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Abstract	 	
The	rich	experimental	data	on	 intracellular	calcium	has	put	 theoreticians	 in	an	

ideal	position	to	derive	models	of	intracellular	calcium	signaling.	Over	the	last	25	

years,	a	large	number	of	modeling	frameworks	have	been	suggested.	Here,	I	will	

review	some	of	 the	milestones	of	 intracellular	 calcium	modeling	with	a	 special	

emphasis	 on	 calcium-induced-calcium	 release	 (CICR)	 through	 inositol-1,4,5-

trisphosphate	and	ryanodine	receptors.	I	will	highlight	key	features	of	CICR	and	

how	they	are	represented	in	models	as	well	as	the	challenges	that	theoreticians	

face	 when	 translating	 our	 current	 understanding	 of	 calcium	 signals	 into	

equations.	The	selected	examples	demonstrate	that	a	successful	model	provides	

mechanistic	 insights	into	the	molecular	machinery	of	the	Ca2+	signaling	toolbox	

and	 determines	 the	 contribution	 of	 local	 Ca2+	 release	 to	 global	 Ca2+	 patterns,	

which	at	 the	moment	 cannot	be	 resolved	experimentally.	The	protocols	 in	 this	

chapter	provide	introductory	examples	to	modeling	CICR,	which	may	serve	as	a	

starting	 point	 for	 theoretically	 exploring	 the	 wealth	 of	 intracellular	 calcium	

signals	and	link	it	to	experimental	data.		

Introduction	
One	of	the	most	fascinating	features	of	calcium	(Ca2+)	as	a	second	messenger	is	

its	versatility	 (Berridge	et	al.	2000).	Almost	every	cell	 type	 shows	Ca2+	 signals,	

and	even	within	a	single	cell	the	number	of	signaling	pathways	that	involve	Ca2+	

is	 huge.	 From	 a	 modeler’s	 perspective	 the	 broad	 spectrum	 of	 interactions	

renders	 Ca2+	 an	 intriguing	 yet	 challenging	 study	 object.	 The	 fascination	

originates	from	the	large	dynamic	repertoire	of	Ca2+	signals.	Most	Ca2+	responses	

begin	with	the	elevation	of	the	cytosolic	Ca2+	concentration	through	either	Ca2+	

entry	from	the	extracellular	space	or	Ca2+	liberation	from	intracellular	organelles	

such	 as	 the	 endoplasmic	 or	 sarcoplasmic	 reticulum	 (ER/SR).	 Although	 the	

molecular	details	of	the	ion	channels	that	are	responsible	for	the	increase	in	the	

cytosolic	 Ca2+	 concentration	 differ,	 in	 all	 cases,	 Ca2+	 forms	 a	 plume	 of	 high	

concentration	 around	 the	 site	 of	 influx	 just	 after	 a	 channel	 opens.	 These	

microdomains	 form	 the	 smallest	 functional	 unit	 of	 intracellular	 Ca2+	 signals	

(Berridge	2006)	 from	which	 larger	Ca2+	patterns	are	 formed.	For	example,	 it	 is	

the	 orchestrated	 action	 of	 microdomains	 that	 gives	 rise	 to	 cellular	 responses	

such	as	Ca2+	waves	and	Ca2+	oscillations	(Bootman	et	al.	1997).	Some	Ca2+	waves	

travel	 through	 the	 entire	 cell,	 while	 others	 only	 spread	 through	 parts	 of	 the	
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cytoplasm	resulting	in	abortive	waves.	The	existence	of	Ca2+	microdomains	and	

Ca2+	waves	already	points	to	a	defining	characteristic	of	intracellular	Ca2+	signals	

–	 they	 vary	 largely	 in	 their	 temporal	 duration	 and	 their	 spatial	 spread.	On	 the	

temporal	 scale,	 intracellular	 Ca2+	 signals	 range	 from	 events	 faster	 than	

microseconds	 (binding	 and	 unbinding	 of	 Ca2+	 to	 target	 molecules),	 to	 cellular	

Ca2+	transients	that	last	minutes	(Ca2+	waves	and	oscillations).	At	the	same	time,	

intracellular	 Ca2+	 operates	 on	 length	 scales	 from	a	 few	nanometers	 (molecular	

binding	 sites)	 up	 to	 hundreds	 of	micrometers	 (Ca2+	 waves).	 The	 challenge	 for	

modelers	arises	from	the	realization	that	a	complete	account	of	intracellular	Ca2+	

requires	us	to	incorporate	the	entire	spatio-temporal	spread,	i.e.	more	than	eight	

orders	of	magnitude	in	space	and	over	six	orders	of	magnitude	in	time.		

The	large	range	of	length	and	time	scales	of	intracellular	Ca2+	patterns	has	led	to	

various	modeling	approaches.	A	common	research	practice	has	been	to	focus	on	

one	 class	 of	 Ca2+	 signals	 at	 a	 time.	 For	 example,	 detailed	 investigations	 of	 the	

inositol-1,4,5-trisphosphate	(IP3)	receptor	(IP3R)		have	been	conducted	that	have	

greatly	facilitated	our	mechanistic	understanding	of	localized	Ca2+	release	events	

such	as	Ca2+	blips	and	puffs	(Thul	and	Falcke	2004a;	Shuai	et	al.	2007;	Rüdiger	et	

al.	 2007;	 Taufiq-Ur-Rahman	 et	 al.	 2009;	 Thul	 et	 al.	 2009b;	 Swaminathan	 et	 al.	

