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Abstract	 	

Oscillations	 in	 the	 intracellular	 calcium	 (Ca2+)	 concentration	 form	 one	 of	 the	

main	 pathways	 by	 which	 cells	 translate	 external	 stimuli	 into	 physiological	

responses	(Thul	et	al.	2008;	Dupont	et	al.	2011;	Parekh	2011).	The	mechanisms	

that	underlie	 the	generation	of	Ca2+	oscillations	are	still	actively	debated	 in	the	

modeling	community,	but	there	is	growing	evidence	that	Ca2+	oscillations	result	

from	the	spatio-temporal	summation	of	subcellular	Ca2+	release	events	(Thurley	

et	 al.	 2012).	 Nevertheless,	 one	 prominent	 modeling	 approach	 to	 intracellular	

Ca2+	oscillations	is	the	use	of	ordinary	differential	equations	(ODEs),	which	treat	

the	 intracellular	 Ca2+	 concentration	 as	 spatially	 homogenous.	 Although	 ODEs	

cannot	account	 for	 the	 interaction	of	Ca2+	microdomains	 to	 form	cell-wide	Ca2+	

patterns,	 modelers	 still	 choose	 ODEs	 since	 (a)	 the	 study	 of	 ODEs	 is	

computationally	cheap,	and	a	large	body	of	techniques	is	available	to	investigate	

ODEs	 in	 great	 detail,	 or	 (b)	 there	might	 not	 be	 sufficient	 experimental	 data	 to	

develop	a	spatially	extended	model.	Irrespective	of	the	reason,	analyzing	ODEs	is	

a	key	instrument	in	the	toolbox	of	modelers.	In	this	protocol,	we	look	at	a	well-

known	 model	 for	 Ca2+	 oscillations	 (De	 Young	 and	 Keizer	 1992;	 Li	 and	 Rinzel	

1994).	The	main	emphasis	of	this	protocol	is	the	use	of	the	open	source	software	

package	XPPaut	to	numerically	study	ODEs	(Ermentrout	2002).	The	knowledge	

gained	here	can	be	directly	transferred	to	other	ODE	systems	and	therefore	may	

serve	 as	 a	 template	 for	 future	 studies.	 For	 a	 general	 background	 on	 analyzing	

ODEs	 in	 the	 context	 of	 Mathematical	 Cell	 Physiology,	 I	 refer	 the	 reader	 to	

(Keener	and	Sneyd	2001;	Fall	et	al.	2002;	Britton	2002;	Murray	2013).	

Materials	

• The	original	De	Young	Keizer	model	(De	Young	and	Keizer	1992)	

• The	Li-Rinzel	approximation	of	the	De	Young	Keizer	model	(Li	and	Rinzel	

1994)	

• XPPAUT	(http://www.math.pitt.edu/~bard/xpp/xpp.html)	

Method	

1. Locate	 the	 two	ODEs	 –	 one	 for	 the	Ca2+	 concentration	�	and	one	 for	 the	

fraction	of	non-inhibited	IP3Rs	ℎ −	in	(Li	and	Rinzel	1994):	
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2. Enter	the	two	ODEs	together	with	the	parameter	values	from	(De	Young	

and	 Keizer	 1992)	 into	 a	 text	 file	 that	 is	 compatible	 with	 the	 XPPAUT	

format:	

dc/dt=c1*(v1*minf^3*h^3+v2)*(caer-c)-(v3*c^2)/(c^2+k3^2)	

dh/dt=(hinf-h)/tau	

minf=c/(c+d5)*I/(I+d1)	

caer=(c0-c)/c1	

Q2=d2*(I+d1)/(I+d3)	

hinf=Q2/(Q2+c)	

tau=1/(a2*(Q2+c))	

par	I=0.2	

par	c0=2.0,c1=0.185,k3=0.1,v1=6,v2=0.11,v3=0.9	

par	d1=0.13,d2=1.049,d3=0.9434,d4=0.1445,d5=0.0832	

par	a1=400,a2=0.2,a3=400,a4=0.2,a5=20	

done	

The	first	two	lines	correspond	to	the	two	ODEs,	the	next	five	 lines	show	

the	 additional	 expressions	 of	 equation	 (3),	 and	 all	 lines	 that	 start	 with	

par	 hold	 the	 parameters	 for	 the	 simulation.	 Save	 the	 file,	 e.g.	 as	

LiRinzel.ode.	

