 Experimental Design

This section details the techniques used to implement the algorithms of interest
and the synthetic data required to test the null hypotheses outlined in Section 3.
Details of the raw datasets, experimental results and statistical analyses involved
in this paper can be found in [11].

5.1 Synthetic Datasets

Synthetic datasets based on two Gaussian distributions are common practice
in machine learning, as shown in [22]. This is due to the fact that varying the
distance between the distributions allows for control over the separability of the
data. For the experiments in Musselle’s work [16], where the temporal nature
of the data is important, the author uses a Markov chain to generate synthetic
datasets, where the probability of state change dictates the relative concentra-
tions of the normal and anomalous behaviour.

For this investigation, both separability and temporal ordering are important.
Therefore it was decided to use a dataset based on two Gaussian distributions,
then introduce to it an artificial temporal ordering. This is achieved by creating
time varying signals representing the class features. Each dataset is divided into
quarters, where the first and third quarters are of class I and the second and
fourth quarters are of class II. This ordering provides a low frequency underlying
change of class, and provides examples of class transitions in both directions.
As a consequence, by varying the separability of the classes, one also changes
the signal to noise ratio of the time-ordered data, effectively maintaining the
same level of noise, but increasing the magnitude of the underlying signal as the
separability increases, as illustrated by Fig. 1.

For the generated datasets, class I’s mean is fixed at 0.2, and 100 datasets are
generated by varying class II’s mean from 0.2 (total overlap), to 0.8 (linearly sep-
arable) at a regular interval. Both distributions use a standard deviation of 0.1.
As the mean of class II increases, the Euclidean distance between the centroids
of the two classes increases accordingly. This corresponds to the increment in
separability of the two classes. Each dataset contains 2,000 instances, 1,000 for
training and 1,000 for testing. By using large numbers of samples, it is intended
to reduce artefacts caused by bias in the random number generator.
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Fig. 1. Feature space and time domain plots of three examples where two classes have
different degrees of overlap, and the Euclidean distances between the centroids are 0.17
(a, b), 0.42 (c, d), and 0.68 (e, f)
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5.2 Algorithm Setup

Parameters used in the linear SVM are the default values of the R package
kernlab [15], and kept the same for both moving window functions. For the
static moving window function, the cardinality of the set of initial window sizes
|A| is 100, and a window size αl ∈ [1, 100]∩N. For the dynamic moving window
function, the cardinality of the set of initial decision thresholds |B| is also 100,
and a decision threshold βl is calculated as,

βl = arg max
xi∈X

{

|f(xi)|

‖w‖

}

l

|B|
λ (20)

where λ is a scaling factor that controls the window sizes considered by the
parameter tuning. If λ = 1, windows are constrained to values typically used
within the DCA literature. With λ = 100, parameters which are equivalent to
those used by the static and dynamic moving window functions can also be
considered by the tuning process.

The DCA often requires a preprocessing phase that is analogous to the train-
ing phase of the linear classifier algorithm, thus only testing sets are used by the
DCA. Firstly the two input features are normalised into a range [0, 1] through
min-max normalisation. The correlation coefficient between each feature and the
class label is then calculated and used to map either of the features to the ap-
propriate signal category. The remaining parameters are chosen according to the
values suggested in [10]. The initialisation of lifespans in the DCA uses a similar
principle as Equation 20, however the maximisation term is replaced by the sig-
nal transformation function of the algorithm and the entire set of lifespans are
used for the DC population.

5.3 Statistical Tests

All results will be tested using the Shapiro-Wilk normality test to verify if para-
metric or nonparametric statistical tests are suitable [5]. All of the null hypothe-
ses in Section 3 are phrased as the absence of a detectable significant difference
between pairs of results. The two-sided student t-test will be used for normally
distributed samples, and the two-sided Wilcoxon signed rank test will be used
for non-normally distributed ones [5].

If differences are detected, the one-sided versions of the relevant difference
test will be used to ascertain the relative performance of the results. For all
statistical tests a significance level of α = 0.05 will be considered sufficient.