2009).	 More	 recently,	 a	 number	 of	 studies	 have	 addressed	 the	 interaction	

between	different	 levels	 of	 the	Ca2+	 signaling	hierarchy	 in	 a	 three	dimensional	

cellular	 environment.	 To	 cope	 with	 the	 increased	 computational	 demand	 of	

simulating	 three	 spatial	 dimensions,	 all	 approaches	 had	 to	 introduce	

approximations.	For	instance,	the	coupling	between	IP3R	clusters	with	a	detailed	

stochastic	 gating	 scheme	 for	 the	 receptor	 was	 achieved	 at	 the	 cost	 of	 a	 small	

number	of	IP3R	clusters	and	an	idealized	spherical	cellular	geometry	(Skupin	and	

Falcke	2009;	Skupin	et	al.	2010;	Thurley	and	Falcke	2011).	In	a	study	of	an	atrial	

myocytes	 (Thul	 et	 al.	 2012),	 the	 authors	 employed	 a	 realistic	 distribution	 of	

ryanodine	receptor	(RyR)	clusters	but	a	simplified	threshold	dynamics	 for	Ca2+	

liberation.		By	focusing	on	a	small	number	of	RyR	clusters	in	a	cardiac	myocyte,	

Izu	 et	 al.	 could	 incorporate	 detailed	 stochastic	 dynamics	 for	 RyRs	 (Izu	 et	 al.	

2006).	A	combination	of	a	small	number	of	IP3R	clusters	and	an	approximation	of	

the	 Ca2+	 concentration	 profile	 around	 a	 cluster	 was	 studied	 in	 Solovey	 et	 al.	

(2008).	 In	 contrast	 to	 the	 spatially	 extended	 models,	 each	 Ca2+	 ion	 is	 treated	

separately	 in	 a	 fully	 stochastic	 simulation	 for	 a	point	model	 of	 a	hepatocyte	 in	

(Dupont	et	al.	2008).		

In	 this	 chapter,	 I	 will	 illustrate	 modeling	 concepts	 and	 applications	 with	 Ca2+	

liberation	 from	 the	 ER	 or	 SR	 through	 either	 the	 IP3R	 or	 the	 RyR.	 The	 main	

motivation	for	this	selection	comes	from	the	fact	that	these	receptors	present	an	

integral	 component	 in	 the	 generation	 of	 Ca2+	 waves	 and	 oscillations,	 and	

therefore	are	vital	for	mounting	a	physiological	response	to	extracellular	stimuli	

(Thul	et	al.	2008a;	Dupont	et	al.	2011;	Parekh	2011).	It	is	worth	noting	that	IP3Rs	

and	RyRs	differ	significantly	from	each	other	 in	their	molecular	structure,	 their	

gating	properties	and	expression	patterns	(Foskett	et	al.	2007;	Zalk	et	al.	2007).	

Different	tissues	and	cell-lines	express	various	isoforms,	each	tailored	to	specific	

signaling	needs.	Therefore	conclusions	drawn	for	the	IP3R	cannot	necessarily	be	

transferred	to	the	RyR.	

The	 modeling	 studies	 mentioned	 above	 highlight	 some	 of	 the	 latest	

developments	in	a	long	evolution	of	Ca2+	models.	In	what	follows	I	will	describe	



three	 modeling	 approaches	 of	 increasing	 complexity	 that	 are	 stepping	 stones	

towards	the	more	sophisticated	modeling	frameworks	that	we	use	today.		

The	well	stirred	cell	
A	 common	 and	 historically	 an	 often	 used	 assumption	 is	 that	 a	 cell	 presents	 a	

well-stirred	bioreactor.	 In	 this	setting,	 the	Ca2+	 concentration	 is	 the	same	at	all	

points	within	each	cellular	compartment	such	as	the	cytosol,	the	ER/SR	or	across	

all	 mitochondria.	 From	 a	 mathematical	 point	 of	 view,	 this	 translates	 into	

describing	the	dynamics	of	the	Ca2+	concentration	in	each	compartment	with	an	

ordinary	 differential	 equation	 (ODE).	 For	 example,	 the	 rate	 of	 change	 of	 the	

cytosolic	 Ca2+	 concentration	 (c)	 equals	 the	 sum	 of	 all	 Ca2+	 fluxes	 into	 the	

cytoplasm	(!!")	minus	the	sum	of	all	Ca2+	fluxes	out	of	the	cytosol	(!!"#):	

	 d!

d!
= !!" − !!"# .	 (1)	

This	simple	relation	has	spawned	a	large	number	of	cellular	Ca2+	models,	most	of	

which	differ	in	the	details	of	the	Ca2+	influx.	Assuming	that	the	main	contribution	

to	changes	in	the	intracellular	Ca2+	concentration	results	from	the	IP3R,	various	

schemes	have	been	put	 forward	 for	 the	receptor	as	outlined	 in	e.g.	 (Meyer	and	

Stryer	 1988;	 Goldbeter	 et	 al.	 1990;	 De	 Young	 and	 Keizer	 1992;	 Li	 and	 Rinzel	

1994;	Sneyd	and	Dufour	2002;	Mak	et	al.	2003)	and	see	(Sneyd	and	Falcke	2005)	

for	a	review.	The	value	of	all	of	these	IP3R	models	is	that	they	provide	different	

mechanistic	 interpretations	of	 the	 experimental	data	 sets	 that	 they	were	 fitted	

to.	 Some	 of	 these	models	 assume	 that	 Ca2+	 and	 IP3	 can	 associate	 in	 any	 order	

with	 their	 respective	 binding	 sites,	 while	 other	 models	 stipulate	 a	 strict	

sequential	binding	order	or	an	allosteric	transformation	to	the	active	state.	

