
Twycross, Jamie and Aickelin, Uwe and Whitbrook,
Amanda (2010) Detecting anomalous process behaviour
using second generation Artificial Immune Systems.
International Journal of Unconventional Computing, 6 (3-
4). pp. 301-326. ISSN 1548-7202

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/34057/1/twycross2010a.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/42493466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@nottingham.ac.uk

Detecting Anomalous Process Behaviour using
Second Generation Artificial Immune Systems

JAMIE TWYCROSS⋆, UWE A ICKELIN †, AMANDA WHITBROOK‡

IMA Research Group, School of Computer Science, University of Nottingham, UK

Artificial Immune Systems have been successfully applied to a
number of problem domains including fault tolerance and data
mining, but have been shown to scale poorly when applied to
computer intrusion detection despite the fact that the biological
immune system is a very effective anomaly detector. This may
be because AIS algorithms have previously been based on the
adaptive immune system and biologically-naive models. This
paper focuses on describing and testing a more complex and
biologically-authentic AIS model, inspired by the interactions
between the innate and adaptive immune systems. Its perfor-
mance on a realistic process anomaly detection problem is shown
to be better than standard AIS methods (negative-selection), policy-
based anomaly detection methods (systrace), and an alternative
innate AIS approach (the DCA). In addition, it is shown that run-
time information can be used in combination with system call
information to enhance detection capability.

Key words:Second generation Artificial Immune Systems,
innate immunity, process anomaly detection, intrusion de-
tection systems

⋆ email: jpt@cs.nott.ac.uk
† email: uxa@cs.nott.ac.uk
‡ email: amw@@cs.nott.ac.uk

1

1 INTRODUCTION

This paper is concerned with the classification performance of a novel Arti-
ficial Immune System (AIS) on a process anomaly detection problem. The
novel AIS (thetlr algorithm) incorporates mechanisms inspired by both the
innate and adaptive biological immune systems, and produces a very low false
positive rate when detecting attacks on an FTP server. As with many other
process anomaly detection systems, system call information is used as one
source of input data. However, another novel aspect of thetlr algorithm is
the use of runtime statistics (such as process memory and file usage) as con-
text signals that form additional sources of input data. This aspect builds on
the idea of gray-boxing, a term introduced several years ago [8] to denote in-
trusion detection systems that use runtime information as well as system call
information.

The rest of the paper is structured as follows. Section 2 provides some es-
sential background information on intrusion and process anomaly detection,
reviewing and describing the various approaches. It also introduces some
fundamental AIS concepts including the notion of first and second generation
AIS algorithms. A detailed explanation of thetlr algorithm’s architecture is
given in Section 3, and Section 4 describes how a test dataset (wuftpd) is cre-
ated and how the normal and anomalous test data is constructed, i.e., how the
input system calls and context signals used by thetlr algorithm are gathered
in practice. Section 5 reports on the experimental procedures adopted and the
results are presented and discussed in Section 6; in particular, thetlr algo-
rithm’s performance is compared with those of several other classifiers and
anomaly detection approaches. Section 7 concludes the paper.

2 BACKGROUND

2.1 Process Anomaly Detection
A process is a running instance of a program, and on modern multitasking op-
erating systems many processes are effectively running simultaneously. For
example, a server may be running a web server, email servers and a number
of other services. A single program executable, when run, may create several
child processes by forking or threading, and is then known as the parent pro-
cess of those child processes; web servers typically start child processes to
handle individual connections once they have been received. Child processes
themselves may create children, sometimes generating a complex process tree
derived from a single parent-process node, created when the executable is first

2

run. The operating system is responsible for managing the execution of run-
ning processes, and associates a number with each one. This is called the
process identifier (PID), as it uniquely identifies each process. When a pro-
cess is started, the operating system associates other metadata with it too,
such as the user who started it, and the PID of the parent process that created
it. The operating system also allocates resources to running processes, includ-
ing memory (which stores the executable code and data) and file descriptors,
which identify files or network sockets that belong to the process.

A number of host-based Intrusion Detection Systems (IDSs) have been
built around monitoring running processes to detect intrusions. In general,
these IDSs collect information about a running process from a variety of
sources, including from log files created by the process, or from other in-
formation gathered from the operating system. The general idea is that by
observing what the process is currently doing, for example by looking at its
log files, it is possible to tell whether the process is behaving normally or has
been subverted by an attack. While log files are an obvious starting point
for such systems, and are still an important component in a holistic security
approach, it is fairly easy to execute attacks which do not cause any logging
to take place, and so evade detection. Because of this, much research effort
has been directed towards the use of other data sources, usually collected by
the operating system. Of these, system calls (syscalls) have been the most
favoured approach.

A syscall is a low-level mechanism by which an application requests sys-
tem services such as peripheral I/O or memory allocation from an operat-
ing system. As a process runs it cannot usually directly access memory or
hardware devices; instead, the operating system manages these resources and
provides a set of functions, called syscalls, which processes can call to ac-
cess these services. On modern Linux systems there are around 300 syscalls,
accessed via wrapper functions in the libc library.

2.2 Process Anomaly Detection Systems

Due to space constraints, this section focuses on syscall-based IDSs. The
systrace system of Provos [18] is a syscall-based confinement and IDS for
Linux, BSD and OSX systems. The IDS works by using a kernel patch that
inserts various hooks into the kernel to intercept syscalls from the monitored
process, and the user has to specify a syscall policy, i.e. a whitelist of per-
mitted syscalls and arguments. The system can be run either automatically
to deny and log all syscall attempts not permitted by the policy, or to prompt
a user to permit or deny the syscall graphically. The latter mode can also be

3

used to add syscalls to the policy, adjusting it before using it in automatic
mode. Initial policies for a process are obtained by using templates or by run-
ning systrace in automatic policy-generation mode, where the monitored
process is run under normal usage conditions, and permit entries are created
in the policy file for all the syscalls made by the process. The policy spec-
ification also allows some matching of syscall arguments as well as syscall
numbers. The system’s automatic policy-generation approach is used as a
baseline comparison for thetlr algorithm presented in this paper, which can
be seen as a more sophisticated and dynamic alternative tosystrace .

In [8], Gao et al. introduce a new model of syscall behaviour called an ex-
ecution graph. An execution graph is a model that accepts approximately the
same syscall sequences as a model built on a control flow graph. However, the
execution graph is constructed from syscalls gathered during normal execu-
tion, as opposed to a control flow graph, which is derived from static analysis.
In addition to system call number, stack return addresses are also gathered
and used in construction of the execution graph. The authors also introduce
a course-grain classification of syscall-based IDSs into white-box, black-box
and gray-box approaches. Black-box systems build their models from a sam-
ple of normal execution using only system call number and argument infor-
mation. Gray-box approaches, as with black boxes, build their models from a
sample of normal execution but, as well as using syscall information, also use
additional runtime information. White-box approaches do not use samples
of normal execution, but instead use static analysis techniques to derive their
models. Thetlr algorithm, in Gao’s terms, is a gray-box approach, and is
complementary to the specific gray-box approach described by Gao, explor-
ing different sources of runtime information other than stack return addresses.
Specifically,tlr uses the memory and file-usage levels of the executing ap-
plication.

