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Efficient Location Privacy-Aware Forwarding in

Opportunistic Mobile Networks

Sameh Zakhary, Milena Radenkovic and Abderrahim Benslimane, Senior Member, IEEE

Abstract

This paper proposes a novel fully distributed and collaborative k-anonymity protocol (LPAF) to protect users’

location information and ensure better privacy while forwarding queries/replies to/from un-trusted Location-based

Service (LBS) over opportunistic mobile networks (OppMNet). We utilize a lightweight multi-hop Markov-based

stochastic model for location prediction to guide queries towards the LBS’s location as well as to reduce required

resources in terms of retransmission overheads. We develop a formal analytical model and present theoretical analysis

and simulation of the proposed protocol performance. We further validate our results by performing extensive

simulation experiments over pseudo realistic city-map using map-based mobility models and using real-world data

trace to compare LPAF to existing location privacy and benchmark protocols. We show that LPAF manages to

keep higher privacy levels in terms of k-anonymity, and quality of service in terms of success ratio and delay,

compared to other protocols while maintaining lower overheads. Simulation results show that LPAF achieves up to

11% improvement in success ratio for pseudo realistic scenarios, while real-world data trace experiments show up

to 24% improvement with a slight increase in the average delay.

Index Terms

Mobile ad-hoc network, Distributed computing, Anonymity, Location privacy.

I. INTRODUCTION

Location information has become a modern commodity where it is being used by many businesses to provide

user tailored services known as location-based services (LBSs). The wide penetration of mobile devices capable

of detecting, storing and sharing users’ location information raises many privacy issues. Privacy-conscious users

are more aware of the risks and potential threat of such widely accessible information and tracking capability [1].

OppMNet is a special class of Delay-Tolerant Networks (DTNs), where opportunistic communications occur over

multi-hop store-carry-forward between mobile devices when they are in the communication area of each other
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(called encounter), with no prior knowledge of when these encounters will occur. Opportunistic communication

relies on users’ cooperation to forward queries over a multi-hop path. Privacy-concerned users typically disable

their devices opportunistic capability in order to preserve their own location privacy, thus causing a breakdown of

communication [2].

Incorporating location information in mobile networks sparked many innovative applications, such as building

robust recommendation system [3], [4], publishing and sharing cycling routes [5], or inferring users future travel

destinations [6]. Online social networks, such as Facebook and Google+, capture the real-world social relationship

between users. However, ensuring users’ location-privacy while accessing location-based services in OppMNet is a

challenging problem due to sharing of users’ location information in order to receive tailored services. Moreover,

users cannot rely on a trusted third party (TTP) to anonymize or obfuscating their location information due to the

disconnections and lack of infrastructure.

This paper is concerned with the source k-anonymity location-privacy when contacting an LBS in OppMNet

through obfuscation. Obfuscation refers to the collaborative activities by nodes to deliberately degrade the quality

of information collected by the LBS about the source of the LBS query. We focus on a class of LBSs that does

not require user identity in order to provide the service. Other anonymity and security aspects in OppMNet are

outside the scope of this paper. We utilize a stochastic model for location predication, and propose a lightweight

Markov model to drive the privacy preserving protocol. We recognize two possibilities based on whether the nodes

are capable of knowing their exact location (such as GPS coordinates). For the first case, where the nodes are

able to detect their exact location coordinates, inspired by [7], we propose a path prediction maintained locally

at the individual nodes using Markov model proximity. As for the second case, where the nodes are unable to

determine their exact location coordinates, we use the recorded Ids for the sighting of fixed infrastructure points

(either access-points or GSM cell IDs) as the location identifier. Unlike [7], our proposed model utilizes multi-

hop prediction. Nodes exchange their local predictions and that of their own friends when they meet each other,

during opportunistic encounters, to help obtain more accurate/updated prediction estimate through shared knowledge

exchanged in a distributed way.

Due to OppMNet challenges, users need to utilize each encounter as well as leverage the social relationships

efficiently with other nodes. Intelligent location predication is needed in order to better enable queries to reach

their final destination (LBS) during the obfuscation phase and hence increase both efficiency (i.e., increase overall

network success ratio and decrease the number of retransmissions) and delay (as query reaches its destination). In

this paper, we present a forwarding protocol that aims to balance between the following: increasing users’ location-

privacy (k-anonymity), maintaining high quality of service (success ratio and delay) and using limited resources
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(retransmission overhead). We assume that users trust their friends in their social group with providing location

obfuscation when an encounter happens. During obfuscation, a node that carries a number of queries to obfuscate

searches for the best neighbors to forward these queries to in order to increase the source privacy by keeping the

query within the social group.

As in [8], [9] and [10], a social network represents a pre-existing social ties which can be determined by using

either: 1) similarity between users’ profiles [10] (e.g., interest, social affiliation), as shown in section III-B1; 2) nodes’

encounter patterns [11], as shown in section V-B. Two users are called friends if they are directly connected over

the social network. We use the term social group to refer to the subset of the social network that contains users

that are friends of every other user in that group. A user can belong to more than one social group. The social

group represents a set of all friends, similar to figures (10a, and 10b). A user can build a representation of her

own social graph representing a subset of the social network, where vertexes represent users, and edge represent

a friendship relationship. A user is either: connected directly to her friends (i.e., friends are one edge away), or

indirectly through intermediary friends to her indirect friends (e.g., friends-of-friends) over two or more edges.

The major contributions of this paper can be summarized as follows:

1) We present LPAF, a k-anonymity based protocol, offering protection to the users locations information and

better privacy while forwarding queries/replies to/from un-trusted LBS in OppMNet.

2) We develop a lightweight multi-hop Markov-based location prediction model to adaptively inform the obfus-

cation protocol to achieve higher privacy through mobile node limited/temporal neighborhood knowledge.

3) We present a formal mathematical model to analytically evaluate and simulate the proposed location-privacy

protocol in opportunistic multi-hop communication networks.

The rest of the paper is organized as follows: section II discusses the problem of location-privacy and identify

unique challenges in OppMNet. Section III presents protocol design and underlaying metrics. Section IV presents

analytical analysis including the model and its evaluation. In section V, we show performance evaluation comparing

proposed protocol to other benchmark and contemporary location-privacy protocols in pseudo realistic simulation

and using real-world data traces. Section VI presents related work, while section VII concludes this paper.

II. LOCATION-PRIVACY PROBLEM ANALYSIS IN OppMNet

A. Problem Definition

This work focuses on the location privacy from the source (query originator) point of view and not the LBS

(Provider). The motivation for our work is location-privacy leakage and users’ increased concerns while accessing

LBS services [9], [12]. The fact that most LBS services used in mobile opportunistic networks are centralized and
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are offered by large private businesses (such as google, facebook), triggered many research efforts to understand the

privacy implications [2], [13], and propose solutions as we will show in section VI. Users are concerned about the

aggregation of their private location-data at the provider side, as well as any unauthorized access/disclosure of such

data. In addition to that, most LBSs servers are hosted at centralized data centers and the results are delivered back

through Internet then delivered via wireless medium through access points, base-stations or ad-hoc communication.

The jurisdiction over and privacy/security offered by these data-centers varies, and hence privacy policies applicable

to users at one country might not meet requirements of another.

More generally, we can formulate our research question as “how to enable the users in OppMNet to commu-

nicate with an LBS while maintaining their location privacy”. More specifically, we investigate the possibility

of allowing nodes to communicate without leaving a digital footprint that can be represented as <Node ID a,

time b, Location c> at the LBSs, or without revealing information that allow LBSs to know that two nodes have

been at the same location, which can be represented relatively as <Node ID a, Node ID b, Time c>. This is

a difficult problem because as nodes try to communicate in OppMNet, they need to make use of each encounter

efficiently. A number of trade-off decisions need to be considered as the users set their privacy-level requirement.