Another	 assumption	 of	 such	models	 is	 that	 a	 given	 value	 of	 the	 cytosolic	 Ca2+	

concentration	results	in	exactly	one	fraction	of	active	IP3Rs,	i.e.	the	Ca2+	release	

flux	 through	 the	 IP3R	 is	 completely	 deterministic.	 However,	 this	 is	 in	 stark	

contrast	 to	 experiments	 in	 e.g.	 Xenopus	 oocytes	 that	 showed	 the	 spontaneous	

emergence	of	Ca2+	puffs	(Parker	and	Yao	1996;	Sun	et	al.	1998).	To	reflect	such	

random	 initiation	 of	 Ca2+	 liberation,	 modelers	 replaced	 the	 deterministic	 Ca2+	

flux	through	the	IP3R	with	a	stochastic	function.	The	simplest	implementation	of	

this	 modeling	 approach	 is	 to	 take	 any	 of	 the	 deterministic	 ODE	models	 listed	

above	 and	 change	 the	 description	 of	 the	 IP3R	 Ca2+	 flux	 to	 its	 stochastic	

counterpart	by	treating	the	IP3R	as	a	Markov	chain	(Shuai	and	Jung	2002).	

While	 ODE	 models	 of	 intracellular	 Ca2+	 dynamics	 –	 whether	 deterministic	 or	

stochastic	–	have	proven	popular	 in	the	past,	 the	richness	of	new	experimental	

data	 prompts	 questions	 about	 the	 validity	 of	 this	 approach.	 A	 different	

interpretation	of	an	ODE	representation	of	the	intracellular	Ca2+	dynamics	is	that	

the	equation	describes	the	average	Ca2+	concentration	in	the	cell.	This	is	indeed	a	

good	 approximation	 if	 the	 Ca2+	 concentration	 varies	marginally	 across	 the	 cell	

and	 hence	 every	 point	 in	 the	 cell	 experiences	 an	 almost	 identical	 Ca2+	

concentration.	However,	the	presence	of	spatially	localized	IP3R	clusters	and	Ca2+	

microdomains	 already	 indicates	 that	 the	 Ca2+	 concentration	 can	 change	

drastically	 from	one	part	of	 the	cell	 to	another.	For	example,	 the	cytosolic	Ca2+	

concentration	rises	to	more	than	150μM	at	an	open	IP3R	cluster,	while	the	basal	

Ca2+	 concentration	 is	 around	 50-150nM	 (Thul	 and	 Falcke	 2004a).	 This	

represents	more	 than	3	orders	of	magnitude,	 and	given	 the	 sharp	gradients	of	



the	Ca2+	concentration	around	an	active	IP3R	cluster,	averaging	does	not	capture	

the	true	concentration	profiles.	The	issue	of	largely	distinct	Ca2+	concentrations	

also	 affects	 the	 mechanistic	 interpretation	 of	 ion	 channel	 models.	 Based	 on	

thermodynamic	principles,	the	binding	rate	of	Ca2+	to	a	designated	binding	site	is	

proportional	 to	 the	 Ca2+	 concentration.	 Averaged	 Ca2+	 concentrations	 usually	

peak	around	2μM.	Since	realistic	values	of	the	Ca2+	concentration	may	exceed	the	

average	by	a	factor	of	100,	the	binding	rate	is	100	times	faster	in	the	latter	case	

than	in	the	former.		This	has	important	consequences	for	processes	such	as	Ca2+	

induced	activation	or	Ca2+	induced	inhibition.	Only	realistic	values	of	the	cellular	

Ca2+	 concentration	 can	 unravel	 the	 mechanistic	 details	 of	 Ca2+	 dependent	

molecules	and	in	turn	faithfully	represent	the	cellular	Ca2+	dynamics.	

It	 is	 worth	 remembering	 that	 models	 are	 designed	 to	 answer	 a	 particular	

research	 question	 and	 to	 make	 predictions.	 Models	 should	 not	 be	 limited	 to	

reproducing	 experimental	 findings.	 Often,	 an	 ODE	 model	 for	 averaged	 Ca2+	

concentrations	 provides	 preliminary	 insights	 into	 the	 problem	 at	 hand	 and	

guides	 researchers	 towards	 more	 sophisticated	 approaches.	 From	 a	 practical	

point	 of	 view,	ODE	models	 frequently	 serve	 as	 a	 starting	point	 to	 explore	new	

signaling	 pathways,	 partly	 because	 there	might	 not	 be	 sufficient	 experimental	

data	 to	 construct	 a	 more	 detailed	 Ca2+	 model,	 and	 partly	 because	 the	

mathematical	 analysis	 of	 ODEs	 is	 well	 established	 and	 computationally	 cheap.	

Moreover,	 powerful	 analytical	 tools	 exist	 that	 give	 deeper	 insights	 into	 the	

mathematical	 details	 of	 such	models.	 Therefore	 ODE	models	 for	 the	 averaged	

Ca2+	 concentration	 may	 prove	 useful,	 despite	 being	 a	 poor	 reflection	 of	 the	

underlying	physiology.		