Forrest, Hofmeyr, Somayaji and other researchers at the University of New
Mexico have developed several immune-inspired learning-based approaches.
In [14], Forrest et al. evaluate a realtime system that detects anomalous pro-
cesses by analysing sequences of system calls. Syscalls generated by an appli-
cation are grouped together into sequences, in this case sequences of six con-
secutive syscalls. A database of normal sequences is constructed and stored
as a tree during training. Sequences of syscalls are then compared to this
database using a Hamming distance metric, and a sufficient number of mis-
matches generates an alert. Somayaji [21] uses a similar approach to develop
the immune-inspired pH intrusion prevention system, which detects and ac-
tively responds to changes in program behaviour in realtime. If an anomaly

4

is detected, execution of the process that produced the syscalls is delayed for
a period of time. The work presented in this paper differs from these ap-
proaches in that thetlr algorithm does not actively respond to misbehaving
processes as in [21], it only generates alerts. Also,tlr bases its alerts on
the simple syscall number combined with other runtime information (to im-
prove detection capability), as opposed to the more complex representations
of syscalls used by Forrest et al.

2.3 Artificial Immune Systems

The field of Artificial Immune Systems (AIS) began in the early 1990s with
a number of independent groups conducting research that used the biologi-
cal immune system as inspiration for solutions to problems in other domains.
AISs have been built for a wide range of applications including document
classification, fraud detection, and network- and host-based intrusion detec-
tion [6]. Specifically of relevance to the work here are AIS approaches to
intrusion detection, which are reviewed by Aickelin et al. [5]. For example,
a negative selection AIS algorithm is used in the process anomaly detection
systems built by Forrest et al [7]. AISs have met with some success and in
some cases have rivalled or bettered existing statistical and machine learning
techniques [13].

Immunology textbooks generally characterise the innate and adaptive im-
mune systems as separate. The adaptive system is described as capable of
specific recognition and remembrance of antigen, while the innate system is
seen mainly as a first line of defence and rapid-response mechanism. Under-
standably perhaps, from this perspective a computer scientist might view the
adaptive immune system as having more interesting properties such as learn-
ing and memory. However, this view of the immune system as two discrete
systems does not reflect the intensive research and reassessment of the role
of the innate immune system conducted over the last decade, as evidenced by
the large number of papers published in immunology journals [9]. This re-
search has uncovered many mechanisms by which the innate immune system
interacts with the adaptive immune system, and has highlighted the role of the
innate immune system as controller of the adaptive system. In other words,
the protection afforded to the host by the immune systemas a wholearises
from mechanisms of the innateandadaptive immune systems, which form an
integrated system. This new understanding of the structure and control of the
immune system has led computer scientists to rethink the way in which they
design their AISs; i.e. the importance of the innate immune system in AISs
should mirror its worth in the biological organism.

5

One of the aims of this work is to show the value of considering the biolog-
ical immune system as composed of interacting innate and adaptive subsys-
tems when attempting to design a realistic and profitable AIS model. Over
the last few years a number of design principles have been developed for
constructing what are termed second generation AISs [25]. These employ
algorithms inspired by both the biological innate and adaptive immune sys-
tems, as opposed to first generation AISs, which employ algorithms inspired
only by the adaptive immune system. A software system calledlibtissue

has also been developed. This allows researchers to implement second gen-
eration AISs as multiagent systems and to analyse their behaviour when they
are applied to real-world problems [26, 23]. With the work here and other
work, the aim is to show how second generation AISs can overcome some of
the problems that have been attributed to first generation AISs, for example
accuracy and scalability [26].

3 THE TLR ALGORITHM

The tlr algorithm is inspired by current immunological understanding of
the interactions between two classes of immune cell: dendritic cells (DCs)
and T cells (TCs). In particular,tlr uses a model of DC polarisation of T
helper cells, based on the work of Kapsenberg [16]. Section 3.1 describes
the biological theory that relates to these cells, their interactions and their
environments, and Section 3.2 shows how these ideas have been abstracted to
form thetlr algorithm - a working model of the innate and adaptive immune
subsystems. Section 3.3 explains how the model has been used to create a
host-based grey-box IDS.

3.1 The Underlying Biology
The adaptive immune system possesses two major types of lymphocytes that
detect and respond to antigens, B cells (BCs) and T cells (TCs). TCs, the
focus of this section, are responsible for the cell-mediated immune response
and possess receptors that can be thought of as complex sensors specific to
features of antigens. For adaptive immune cells these receptors are somati-
cally generated (created by a complex process of gene segment rearrangement
within the cell) and are termedvariable-regionreceptors, as each is specific
for a particular protein sequence. Variable-region receptors are selected for
over the lifetime of the organism by processes such as clonal expansion, dele-
tion or anergy and are underadaptivenot evolutionary pressure. TCs recog-
nise a non-self target only after antigens have been processed and presented

6

in combination with a self receptor called a major histocompatibility complex
(MHC) molecule.

TCs begin life in a naive state, in the lymph node, and there are two major
subtypes; the killer TC and the helper TC. Killer TCs only recognize antigens
coupled to Class I MHC (MHCI) molecules and are specialized in attacking
cells of the body infected by viruses and sometimes by bacteria. They can also
attack cancer cells. In contrast, helper TCs only recognize antigens coupled
to Class II (MHC2) molecules and are responsible for regulation of both the
innate and adaptive immune responses. They help determine which type of
immune response the body will make to a particular antigen. Most antigens
are T-dependent, meaning that two signals are necessary before the cell is
attacked. The first signal comes from cross linking of the BC receptor and
antigen and the second signal comes from co-stimulation provided by the
helper TC. Co-stimualtion occurs when antigen presenting cells (APCs), for
example DCs, present antigen on their MHC2 molecules. When these are
recognized by helper TCs, the helper TC is activated and releases cytokines
and other stimulatory signals that cause the activity of macrophages, killer
TCs and BCs.

In contrast to the adaptive case, the receptors of innate system cells are
entirelygermline-encoded, in other words their structure is determined by the
genome of the cell and has a fixed, genetically-determined specificity. Un-
like adaptive system cells, they recognise a set of ligands underevolutionary
pressure. One key group of innate receptors is thepattern recognition recep-
tor (PRR) superfamily which recognises evolutionary-conservedpathogen-
associate molecular patterns(PAMPs). PRRs do not recognise a specific
feature of a specific pathogen as variable-region receptors do, but instead
recognise common features or products of an entire class of pathogens. Thus,
innate immune system receptors are termednon-specific, while adaptive im-
mune system receptors are termedspecific. The toll-like receptor (TLR) fam-
ily of PRRs is the best characterised.

Recently a lot of research effort has been directed towards understanding
how the innate immune system mediates the quality of an adaptive immune
system response [9, 15]. Simplistically, this is concerned with understanding
how the DCs interact with the TCs to prevent them from becoming active in
the presence of self-antigen. DCs are generated in the bone marrow and ini-
tially reside as immature cells in the epithelia of the skin and mucosal tissue.
Their main functions are phagocytosis (the capture of complex molecules
and entire cells from their surrounding environment) and antigen presenta-
tion. They collect the antigen through antigen receptors (AgRs) and express

7

a special set of TLRs, which respond to PAMPs and are also activated by
host-derived endogenous molecules (danger signals) that are produced when
tissue is damaged. Periodically, DCs migrate to the draining lymphoid tissues
where they halt phagocytosis, display the peptides they have collected, and in-
teract with naive TCs. When their TLRs have become activated and antigen
have been detected they differentiate into mature DCs and immediately mi-
grate. They also migrate when they have reached their maximum lifespan and
have detected antigen, in which case they differentiate into semi-mature DCs.
Both semimature and mature DCs express antigen producers (AgPs), which
give other cells access to the antigen they have collected. Mature DCs alone
produce IL-12, which is used by naive TCs to differentiate between mature
and semimature DCs. Essentially, the presence of biological danger signals
causes a DC to present its antigen in a mature, immunogenic context, causing
TC activation, whereas their absence causes the antigen to be presented in a
semi-mature, tolerogenic context, and the TC is deleted.