Firstly, Users setting higher privacy constraints will suffer from lower data utility; this is defined in terms of query

delivery to LBSs and number of answered queries. Secondly, the level of privacy achievable is dependent on many

factors and users do not know in advance if they are setting their privacy constraint at appropriate level for their

own circumstances. For example, topology sparseness and users own social group size affect greatly the level of

achievable privacy as will be discussed in more details at later sections.

In our research question, we refer to the users need for location privacy. There have been many various definitions

of what “Location Privacy” is. Beresford and Stajano [14] defines it as “the ability to prevent other parties from

learning one’s current or past location”, Duckham and Kulik [15] define location privacy as: “a special type of

information privacy which concerns the claim of individuals to determine for themselves when, how, and to what

extent their location-information is communicated to others”. The later definition is more aligned with this paper.

B. Why encryption is not the solution to location privacy

This paper is not concerned with security issues in OppMNet, and for that reason we aim to explain briefly

the challenges and limitation of using Encryption to address location-privacy. Encryption is widely used to ensure

confidentiality, integrity and authenticity of the information transferred between two endpoints. Over traditional

networks, data encryption is used during transmission over un-trusted communication medium or when data is

saved to storage devices to prevent unauthorized access or modification [17], [18]. Security of any such encryption
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schema must not rely on the obfuscation of their algorithm, but only on the secrecy of the decryption key. Hence,

distribution and management of keys among all nodes in OppMNet is critical to any such schema. Due to the lack of

a central authority that acts as TTP, using Encryption is not suitable to OppMNet. Considering the two main types

of encryption schemes, symmetric and asymmetric; where symmetric means that both encryption and decryption are

performed with the same key, while asymmetric requires two different keys (e.g., Public-key Infrastructure–PKI).

Using asymmetric keys require both sender and receiver to exchange public keys that will be used before performing

any secure communication. Therefore, two nodes who never met will be unable to directly use such scheme, e.g.,

over multi-hop opportunistic communication. This also implies that each node has to obtain the different keys to

communicate securely with all other nodes in the network. Nevertheless, symmetric schemes present the advantages

of being computationally cheaper and easier to set up than asymmetric, but do not offer the same protection.

In addition to the OppMNet challenges discussed in section II-A, the problem of user location tracking is

aggravated through the ability of all participating nodes to eave-drop on the forwarded query/response between

source and LBS which then compromises users’ location-privacy. And the assumption of an always online TTP or

the handset ability to perform strong encryption is generally not applicable in OppMNet due to the limited energy

on the mobile devices and the long periods of disconnections. In the case of untrusted LBS, as it is in this paper,

encrypting the query so that only the destination can receive/decrypt it

III. ACHIEVING K-ANONYMITY WITH LOCATION PRIVACY-AWARE FORWARDING IN OppMNetS

Many locaction-based services are being delivered over OppMNet because: 1) as infrastructure coverage is not

always available in urban congested areas, and mostly in rural developing areas; location-based service discovery

and delivery over opportunistic networks has gained considerable focus in recent years [19]–[21]. 2) users interested

in location-specific information (e.g., query social events [22]–[24], location-based news [25], or upload sensing

information [12]) normally be within a specific geographical location area for the LBS reply to reach them,

and in other cases the reply delay does not affect the validity for query result (e.g., querying for location-based

advertisements [26] provides personalized advertisements during a shopping trip that are relevant to the user who

enters specific shops). 3) using OppMNet provides a free-of-charge way for accessing services which helps us bridge

digital divide as disconnections still exist in the rural [27] and urban scenarios [28]. This has gained considerable

attention lately to support digital-inclusion [29] of members of the society helps bring equality between poor/deprived

people and those from richer backgrounds. Although some LBS queries can have high sensitivity to delays, such

as real-time step-by-step navigation directions for a fast moving vehicle (which is not the scope of this work). In

this work we focuse on other type of queries which are less delay-sensitive (e.g., a tourist who sends a query from

a historical castle “which kings lived here?”). For LBSs, delay-sensivity will largely depend on the type of the
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query asked, the geographical scale for which the query is relevant (e.g., city wide, natural reserves, or tourists

attractions) and the urgency of that request.

In this section we present LPAF algorithm and introduce the different collaborative measures that are collected,

calculated and shared locally between nodes in order to provide obfuscation service to their social group.

A. LPAF Algorithm

TABLE I: Notation Reference Table.

Parameter Meanings

k k-anonymity privacy-level requirement defined as the number of hops to obfuscate each query.

MP Node’s own predicted “Markov Proximity” as calculated in equation (3).

MMP Node’s “Multi-hop Markov Proximity” as calculated in equation (4).

Pc the social-profile attributes matching-criteria for obfuscation (i.e., female and/or walking users or Facebook2 friend).

sdij(Pc) social-distance between the profiles of nodes i and j, under criteria Pc as calculated in equation (1).

Plow/Phigh Low/High matching threshold for the social distance.

P the profile attributes of the node.

Nr original node sending the LBS query.

Ncurr current node holding a message to be obfuscated. hr(m) = k(m) ⇐⇒ Ncurr = Nr

Nghscurr set containing all the immediate (first-hop) neighbors for the current node.

OUTn set of possible obfuscation events organized as tuples of <neighbor, message, score> to send to possible next-hop from

current neighbors.

Mobf set of all messages at Ncurr that requires obfuscation.

M set of buffered and incoming new messages at Ncurr before checking obfuscation requirements.

k(m) function to extract the privacy-level requirements for message m, i.e., the requested minimum number of obfuscation hops.

hr(m) function to calculate the remaining number of obfuscation hops for message m.

A user, who wishes to send a query to an LBS, searches for nearby friends (Phigh) and forwards a copy of her

query to one of the available friends. This friend then forwards the query intra-social group using social forwarding

for a defined number of hops (k) within the user’s social group. After the first k hops, the query can be forwarded

using any DTN forwarding protocol (SnW in this case). This allows the source not to reveal his location by directly

contacting the LBS, but rely on the social forwarding protocol to form an obfuscation path to the LBS. If any

intermediary node was unable to find a set of socially matching neighbors, then it attempts to use other more

socially distant neighbors if they meet a lower privacy threshold (Plow), and they are more likely to deliver the

query to its final destination as predicted by their reported MMP .

We propose two Privacy Qualities: “High Privacy” and “Best-effort Privacy”. The protocol adaptively tries to

achieve one of these depending on the network topology (i.e., how often users meet their friends) and whether

intermediaries have enough socially-related neighbors to perform location obfuscation. “High Privacy” (Phigh = 1)

refers to the source’s k-anonymity when her query has been forwarded over at least k obfuscation hops, and all

intermediate users belong to the source’s social group. “Best-effort Privacy” (Plow < 1), on the other hand, refers

to the source’s k-anonymity when any of the intermediate nodes does not belong to the source’s social group

(e.g., obfuscation carried by friends-of-friends). An intermediate node aims to maintain the source’s “High Privacy”
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quality while forwarding a query. It searches through the current neighbors for friends of the source of that query,

and forward the obfuscated query to one of them. If none of the current neighbors is a friend of the source, it tries

to offer “Best-effort Privacy” quality by forwarding the query to one of its own friends to obfuscate, and so on. In

which case, the intermediate node matches the neighbors against a lower privacy threshold and uses nodes that pass

this test. The detailed algorithm to be followed by source or intermediary nodes participating in the obfuscation is

shown in Algorithm 1, and can be explained as follows:

Line 1· · ·Line 11: This part of the code is where the user privacy requirements are specified (line 1), and

initial preparation is carried. A loop (line 3) goes over all incoming messages to extract queries that require

obfuscation into Mobf . Each query is checked for any remaining obfuscation hops (line 4). If more obfuscation

hops are needed, then it is added to Mobf (line 5). Else, (line 4) the message has been fully obfuscated and the

source realid and the full path information is removed in preparation for forwarding outside the social group. If

no queries require obfuscation, the algorithm exists at line 11.