From	one	compartment	to	the	next	
It	became	apparent	early	on	that	for	models	of	cardiac	action	potentials	and	for	

local	 control	 models	 of	 excitation-contraction	 coupling	 that	 averaged	 Ca2+	

concentrations	 across	 the	 cell	 presented	 a	 poor	 description	 of	 the	 cellular	

environment	(DiFrancesco	and	Noble	1985;	Stern	1992).	The	 latter	serves	as	a	

prime	example	of	how	details	of	the	spatial	arrangement	of	Ca2+	conducting	ion	

channels	lead	to	predictive	modeling.	To	trigger	contraction,	Ca2+	enters	the	cell	

through	L-type	voltage	dependent	Ca2+	channels	(VDCCs)	upon	depolarization	of	

the	 plasma	 membrane.	 In	 turn,	 RyRs	 open	 through	 Ca2+-induced	 Ca2+	 release	

(CICR)	 (Bers	 2002).	 A	 key	 feature	 of	 VDCCs	 and	 RyRs	 is	 that	 they	 often	 co-

localize	within	a	distance	of	approximately	15nm,	hence	providing	RyRs	with	a	

privileged	access	to	the	Ca2+	influx	through	VDCCs.	It	is	this	localized	Ca2+	entry	

that	 controls	 CICR,	 not	 a	 whole	 cell	 averaged	 L-type	 Ca2+	 current.	 Indeed,	

excitation-contraction	 coupling	 can	 only	 be	 explained	 through	 a	 spatially	 non-

uniform	distribution	of	VDCCs-RyRs	clusters	(Soeller	and	Cannell	2004;	Cannell	

and	Kong	2012).	Such	spatial	heterogeneity	is	also	at	the	heart	of	the	model	by	

DiFrancesco	 and	 Noble	 (DiFrancesco	 and	 Noble	 1985).	 To	 reproduce	

experimental	 time	 courses	 of	 the	 intracellular	 Ca2+	 concentration,	 the	 authors	

had	to	assume	two	compartments	within	the	SR:	one	pool	that	resequesters	Ca2+	

from	the	cytosol	and	one	pool	that	releases	Ca2+	into	the	cytosol.	This	highlights	

what	 is	 known	 as	 compartmentalized	 modeling.	 In	 Stern’s	 model	 the	 two	

conceptual	 compartments	 are	 the	 dyadic	 cleft	 and	 the	 bulk	 cytosol,	 while	

DiFrancesco	and	Noble	distinguish	between	the	junctional	and	non-junctional	SR	



as	 well	 as	 the	 bulk	 cytosol.	 Note	 that	 compartmentalized	 models	 differ	 from	

whole	 cell	 models	 introduced	 in	 the	 previous	 section	 because	 they	 allow	 the	

division	 of	 morphologically	 continuous	 cellular	 compartments	 into	 functional	

subspaces	(e.g.	 junctional	and	non-junctional	SR).	In	turn,	this	leads	to	spatially	

varying	 Ca2+	 concentrations	 as	 opposed	 to	 spatially	 homogenous	 Ca2+	

concentrations	 in	 the	 well-stirred	 cell.	 From	 a	 mathematical	 point	 of	 view,	

compartmentalized	 models	 take	 on	 the	 form	 of	 coupled	 ODEs	 between	 the	

different	 compartments.	 For	 example,	 the	 model	 in	 (DiFrancesco	 and	 Noble	

1985)	can	be	written	as	
!"

!"
= !!"# + !!"# − !!" !! ,     

!!!"

!"
= !!" − !!" !!" ,     

!!!"#

!"
= !!" − !!"# !!"# ,	

where	!,	!!"	and	!!"# 	denote	 the	 Ca2+	 concentration	 in	 the	 cytosol,	 the	 uptake	

pool	and	the	release	pool	of	the	SR,	respectively,	with	corresponding	volumes	!! ,	

!!"	and	!!"# .	The	three	concentrations	change	due	to	the	ionic	flux	!!"#	across	the	

plasma	membrane,	the	release	flux	!!"# 	from	the	release	pool	into	the	cytosol,	the	

uptake	 flux	!!"	from	 the	 cytosol	 into	 the	 uptake	 pool	 and	 the	 transfer	 flux	!!" 	

from	the	uptake	compartment	to	the	release	compartment.	

The	challenge	for	modelers	lies	in	finding	descriptions	for	all	these	fluxes,	which	

often	reflect	mechanistic	 insights	 into	 the	underlying	dynamics.	 In	 this	respect,	

compartmentalized	models	demand	the	same	input	as	ODE	models	for	averaged	

Ca2+	 concentrations.	 One	major	 difference,	 however,	 is	 that	 some	 of	 the	 fluxes	

that	are	assumed	to	be	present	across	the	entire	cell	in	models	for	the	averaged	

Ca2+	concentration	only	occur	for	certain	compartments.	For	example,	the	uptake	

current	 is	 usually	 assumed	 to	 operate	 throughout	 a	 well-stirred	 cell,	 but	 is	

restricted	to	the	uptake	compartment	in	(DiFrancesco	and	Noble	1985).	From	a	

mechanistic	 point	 of	 view,	 the	 uptake	 current	 is	 often	 carried	 by	 sarco-

endoplasmic	Ca2+	ATPase	(SERCA)	pumps	and	can	be	described	by	

!!" = !!

!
!

