NATURAL SYSTEMS THE ORGANISATION OF LIFE Markus P. Eichhorn

WILEY Blackwell

Natural Systems

 \oplus

 \oplus

 \oplus

The organisation of life

Natural Systems

 \oplus

 \oplus

The organisation of life

Markus P. Eichhorn

The University of Nottingham

 \oplus

Œ

This edition first published 2016 © 2016 by John Wiley & Sons Ltd

Registered office: John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial offices: 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030-5774, USA

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell.

The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author(s) have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

[to come, includes ISBN]

A catalogue record for this book is available from the British Library.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Cover image: [Production Editor to insert] Cover design by [Production Editor to insert]

Typeset in 9/13pt MeridienLTStd by SPi Global, Chennai, India

1 2016

Preface

Ecology is the study of how the living world works. As a scientific field it has advanced in great strides over recent years, driven by a recognition of its central role in tackling some of the most pressing problems in the modern world. At the same time, however, the conventional ecology syllabus has remained relatively static, with a focus on theories dating from half a century ago. Even higher-level undergraduates can struggle to comprehend ideas under debate in the current literature, and the leap between undergraduate and postgraduate levels has become ever wider. This book is an attempt to bridge the gap.

The overall aim is to introduce the processes determining the structure and organisation of natural systems. The core questions can be expressed in two ways. In purely academic terms, they are to

- Understand patterns of species richness
- Interpret the composition of species in any given area
- Explain how processes at local (bottom-up) and regional (top-down) scales interact

It is perhaps better to reframe these in terms that capture more practical aspects related to current global concerns and are therefore more enticing to a general audience:

- What is biodiversity, and how can we measure it?
- If we wanted to create a natural system, how would we go about it?
- Can we predict what might happen to the natural world in the future?

The text builds sequentially from the concept and importance of species, through patterns of diversity, the interactions of natural systems with their abiotic environment and how species are organised within communities. This leads to consideration of global patterns of biogeography, concluding with the topic of islands, which are the closest analogues in nature to sealed systems. Standard ecology courses take a bottom-up approach, focussing on core phenomena such as population dynamics and simple interactions among a few species. Meanwhile biogeographers tend to stress the importance of speciation, extinction and dispersal in generating broadscale patterns. This book attempts to unite the two perspectives. Specialist terms highlighted in bold on first usuage are defined in the glossary at the end.

To students

In the coming years, ecology—and ecologists—have a crucial role to play. The great challenges facing humanity include feeding a growing global population, dealing with the consequences of climate change and controlling

xvi Preface

the effects of a mass extinction event triggered by our own activities. The recent formation of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES¹), intended as a parallel to the similar panel on climate change, reflects how seriously the world is beginning to take such concerns. This is long overdue—in the time since the Convention on Biological Diversity was signed by 193 countries in 1992, matters have only become worse (Butchart et al., 2010). These are all problems that will require an understanding of ecology and particularly how processes interact from local to regional and global scales. Learning how natural systems operate is the first step towards making a difference.

Much of the material in this book is recent, and some of the content remains controversial, so you are encouraged to follow up with wider reading and see how the debates are proceeding in the literature. Part of becoming a scientist lies in forming your own opinions and not taking everything you're told for granted, even in textbooks. Scientific understanding advances constantly and posterity will no doubt judge some of what is contained here to be incorrect; finding out which parts are wrong will be up to you. To learn more about any of the debates presented here and to keep pace with the field, I recommend scanning issues of the journals Ecology Letters and Trends in Ecology and Evolution. The most helpful articles will be short reviews. Many other journals include or focus entirely upon ecological studies.

As ecology grows as a science, it becomes increasingly important to understand the quantitative aspects. The best ecologists combine the enthusiasm of a natural historian with the mind of a statistician, and I entreat you to not skip over mathematical sections that might initially appear 'difficult'. Every effort has been made to make these as accessible as possible. A central set of skills to develop are techniques for the assessment and measurement of diversity, which will prove essential if you have aspirations to work in conservation, environmental consultancy or natural resource management. An appendix describes how to calculate and interpret a range of diversity measures using a real dataset from a butterfly conservation project in Colorado. These metrics are used routinely in the academic literature and applied fields. Remember that without strong numerical evidence, it is almost impossible to make a convincing scientific argument.

Finally, an occasional complaint from students on my courses is that there's too much material. If you feel this way then you're missing the point! Try to focus on underlying theories and concepts, rather than attempting to memorise specific information. You're unlikely to ever need to know the exact species of plant that make up a particular succession, but you should be able to explain how and why succession occurs. There are many examples contained in the book, but these are provided to illustrate ideas, not because the details themselves are essential. Take these concepts and see whether you can match them to natural systems wherever you find yourself—on holiday in an exotic country, walking in the park or even in your own garden. A true ecological rule should apply anywhere.