In this way, DCs match the quality of the adaptive immune effector re-
sponse to the nature of the antigen. They are therefore vital in the control of
the adaptive immune system and the generation of tolerance to antigen in pe-
ripheral tissue. Through the production of a range of cytokines, DCs control
the activation and proliferation of TCs and BCs, and determine the qualitative
and quantitative nature of the adaptive immune response.

3.2 Thetlr Model

As in Kapsenberg’s model [16], DCs can either be immature, semimature or
mature, and TCs either naive or activated. Furthermore, in thetlr model,
cells exist within either the extralymphoid tissue compartment or lymph node
compartment, and cell types are restricted to particular compartments. This is
shown schematically in Figure 1. Immature DCs and activated TCs are only
found in the extralymphoid compartment, and semimature DCs, mature DCs
and naive TCs in the lymph node compartment.

Just as in the biological system, the model cells are not immortal but live
for a certain period of time, which leads to a fluctuation in population lev-
els for certain cell types. The number of immature DCs and naive TCs are
purposefully maintained at constant levels, i.e. whenever an immature DC
matures, it is immediately replaced by another immature DC, and whenever
a naive TC dies it is immediately replaced by another naive TC. However,
the population levels of semimature DCs, mature DCs and activated TCs are
not fixed and are homeostatically determined by the cells oftlr itself and
their environment. In order to detect anomalies the level of activated TCs

8

nTC

IL−12R

TCR

nTC

IL−12R

TCR

iDC

aTC

mDC

smDC

AgP

apoptosis

TCR activated
node

lymphextralymphoid
tissue

antigen

AgR

AgP

IL−12R unactivated

TCR activated
IL−12R activated

TLRs unactivated
antigen collected

TLRs activated
antigen collected

IL−12

TLRs

signals

FIGURE 1
A schematic representation of thetlr algorithm. For DCs i = immature, sm = semi-
mature and m = mature. For TCs a = activated, n = naive.

is monitored, and if any activated TCs are produced an alert is generated.
Homeostatic determination of cell numbers is found to be particularly useful
since, during periods of normal usage, cell numbers are generally kept at low
levels, which reduces the computational cost of the algorithm.

DCs begin life in the extralymphoid compartment, in an immature state,
where they collect antigen (syscalls) through their AgRs and observe the lev-
els of context signals (other system information) through their TLRs. If their
TLRs become activated by an appropriate context signal and at least one anti-
gen has been collected, immature DCs differentiate into mature DCs and traf-
fic to the lymph node compartment. However, if an immature DC reaches
its maximum lifespan without its TLRs being activated but has collected at
least one antigen, it differentiates into a semimature DC and traffics to the
lymph node compartment. Immature DCs which reach the end of their lifes-
pan without collecting antigen remain in the extralymphoid tissue. Here, ac-
tivating levels of context signals are analagous to biological danger signals,
which cause a DC to present its antigen in the mature, immunogenic context.

TCs begin life as naive TCs in the lymph node compartment and bind
with a number of semimature or mature DCs per cycle, provided there is at
least one semimature or mature DC in this compartment. The DC is chosen
randomly and uniformly from the complete population of semimature and

9

mature DCs, so if the number of mature DCs is greater than the number of
semimature DCs, a naive TC will have a greater probability of binding with a
mature DC than a semimature DC and vice versa. If a naive TC successfully
binds with a DC then it will examine the antigen the DC has collected as
an immature DC in the extralymphoid compartment (and is displaying on its
AgPs). If a match occurs and the bound DC is a semimature DC then the
naive TC will be deleted and the semimature DC will receive a stay-alive
signal. This stay-alive signal resets the number of iterations the semimature
DC has existed for to zero. If a match occurs and the bound DC is a mature
DC then the naive TC will be activated and will clone a single activated TC.
The activated TC will then traffic back to the extralymphoid compartment
and the naive TC will remain in the lymph node compartment. In this case,
both the naive TC and mature DC receive stay-alive signals, resetting the
number of iterations these cells have existed for to zero, based on biological
mechanisms of reverse signalling. Detailed pseudocode for thetlr algorithm
is provided in Section 3.4.

3.3 The Use oftlr as an IDS

The TLRs on DCs are activated by certain context signal values analagous
to biological danger signals. Here, system information (other than syscall
number) is used, (discussed shortly in Section 4). In contrast, AgRs on naive
TCs are activated by certain antigen values, which are the syscall numbers.
In order to determine which signal and antigen values activate these receptors
tlr needs to be provided with a set of training data consisting of a sample
of normal instances only. Once this is provided, all of the normal antigen
and danger signal values are extracted and stored, and then a new set of per-
missible AgR values is created by removing all the antigen observed in the
training set from the set of all possible antigen values (around 350 in the case
of syscall numbers). In a similar way, TLRs are only activated by signal lev-
els not seen in the training set. However, since context signals are represented
as real numbers, the set of all possible values for a particular context signal
need not be finite. Additionally, TLRs, unlike AgRs, are not specific for one
particular value, but rather any value not seen in the training set. The sig-
nals used here (see Section 4) are all integers from finite sets, so this scheme
works well. However, the levels of other real-valued signals would need to be
discretised for this scheme to work effectively with them.

After training has taken place and the algorithm is tested, AgRs are gener-
ated by choosing a value at random from the permissible set of antigen, and
assigning it as the receptor’s lock. Exact matching is used, so that the AgR is

10

only activated if its lock matches that of an antigen presented on an AgP of a
DC. This is equivalent to the naive TC undergoing negative selection on the
antigen in the training set, and produces naive TCs with AgRs that will never
match an antigen seen in the training set.

Syscalls are collected and grouped temporally, i.e. those which occur
around the same time period are collected and stored, and the external sig-
nals sensed by immature DCs also group the syscalls contextually; semima-
ture DCs associate a normal context to the syscalls they have collected, while
mature DCs associate an attack context with these syscalls. The addition of
contextual grouping as well as temporal grouping has two effects on the reper-
toire of AgRs. First, non-deterministic interactions between semimature DCs
and naive TCs allowstlr to continue to censor its AgR repertoire after the
training phase, i.e. AgRs that are specific for syscalls produced during normal
sessions (but not present during training) are quickly removed. This periph-
eral tolerance mechanism helps reduce the number of false positives. Second,
non-deterministic interactions between mature DCs and naive TCs promote
the survival of naive TCs that successfully match antigen presented by mature
DCs. These naive TCs are given a stay-alive signal by the mature DCs and
remain within the population of naive TCs for longer. Since the population
size of naive TCs is constant, the rate of entry of new naive TCs into the cur-
rent naive TC population is reduced. Therefore, the contextual information
provided by mature DCs serves to help maintain a population of successful
naive TCs, and reduce the number of incoming naive TCs. Thetlr algorithm
is formalized in the pseudocode given below, and thelibtissue parameters
used are given in Table 4 in Appendix A. A full justification of the selection
of parameters is provided in [24], Chapter 8.