!! + !!
,	

where	!!	and	!	represent	the	maximal	uptake	current	and	the	value	of	the	Ca2+	

concentration	 at	which	 pumps	work	 at	 half	 their	maximal	 uptake	 rate	 (EC50),	

respectively.	The	above	equation	assumes	that	the	Ca2+	flux	is	unidirectional	and	

only	 determined	 by	 the	 cytosolic	 Ca2+	 concentration.	 However,	 experimental	

measurements	 strongly	 suggest	 that	 firstly	 luminal	 Ca2+	 feeds	 back	 to	 SERCA	

pump	 dynamics	 and	 secondly	 Ca2+	 movement	 between	 the	 cytosol	 and	 the	

ER/SR	 proceeds	 along	 multiple	 distinct	 states	 of	 the	 SERCA	 pump	 molecule.	

These	 experimental	 results	 have	 led	 to	more	 comprehensive	models	 of	 SERCA	

pumps	 such	as	 in	 (Sneyd	et	 al.	 2003;	 Shannon	et	 al.	 2004;	Higgins	 et	 al.	 2006;	

Koivumäki	et	al.	2009;	Tran	et	al.	2009)	

The	 advantage	 of	 compartmentalized	models	 lies	 in	 the	 computational	 ease	 in	

accounting	for	largely	varying	Ca2+	concentrations	and	spatial	gradients.	A	single	

point	model	cannot	incorporate	the	different	peak	values	and	time	courses	of	e.g.	

the	 subsarcolemmal	 and	 bulk	 Ca2+	 concentration	 in	 cardiac	 myocytes.	 On	 the	

other	hand,	a	two-compartment	model	accomplishes	this	easily.		

Compartmentalized	 models	 have	 significantly	 advanced	 our	 understanding	 of	

Ca2+	 handling	 and	 the	 interaction	 between	 the	 membrane	 potential	 and	 the	

intracellular	 Ca2+	 concentration	 in	 cardiac	 myocytes	 (Shiferaw	 et	 al.	 2003;	

Shannon	 et	 al.	 2004;	 Shiferaw	 and	 Karma	 2006;	 Koivumäki	 et	 al.	 2011).	

However,	 deriving	 multi-compartment	 descriptions	 for	 intracellular	 Ca2+	



signaling	suffers	from	two	major	shortcomings.	Firstly,	it	is	not	clear	a	priori	how	

many	 compartments	 are	 needed	 to	 account	 for	 experimental	 measurements.	

Different	models	 use	 different	 numbers	 of	 compartments	 and	 yet	 describe	 the	

same	 physiology	 (see	 e.g.	 table	 1	 in	 (Fink	 et	 al.	 2011)).	 Secondly,	

compartmentalized	 models	 depend	 on	 the	 volumes	 of	 the	 compartments.	 It	

might	appear	straightforward	to	estimate	the	volume	of	the	dyadic	cleft,	but	it	is	

less	intuitive	where	to	draw	the	line	between	the	junctional	and	non-junctional	

SR	or	the	bulk	and	the	subsarcolemmal	cytosolic	space.	The	last	point	illustrates	

the	 fact	 that	 some	 of	 the	 compartments	 do	 not	 correspond	 to	 actual	 physical	

entities	but	to	functional	units	that	organize	Ca2+	handling.	Moreover,	the	spatial	

extent	of	these	functional	compartments	may	change	over	time	due	to	molecular	

interactions,	which	 in	 turn	 renders	 the	 volume	 estimation	 difficult	 to	make.	 A	

prime	example	for	this	scenario	is	the	impact	of	buffers	on	Ca2+	release	through	

IP3	 channels.	 Especially	 mobile	 buffers	 can	 increase	 the	 effective	 size	 of	 a	

microdomain	around	an	open	IP3R	cluster.	Ca2+	buffers	are	molecules	that	bind	

Ca2+	 and	hence	 increase	 the	cellular	Ca2+	 capacity.	 It	 is	worth	noting	 that	more	

than	90%	of	cellular	Ca2+	 is	buffered	under	normal	conditions	and	 that	buffers	

significantly	affect	local	and	global	Ca2+	signals	(Keener	and	Sneyd	2001;	Falcke	

2003a;	 Dargan	 and	 Parker	 2003;	 Zeller	 et	 al.	 2009).	 In	 addition,	 varying	 the	

number	 of	 IP3Rs	 in	 a	 cluster	 changes	 the	 functional	 volume	 and	 hence	 the	

dynamics	of	compartmentalized	IP3R	clusters	such	as	modeled	in	(Williams	et	al.	

2008).	

The	 conceptual	 simplicity	 of	 compartmentalized	 models	 makes	 them	 ideal	

candidates	 to	 start	 exploring	 cellular	 heterogeneity	 with	 low	 computational	

demand.	 However,	 no	 matter	 how	 many	 compartments	 are	 used	 and	 how	

sophisticated	 they	 are,	 any	 compartmentalized	 model	 suffers	 from	 the	 above	

shortcomings.	 The	 only	way	 to	 circumvent	 these	 issues	 is	 to	 treat	 the	 cellular	

space	 as	 what	 it	 is:	 a	 continuous	 representation	 of	 a	 cell	 where	 the	 only	

boundaries	 are	 those	 of	 the	 plasma	membrane	 and	 intracellular	 organelles.	 In	

the	 next	 section,	 we	 will	 examine	 some	more	 realistic	 models	 of	 intracellular	

Ca2+	 dynamics.	 However,	 a	 better	 representation	 of	 the	 physiological	 reality	

comes	 at	 a	 price.	 Larger	 computational	 overheads	 are	 required	 and	 more	

involved	mathematical	analysis	is	needed,	if	it	is	feasible	at	all.		