3. Change	to	the	directory	where	the	executable	xppaut	was	installed	to.	

4. Start	 the	 program	 with	 xppaut LiRinzel.ode from	 the	 command	

line,	and	you	will	see	a	screen	as	in	Figure	1.	

	

Figure	1:	Screenshot	of	the	opening	screen	of	XPPaut	under	Mac	OS.	

5. Change	 the	 settings	 so	 that	 the	 Ca2+	 concentration	�	is	 plotted	 against	

time	by	clicking	on	the	button	Xi	vs	t	in	the	left	column	and	enter	c	at	the	

input	line	at	the	top	of	the	window.	

6. Set	 the	 total	 integration	 time	 to	 200	 seconds	 by	 clicking	 on	nUmerics,	

Total,	and	then	enter	200	at	the	top	of	the	window.	Press	ESC	to	return	to	

the	main	menu.	

7. Adjust	the	plot	range	of	the	window	by	clicking	on	Viewaxes	and	then	on	

2D.	In	the	new	window,	enter	200	in	the	box	labeled	Xmax.	Click	on	OK.	

8. Set	the	initial	conditions	by	clicking	on	ICs	at	the	top	of	the	window	and	

enter	0.5	in	both	boxes.	Click	on	go	in	the	top	right	of	the	window,	which	

will	show	time	course	of	the	Ca2+	concentration	as	in	Figure	2a	



	

Figure	2:	For	small	IP3	concentrations	(I=0.2),	the	Ca2+	concentration	settles	at	a	constant	level	(A),	

while	for	intermediate	IP3	concentrations	(I=0.5),	the	model	exhibits	regular	Ca2+	oscillations	(B).	

9. Clear	the	window	by	clicking	on	Erase.	

10. Change	the	IP3	concentration	to	0.5	by	clicking	on	Param	at	the	top	of	the	

window,	 enter	 0.5	 in	 the	 first	 box	 labeled	 I	 and	 then	 click	 on	 Go.	 The	

outcome	of	the	simulation	is	shown	in	Figure	2b.	

11. Change	other	parameters	 in	 the	Param	 field	 to	explore	 the	dynamics	of	

the	Li-Rinzel	model.	

	

Troubleshooting	

Problem	(Step	4):	XPPaut	does	not	find	the	file	LiRinzel.ode.	

Solution:	 Make	 sure	 that	 LiRinzel.ode	 is	 in	 the	 same	 directory	 as	 the	

executable	 xppaut.	 Either	 copy	 LiRinzel.ode	 into	 the	 same	 directory	 as	

xppaut,	 or	 use	 the	 full	 path	 name	 at	 the	 command	 line,	 e.g.	 xppaut 
~/Myxppfiles/LiRinzel.ode.	

Problem	(Step	4):	XPPaut	complains	when	reading	in	LiRinzel.ode.	

Solution:	Make	 sure	 that	 the	 last	 line	 in	 the	LiRinzel.ode	 file	 is	done.	Also	

check	that	the	file	suffix	is	always	.ode.	

Problem	(Step	8):	The	stationary	state	(straight	line)	runs	at	a	different	value	of	

the	Ca2+	concentration.	

Solution:	The	release	strength	of	the	IP3R	in	the	Li-Rinzel	model	is	often	written	

as	a	single	constant	 instead	of	 the	product	�!�!	in	Equation	(1).	Make	sure	that	

the	factor	�!	is	outside	the	first	bracket	in	Equation	(1).	

Discussion	

The	above	protocol	demonstrates	how	changes	in	the	IP3	concentration	generate	

Ca2+	oscillations.	This	 is	a	phenomenon	that	a	 large	number	of	ODE	models	 for	

the	IP3R	share,	see	e.g.	(Atri	et	al.	1993;	Sneyd	and	Falcke	2005;	Thul	et	al.	2008;	

Swaminathan	et	al.	2009).	This	protocol	may	serve	as	a	blue	print	 for	studying	

Ca2+	 oscillations	 in	 ODE	 models.	 For	 the	 enthusiastic	 reader,	 note	 that	 Ca2+	

oscillations	occur	in	the	Li-Rinzel	model	for	the	above	parameter	values	for	IP3	

concentrations	between	0.3552	μM	and	0.64728	μM.	
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