3.4 tlr Pseudocode
Pseudocode for thetlr algorithm, see Table 4 in Appendix A for parameter
values.

SUBROUTINE immature dc c e l l c y c l e c a l l b a c k
IF c e l l i t e r a t i o n s >= c e l l l i f e s p a n 1 THEN

IF c e l l has c o l l e c t e d any a n t i g e nTHEN
SET c e l l t ype t o semimature dc
SET c e l l c y c l e t o semimature dc c e l l c y c l e
SET c e l l i t e r a t i o n s t o 0
SET number o f a n t i g e n p ro d u c e r s t o n u ma n t i g e n p r o d u c e r s 1
SET number o f a n t i g e n r e c e p t o r s t o 0
SET number o f c y t o k i n e r e c e p t o r s t o 0
add a new immature dc t o t i s s u e compartment
RETURN

ELSE

11

r e p l a c e c e l l w i th a new immature dc
RETURN

ENDIF
ENDIF
FOR a l l c y t o k i n e r e c e p t o r sDO # n u m c y t o k i n e r e c e p t o r s 1

IF c y t o k i n e r e c e p t o r a ct i v a t e d THEN
IF c e l l has c o l l e c t e d any a n t i g e nTHEN

SET c e l l t ype t o mature dc
SET c e l l c y c l e t o mature dc c e l l c y c l e
SET c e l l i t e r a t i o n s t o 0
SET number o f a n t i g e n p ro d u c e r s t o n u ma n t i g e n p r o d u c e r s 1
SET number o f a n t i g e n r e c e p t o r s t o 0
SET number o f c y t o k i n e r e c e p t o r s t o 0
add a new immature dc t o t i s s u e compartment
RETURN

ENDIF
ENDIF

ENDFOR
ENDSUBROUTINE

SUBROUTINE n a i v e t c c e l l c y c l e c a l l b a c k
IF c e l l i t e r a t i o n s >= c e l l l i f e s p a n 2 THEN

r e p l a c e c e l l w i th a new na i ve t c
RETURN

ENDIF
FOR a l l v r r e c e p t o r s DO # n u m v r r e c e p t o r s 2

IF vr r e c e p t o r a c t i v a t e dTHEN
IF vr r e c e p t o r a c t i v a t e d by a n t i g e n on semimature dcTHEN

SET semimature dc i t e r a t i o n s t o 1
r e p l a c e c e l l w i th a new na i ve t c
RETURN

ENDIF
IF vr r e c e p t o r a c t i v a t e d by a n t i g e n on mature dcTHEN

SET mature dc i t e r a t i o n s t o 1
SET c e l l t ype t o a ct i v a t e d t c
SET c e l l c y c l e t o a c t i v a t e d t c c e l l c y c l e
SET c e l l i t e r a t i o n s t o 0
SET number o f c e l l r e c e p t o r s t o 0
SET number o f v r r e c e p t o r s t o 0
add a new na i ve t c t o t i s s u e compartment
WRITE matched a n t i g e n t o log f i l e
RETURN

ENDIF
ENDIF

ENDFOR
ENDSUBROUTINE

SUBROUTINE semimature dc c e l l c y c l e c a l l b a c k
IF c e l l i t e r a t i o n s >= c e l l l i f e s p a n 3 THEN

remove semimature dc from t i s s u e compartment
ENDIF

ENDSUBROUTINE

SUBROUTINE mature dc c e l l c y c l e c a l l b a c k
IF c e l l i t e r a t i o n s >= c e l l l i f e s p a n 4 THEN

remove mature dc from t i s s u e compartment
ENDIF

ENDSUBROUTINE

12

SUBROUTINE a c t i v a t e d t c c e l l c y c l e c a l l b a c k
IF c e l l i t e r a t i o n s >= c e l l l i f e s p a n 5 THEN

remove a c t i v a t e d t c from t is s u e compartment
ENDIF
FOR each an t i g e n i n t i s s u e compartmentDO

IF vr r e c e p t o r matches a n t i g e nTHEN
SET c e l l i t e r a t i o n s t o 0
BREAKFOR

ENDIF
ENDFOR

ENDSUBROUTINE

Greensmith [12, 11, 10] has also usedlibtissue to implement an immune-
inspired process anomaly detection system. This algorithm, called the DCA,
is inspired by biological DCs and is similar to thetlr algorithm in its use of
libtissue and models of biological DC activation and maturation. How-
ever, there are several important differences betweentlr and the DCA. Al-
though both systems incorporate the use of signals to govern DC behaviour,
they do so in different ways. For example, the DCA might identify CPU us-
age as belonging to the class of safe signals and memory usage to the class
of danger signals. Due to the way DCs integrate and process input signals,
the class an input signal belongs to has a differential effect on DC matura-
tion. If the classes of CPU and memory usage signals are interchanged, the
algorithm behaves differently. In contrast, thetlr algorithm does not differ-
entiate between different classes; all input signals have the same effect on DC
maturation, i.e. they cause immature DCs to become mature DCs if the signal
level is not observed during training. In this sense, the DCA uses a finer-grain
model of input signals thantlr .

Another important difference relates to the way in which anomalies are de-
tected by the two systems. The DCA observes DCs to determine if a process
is behaving anomalously, whereastlr uses DCs to control TCs and observes
TCs to determine anomalous process behaviour. While the DCA concentrates
on developing a system based entirely on DCs,tlr focuses on combining a
DC-based algorithm with current adaptive AIS algorithms. This is a result
of different motivations for developing the DCA and thetlr algorithm. The
DCA was developed to explore better methods of modelling DCs in AISs,
whereastlr was developed to explore the construction of second generation
AISs that incorporate both innate and adaptive immune system mechanisms.
Lastly, an essential part oftlr is the training phase in which normal usage is
used to establish activating levels of external signals, as well as permissible
values for AgRs. The DCA does not use a training phase, but instead uses
heuristics derived from observations of the biological immune system and

13

the computer system being protected to determine activating levels of signals.
The DCA has been tested on the same dataset used here and its results [10]
are presented for comparison with thetlr algorithm in Section 6.

4 DATASETS

4.1 Network Architecture
In order to derive a suitable test dataset, a small experimental network with
two hosts is set up. One host, the target, runs software, in this case a Red-
hat 6.2 server with a number of vulnerabilities, andwuftpd is started at boot
time. The other host acts as a client which interacts with the target machine,
either attempting to exploit its vulnerabilities or simulating normal usage.
In order to gather the actual data, i.e. process syscall information and con-
text signals, the target system is instrumented: the FTP server executable is
wrapped withstrace [18], which logs all the syscalls made bywuftpd and
its children. At the same time, aprocess monitor is started, which mon-
itors a process and all of its child processes at regular intervals. In order
to see a useful resolution in the signals, a monitoring interval of one tenth
of a second is used. This method is found to be the most portable and still
quite efficient, only using around 1-2% of the system CPU resources on aver-
age, which is considered reasonable. The range of context signals which are
thought to be potentially interesting are logged for later analysis and are sum-
marised in Table 1. As well as being feasible to gather, these context signals
all relate to a process’s interaction with the operating system, and other local
or remote processes. Further technical details about the platform set-up are
provided in Appendix B.