Line 12· · ·Line 24: This part of the code is where nodes filter their neighbors and decide on the best one

to perform obfuscation. Each node search for all existing neighbors and match them with available queries to

obfuscate Mobf . If a neighbor has already obfuscated a query before, then it is not considered further for this

query (line 14). Else, we calculate privacy related measures as in (line 15). (line 16) If the current neighbor social

distance meets Phigh (i.e., “High Privacy”), then the query is scheduled for forwarding. If not, (line 19) the social

distance is checked against Plow, and the query is scheduled for forwarding if passed (i.e., “Best-effort Privacy”).

Line 25· · ·Line 30: This part of the code is where obfuscation is carried. The outgoing messages are sorted by

priority and privacy measures. For each outgoing messages, the message obfuscation-path is updated (line 27), and

the query is sent to that next-hop. In order to forward the reply back to the requester, we propose that each node

in the social group which has been on the obfuscation path maintains a mapping table, that maintain information

about the obfuscated query and its source, which is used to speed-up the LBS-reply addressing (line 29). Each of

these entries is associated with a timeout value to keep the table size manageable and minimize lookup overhead.

Line 31· · ·Line 41: This code is for maintenance. All obfuscation messages that has expired are reported to

the LBS application (Appr) and dropped from the nodes’ buffers (line 32). All remaining outgoing queries are

sent using DTN forwarding protocol (line 37). Intermediary nodes follow the same process in algorithm 1 for

k−1 times.

Because the LBS only knows the pseudoid of the incoming query, it reply to the pseudoid. Only nodes on the

request obfuscation path know the realid of the requester. The forwarding of reply will use the mapping between

pseudoid to realidto forward the reply back to the requester. Due to the asynchronous operation of forwarding

in OppMNet, it is possible that the LBS-reply never reaches any of the nodes k−1 on the original obfuscation
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Algorithm 1: SENDING PRIVATE LBS QUERY USING LPAF.

1: User of node (Nr) sets the anonymity requirement of the LBS application (Appr) running on the node Nr in

terms of (Plow/Phigh, k, Pc) that communicate with LBSsrvr at different locations lr.

2: Mobf ← φ, Generate node pseudoid
3: for all m such that (m ∈M ) do

4: if hr(m) > 0 then

5: Mobf ←Mobf ∪ {m}
6: else

7: remove realid, path from m

8: M ←M ∪ {m}
9: end if

10: end for

11: if Mobf = φ then goto line 37 end if

12: for all Ni such that (Ni ∈ Nghscurr) do

13: for all m such that (m ∈Mobf ) do

14: if (path(m) ∩ {Ni}) 6= φ then goto line 12 end if

15: Calculate social distance sdci, multi-hop Markov proximity MMP id

16: if sdci(Pc) > Phigh then

17: OUTn ← OUTn ∪ {Ni,m, sdci,MMP id}
18: Mobf ←Mobf \ {m}
19: else if sdci(Pc) > Plow and MMP id > MMP cd then

20: OUTn ← OUTn ∪ {Ni,m, sdci,MMP id}
21: Mobf ←Mobf \ {m}
22: end if

23: end for

24: end for

25: Sort OUTn by message priority, sdci, MMP id

26: for all Ti such that (Ti ∈ OUTn) do

27: path(mi)← path(mi) ∪ {Ni}
28: Forward mi to Ni using DTN protocol

29: Update reverse addrtable ← reverse addrtable ∪ {< mi, pseudoid, realid, time >}
30: end for

31: for all m such that (m ∈Mobf ) do

32: if delay(mi) > delay threshold then

33: print Appr can not send the query and maintain the user pre-set location privacy requirements.

34: Drop message (mi)
35: end if

36: end for

37: for all m such that (m ∈M ) do

38: Forward m using DTN forwarding

39: end for

40: LBSsrvr receives the LBS-query which has a location query in (pseudoid, lr)

41: LBSsrvr generates and forwards the LBS-reply through social forwarding and send reply (pseudoid, reply)

path in its way back from the LBS. In this case, we use similar scheme as in [30], [31] which use group label in

an attempt to reach the source of the query. The outbound node of the set of intermediate nodes, i.e., last node

number k on the obfuscation path, removes the identity of the query source (Nr) and replaces it with a social

group label, before forwarding the query freely to any neighboring node (i.e., without following the social criteria).
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B. Distributed and Collaborative Measurements

Using k-anonymity attempts to reduce the quality of the location information either in space (spatial) or in time

(temporal), hence prevent meaningful use by various LBSs, especially with low user density scenarios [7]. Our

idea of utilizing the social graph as an overlay to provide the basis for a trust model between OppMNet users,

where friends in social network trust each other to obfuscate their location. Users build a collaborative obfuscation

path over asynchronous social-based k hop intermediate nodes, and hence form a temporal location-privacy ob-

fuscation path between the source and the LBS where intermediaries are the users’ own social acquaintances. As

shown in algorithm 1, nodes require social awareness to select next-hop (section III-B1), and location awareness

(section III-B2) to forward queries towards the destination LBS while building the obfuscation path.

1) Social Awareness

We utilize social-links (i.e., friendship relations between users) in OppMNet to maintain the users’ location-

privacy. In this section, we consider the general case where social-relations are defined in terms of users’ social-

profile similarity [10]. We structure the user’s social-profile as an n-tuple profile attributes, and each attribute is

assigned a different weight that reflects the relevance of this attribute to the whole profile. For example, affiliation

attribute is given 40% importance, where the gender is given 5% importance in matching the two nodes profiles.

The source of the query, or an intermediary node obfuscating it, calculates the social-distance between the profiles

of itself as i and the possible next-hop as j, under criteria Pc (sdij), which is defined as the weighted number of

matching profile attributes between the profiles of the two nodes (pi and pj), and it is calculated as:

sdij(Pc) =
M (pi, pj , Pc)

C (pi)
(1)

Where the function M() searches for the matching degree between the two given social profiles using criteria

Pc (as defined in table I). C() returns the number of attributes in the given profile. pn represents the social profile

of a node n. Matching degree reflects both the number of matched profile-attributes and the weight each of these

attributes in the social profile.

2) Location Awareness — Markov Proximity

We represent the location-visits using first-order Markov chains as a directed weighted graph between map

regions. Each map is denoted as a region R+ which is split into smaller regions with a total of n ×m squares.

Each time a node moves from one region a to another region b, the weight of the edge connecting the two vertexes

(a, b ∈ R+) on the graph is denoted by Eab. The weight of each directed edge reflects the probability that the node

is going to move from the source-vertex representing location lx(∀lx, x ∈ a) to the destination-vertex representing

location ly(∀ly, y ∈ b). Probability generation function is using a first-order Markov model, in which the probability

P (b | a) that the node will move to region b given that it is currently at region a is:

Pj (b|a) =
Eab

∑

l∈R+ Eal

(2)

Then a node j is able to calculate its “Markov Proximity” (MP ) as the probability of moving from the current

location lc to the next location ln as the value Pj (n | c).

Assuming that two socially related nodes i and j meet at location lj , and i has a message that it wishes to

obfuscated to reach node d (the untrusted LBS). Then node i will send a query to j asking for the estimate MPjd.

Note that at the time of encounter, the two nodes are within Bluetooth communication area of about 10 meters

in radius, so we assume that the current location is the same. MPjd query can be piggy-packed on the normal
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transmitted data messages or inside the hello message as its size is negligible compared to the payload size. MPjd

is calculated using equation (3) and is tracked locally by each node and only shared with each node social group.