Spatially	extended	cell	models	
Ca2+	waves,	whether	spontaneous	or	triggered,	abortive	or	cell-wide,	correspond	

to	one	of	the	most	common	forms	of	Ca2+	signals.	To	fully	map	the	large	dynamic	

repertoire	 of	 Ca2+	waves,	modelers	 have	 to	 go	beyond	 the	 framework	of	ODEs	

discussed	so	far	and	turn	to	partial	differential	equations	(PDEs).	In	contrast	to	

the	ODEs	discussed	above	where	 the	Ca2+	 concentration	only	depends	on	 time,	

PDEs	 treat	 the	Ca2+	 concentration	as	dependent	on	both	space	!	and	 time	!,	 i.e.	

! = !(!, !) .	 In	 its	 simplest	 form,	 the	 spatio-temporal	 evolution	 of	 the	 Ca2+	

concentration	is	captured	by	

	 !"

!"
= !

!
!
!

!!!
+ ! ! ,	 (2)	

where	!	denotes	the	(effective)	diffusion	coefficient	of	Ca2+	 in	the	cytosol	and	!	

describes	 the	 local	 Ca2+	 dynamics,	 i.e.	 Ca2+	 release	 through	 IP3Rs	 and	 RyRs	 or	

Ca2+	 resequestration	by	SERCA	pumps	from	the	cytosol	 to	the	ER	or	SR.	 In	this	



respect,	Ca2+	dynamics,	as	modeled	by	PDEs,	has	a	direct	connection	to	the	ODEs	

outlined	above,	since	the	function	!	in	equation	(2)	is	the	same	as	the	right	hand	

side	of	equation	(1).		The	effective	diffusion	coefficient	reflects	the	impact	of	Ca2+	

buffers	on	Ca2+	transport.		Essentially,	Ca2+	diffuses	through	the	cytosol	either	as	

a	 free	 ion	or	bound	 to	mobile	buffers.	 Since	buffers	are	much	 larger	 than	Ca2+,	

buffer-bound	 Ca2+	 diffuses	 more	 slowly	 than	 free	 Ca2+.	 An	 effective	 diffusion	

coefficient	 accounts	 for	 these	 different	 transport	 velocities.	 One	 method	 to	

compute	!	is	the	fast	buffer	approximation	(Wagner	and	Keizer	1994).	To	date,	

Ca2+	waves	have	been	studied	in	great	detail,	and	I	refer	the	reader	to	(Sneyd	and	

Tsaneva-Atanasova	 2002;	 Falcke	 2004)	 for	 recent	 reviews	 on	 Ca2+	 wave	

propagation.	Here,	I	would	like	to	focus	on	some	selected	aspects	of	Ca2+	waves.		

The	main	driving	 force	behind	Ca2+	waves	 is	CICR.	Suppose	Ca2+	 is	 liberated	at	

one	 Ca2+	 release	 site	 while	 all	 neighboring	 Ca2+	 release	 sites	 are	 quiescent.	

Calcium	 then	 diffuses	 from	 the	 active	 Ca2+	 release	 site	 to	 the	 dormant	 sites,	

which	 increases	the	probability	of	 these	channels	 to	open.	Once	these	channels	

open,	Ca2+	is	liberated	and	in	turn	diffuses	to	adjacent	Ca2+	release	sites	where	a	

new	 round	 of	 Ca2+	 liberation	 is	 triggered.	 In	 this	 way,	 a	 saltatory	 Ca2+	 wave	

propagates	through	a	cell.	For	IP3Rs,	the	notion	of	CICR	is	often	illustrated	by	the	

bell-shaped	 dependence	 of	 the	 stationary	 open	 probability	 of	 the	 IP3R	 on	 the	

cytosolic	 Ca2+	 concentration	 (Bezprozvanny	 et	 al.	 1991;	 Foskett	 et	 al.	 2007).	A	

small	 rise	 of	 the	 cytosolic	 Ca2+	 concentration	 above	 base	 level	 leads	 to	 a	

significant	 increase	in	the	IP3R	open	probability.	However,	steady-state	data	do	

not	 necessarily	 capture	 the	 true	 dynamics	 of	 an	 IP3R,	 neither	 is	 a	 bell-shaped	

dependence	of	 the	open	probability	necessary	 to	explain	observed	Ca2+	 signals	

(Sneyd	 and	 Falcke	 2005).	 As	 a	 consequence,	 it	 is	 more	 appropriate	 to	

conceptualize	CICR	as	Ca2+	excitability	(Keizer	et	al.	1995).	Borrowing	ideas	from	

nonlinear	 dynamical	 systems,	 Ca2+	 excitability	 refers	 to	 the	 fact	 that	 Ca2+	

liberation	 is	 only	 initiated	 at	 a	 cluster	 of	 closed	 Ca2+	 releasing	 channels	 if	 the	

cluster	 state	 is	 sufficiently	 perturbed.	One	 such	perturbation	 is	 the	 increase	 in	

the	cytosolic	Ca2+	concentration,	others	include	a	rise	of	the	IP3	concentration	or	

phosphorylation	 of	 the	 receptor	molecules.	 One	 class	 of	models	 for	 Ca2+	 wave	

propagation	 that	 builds	 on	 the	 notion	 of	 a	 critical	 value	 of	 the	 cytosolic	 Ca2+	

concentration	to	trigger	Ca2+	release	are	those	of	the	fire-diffuse-fire	(FDF)	type	