6 Results and Analysis

Results from the experiments are presented in terms of the error rates, which are
equal to the number of misclassified data instances divided by the total number of
instances in the tested dataset. The error rates of the six tested methods across all
of the datasets are plotted against the Euclidean distance between the two class
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Fig. 2. Error rates of tested methods against the Euclidean distance between centroids
of the two classes across all the datasets. DCA1 (λ = 1) and DCA2 (λ = 100) denote
the Dendritic Cell Algorithm, LNC is the linear SVM, SMOV is the static moving
window function, and DMOV1 (λ = 1) and DMOV2 (λ = 100) is the dynamic moving
window function.

centroids in Fig. 2. For non-separable cases, the classification performance differs
from one method to another. In order to determine whether these differences are
statistically significant, statistical tests are performed as follows.

The Shapiro-Wilk tests confirm that the data are not normally distributed
(p-values are less than 0.05) and therefore the Wilcoxon tests are used to assess
the statistical significance for both the two-sided and one-sided comparisons
described previously. As all the p-values are less than 0.05, we reject the null hy-
potheses of all the two-sided Wilcoxon tests with a 95% confidence and conclude
that significant differences exist between the results of the different methods. As
a result, all of the three null hypotheses presented in Section 3 are rejected.

For completeness Fig. 2 shows results for λ = 1 (the original DCA parameter
range) and the extended search space of λ = 100. However for analysis, we
will only consider the best performing parameterisations of each unique method.
From inspection of Fig. 2, it is argued that the order of the methods, in terms
of ascending classification performance, is as follows: the linear SVM; the DCA
(DCA1); the dynamic moving window function (DMOV2); and the static moving
window function. As all the p-values of the one-sided Wilcoxon tests are less than
0.05, this inspection is statistically verified.

7 Discussion and Future Work

The experimental results demonstrate that filtering the decisions of a linear
classifier presented with time-ordered and noisy input data significantly changes
and improves its classification performance. This was expected to be the case,
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as even when the datasets are non-separable in the feature space, the temporal
ordering means that so long as the hyperplane has a greater than 50% accuracy,
it is likely that the average of several instances from the same class, will tend
towards the correct class label. This can also be viewed from the frequency
domain as non-separability introducing a high frequency noise component into
the signal, which can be removed by filtering.

The classification performance of the DCA is significantly different from a
linear classifier, filtered or otherwise, on a time-ordered and noisy dataset. In
fact, the DCA produces significantly better classification performance than a
standard linear classifier, but significantly worse classification performance than
the filtered linear classifiers. This implies that the filtering property of the DCA
is an important factor of its performance, but that the addition of a training
phase to the DCA can add further, substantial improvements.

It is also shown that the classification performance of a linear classifier with a
static moving window function is significantly different and better, in comparison
to that of a linear classifier with a dynamic moving window function. This is only
a valid statement for the datasets used, but infers that the heuristic used by the
DCA to alter the transfer function of its filtering component, (i.e. the magnitude
of the input signal) is not as good as a simple, static filter.

These results suggest that the problems with the DCA are more deep-rooted
than having linear decision boundaries. The DCA’s main advantage over the
SVM seems to have been its novel filtering technique. However, by substitut-
ing the individual components of the DCA with traditional techniques from the
domains of signal processing and machine learning, it is clear that it is outper-
formed. Finding equivalence between the DCA’s properties and standard tech-
niques does not necessarily signal an end for the algorithm. However, if those
standard techniques can be combined in such a way that their overall structure
is the same as the DCA, but their overall performance is better, then there is a
danger that “fixing” the DCA will eradicate it entirely. Before clear guidance can
be formulated on when, if ever, the DCA is an appropriate choice for a given ap-
plication, it is important to explore all of its algorithmically unique components.
With the classification and filtering properties investigated the next properties
that should come under scrutiny are the use of multiple timescales across the
cell population and the sampling of antigen.
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