To instructors

Since 2008 I have taught an undergraduate module which has formed the spine of this book. My aim is to provide a bridge between conventional ecological teaching, covering the behaviour of individuals and populations, and global patterns of life. As such it begins where most ecology textbooks end, and takes a broad perspective on the organisation of natural systems. These themes make the book relevant to students of ecology, environmental science, geography and conservation. My hope is that it will be easy to use as a course text since each chapter is derived from a single 1-hour lecture (albeit expanded). Instructors should therefore be able to readily convert the text into a teaching resource, and students will be able to use it to enhance their

1 http://www.ipbes.net.

Preface xvii

overall understanding and support their learning. Each chapter commences by framing the big questions and concludes by outlining outstanding problems and avenues for additional enquiry along with some suggestions for additional reading. These could be used as starting points for class discussions or to stimulate interest in active areas of controversy.

Lately there have been several attempts to provide links from core ecology through to biogeography, usually via the nascent field of macroecology. Recent books targeting an exclusively academic audience include Scheiner and Willig (2011) and Loreau (2010). A growing drive to improve the connectivity between these research fields has however yet to be represented at an accessible level for a student audience. My hope is that this book will help to guide advanced undergraduates and postgraduates towards this exciting and vital issue.

In a single text it is impossible to cover all aspects of a topic, and therefore it is worth outlining what this book does not contain. There is a relatively limited emphasis on conservation, though many of the ideas and principles lie at the heart of conservation biology. The same can be said of restoration ecology, the field devoted to rebuilding natural systems where they have been altered by human activities. It has also not been possible to include much on abiotic processes operating at the ecosystem scale; a number of excellent texts already exist in this area though (e.g. Chapin III et al., 2012). A final known omission is the relatively limited coverage of the impacts of diseases and parasites (and parasitoids) on communities. This is a topic on which there has been a growing focus in the ecological literature, but as yet little synthesis, which means that it will hopefully be included in a future edition.

The book is intended to be a summary of the present state of the field which focusses on the most promising ideas for continued investigation. It is not written as a history of the development of ideas within ecology. My own experience as both a student and teacher is that diverting attention towards old arguments or superceded theories only serves to distract or confuse. There are many great names from the history of ecology, founding figures even, who are not mentioned in these pages. This is not meant as a slight, nor is it an accidental oversight, but a deliberate choice to avoid bloating the text with outdated arguments.

Finally, please note that a number of the concepts and theories that are referenced remain subject to dispute. I do not shy away from giving a personal opinion on the more contentious points, based on the balance of current evidence and in full awareness that some will disagree. The reference list has to stop somewhere, and I have not included anything published since the end of 2014. It is inevitable that by the time this book reaches your hands, something will have been contested or overturned. If you should find yourself disagreeing with anything, then I hope this can be turned into a productive means of introducing students to difficult questions. No textbook should ever be treated as absolute truth; my goal is to provide a reasonable starting point. Should you notice any errors or omissions, then please let me know.

MARKUS P. EICHHORN Nottingham, UK 12 October 2015

References

Butchart, S. H. M., M. Walpole, B. Collen, A. van Strien, J. P. W. Scharlemann, R. E. A. Almond, J. E. M. Baillie, B. Bomhard, C. Brown, J. Bruno, K. E. Carpenter, G. M. Carr, J. Chanson, A. M. Chenery, J. Csirke, N. C. Davidson, F. Dentener, M. Foster, A. Galli, J. N. Galloway, P. Genovesi, R. D. Gregory, M. Hockings, V. Kapos, J.-F. Lamarque, F. Leverington, J. Loh, M. A. McGeoch, L. McRae, A. Minasyan, M. H. Morcillo, T. E. E. Oldfield, D. Pauly, S. Quader, C. Revenga, J. R. Sauer, B. Skolnik, D. Spear, D. Stanwell-Smith, S. N. Stuart, A. Symes, M. Tierney, T. D. Tyrrell, J.-C. Vié, and R. Watson, 2010. Global biodiversity: indicators of recent declines. *Science* 328:1164–1168.

xviii Preface

Chapin, F. S. III., P. A. Matson, and P. M. Vitousek, 2012. Principles of Terrestrial Ecosystem Ecology. Springer-Verlag, second edition.

Loreau, M., 2010. Linking biodiversity and ecosystems: towards a unifying ecological theory. *Philosophical Transactions of the Royal Society Series B* 365:49–60.

Scheiner, S. M. and M. R. Willig, 2011. The Theory of Ecology. The University of Chicago Press.