4.2 Normal Usage
The levels of the collected signals need to be examined over a range of dif-
ferent server activities in order to establish which ones are useful for detect-
ing process anomalies. Data is therefore collected over several normal usage
scenarios, with the aim of getting the testbed FTP server to behave as if a
real FTP server is running on a production network. Ideally, ifstrace and
process monitor were installed on a production FTP server then the logs
collected by them would be identical to those collected on the testbed FTP
server. Realistically, there is a trade-off between the fidelity of the testbed
logs and time spent in building and operating the testbed. The methodol-
ogy employed here allows for largely automated reproduction of normal us-
age from previously gathered logs of real FTP servers, i.e. public-domain

14

datasets of FTP client-server interactions are used to provide samples of nor-
mal usage. The dataset used is a subset of LBNL-FTP-PKT [3], which con-
tains all incoming anonymous FTP connections to public FTP servers at the
Lawrence Berkeley National Laboratory over a ten-day period. The dataset
is available from the Internet Traffic Archive [3], and its traces, which pro-
vide a rich source of normal usage sessions, contain connections between 320
distinct FTP servers and 5832 distinct clients. The traces for one FTP server
(IP 131.243.2.12) on the 10/01/03 and 11/01/03 are used in the experiments
presented here, providing a total of 340 traces for 76 distinct clients. This
particular FTP server is selected as it was runningwuftpd 2.6.2-1, a similar
version to the testbed server used here, and also because it has the second
highest number of connections.

In all cases, FTP server activity is produced by the interaction of FTP
clients, i.e. an FTP client connects to a server and initiates an FTP session
in which it issues FTP requests according to the FTP protocol (defined in
RFC959) before disconnecting from the server. Out of the 340 traces used,
eight are empty, containing no FTP requests, and many of the other 332 are
characterised by USER and PASS commands, followed by an optional STAT,
then a series of PORT commands, often lasting tens of minutes, finishing
with an optional QUIT. One session of each of these is included in the normal
usage dataset and the others (278) are discarded so as not to bias the data.

For the testing of process anomaly detection systems, which is concerned
primarily with the type of behaviour and not its frequency, only one exam-
ple of a typical normal session is necessary. Duplicate sessions are therefore
removed from the data, i.e. the original FTP sessions are examined, largely
by hand, and sessions which contain the same commands with very similar
relative timings (no more than around a second) are removed. These sessions
are usually seen coming from the same hosts and appear to be generated by
an automated FTP client repeating the same sessions. Indeed, analysis of the
two days’ worth of traces shows that many sessions are frequently repeated.
Discarding duplicates over the two days leaves 55 different normal usage ses-
sions. Although some information in the traces has been anonymised using
Bro [17] to remove private information, it is still possible to reproduce realis-
tic normal usage.

4.3 Attack Traces

The publically availableautowux exploit [2] is used to attackwuftpd . This
exploit levers a format string vulnerability, in this case related to the SITE
EXEC FTP command, in order to obtain a remote root shell on the server

15

by default. It has been seen in the wild in manual attacks and automated
attacks such as the Ramen worm [19]. An FTP bounce scan attack [1] is also
performed; here, an attacker uses an FTP server as an intermediary to perform
a network scan and hide the IP address of their machine.

The syscalls and signal levels for several differentautowux attacks and
one nmap FTP bounce attack are recorded. In each case, the commands given
on the attacking client machine are summarised in Table 2. The DNS host-
name of the FTP server is “target” and “host” denotes the attacking machine.
Commands following the firstautowux command are those given in the re-
mote shell once it has been opened several minutes after the launch of the
attack. The sessionsuccess01 consists of theautowux attack without any
commands executed in the remote shell, mainly for comparison with the other
attacks (although this is fairly unrealistic). Sessionsuccess02 and session
success03 simulate potential actions an attacker might perform in the shell
once it has been opened and are of more interest. Sessionsuccess02 repre-
sents a minimal information gathering excerise, while in sessionsuccess03

the attacker connects back to the attacking machine via FTP and downloads
and untars a file, in this case theautowux attack itself. Sessionsuccess04

is an nmap FTP bounce attack that was successful for unprivileged ports. An
unsuccessfulautowux attack session,failure01, is also performed by spec-
ifying the insertion of OpenBSD shellcode on theautowux command line.
This is seen as important since process anomaly detection systems should not
alert against failed attacks otherwise they become vulnerable to diversionary
noise attacks such as snot [20], which can be used to hide successful attacks.
In total these attacks generated around 40,000 syscalls, and 10,000 readings
for each signal.

The combined normal and attack traces form a single dataset (called the
wuftpd dataset) that can be used to evaluate the classification performance
of the anomaly detection systems described here. In order to facilitate com-
parisons with other systems it is publically available [4].

4.4 Signal Analysis

The strategy adopted during signal collection as described above is to collect,
from the authors’ experience, what might be interesting signals. For the pur-
poses of the research presented here interesting signals are those that vary in a
complexway across normal usage and attack sessions. Clearly, if a particular
signal always has certain values for attack sessions and different values for
normal sessions, then it would make sense to use this signal as an indicator of
misuse and dispense with anomaly detection algorithms. However, no such

16

Statistic Summary

processes number of monitored process including children.
cpu (%) cpu utilisation of the process. The CPU time divided by the

time the process has been running (cputime/realtime ratio).
mem (%) ratio of the processes’ resident set size to the physical mem-

ory on the machine.
rss (kB) resident set size, the non-swapped physical memory that a

task has used.
size (kB) approximate amount of swap space that would be required

if the process were to dirty all writeable pages and then be
swapped out.

sz size in physical pages of the core image of the process. This
includes text, data, and stack space.

vsz (KB) virtual memory size of the process.
num files total number of files reported by lsof.
num reg number of regular files.
num dir number of directories.
num chr number of character devices.
num ipv4 number of IPv4 sockets.
num sock number of sockets of unknown domain.
num unix number of unix domain sockets.

num unknown number of unclassified sockets (not reg, dir, ...)

TABLE 1
Statistics collected byprocess monitor . Fourteen context signals are collected in to-
tal.

17

Session Name Nature of Attack

success01 autowux attack
./autowux -t target -v 2

success02 autowux attack
./autowux -t target -v 2

uname -a

whoami

ls

exit

success03 autowux attack
./autowux -t target -v 2

cd /

mkdir .boot

cd .boot

ftp host1

anonymous

(no password)

get autowux.tar.gz

quit

tar -xzvf autowux.tar.gz

exit

success04 nmap bounce scan
nmap -v -P0 -b target host

failure01 autowux attack
./autowux -t target -v 2 -s 1

TABLE 2
The five attack sessions collected forwuftpd running on an instrumented Redhat 6.2
server. The first three attacks are variations on the autowux attack. The fourth attack
is an FTP bounce scan and the final attack is a failed autowux attack.

18

signals are expected nor have been found. In order to determine which of the
collected signals are potentially interesting an analysis of the gathered data is
performed.

When examining the signal levels for all 55 normal usage sessions more
closely it becomes clear that the memory related signals are closely corre-
lated, as are a number of the file signals. Closer examination of these two
groups leads to the elimination of several of the correlated signals. For ex-
ample, thesize andsz signals always report the same values. Also, several
of the signals have the same small number of levels in general regardless of
whether the session is an attack or normal usage, and so these signals are also
eliminated. The range of values a signal takes over all the normal and attack
sessions can be seen from the scatter plots shown in Figure 2. The upper
graph in shows the observed signal levels for the number of process children,
which is considered uninteresting due to its lack of variation over normal and
attack sessions. The lower graph in Figure 2 shows the observed levels for
therss memory signal, which is considered interesting since there is consid-
erable variation in signal levels between normal and attack sessions, although
there is no clear division of levels and crossover exists between signal levels.
A similar plot for all the remaining signals shows that there is also consid-
erable variation in thenum files andnum reg signals. These two signals
together withrss are used as the context (danger) signals in the experiments
that follow.