(Pearson	and	Ponce-Dawson	1998;	Keizer	et	al.	1998;	Dawson	et	al.	1999).	Also	

known	as	 threshold	models,	Ca2+	 liberation	starts	as	 soon	as	 the	cytosolic	Ca2+	

concentration	 reaches	 a	 critical	 value.	 Calcium	 release	 continues	 for	 a	 fixed	

duration,	comparable	to	the	lifetime	of	a	Ca2+	puff	or	spark,	then	the	release	site	

closes	 and	 becomes	 refractory.	 The	 beauty	 of	 FDF	 models	 is	 that	 they	 are	

amenable	to	a	rigorous	mathematical	analysis	and	computationally	inexpensive.	

The	 first	 property	 makes	 them	 ideal	 candidates	 to	 study	 large	 portions	 of	

parameter	 space	 since	 expressions	 for	 key	 features	 of	 traveling	waves	 such	 as	

the	wave	speed	are	available	in	closed	form.	Instead	of	running	a	large	number	of	

simulations	all	that	is	needed	is	to	evaluate	analytical	expressions,	which	can	be	

done	in	a	fraction	of	the	time	that	is	required	for	the	numerical	simulations.	For	

example,	the	impact	of	SERCA	pumps	on	Ca2+	wave	propagation	has	been	studied	

in	(Coombes	2001),	and	investigating	the	interplay	between	the	cytosol	and	the	

SR	provided	explanations	for	two	novel	wave	types:	tango	waves	(Li	2003;	Thul	

et	al.	2008b)	and	sensitization	waves	(Keller	et	al.	2007;	Thul	et	al.	2009a).	While	

deterministic	models	such	as	the	original	FDF	description	are	still	 instrumental	



in	advancing	our	understanding	of	 intracellular	Ca2+	waves,	hybrid	frameworks	

that	 incorporate	 the	stochastic	nature	of	Ca2+	 release	have	gained	considerable	

attention.	 	 In	 this	 respect,	 threshold	 models	 are	 ideally	 suited	 to	 capture	 the	

random	 opening	 of	 IP3Rs	 and	 RyRs,	 and	 study	 stochastic	 Ca2+	 waves.	 In	 these	

models,	 the	 constant	 threshold	 for	 Ca2+	 liberation	 is	 replaced	 by	 a	 fluctuating	

value	 which	 can	 in	 principle	 be	 derived	 from	 experiments	 (Izu	 et	 al.	 2001;	

Coombes	and	Timofeeva	2003).	

The	above	examples	for	Ca2+	waves	all	represent	a	cell	as	a	one-dimensional	line.	

From	 an	 experimentalist’s	 point	 of	 view,	 this	 might	 appear	 to	 be	 a	 crude	

approximation	 to	 the	 real	 cellular	 shape	 and	 morphology.	 The	 value	 of	 one-

dimensional	 models	 is	 their	 ability	 to	 identify	 key	 mechanisms	 of	 Ca2+	 wave	

propagation	 and	 to	 provide	 a	 thorough	 mathematical	 underpinning	 of	 the	

intracellular	processes	that	drive	Ca2+	waves.	In	turn,	this	establishes	confidence	

in	 the	 chosen	 modeling	 framework	 to	 explore	 two-	 and	 three-dimensional	

models	while	avoiding	spurious	results.		

Coupled	with	the	stochastic	description	of	Ca2+	release,	two-dimensional	models	

of	the	intracellular	Ca2+	concentration	have	provided	intriguing	insights	into	the	

generation	 and	 propagation	 of	 Ca2+	 waves	 (see	 Figure	 1).	 For	 example,	 a	

stochastic	FDF	model	exhibits	spatially	synchronized	oscillations,	i.e.	every	point	

in	the	cell	oscillates	with	the	same	phase	as	its	neighbors	and	the	averaged	Ca2+	

concentration	 shows	 regular	 oscillations	 (Coombes	 and	 Timofeeva	 2003).	

However,	as	soon	as	the	random	opening	of	the	Ca2+	releasing	channels	is	turned	

off,	 the	oscillations	disappear.	Although	the	cell-wide	signal	 looks	deterministic	

and	 homogenous,	 an	 ODE	 framework	 as	 discussed	 above	 fails	 to	 provide	 the	

right	mechanism.	It	is	the	interplay	between	the	spatial	arrangement	of	the	Ca2+	

release	 channels	 and	 the	 fluctuations	 of	 channel	 opening	 that	 are	 important,	

neither	of	which	are	captured	by	ODEs.	Similarly,	 the	results	 in	(Falcke	2003b)	

suggest	 that	 Ca2+	 waves	 are	 initiated	 by	 the	 random	 formation	 of	 a	 critical	

nucleus.	 Only	 if	 a	 sufficient	 number	 of	 IP3R	 clusters	 open	 at	 the	 same	 time	 in	

close	 proximity	 will	 a	 Ca2+	 wave	 be	 born.	 Two-dimensional	 simulations	 have	

been	 instrumental	 in	 providing	 first	 estimates	 for	 the	 number	 of	 IP3Rs	 per	

cluster,	which	is	still	hard	to	determine	experimentally	due	to	the	small	cluster	

diameter	(Swillens	et	al.	1999;	Shuai	and	Jung	2003a;	2003b),	but	see	(Smith	and	

Parker	2009)		for	a	recent	experimental	measurement.		