Nodes only respond and calculate MPjd for their current location in order to prevent external exposure of location

information.

MPjd =

{

0 for vjd ∈ ∅

Pj(ld|lj) otherwise
(3)

Where vjd represents the directed edge connecting the two vertexes corresponding to locations lj and ld, and the

direction of movement is from lj to ld.

3) Distributed multi-hop location-obfuscation prediction

We now consider the multi-level prediction problem, where two meeting nodes wish to calculate the prediction,

not only considering the probability of the other node visiting the LBSs location directly, using the combined

probability of all their respective contacts. For example, node A meeting two nodes B and C, where A is interested

in location obfuscation service towards LBS. A asks both nodes B and C to provide their probability for visiting

the LBS considering all their contacts. If node B rarely visits LBS location directly, but its contacts do with higher

probability than that of node C, then node A will chose node B as the next-hop and not C. More formally, let the

set of nodes that B encounters over time called Nb, then we define the “Multi-hop Markov Proximity” (MMP ) as:

MMP jd (A,B) =

{

0 , Nb ∈ ∅

α×MP jd + β ×
∑

i∈Nb
MPlid

×MPjli

Nb
, otherwise

(4)

Where α and β are weighting factors. The values of both will be adaptively determined depending on the stage

of the obfuscation phase. Let k be the privacy requirements indication the obfuscation-path length, and hr the

remaining number of obfuscation hops to achieve this privacy requirement. This allows intermediate nodes to use

multi-hop prediction using localized view of their next-hops about their various contacts, instead of relying on

greedy and naive single-node prediction. During the obfuscation phase α and β are defined as follows:

α =

{

k−hr

k
, hr < k, k 6= 0

1 , hr = 0
(5)

β =

{

1− α , hr < k

0 , hr = 0
(6)

From the above equations (5) and (6), we can see that the values of both α and β are dependent on k and hr.

The value of α is increasing with increasing k, and it decreases with fewer remaining obfuscation hops (i.e., hr).

The value of β is the complement of α to one, which allow nodes to give more weight to the first term in equation

(4) as queries are about to achieve their anonymity requirement of k hops. While, at the start of the obfuscation

process, the protocol gives more weight to using intermediate nodes to reach the LBS which subsequently offer

better privacy. When a query has passed k obfuscation hops (i.e., hr = 0), intermediate nodes give all the weight

to their next-hops direct MP prediction (or α = 1 and β = 0) in equation (4).
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TABLE II: Analytical Model: List of parameters and their meaning.

Parameter Meanings

R+ The mobility area L× L representing the spatial dimension where nodes are moving.

N The set of all the nodes in the network.

S The social group which is a subset of network nodes that are socially related (i.e., nodes with common social links)

S ⊆ N .

Sa The set of social friend of node a.

λ The spatial Poisson process rate of event.

R (v) Communication area of node v with a transmission radius r : R = πr2.

#R (v) The number of nodes inside the communication area R of node v.

E (v) The set of intermediate nodes (hops) that form the multi-hop path for node v to reach the destination using

store-carry-forward paradigm.

[[l1, l2]] The Euclidean distance between two location points l1, l2 ∈ R+.

P 1 (#(R (v))) The probability that a node v has at least one neighbor.

va Average node speed in the network.

vrel The relative speed between two nodes.

k Social obfuscation-path length, or anonymity level requirement.

ϕe (t) The ratio of nodes receiving a packet after time t.

IV. LPAF ANALYTICAL ANALYSIS

A. Analytical Model

In this section we model our protocol using probabilistic analytical model. A number of models have been

proposed for modeling opportunistic communication in ad-hoc networks [32]–[34]. For the purpose of our study,

we focus on driving a model that is not only temporal with respect to timing of event, but also spatial model

(incorporating location knowledge). We use a spatial Poisson process [35], also known as spatial point process,

with an associated rate of events λ. Spatial Poisson process is useful for modeling ad-hoc wireless networks [36] in

general, and especially location-dependent protocol. This is because the process is based on the Poisson distribution

and has the additional spatial dimension that provides a mathematical means for modeling the distribution of nodes

over the network area. Using the spatial dimension, we can calculate the probability of a node being in a certain

location once the system has reached a steady-state, and the probability of nodes being neighbors. Let N be the

set of nodes moving within a region on the map denoted as R+, R+ is an L×L square area. Table II shows a list

of model parameters along with their interpretation.

In our study, we model communication as a Poisson process. Communication can occur only between two nodes

that are within the communication area of each other. Assuming all nodes have the same communication area R and

that communication can take place without interference from either physical obstacles or on the wireless channel.

Let two nodes a, b ∈ N , and let the location of the two nodes at time t be la,t, lb,t ∈ R+. The two nodes can

communicate directly if and only if [[l1, l2]] ≤ r. We define the opportunistic communication probability according

to the spatial Poisson theory. Let P (#(R (v))) be the probability that i nodes exist within the communication area

R (v) ⊂ R+. P (#(R (v)) = i) is formally defined as follows:

P (#(R (v)) = i) =
e−λπr2

(

λπr2
)i

i!
, λ =

|N |

L2
(7)

Subsequently, we define the probability that a node v has at most i nodes within the communication area R (v) ⊂ R+

as follows:

P (#(R (v)) ≤ i) =

i
∑

x=0

P (#(R (v)) = x) (8)

Let P 1 (#(R (v))) be the probability that a node v has at least one neighbor, i.e., the two nodes are able to

communicate with each other. According to the Poisson theory, the inter-arrival distance between events is i.i.d

(independent and identically distributed) random variable. This is because the Poisson model has a memorylessness
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property causing the number of arrival events at any location in R+ occurring after time t to be independent from

the number of events occurring before time t.

P 1 (#(R (v))) = P (#(R (v)) ≥ 1)

From the probability theory, we know that
∑

i≥0 P (#(R (v)) = i) = 1, we can rewrite it as P (#(R (v)) ≥ 1) +

P (#(R (v)) = 0) = 1. We can then substitute P (#(R (v)) ≥ 1) = 1− P (#(R (v)) = 0) as follows:

P 1 (#(R (v))) = 1− P (#(R (v)) = 0)

= 1− e−λπr2 (9)

For the purpose of developing the LPAF model, we need to focus on the obfuscation path rather than the immediate

neighboring nodes. We are interested in modeling the multi-hop communication path used for obfuscation. Let

P (|E (v)| ≥ i) be the probability of node v forming i multi-hops path of successive encounters (i.e., using any

available nodes) using Epidemic protocol. This is equal to the probability that each node from the set of the i

intermediate nodes has at least one successful encounter at its first hop (because the inter-arrival of events in the

Poisson process is i.i.d). P (|E (v)| ≥ i) can be formally defined as follows:

P (|E (v)| ≥ i) =
∏

i

P (#(R (v)) ≥ i)

=
(

P 1 (#(R (v)))
)i

from (9)

=
(

1− e−λπr2
)i

(10)

When the node’s communication area is very small compared to the dimensions of the network, i.e., R ≪

L, [33] shows that we can obtain an approximate rate of encounters (or inter-meeting time) for any node in

the network (p). This rate of encounter can be obtained using the following formula:

p = cvrelr
L2 , c : mobility constant (11)

vrel =
c

πv2a

∫ 2va

0

x2
√

1−
(

1− x2

2v2
a

)2
dx (12)

where c is a mobility model related constant. For the purpose of our analytical evaluation, we consider only the

random direction model with c = 1 and epidemic packet forwarding. For more complex real-life validation, we

evaluate LPAF through intensive simulation in different scenarios. And vrel is the relative speed between nodes and

can be calculated assuming an average stable node speed in the network (va). According to [32], we can obtain

the number of nodes I (t) that has received a packet after time t assuming a single initial source as follows:

I (t) =
|N |

1 + e−p|N |t (|N | − 1)
(13)

Where p is the rate of encounters as calculated in (11). So, we can then calculate the ratio of nodes that has received

a packet after time t as ϕe (t) for the Epidemic protocol:

ϕe (t) =
I (t)

|N |
=

1

1 + e−p|N |t (|N | − 1)
(14)

In the case of the proposed protocol LPAF, the probability that a node communicates is restricted during the

obfuscation phase to only within its social community. So a node has less probability of forwarding packets due to

its privacy constraints. We develop a new probabilistic model to reflect this behavior. Consider two nodes a and b,

where node a wants to obfuscate a query by sending it through node b. Let event A be that node a has at least one

neighbor b (i.e., at least a and b are within the communication area of each other), and Let B be the event that one

of these neighbors is from the social group of a (i.e., b is a social friend of a). More formally, let A: [[la,t, lb,t]] ≤ r

and B: b ∈ Sa. Let P (A | B) be the conditional probability that event A will occur given the knowledge that event
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B occurred. Note that since we are using random direction model, the probability of encounter between socially

connected nodes is not affected, i.e., it is shown in the literature that human encounter are not random, and that

friends meet each other more often than they would meet someone who is a complete strangers [37], [38]. Taking

that into consideration, we emphasis that the analytical study presents the worst-case view of LPAF performance

due to the lack of this connection between the social layer and nodes’ mobility. This can be expressed as follows:

P (A | B) = P (A) (15)

Let Pf (i) denote the probability that a node v meets i successive disjoint friend nodes (i.e., different nodes belonging

to node v social group Sv). The probability Pf (i) can be expressed as:

Pf (|E (v)| = i) =

i−1
∏

x=0

(|S| − 1− x)

|N |
,0 < i < |S|

=
(|S| − 1)!

|N |i × (|S| − i− 1)!
,0 < i < |S| (16)

Now, we would like to calculate the probability that a node v will successfully communicate under a privacy

requirement of one hop obfuscation. We use the set of intermediate disjoint nodes from the multi-hop path E (v)

from node v to the destination, and not the set of nodes within the transmission range of v, because we are

calculating the probability of forming a multi-hop path, rather than the nodes immediate neighborhood (i.e., one

hop). To this end, we define two events A and B as follows:

A: {meeting at least one node }

B: {a node is a friend (i.e., belongs to the source’s social group)}

Using probability theory, we can find the probability Ps (|E (v)| = 1) that a node v will successfully communicate

under a privacy requirement of one hop obfuscation can be expressed as follows:

Ps (|E (v)| = 1) = P (A ∩B)

= P (A | B)× P (B) from (15)

= P (A)× P (B) (17)

The first operand in (17) is the probability that a node v will encounter at least one node. The second operand can

be calculated using equation (16), as Pf when i = 1.

Ps (|E (v)| = 1) = P (|E (v)| ≥ 1)× Pf (|E (v)| = 1)

= P (#(R (v)) ≥ 1)× Pf (|E (v)| = 1)

= P 1 (#(R (v)))× Pf (|E (v)| = 1) (18)

Using definitions from equations (9) and (16):

Ps (|E (v)| = 1) =
(

1− e−λπr2
)

∗
(|S| − 1)!

|N |1 ∗ (|S| − 2)!

=
(

1− e−λπr2
)

∗
(|S| − 1)

|N |
(19)

From the definition of LPAF, a node v needs to form an i hop obfuscation path using i disjoint nodes for the

communication with an LBS to be successful (i.e., in LPAF case, the nodes are more constrained by the privacy

requirements and will not be able to forward packets as freely as when using Epidemic). Let events A,B denote

the following:

A: {meeting at least one node for i successive hops} , B: {i nodes belong to the source’s social group}

Further, let Ps (|E (v)| ≥ i) be the probability that a node v will successfully communicate over i hops obfuscation-

path. Ps (|E (v)| ≥ i) is defined formally as follows:

Ps (|E (v)| ≥ i) = P (A ∩B) = P (A) ∗ P (B) ,0 < i < |S|



14

Let us focus only on the event A, the probability of forming multi-hop path using i nodes can be obtained using

(10). The second operand which represent the probability that event B occurs can be obtained using (16).

Ps (|E (v)| ≥ i) = (P (|E (v)| ≥ i)) ∗ Pf (|E (v)| = i)

=
(

1− e−λπr2
)i

×
(|S| − 1)!

|N |i ∗ (|S| − i− 1)!
(20)

From the definition of LPAF, it is important to note that we are interested in the events where i nodes will encounter

each other following the DTN store-carry-forward paradigm. Hence, event A relates to the nodes’ ability to form i

multi-hop path to reach the destination. This event is quite different from the event of having a neighborhood that

has i neighbors. Substituting into equation (20), the probability that a node v will successfully communicate over

i hops obfuscation-path can be expressed as follows:

Ps (|E (v)| ≥ i) =

{

(

1− e−λπr2
)i
×
∏i−1

x=0
(|S|−x−1)

|N | , 0 < i < |S|

0 , otherwise
(21)

Let γ be the ratio between the probability that a node v successfully communicate using LPAF over i hops

obfuscation-path, and the probability that a node can form i hops path using any nodes, i.e., without obfuscation

restrictions using Epidemic routing. We define γ as follows:

γ =
Ps (|E (v)| ≥ i)

P (|E (v)| ≥ 1)i
(22)

Using equations (9) and (21), γ can be expressed as follows:

γ =

(

P 1 (#(R (v)))
)i
∗ Pf (|E (v)| = i)

(P 1 (#(R (v))))i

= Pf (|E (v)| = i)

=
(|S| − 1)!

|N |i ∗ (|S| − i− 1)!
(23)

For the proposed protocol LPAF, we can then calculate the number of nodes that received a query after time t

assuming a single initial source Is (t). We substitute γ into equation (13) taking into consideration the value

calculated in (23):

Is (t) =
|N |

1 + e−pγ|N |t (|N | − 1)
(24)

Let ϕs be the ratio of nodes that has received a query after time t using LPAF. ϕs is defined as follows:

ϕs (t) =
Is (t)

|N |
=

1

1 + e−pγ|N |t (|N | − 1)
(25)

B. Analytical Model Evaluation

In this section, we propose an analytical model that enables the study of LPAF, in terms of logical and quantitative

relationships, in order to see how the model reacts to different parameters such as privacy-levels (k) and social

group sizes (|S|) and what impact each has on quality of service such as delivery ratio and delay.

Hence, we perform extensive simulations, using the proposed analytical model for LPAF to study the feasibil-

ity/limits of conceiving obfuscation path for different privacy-levels (k) and social group sizes (|S|). We show

that using the proposed LPAF, an obfuscation path can still be constructed even at high privacy-levels (k), at the

expense of lower quality of service represented by lower delivery ratio and higher delays. It is worth mentioning

that although we show that the protocol can work in OppMNet at extreme situations (characterized by low social

groups sizes |S| ≤ 30%, and high privacy-level of k = 8), these situations are not likely to exist in real live
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and present a worst-case scenario for LPAF. This is because the analytical model does not consider the network

topology and how it is dynamically influenced by the social ties.

TABLE III: List of parameters and their values.

Parameter Meanings

L2 1000m× 1000m
|N | 200 nodes

|S| 25–200

r 120m

v1 1 m/s

k 2–8 hops

To validate the proposed analytical model for LPAF, we start by comparing its performance to Epidemic

forwarding as in figure 2a. LPAF has 3 hops obfuscation path at social group size of 50% of the total nodes

in the network. We choose a moderate social group size using information obtained from experiments shown in

figure 2b, and the number of obfuscation hops (k = 3) was chosen at the number of hops where the protocol

achieves about 25% probability to reaching all nodes, or at 50% of the protocol maximum achievable probability

(Ps). The results shown assume a single initial source sending one query. We can see that Epidemic protocol is

capable of disseminating the packet quicker, and that LPAF manages to follow with a slight delay due to the higher

location anonymity provided.