5 EXPERIMENTAL PROCEDURES

An important aspect of second generation AISs is their use of multiple sources
of input data. This idea has also been advocated by Gao et al. [8] through the
notion of gray-boxing. In order to explore these ideas further, three different
versions of thetlr algorithm are evaluated, namedtlr1 , tlr2 and tlr3 .
For all three of these algorithms, the syscall number alone is used as antigen.
For tlr1 , the rss context signal is used as the danger signal, and imma-
ture DCs have a TLR that monitors this signal and is activated by values not
seen during training. Fortlr2 , immature DCs have two TLRs, one that re-
sponds to therss context signal, and another that is activated by values of the
num files context signal not seen during training. If either of these recep-
tors is activated, then the immature DC will develop into a mature DC. For
tlr3 , immature DCs have three TLRs, one for therss context signal, one
for thenum files context signal, and one for thenum reg context signal. In
this case, if any of these receptors is activated, the immature DC will change

19

num_chld signal levels

seconds
0 50 100 150 200 250

le
ve

l

1

2

3

success.001

success.002

success.003

success.004

failure.001

benign

rss signal levels

seconds
0 50 100 150 200 250

le
ve

l

500

1000

1500

2000

2500

3000
success.001

success.002

success.003

success.004

failure.001

benign

FIGURE 2
Scatter plots of signal levels for all sessions. The top graph shows the levels observed
for the number of process children signal. Generally, attack and normal (benign)
sessions share similar values for this signal, so it is discarded as uninteresting. The
bottom graph shows the levels for the rss memory signal. There is much more variation
in this case, with different signal levels being observed for attack and normal sessions,
although some values are shared by both classes of session. This signal is considered
more useful.

20

into a mature DC. Hence, the effects of the addition of input data sources can
be assessed by comparing the performances oftlr1 , tlr2 andtlr3 .

The use ofprocess monitor and strace imposes minimal CPU and
memory overheads on the system when gathering data. Timings of syscalls
during a single session are preserved and readings of resource usage statistics
are taken at regular intervals. One limitation of the dataset is that, when stored
as tcreplay log files, the overall timings of these sessions relative to each
other are not stored. Consequently, when testing AISs with this dataset, an
assumption has to be made concerning the relative timings of each session. In
the experiments that follow sessions are assumed to occur sequentially, with
a short, uniformly-distributed period of no activity between sessions.

The dynamics of thetlr algorithm for a particular FTP session are in part
determined by previous FTP sessions. For example, syscalls which are not
available during training but which are presented in a normal context dur-
ing operation, as discussed above, lead to a reduction in the number of TCs
specific for such syscalls through peripheral tolerance. Hence, usingtlr to
classify FTP sessions in isolation could produce unrealistic results. A num-
ber ofscenariosare therefore created, consisting of a number of FTP sessions
occurring sequentially with a random pause of 1 to 10 seconds between them.
This is a simplification of the session timings observed for the actual FTP
sessions in the LBNL-FTP-PKT traces, but is necessary in order to reduce
the durations of the experiments. (In the LBNL-FTP-PKT traces there are
often several minutes between one session and the next, and at other times
two sessions overlap.) Here, each scenario takes approximately 50 minutes
to run.

Forty scenarios are generated in total, with 20 containing only normal FTP
sessions and the remaining 20 containing normal and attack FTP sessions.
The latter group should hence be classified as attack sessions. In order to
create a scenario the 55 normal sessions are partitoned into two sets of 27
and 28 sessions. One set is used to traintlr , and the other set is used to
create the scenario on whichtlr is tested. The two sets are then swapped
around, so that the sessions in the testing scenario are used to traintlr , and
vice versa for the training sessions. In other words, two-fold crossvalidation
is performed. The sets are randomly partitioned in this way eight times so
that sixteen normal scenarios are generated. The attack sessions are produced
in exactly the same way except that an attack session is inserted at a random
point in the sequence of normal sessions. Thesuccess.001 andsuccess.002

sessions are used six times each, and thesuccess.003 andsuccess.004 ses-
sion four times each, making a total of 20 attack scenarios. Four additional

21

normal scenarios are also created as just described by inserting the failed at-
tack session at a random point in a sequence of normal sessions. Together
with the 16 normal scenarios already generated, this makes a total of 20 nor-
mal scenarios.

In order to provide a comparison with the results for thetlr algorithm,
several other classifiers are also tested with each of the 40 scenarios. First, as
a baseline comparison, a classifier that uses a whitelist of acceptable syscalls
is used. A syscall policy is generated for a process by recording the syscalls
it makes under normal usage, with a permit policy statement entered for all
these syscalls. During testing, syscalls are compared to this whitelist and
any process that generates unlisted syscalls is classified as under attack. The
method is quite realistic considering how current systems such assystrace

automatically generate a policy.
The whitelist approach is also taken using the signal valuesrss , num files

andnum reg instead of the syscalls. This generates three simple classifiers,
calledsig1 , sig2 andsig3 , which extract all the signal levels seen during
training. These systems classify a scenario as an attack if any signal levels
absent from the whitelist are seen during testing. Systemsig1 classifies a
scenario as an attack based only on therss signal, systemsig2 uses this and
thenum files signal, and systemsig3 uses all three signals.

The tlr algorithm is also compared to a standard negative selection AIS
approach, since for a finite set, asystrace whitelist approach and nega-
tive selection blacklist approach are logically equivalent and are therefore ex-
pected to perform similarly. In order to implement a negative selection algo-
rithm, a slightly altered version oftlr (calledtlr-negsel) is created with
the TLRs on immature DCs disabled. Intlr-negsel immature DCs are no
longer able to respond to signals and hence always differentiate into semima-
ture DCs and never become mature DCs. Consequently, naive TCs are never
activated and no alerts are ever produced, since these are generated whenever
activated TCs are observed. Therefore, intlr-negsel semimature DCs are
forced to express IL-12, effectively turning them into mature DCs, which
permits their activation. The absence of semimature DCs intlr-negsel

means that no peripheral tolerance of naive TCs by semimature DCs occurs.
The only criteria for activation of native TCs is a match between their AgRs
and the syscalls being presented by DCs. By disabling peripheral tolerance,
negative selection alone (which is used to generate the AgRs) controls the
classification performance oftlr-negsel .

Finally, the performance of the DCA with thewuftpd dataset has also
been published in [10], and the results obtained are used here as an additional

22

comparison to thetlr algorithm. This is both fair and convenient since both
the DCA and thetlr algorithm use thelibtissue framework and make
use of the same information in order to process the data. As with thetlr

algorithm, the DCA uses system call ID numbers to represent antigen and the
context signalsrss , num files andnum reg to represent the danger signals.