Contents

References

 \oplus

Preface	xv
Acknowledgements	xix
Abbreviations	xxi
1 Introduction: defining nature	1
1.1 How little we know	1
1.2 Pressing questions	2
1.3 The hierarchy of nature	2
1.4 Biodiversity	4
1.5 Myths to bust	4
1.6 Further information	5
1.6.1 Recommended reading	5
References	5
Part I: Species	
2 What is a species?	9
2.1 The big question	9
2.2 Species concepts	10
2.2.1 Nominalistic 2.2.2 Morphological	10
2.2.3 Biological	11 12
2.2.4 Phylogenetic	13
2.2.5 Genetic	14
2.3 Solving the riddle	16
2.4 Coda: Species richness	17
2.5 Conclusions	17
2.5.1 Recommended reading	17
2.5.2 Questions for the future	17

17

v

3 The	history of life	19
3.1	The big question	19
3.2	Sources of evidence	19
	3.2.1 The fossil record	19
	3.2.2 Molecular evidence	20
3.3	A brief history of diversity	20
3.4	Uneven diversity	24
3.5	Conclusions	25
	3.5.1 Recommended reading	26
	3.5.2 Questions for the future	26
	References	26
4 How	many species are there?	29
4.1	The big question	29
4.2	How can we not know?	29
4.3	Discovery rates	30
4.4	Scaling	32
4.5	Sampling-based methods	33
4.6	Other organisms	36
4.7	Wrapping up	36
4.8	Conclusions	37
	4.8.1 Recommended reading	38
	4.8.2 Questions for the future	38
	References	38
	Diversity	
5 Meas	suring diversity	43
5.1	The big question	43
5.2	Scales of diversity	43
5.3	Species richness	43
5.4	Believing in estimates	46
5.5	A SAD story	47

- 5.6 Diversity of species
- 5.7 Other measures of diversity

		Contents	vi
5.8	β diversity		5
	Case study: The Binatang project		54
	Conclusions		5
2110	5.10.1 Recommended reading		5'
	5.10.2 Questions for the future		5
	References		5
Nich	es		6
6.1	The big question		6
6.2	Historical background		6
6.3	Back to basics		6
6.4	Birth and death rates		6
6.5	The ZNGI		6
6.6	Impact vectors		6
6.7	Supply points		6
6.8	Coexistence		6
6.9	The evidence		7
6.10	Implications		7
6.11	Conclusions		7
	6.11.1 Recommended reading		7
	6.11.2 Questions for the future		7
	References		7
Patte	erns in species richness		7
7.1	The big question		7
7.2	Area		7
7.3	Local and regional species richness		8
7.4	Local patterns in species richness		8
	7.4.1 Elevation		8
	7.4.2 Depth7.4.3 Peninsulas and Bays		8 8
	7.4.4 Isolation		0 8
	7.4.5 Mid-Domain Effects		8
7.5	Congruence		8
7.6	Assembling a model		9
7.7	Conclusions		9

 \oplus

 \oplus

	7.7.1 Recommended reading7.7.2 Questions for the future	91 92
	References	92
8 Driv	ers of diversity	95
8.1	The big question	95
8.2	Coexistence or co-occurrence?	95
8.3	Energy and resources	95
8.4	Diversity begets diversity 8.4.1 Heterogeneity in space 8.4.2 Heterogeneity in time	101 101 103
8.5	Disturbance	104
8.6	Top-down control	105
8.7	Expanding our model	109
8.8	Conclusions 8.8.1 Recommended reading 8.8.2 Questions for the future	110 110 111
	References	111
9 Does	s diversity matter?	113
9.1	The big question	113
9.2	Ecosystems	113
9.3	What shape is the relationship?	115
9.4	Field experiments	117
9.5	Other measures of diversity	121
9.6	Multifunctionality	122
9.7	The real world	125
9.8	Species richness and productivity	126
9.9	Conclusions 9.9.1 Recommended reading 9.9.2 Questions for the future	127 127 128
	References	128
Part III:	Communities	
10 Orga	nisation at the community scale	133
10.1	The big question	133
10.2	Definitions	133

Ē

	Contents	ix
10.3 Communities in the field		134
10.4 Quantitative approaches		135
10.5 Community structure		137
10.6 Food chains		140
10.7 Food webs		142
10.8 Complexity and stability		145
10.9 Trophic cascades		147
10.10 SAD again		148
10.11 Complex systems		151
10.12 Unified neutral theory		153
10.13 Metabolic theory of ecology		155
10.14 Conclusions		156
10.14.1 Recommended reading		157
10.14.2 Questions for the future		157
References		157
11 Stability		161
11.1 The big question		161
11.2 Stable states		161
11.3 Changing environments		164
11.4 Hysteresis		165
11.5 Predicting changes		167
11.6 Coral reefs		169
11.7 Shifting baselines		170
11.8 Conclusions		173
11.8.1 Recommended reading		174
11.8.2 Questions for the future		175
11.9 Coda: the seduction of Gaia		175
References		176
12 Changes through time		179
12.1 The big question		179
12.2 Succession		179
12.3 Succession and niche theory		180