In order to understand the impact that the social group size |S| has on the probability of forming obfuscation-

path, we conduct the experiments shown in figure 2b. The figure shows the probability of forming obfuscation-path

of different length i for an increasing trend of the social group size |S|, and we compare them to the Epidemic

probability of forming the same number of hops i using any node even several times. The size of social group

ranged from 50 nodes to 200 nodes, or 25% to 100%. We can see a decreasing probability of forming a successful

delivery with longer obfuscation path (as i increases), which is due to the extra restriction on finding socially

related nodes (of course, not yet used). Finding such friend-nodes is affected primarily by the social group size

|S|, among other factors such as nodes average speed and communication area R, and the total area of R+. We

can see that increasing |S| allows for an increased probability of reaching higher privacy. As |S| approaches |N |,

i.e., theoretically the whole network is one social group, the probability falls as i increases, and this is because

intermediate nodes are selected only once. This validates the privacy-restrictions developed through the analytical

model for obfuscation based communication using LPAF. Interestingly, this shows that the probablity of forming

obfuscation path drops logarithemically with respect to the number of obfuscation hops i.

We can see the probability to form the same i multi-hop path using Epidemic protocol in figure 2b as derived

using equation (10). It is considerably much higher compared to LPAF, and it is approaching 0.99 for i < 15 hops.

This is because Epidemic protocol can form any multi-hop path and re-use nodes previously been on that path,

i.e., nodes that has participated in the query forwarding before. While for LPAF, a node cannot re-forward a query

to a node that has obfuscated it before, because this does not increase the source’s privacy (i.e., the anonymity set

does not increase).

We evaluate the LPAF performance convergence over time with respect to social group size |S| (in figure 3a)

and location-privacy requirements k (in figure 3b). Figure 3a shows LPAF performance under different conditions

of social group sizes ranging between 10% and 60% of the total number of nodes |N | under moderate location

privacy (k=3). The graph shows that LPAF manages to disseminate the packets to all nodes in the social group.

For example, about 40% of the social group nodes receive packets in less than 1600 seconds, for average social

group size (|S| ≥ 50%). We can see that as the social group size grow, the percentage of nodes receiving the
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(a) Percentage of nodes (y-axis) that receive a

packet after time t (x-axis). ϕe (t) for Epidemic

and ϕs (t) for LPAF using (k = 3 and |S| = 50%).

(b) Probability (y-axis) to form various obfuscation

path length i (x-axis): under different number of

social group size.Ps (|E (v)| ≥ i) for LPAF and

P (|E (v)| ≥ i) for Epidemic.

Fig. 2

(a) Percentage of nodes (y-axis) that receive a

packet after time t (x-axis) with different values

of |S|.
ϕe (t) for Epidemic and ϕs (t) for LPAF.

(b) Percentage of nodes (y-axis) that receive a

packet for various social group size (x-axis).

ϕe (t) for Epidemic and ϕs (t) for LPAF, k range

between 2 and 8 hops.

Fig. 3

packet increases sharply, i.e., the time required to reach the group gets shorter as more friends participate in the

forwarding. This is because the probability of meeting socially related nodes becomes higher, which allows the

packet to be forwarded faster and to more nodes than in scenarios with small social group size.

In order to choose the best suitable protocol configuration parameters in a given envionrment, we need to

combine the main parameters to show their impact on the protocol performance (e.g., percentage of nodes receiving

a packet ϕs (t)). Taking both time and |S| as the protocol two degrees of freedoms is shown in figure 3b, while

|S| and k is shown in figure 4a. Figure 3b shows LPAF theoretical performance under various location-privacy
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(a) |S| on x-axis, time on y-axis and ϕs (t) on the

z-axis at k=2 and 8.

(b) |S| on x-axis, k on y-axis and ϕs (t) on the

z-axis at ts=200 and 3000[s].

Fig. 4: LPAF performance comparing the percentage of nodes receiving a query ϕs (t).

requirements. The function ϕs (t) is sampled at t = ts for comparing performance, where (ts = 200[s]) is chosen

because it is the time where the protocols are in-transition with respect to |S| as shown in figure 3a. We can see

that ϕs (t) generally increases as |S| increases, and that validates the same impact seen in figure 3a. The figure

also shows that as k increases, the sloop of the curve becomes steeper (i.e., the social group size has less impact

on the protocol performance as k increases). Moreover, for the same value of |S|, we see that as k increases, the

performance drops (i.e., the curve gets lower). For example, at k=2 and k=4, we see that when the social group

size is about 85% of the total number of nodes in the network (|S|=85%), the percentage of reached social nodes

is in the range of 30% and 10% at t = ts respectively.

Figure 4a shows a three dimensional performance comparison of two different location privacy levels from low

to high (k=2 and 8). The figure clearly shows the impact of the privacy level and social-group size on the delay

and percentage of nodes receiving the query. On the x-axis, we show social group size (|S|), the time (t) on the

y-axis and the result achieved (ϕs (t)). We can see that the achieved level of packet penetration to other nodes at

some social group size can be easily obtained.

Using 4a, we can draw plane perpendicular to the x-axis at a point equal to a given social group size (|S|) in

the network, and we obtain a 2-D plane showing the various expected performance over time. From the figure,

we observe a general increase in the percentage of reached nodes as we move to a bigger group size, which is

consistent with both figures 2b and 3a. We can see a faster convergence (less time) to reach more nodes as k

decrease (less privacy). This figure can be used to guide the user selection of the level of location privacy (k) under

specific network conditions, by determining the expected ϕs (t) as the average required user data utility and user

tolerated level of delay.

For example, for a network with a known social group size |S| equal to 50% and a user data utility requirement

to reach 40% of the nodes within 500 seconds, the user will be able to achieve this combination under privacy-

level k=2, but not at a higher privacy-level of k=8. On the other hand, if the number of social group size can be

controlled, then the above graph can be used to show the required percentage of social nodes to achieve a certain

privacy level. For example, if a user wishes to maintain privacy level of k=2 and a data utility requirement to reach

50% of the nodes within 1000 seconds, then the required percentage of social group nodes must be more than 60%.
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Figure 4b shows the maximum achievable percentage of reached nodes after two different sample times (ts =

200[s] and 3000[s]). The figure shows that as the number of obfuscation hops increase, there is a decline in the

percentage of nodes receiving the packet at the same values of |S|. And as the social group size |S| increase, we

see an increase in the percentage of nodes receiving the packet. If the user needs to maintain the same percentage

of nodes receiving the packet while having higher privacy, then the social group size |S| needs to be increased to

provide the additional privacy without degrading the overall performance.

Fig. 5: The maximum number of obfuscation

hops (k) (y-axis) for various social group size |S|
(x-axis), for k between 1 and 25 hops.

Figure 5 shows LPAF achievable privacy-level at various social group sizes in the network for three different

probabilities for successfully encountering k friends (Pf ). Pf , as defined in equation (16), directly affects the

probability that a user will have successful communication with the LBS. The figure presents the trade-off between

privacy-level (k) for different social group size |S| in the networks, i.e., the user have higher probability of successful

obfuscation for higher k as |S| increases. For example, a user who belongs to a social group of size 120 has 50%

probability of successful communication for k range below 2 hops, while only 10% probability in case of higher k

(from 4 to 5 obfuscation hops).