6 RESULTS

The true and false positive rates for each of the classifiers are given in Table 3
below. The true positive rateTPRis calculated from:

TPR =
TP

TP + FN
, (1)

whereTP is the number of true positives andFN is the number of false nega-
tives. Likewise, the false positive rateFPR is calculated from:

FPR =
FP

FP + TN
, (2)

whereFP is the number of false positives andTN is the number of true nega-
tives. The table also shows theg-meanG given by:

G =
√

TPR(1 − FPR), (3)

which provides an overall evaluation of theTPRandFPR, producing a high
value for better classifiers. Note that an equal cost for true and false positives
is assumed here. However, in situations where one of these costs is more
important than the other, further analysis would be necessary to characterise
the relative performance of the classifiers.

Table 3 shows that thesig1 , sig2 andsig3 classifiers perform badly,
classifying every scenario as an attack. Consequently, the systems are of no
use and this is reflected in theg-mean value of 0.00. Thesystrace and
negative selection classifiers perform equally, with a highTPRof 0.90, but
also a highFPR of 0.60, meaning that while these classifiers identify 90%
of attack scenarios correctly, they also identify 60% of normal scenarios as
attacks. Theg-mean for both of these systems is 0.60. In general, thetlr

classifiers reduce theFPRwith an accompanying small reduction in theTPR.
Compared with thesystrace and negative selection classifiers, thetlr1

classifier reduces theFPRby 40% to 0.20 with a 20% decrease in theTPRto
0.70. The resultingg-mean value is 0.75. Thetlr2 classifier has a slightly
larger reduction in theTPR(30%) to 0.6 but has the sameFPRastlr1 , which

23

System TPR FPR G

systrace 0.90 0.60 0.60
tlr-negsel 0.90 0.60 0.60

sig1 1.00 1.00 0.00
sig2 1.00 1.00 0.00
sig3 1.00 1.00 0.00
tlr1 0.70 0.20 0.75
tlr2 0.60 0.20 0.69
tlr3 0.75 0.15 0.80

DCA 1.00 0.83 0.41

TABLE 3
Classification performance results for the systems implemented. For equal true and
false positive costs,tlr3 is the best performing classifier.

gives ag-mean value of 0.69. Thetlr3 classifier performs best reducing the
FPRby 45% to 0.15, while only reducingTPRby 15% to 0.75. Its resulting
g-mean value is 0.80, the highest of all the systems tested. The DCA has a
perfectTPRof 1.00 i.e. all attack scenarios are correctly classified, but the
FPRis unacceptably high (0.83), which produces a lowg-mean value of 0.41.

Thetlr algorithm, which is unoptimised, uses around 10% of the CPU re-
sources and never more than 8% of the memory resources on the test machine.
Generally, CPU usage is only a few percent as cell levels are maintained at a
low level during normal usage.

6.1 Discussion
The results have provided evidence that the additional context signalsrss ,
num files andnum reg have the capacity to reduce the false positive rate
when used as danger signals in the immune-inspiredtlr algorithm. In ad-
dition, the system performs best when all three of these signals are used in
conjunction with the syscall information. However, when the the syscall in-
formation is removed (in the case ofsig1 , sig2 , andsig3) and the system
is run as a white-list classifier, the IDS is unable to function. This strongly
suggests that both types of information source have an important role to play
in process anomaly detection.

The results using the negative selection version of thetlr algorithm are
also poor with regard to the false positve rate. Indeed, Stibor [22] shows that
certain matching approaches such as Hamming distance work poorly with
negative approaches, introducing an infeasible amount of complexity. Reduc-
tion of this complexity by generalisation of the matching criteria results in a

24

significant decrease in the classification performance. Based on these obser-
vations, Stibor concludes that negative approaches such as immune-inspired
negative selection are unsuitable for real-world anomaly detection problems.
Perhaps it would be more correct to say that detection systems based only
on negative selection are unsuitable in this context. Used in combination
with innate-inspired mechanisms results could be much improved, as demon-
strated here.

Thesystrace and negative selection basedtlr-negsel classifiers give
the same classification results in terms of true and false positives. Exami-
nation of the results for each scenario shows that both systems also classify
exactly the same scenarios as normal and anomalous. This is expected and
is a good test for determining the completeness of coverage for the negative
selection algorithm. As mentioned previously, thesystrace whitelist ap-
proach and negative selection blacklist approach are in principle equivalent
for a finite set of antigen. This is because a blacklist is the complement set
of a whitelist, so determining whether an antigen is on the whitelist or not on
the blacklist are the same. However, the way negative selection algorithms
usually generate a blacklist is stochastic as a dynamically changing set of
cells is used. Furthermore, antigen are matched to the blacklist by random
encounters between TCs and antigen, so there may be some errors. When
implementing the negative selection classifier here, the aim is to reduce these
errors as much as possible, otherwise they might influence true and false pos-
itive rates. The parameters are hence selected to create a high turnover of
naive TCs, which allows them to inspect many semimature and mature DCs
and the antigen they present.

The tlr algorithm also performs much better than the DCA with regard
to the false positive rate. In [10] the chief limitation of the DCA with the
wuftpd dataset is cited as a requirement for much larger volumes of anti-
gen data, which is connected with the stochastic nature of the DCA’s antigen
sampling process. Also, the DCA is a much finer-grained system, classify-
ing data on aper processbasis. This means that, theoretically, the process
responsible for the anomalous behaviour can be determined. However, the
wuftpd dataset does not provide the names of the processes so there is no
way in which this information can be utilized to the DCA’s advantage.

7 CONCLUSIONS

A novel host-based IDS (thetlr algorithm) has been presented in this paper.
The architecture incorporates mechanisms inspired by both the innate and

25

adaptive biological immune systems, in particular the interactions between
two classes of immune cell, DCs and TCs. The performance of the system
has been evaluated on a realistic process anomaly detection problem and com-
pared to those of several other classifiers. It was found that the use of the in-
nate immune system mechanisms employed intlr contributed to a decrease
in the false positive rate and produced a better overall performance compared
to policy-based methods, negative selection approaches, and an alternative
DC-based AIS system (the DCA). The paper has also shown how runtime
information such as memory and file usage levels can be used in combination
with system call information to enhance detection capability. This suggests
that such context signals might prove useful in improving the detection capa-
bilities of other IDSs. Indeed, this work has employed novel context signals
with a novel algorithm, so it could be the case that more well-established
algorithms might perform as well as or better thantlr using these context
signals. Further research is needed to implement and test such algorithms,
although it is unclear how many traditional approaches would combine the
multiple data sources which is one of the hallmarks of this work. More so-
phisticated algorithms such as support vector machines or techniques from
multisensor data fusion would seem more applicable in this sense.

The generation of thewuftpd dataset showed that the collection and usage
of runtime statistics as sources of external signals for second generation AISs
is possible. Additionally, the use of publically-available datasets to generate
thewuftpd dataset proved to be an effective methodology. Using part of the
LBNL-FTP-PKT data, as well as data from other repositories, this technique
could be employed to create a larger database of context signals, which would
aid research into the use of these signals as input data for IDSs.

In this work, failed attack sessions are classed as normal, but it may be
argued that it is useful and necessary for failed attacks to be registered in order
to alert an administrator of suspicious activity. Future work could therefore
extend the IDS described here to include a third failed attack class rather than
just the normal or abnormal data categories.

Finally, the implementation of thetlr and the other second generation
AISs more generally showed the feasibility of usinglibtissue to imple-
ment AISs as multiagent systems, and of applying them to real-world prob-
lems.

ACKNOWLEDGMENTS

This research is supported by the EPSRC (GR/S47809/01) and HP Labs.