	

The	 success	 of	 two-dimensional	 simulations	 and	 the	 availability	 of	 more	

powerful	computing	facilities	have	promoted	the	study	of	Ca2+	signals	in	a	three-

dimensional	cellular	environment	(Izu	et	al.	2006;	Means	et	al.	2006;	Rüdiger	et	

al.	2007;	Li	and	Holden	2009;	Skupin	et	al.	2010;	Solovey	et	al.	2011;	Thurley	and	

Falcke	 2011;	 Thul	 et	 al.	 2012).	 Each	 of	 these	 studies	 focuses	 on	 a	 particular	

aspect	of	Ca2+	 signaling	 such	as	a	 realistic	distribution	of	Ca2+	 release	 sites,	ER	

geometry,	or	 the	 interaction	of	a	 small	number	of	 IP3Rs	and	 IP3R	clusters	with	

detailed	gating	schemes.	Taken	together,	this	research	provides	a	kaleidoscopic	

view	 of	 the	 nature	 of	 intracellular	 Ca2+	 signals	 and	 highlights	 two	 of	 the	main	

characteristics	 of	 intracellular	 Ca2+	 dynamics.	 Firstly,	 intracellular	 Ca2+	 is	 an	

intrinsic	stochastic	medium.	The	random	state	transitions	that	occur	at	a	cluster	

of	IP3Rs	is	due	to	the	continuous	binding	and	unbinding	of	Ca2+	and	IP3	to	a	small	

number	of	binding	sites	and	is	instrumental	in	generating	Ca2+	puffs.	The	large		



	
	
Figure	1:	Ca2+	waves	in	a	stochastic	two-dimensional	FDF	model.	The	eight	panels	show	snapshots	of	

multiple	Ca2+	waves	(time	runs	from	left	to	right,	top	to	bottom).	The	first	wave	(top	left)	is	triggered	

at	the	beginning	of	the	simulation,	while	all	other	waves	emerge	spontaneously	due	to	fluctuations	

of	Ca2+	release.	For	a	three-dimensional	stochastic	FDF	model,	I	refer	the	reader	to	(Thul	et	al.	2012)	

Ca2+	 concentrations	 that	 occur	 at	 an	 open	 cluster	 saturate	 any	 deterministic	

binding	 dynamics	 and	 hence	 cannot	 explain	 experimentally	 observed	 puff	

statistics	 (Thul	 and	 Falcke	 2004a;	 2004b).	 As	 a	 consequence	 intracellular	 Ca2+	

oscillations	emerge	at	 the	 cellular	 level	 through	 the	 stochastic	orchestration	of	

Ca2+	 puffs.	 Single	 puff	 sites	 do	 not	 exhibit	 oscillatory	 dynamics	 (Thurley	 et	 al.	

2011).	 Secondly,	 the	 true	 nature	 of	 Ca2+	 dynamics	 can	 only	 be	 captured	 in	

spatially	 extended	models.	 Microdomains	 and	 Ca2+	 waves	 clearly	 indicate	 that	

cells	 are	not	well-stirred	bioreactors	where	 the	Ca2+	 concentration	 is	 the	 same	

across	 the	 entire	 cell.	 	 The	 generation	 and	molecular	 read-out	 of	 Ca2+	 signals	

depends	 on	 the	 local	 environment,	 not	 on	 properties	 of	 the	 bulk	 Ca2+	

concentration.		

The	road	ahead	
	Modeling	 intracellular	 Ca2+	 dynamics	 has	 already	 come	 a	 long	 way	 and	 has	

significantly	 advanced	 our	 understanding	 of	 this	 most	 versatile	 second	

messenger.	So	far,	we	have	gained	great	insight	into	individual	levels	of	the	Ca2+	

signaling	hierarchy,	e.g.	for	Ca2+	blips,	puffs	and	sparks	or	whole	cell	Ca2+	waves.	

The	challenge	 for	 the	 future	 is	 to	construct	models	 that	span	 the	entire	spatio-

temporal	range	(Thurley	et	al.	2012).	For	IP3	mediated	Ca2+	patterns,	this	means	

computational	 frameworks	that	take	us	from	the	stochastic	binding	of	Ca2+	and	

IP3	to	their	respective	binding	sites	on	the	IP3R,	to	a	cellular	response	accounting	

for	 the	 often	 irregular	 three-dimensional	 geometry	 of	 cells	 and	 the	 spatially	

heterogeneous	 expression	 of	 large	 numbers	 of	 IP3R	 clusters.	 The	 constant	

advances	 in	computational	power	will	 certainly	help	us	 to	achieve	 this	goal.	At	

the	same	time,	modelers	have	to	improve	existing	models	and	to	develop	novel	

techniques	that	characterize	intracellular	Ca2+	dynamics	more	efficiently	without	

sacrificing	 details	 of	 the	 Ca2+	 signaling	 toolkit.	 Constructing	 models	 that	 are	

firmly	 rooted	 in	 experimental	 findings	 and	 successfully	 predict	 experimental	

results,	while	at	the	same	time	providing	mechanistic	interpretations	of	signaling	

pathways,	will	serve	as	a	guiding	principle	for	future	research	both	in	modeling	

and	experiment.	
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