V. PERFORMANCE EVALUATION

We compare LPAF performance against No Privacy, Oracle-based k-Anonymity [39] (OBK), Social-Only [39]

(SLPD) and ALAR [40] protocols. We implement all privacy-preserving protocols as extensions to ONE simula-

tor [41]. We track the performance across three dimensions: 1) Quality of service expressed as success ratio (SR)

and end-to-end delay, 2) Quality of anonymization reflected in the achieved number of obfuscation hops (k), and

3) Energy efficiency tracked through the retransmission overhead.

In addition to using an urban scenario, we perform evaluation using real-world data trace of Bluetooth and Wi-Fi

(UIUC) collected at the University of Illinois. For ALAR, we set the number of the alternative disjoint path (k=2),

and the number of splits (S=2); similar to the settings used in [40]. Other simulation settings are summarized in



19

table IV. Using these evaluation results, we confirm the analytical-model results in section IV-B for an increasing

privacy-level (k) and different social group size (|S|).

A. Pseudo Simulation in Urban Scenario in Helsinki City-Center

For the purpose of initial evaluation, we experimented with a well known benchmark urban scenario for Helsinki

city-center. We combine the Opportunistic Network Environment (ONE) simulator [41] probabilistic Map-Based

Movement Models with Helsinki map to generate a semi-realistic urban scenario in Helsinki city-center. The objective

of these set of experiments is to study the proposed privacy-preserving protocol in pseudo realistic city-center

scenario and measure its effectiveness. In order to achieve a realistic experiment, a number of elements needed to

be configured and used in ONE. Firstly, we use a real city-map (Helsinki City Map) that include details about roads,

pedestrian-only streets and tram lines. Secondly, we use a more realistic map-based movement mode, compared to

Random Way Point, where different nodes have different constraints moving around the city as it will be detailed

in section V-A1.

Without loss of generality, we develop LPAF over a quota-based DTN forwarding protocol, namely Spray And

Wait (SnW) [42]. We evaluate the social-based protocols (SLPD, LPAF) across varying social matching threshold,

i.e., users can select different values for Plow/Phigh (as defined in table I). Users who desire more privacy set

both Phigh and Plow to a value close to 1, and vice versa. Plow is configurable and was set to 0.5 (50%) for all

experiments. Location queries are sent every 20 seconds from a number of nodes belonging to a pool of 40 tourist

scattered walking and querying locations around the city. Each member of this group has a defined social profile,

and it is used to measure the social distance to other nodes (as explained in section III-B1). We assume that all

scenarios have one LBS, and it is moving around the city. Each node coming in contact with the LBS records the

current location where the encounter took place and shares it with other socially-related nodes. The nodes use the

most-recent location reported by their neighbors as the current LBS location to update and share their MMP (as

explained in section III-B2).

1) Network Model

We consider a network that has a set of N nodes that are actively relaying messages in the OppMNets when

requested. The selfishness or other malicious behaviors that would cause nodes to not participate in the forwarding

process are out of the scope of this paper. Nodes have limited resources (buffer, energy) and will continue to

forward messages as long as these resources are available. We consider heterogeneous node types with different

resource levels (such as trams and pedestrians). We assume that trams are equipped with two types of wireless

networking interfaces: high-power long range interface and another short range one.
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There are many existing mobility models in the literature [43]. We have chosen a map-based mobility model,

because it uses the underlaying map data in order to constrain node movement. Hence, nodes of different types

follow distinctive rules to move from one location to another, e.g., cars drive on roads or highway, and pedestrian

use streets. This provides a number of advantages: 1) It avoids the drawbacks of some mobility models where

nodes can move through buildings, or nodes meet at unrealistic points such as cars on pedestrians-only street; 2) It

presents information about the underlying map and nodes’ location in the network, and hence allows the evaluation

of the proposed proximity-prediction efficiency; 3) LBSs typically utilize user locations and map information, and

most available real-world traces do not contain spatial information. And while some of the exiting real-world traces

can be used (such as UIUC trace used in section V-B), the evaluation is typically limited to a given set of locations

in the trace (discrete and limited subset of all possible locations), and we cannot use/re-run the same experiment

again with different nodes’ locations to ensure statistical significance of the results. Running experiments over

Helsinki scenario allows us to evaluate different random topology conditions and observes variations in results. By

repeating these experiments many times, we study the statistical significance of any performance results. For the

aforementioned reasons, we are complementing the evaluation using pseudo-simulation with UIUC real-world data

trace scenario.

This work is not concerned with vehicular technology, and it focuses only on social opportunistic network. We

utilize a set of heterogeneous mobile nodes (Pedestrians, Cars, and Trams) positioned on top of the Helsinki-city

map, where cars and trams are used to ferry data between pedestrians when the possibility occurs. Communication

between pedestrians is performed over OppMNet using Bluetooth, while communication between Trams, Cars is

over Wi-Fi. The different nodes exhibit different characteristics, People carried mobile devices have smaller buffers

compared to other mobile nodes. The city-center scenario consists of 80 pedestrians, 40 cars and 6 trams and 10

access points. Pedestrians communicate between them through Bluetooth, and receive information from cars, trams

and access-points if within communication range using Wi-Fi.

All mobile elements of our scenario follow a movement model that attempts to closely match real-world, where

cars drive on roads or highways, trams have predefined and fixed route that goes across the city, and pedestrians

walk on streets. We define a set of Points of Interest, these are various locations around the map where mobile nodes

visit more often, i.e., with higher probability than other locations around the city. For example, people go to the

city center more often than they visit urban areas of the city. In our scenarios, the points of interest represent areas

such as workplace, business centers, market places, and similar locations. In our experiments, we do not model

delay due to message collision caused by multiple nodes simultaneous transmission over the wireless medium,

as such delays are considerably small compared to average delays due to nodes disconnections. Wireless channel

transmission errors and congestion are also not considered in this study.
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TABLE IV: Simulation parameters/values.

Key Value Key Value

Simulation Time 43200 seconds Query/Reply Size 512 bytes

Map Size (W x H) 4500 m × 3400 m Publishing Rate 3 queries/minute

Map Squares (n by m) 10× 10 Initial Query Replicas 10

Total no. of Nodes (|N |) 126 Buffer Size Unlimited

Pedestrian Nodes 80 Pedestrian (Walking Speed) 1.8–5.4 Km/h

Car Nodes 40 Cars’ Speed 10–50 Km/h

Trams 6 Opportunistic Interface Bluetooth

Infrastructure Devices 12 Bluetooth Range 10 m

Users (|S|) 40 Movement Model (Pedestrian, Cars) Shortest Path Map-Based

Number of LBSs 1 Movement Model (Trams) Map-Based Route

Transmit Speed 2 Mbps

Trams in the network are acting as data mules, i.e., they are not considered as sources or destinations for

any traffic. We assume, as in a typical city scenario, that these trams have contact with access-point when in

communication range, or otherwise be disconnected. Trams are expected to execute LPAF protocol, and that users

trust the trams’ operator to handle their queries and perform obfuscation operations. If a node encounters a tram,

it includes a profile matching-criteria and the required privacy-level for the query to obfuscate, and forward this

information over to the tram. Tram extracts the privacy-related information and searches for other nodes using the

profile matching-criteria to obfuscate this query.

2) Simulation Results in City-Center

We examine all protocols in scenarios where privacy-conscious users are assumed to not participate in the

opportunistic network as shown in [2]. LPAF takes into account social relationship with neighbors performing

obfuscation, as well as next-hop proximity-prediction (MMP ) to the final destination. We evaluate LPAF under

varying privacy-level requirements (k), varying number of source nodes accessing the LBS (senders), and different

social group size (|S|). All experiments were conducted at high social matching threshold (P=1) for both SLPD and

LPAF. Each point on the graph is the average of 50 runs, and in each run nodes were initially positioned randomly

over the map. The senders are selected from a pool of highly social nodes (central nodes or hubs), starting by

1 sender or 3% of the pool size, then 5 (or 13% of the pool size), 10, 15 till 40 senders (or 100%). Increasing

the number of senders increases the offered load to the network, hence show protocols’ stability. Experiments

examining the effect of the social group size were conducted using only one single sender selected at random at

each run.