 \oplus

 \oplus

	12.4	Examples of succession	182
	12.5	Disturbance	184
	12.6	Modelling succession	185
	12.7	Regeneration	187
	12.8	Plants and animals	188
	12.9	Case study: Mpala, Kenya	188
	12.10	Conclusions	190
		12.10.1 Recommended reading	190
		12.10.2 Questions for the future	190
		References	191
13	Chan	ages through space	193
	13.1	The big question	193
	13.2	Community assembly	193
		13.2.1 Competitive exclusion	194
		13.2.2 Historical processes	196
		13.2.3 Habitat checkerboards	197
		13.2.4 Chance and contingency	198
	13.3	Metacommunities	199
	13.4	Dispersal limitation	204
	13.5	Combining environment and dispersal	208
	13.6	Conclusions	210
		13.6.1 Recommended reading	210
		13.6.2 Questions for the future	210
		References	210
Pa	art IV:	Biogeography	
14	Glob	al patterns of life	215
	14.1	The big question	215
	14.2	Biogeography	215
	14.3	Phytogeography	217
	14.4	Ecoregions	222
	14.5	Empirical approaches	223
	14.6	The oceans	225
	14.7	Fresh water	228

 \oplus

		Contents	XI
14.8	Conclusions 14.8.1 Recommended reading		228 229
	14.8.2 Questions for the future		229
	References		229
5 Regi	onal species richness		233
15.1	The big question		233
15.2	Climate and productivity		234
15.3	Other processes		236
15.4	Scale and productivity		238
15.5	Latitudinal gradients		240
15.6	Centres of origin		243
15.7	Regional species-area relationships		244
15.8	Confounding effects		244
15.9	Conclusions 15.9.1 Recommended reading 15.9.2 Questions for the future		245 246 246
	References		246
5 Latit	udinal gradients		249
16.1	The big question		249
16.2	Hypotheses		249
16.3	Geographic area		249
16.4	Climatic stability		251
16.5	Productivity		252
16.6	Niche size		253
16.7	Evolutionary speed		254
16.8	Out of the tropics		257
16.9	Conclusions 16.9.1 Recommended reading 16.9.2 Questions for the future		261 262 262
	References		262
7 Eartl	n history		265
17.1	The big question		265
17.2	Geological history		265
17.3	Continental drift		266

 \oplus

 \oplus

Contents xi

17	7.4 Echoes of Pangæa	269
17	7.5 Climatic effects	272
17	7.6 Ice ages	274
17	7.7 Sea level	278
17	7.8 Extinctions	278
17	7.9 Conclusions	281
	17.9.1 Recommended reading 17.9.2 Questions for the future	283 283
	References	283
18 Di	ispersal	287
	3.1 The big question	287
	3.2 Range expansion	287
	3.3 Mechanisms of dispersal	289
	3.4 Barriers	290
18	3.5 Case studies	292
	18.5.1 New Zealand	292
	18.5.2 Madagascar	295
18	3.6 Conclusions 18.6.1 Recommended reading	299 300
	18.6.2 Questions for the future	300
	References	300
19 Li	fe on islands	303
19	9.1 The big question	303
19	9.2 Types of island	303
19	9.3 Island biotas	305
19	9.4 Evolution of endemics	305
19	9.5 Size changes	307
19	9.6 Reproduction and dispersal	310
19	0.7 Super-generalists	311
19	9.8 Endemic communities	312
19	9.9 Disharmony	312
19.	10 Assembly rules	314

 \oplus

 \oplus

+

		Contents	xiii
19.11 Island s	pecies richness		314
	ilibrium model of island biogeography		317
19.13 Testing			319
19.14 Conclus			320
	Recommended reading Questions for the future		320 320
Referen	ces		320
20 Reinventing	islands		323
20.1 The big	question		323
20.2 A critiqu	ue of EMIB		323
20.3 Rival hy	potheses		326
20.4 Disturba	ance		326
20.5 Relaxati	ion		329
20.6 Extincti	ons		331
20.7 Invasior	15		331
20.8 A new t	heory?		332
20.9 Evolutio	n		333
20.10 Conclus	ions		338
	Recommended reading Questions for the future		338 338
Referen			338
21 What is a na			341
21.1 The big			341
21.2 Lessons			342
21.2.1	Ecological processes are scale dependent		342
	All interactions are nested		342
	There is no such thing as the balance of nature Everything is contingent		342 343
	es not systems		343
Referen			344
	versity analysis case study: Butterfly conservation in the Rocky Mou	ntains	345
A.1 Softwar			345
A.2 Calculat			346
11.2 Guiculat	AVAAV		210

 \oplus

xiv Contents

 \oplus

A.3 Synthesis	350
A.4 Conclusions	351
References	352
Glossary	353
Index	359

 \oplus

 \oplus