26

REFERENCES

[1] (1995). The FTP Bounce Attack. Bugtraq:http://seclists.org/bugtraq/
1995/Jul/0046.html .

[2] (2000). CERT Advisory CA-2000-13 Two Input Validation Problems In FTPD.http:
//www.cert.org/advisories/CA-2000-13.html .

[3] (2003). LBNL-FTP-PKT dataset.http://www-nrg.ee.lbl.gov/LBNL-FTP-PKT.
html .

[4] (2007). libtissue sourcecode and datasets.http://cs.nott.ac.uk/˜jpt .

[5] Uwe Aickelin, Julie Greensmith, and Jamie Twycross. (2004). Immune System Ap-
proaches to Intrusion Detection - A Review. InProc. of the 3rd International Conference
on Artificial Immune Systems, pages 316–329, Catania, Italy. LNCS 3239.

[6] L. N. de Castro and J. Timmis. (2002).Artificial Immune Systems: A New Computational
Intelligence Approach. Springer.

[7] Stephanie Forrest, Steven Hofmeyr, and Anil Somayaji. (1997). Computer immunology.
Communications of the ACM, 40(10):88–96.

[8] Debin Gao, Michael K. Reiter, and Dawn Song. (August 2004). On Gray-Box Program
Tracking for Anomaly Detection. InProc. of the 13th USENIX Security Symposium, pages
103–118, San Diego, CA.

[9] R. N. Germain. (2004). An innately interesting decade of research in immunology.Nature
Medicine, 10(12):1307–1320.

[10] Julie Greensmith. (2007).The Dendritic Cell Algorithm. PhD thesis, School of Computer
Science, University of Nottingham.

[11] Julie Greensmith, Uwe Aickelin, and Jamie Twycross. (2006). Articulation and Clarifi-
cation of the Dendritic Cell Algorithm. InProc. of the 5th International Conference on
Artificial Immune Systems, pages 404–417, Oeiras, Portugal. LNCS 4163.

[12] Julie Greensmith, Jamie Twycross, and Uwe Aickelin. (2006). Dendritic Cells for
Anomaly Detection. InProc. of the IEEE World Congress on Computational Intelligence,
pages 664–671, Vancouver, Canada.

[13] Emma Hart and Jonathan Timmis. (2005). Application Areas of AIS: The Past, The
Present and The Future. InProc. of the 4th International Conference on Artificial Immune
Systems, pages 483–497, Banff, Canada. LNCS 3627.

[14] Steven Hofmeyr and Stephanie Forrest. (1998). Intrusion Detection using Sequences of
System Calls.Journal of Computer Security, 6(3):151–180.

[15] A. Iwasaki and R. Medzhitov. (2004). Toll-like receptor control of the adaptive immune
response.Nature Immunology, 5(10):987–995.

[16] M. L. Kapsenberg. (2003). Dendritic-cell control of pathogen-driven T-cell polarization.
Nature Reviews in Immunology, 3:984–993.

[17] Ruoming Pang and Vern Paxson. (2003). A High-level Programming Environment for
Packet Trace Anonymization and Transformation. InProc. of ACM SIGCOMM.

[18] N. Provos. (August 2003). Improving Host Security with System Call Policies. InProc.
of the 12th USENIX Security Symposium, pages 257–272, Washington, D.C.

[19] SANS Global Incident Analysis Center, (2001). Ramen Worm.http://www.sans.
org/y2k/ramen.htm .

[20] Sniph, (2007). snot.http://www.securityfocus.com/tools/1983 .

27

[21] Anil Somayaji. (2002).Operating System Stability and Security Through Process Home-
ostasis. PhD thesis, University Of New Mexico.

[22] Thomas Stibor. (2006).On the Appropriateness of Negative Selection for Anomaly Detec-
tion and Network Intrusion Detection. PhD thesis, Darmstadt University of Technology.

[23] Jamie Twycross. (2007).Integrated Innate and Adaptive Artificial Immune Systems Ap-
plied to Process Anomaly Detection. PhD thesis, School of Computer Science, University
of Nottingham, U.K.

[24] Jamie Twycross. (2007).Integrated Innate and Adaptive Artificial Immune Systems Ap-
plied to Process Anomaly Detection. PhD thesis, School of Computer Science, University
of Nottingham.

[25] Jamie Twycross and Uwe Aickelin. (2005). Towards a Conceptual Framework for Innate
Immunity. In Proc. of the 4th International Conference on Artificial Immune Systems,
pages 112–125, Banff, Canada. LNCS 3627.

[26] Jamie Twycross and Uwe Aickelin. (2006). libtissue - Implementing Innate Immunity.
In Proc. of the IEEE World Congress on Computational Intelligence, pages 499–506, Van-
couver, Canada.

A LIBTISSUE PARAMETER SETTINGS

The libtissue parameter values used fortlr are shown in Table 4.

B PLATFORM TECHNICAL DETAILS

A Redhat 6.2 ISO image is downloaded from an official Redhat mirror and
used to install a vanilla server as a VMware guest on the testbed. The default
wuftpd FTP server package (2.6.0-3) is replaced with a separately down-
loadedwuftpd 2.6.0-1 RPM. This is necessary as although thewuftpd pack-
age in the original Redhat 6.2 distribution has the SITE EXEC vulnerabil-
ity, Redhat replaced this distribution with a “respin” (read “second edition”)
which contains a patchedwuftpd 2.6.0-3. Once installed, the default config-
uration ofwuftpd is slightly modified to make it vulnerable.

In the default installation,wuftpd is started at boot time wrapped by the
inetd super-server. This makes monitoring more complex as in this configu-
ration the FTP server is only started once a connection has been established
through inetd. However, monitoring is technically easier when a process is
running continuously. Therefore, the FTP server is disabled in inetd by com-
menting out the appropriate FTP service entries in /etc/inetd.conf. An init
script is written to start the FTP server as a standalone server, running con-
tinuously, at boot time. In order to gather the actual data, i.e. process syscall
information and context signals, the target system is instrumented: the FTP
server executable is wrapped withstrace [18], which logs all the syscalls
made bywuftpd and its children.

28

Parameter Name Value Description

max antigen 1000 maximum number of stored antigen
max cytokines 3 maximum number of stored signals

max cells 10000 maximum number of cells
cell update rate (µsecs) 100000 rate at which cells are updated

antigen multiplier 10 number of copies of each antigen stored
num cells 1 100 number of immature DCs

cell lifespan 1 100 number of iterations an immature DC lives for
num antigen 1 100 maximum number of antigen stored by an immature DC

num antigen receptors 1 10 number of antigen an immature DC can store
num antigen producers 1 100 number of antigen an immature DC can produce
num cytokine receptors 1 3 number of signals an immature DC can respond to

antigen producer action time 10 number of iterations an immature DC presents antigen for
num cells 2 100 number of naive TCs

cell lifespan 2 10 number of iterations a naive TC lives for
num cell receptors 2 1000 number of DCs a TC can bind with per iteration
num vr receptors 2 100 number of antigen a TC can match per iteration

cell lifespan 3 100 number of iterations a semimature DC lives for
cell lifespan 4 100 number of iterations a mature DC lives for
cell lifespan 5 100 number of iterations an activated TC lives for

probe rate (µsecs) 1000000 rate at which cell population levels are sampled

TABLE 4
The libtissue parameter settings used fortlr . For tlr1 and tlr2 the max cytokines

andnum cytokine receptors 1 parameters are set to 1 and 2 respectively

29