Betweenness centrality [44] measures the likelihood that a node lies on the paths linking different nodes in

the network. This centrality measures the nodes’ ability to control information flow between different parts of

the network. In order to perform experiments with varying number of social nodes, we conducted graph analysis

to find different centrality measures for different node types at each scenario. Figure 6ashows the cumulative

“Betweenness” centrality for different node types in our scenarios, vs. the number of queries each group was
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responsible for forwarding measured without any privacy constraints. The group of nodes labeled “Other nodes”

include vehicles and other pedestrian users not belonging to the social group. The figure shows that trams have the

highest centrality and are involved in forwarding more queries compared to other groups. This is because trams

are more powerful both in terms of their communication area and speed, hence, cover extended areas of the map.

All results are normalized, i.e., represented as a relative to the maximum achievable during the different simulation

runs.
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Fig. 6

Figure 6b shows the normalized success ratio for LPAF compared to No Privacy and the other privacy protocols.

For both SLPD at k > 3 and LPAF at k > 6 results are 0%, so they are not shown on any of the graphs. The

graph shows that LPAF is able to deliver queries in a privacy preserving way for k = 3 higher than the other

location-privacy protocols (namely SLPD and ALAR). The figure shows that ALAR has a steady but low success

ratio, and it is considerably lower than other protocols (≈ 5%). LPAF has a rising success ratio as number of

senders increases, while SLPD is constantly below by an average of 11%. LPAF is able to achieve a maximum of

≈ 50%, which is higher than both SLPD and ALAR, because nodes collaborate and share prediction to achieve the

privacy level and move towards the LBS. LPAF is approaching the theoretical maximum success ratio maintained

by OBK that uses an Oracle.
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Figure 6c shows the average delay in seconds for each of the protocols. No Privacy and OBK opportunistic

forwarding have the lowest delay as they deliver queries without any obfuscation or using an Oracle. We include

both protocols as benchmark for comparison, where OBK is not suitable for real-world OppMNets scenario because

it uses centralized server and assume future knowledge of network events.

In both figures 6b and 6c, we see that ALAR has low success ratio and high delay, this is because nodes wait

for k distinctive neighbors for each of the S splits belonging to the same query. Which means that each query

requires (S×k) distinctive neighbors for all splits to be forwarded out of a source, or a total of 4 unique neighbors

in our case, but in two sets one for each split (S = 2). Moreover, ALAR excludes neighbors from being possible

next-hop for a particular query –rapidly– as soon as neighbors have received one split, and that causes additional

fragmentation to an already fragmented network topology in OppMNets.

Figures 6d shows the normalized average retransmission overhead, i.e., the average of the total number of wireless

transmissions for a particular protocol, divided by the maximum number of relayed queries in each scenario. We

observe that LPAF retransmission overhead is linearly increasing with the number of senders and below No Privacy

forwarding. The level of retransmission overhead is less than the overhead for the No Privacy protocol, and generally

greater than OBK. For ALAR, the figure shows that it reaches a steady overhead level when senders are greater than

25% to reach around 22% which is due to the low success ratio (≈ 7%). No Privacy has higher overhead because

it utilizes a more greedy approach to maximize delivery [42]. This is because location-privacy requirements act

as a leash that controls and selectively forward queries, hence the less re-transmissions overhead. LPAF efficiency

is because other protocols send many replicas of a query (or its splits) that never reach the destination and get

dropped, but LPAF aims to use each replica with prediction to better direct them towards the destination LBS.

Figures 7a and 7b show LPAF success ratio and delay at different privacy levels respectively. We can generally

see a decrease in the success ratio and an increase in delay as k increases, which validates earlier results from the

analytical model evaluation figures (4a, 4b). LPAF(k=3) has lower delay –better– than LPAF(k=6) for number of

senders higher than 20% while having better success ratio. This is because higher privacy causes LPAF to attempts

to search and construct longer obfuscation path from source towards destination to reach k obfuscation hops, which

leads to higher delays. This impact of the higher privacy-level requirement validates the impact seen in figure 3b,

as increased k causes lower performance. We can also notice a slight increase in the delay initially, followed by

a steady delay level. This is because as the number of senders increases, the interaction between different socially

related nodes cause the protocol to build obfuscation path faster using the exchanged prediction information leading

to better success ratio. This effect has no impact after the number of senders reaches a certain point as no additional

information can be collected.
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(b) LPAF query average delay.
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Fig. 7: Comparison of LPAF performance for different privacy-level requirements (k) and using various ratio of senders.

Figure 7c shows LPAF overhead relative to success ratio, i.e., overhead per successfully delivered query. We can

see that LPAF overhead is increasing linearly with the offered load, which supports the protocol design as consumed

resources are manageable under increasing offered load. And as k increases, the overhead increases. This is due to

the additional required re-transmissions of a query between k hops to perform the obfuscation.

Figure 7d shows the average achieved number of hops as a percentage of the required k set by the user. Each

point is the average of all the percentage achieved k for all delivered queries. The figure shows that both LPAF and

SLPD were able to achieve 100% (or 3 obfuscation hops within the social community). As k increases (k = 4),

SLPD fails to deliver any queries hence achieved k is 0 and it is not shown on the graph, while LPAF compromises

in order to continue delivering queries with k of ≈ 90% (or average k = 3.9) while maintaining high level of

privacy.

Figure 8a shows the average MMP for all the nodes selected as message-relays at each hop for delivered

messages. The figure shows that LPAF is discovering and selecting next-hop offering the best available proximity

at different privacy-level requirement (i.e., different k). MMP is displayed as 100% for hops greater than the

requested privacy-level k, as query are freely forwarded beyond this hop. We can see from the graph that MMP of

the hops is between 50–80%, and that nodes independently select the best next-hop depending on the encounters

the node will come in contact with. Nodes search asynchronously for the best neighbor that offers the highest

MMP , which can be greater or less than the previous message hops.
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Fig. 8: (a) Average Markov proximity (MMP ) at each hop for different k. (b) Weighted MMP relative to number of messages

at each hop.

Figure 8b shows a weighted measure of MMP shown in figure 8a. Weighted MMP is denoted as MMP , and

is calculated as follows:

MMP (h, k) =
MMP ×QRY (h, k)
max
i∈k

(QRY (h, i))
where h ∈ [1, 4], k ∈ (3, 4)

Where the function QRY () returns the number of queries successfully reaching hop h for privacy level k. Using

MMP has the effect of normalizing the MMP measurement across the different values of k, while maintaining

a per-hop distinctive results. The figure reflects the impact of the number of queries reaching each hop on the

MMP . It shows that messages have better MMP as are forwarded over each successive hop towards the LBS. The

two figures show that, even thou the average MMP is not varying considerably as k increases in both scenarios

(k = 3 and k = 4), the weighted MMP drops as k increases. This is because less queries successfully pass through

the whole obfuscation path, which leads to a drop in the weighted Markov proximity obtained through multiple

hop prediction, so LPAF(k = 4) has lower weighted proximity compared LPAF(k = 3).

As expected from results we have seen in the analytical model evaluation (section IV-B); We notice in figure 9a

that LPAF success ratio increases as we increase the social group size (|S|), which validates figures 2b and 3a in

the evaluation of the analytical model; and decrease with increased value of k validating results in figure 3b. |S|

is increased by selecting more nodes from the pool of 40 nodes (around 30% of the total network nodes). Using

the pool of nodes allows us to make a reference with other figures above. We can see that as the social group size

increases, the success ratio increases because LPAF is able to find more socially related nodes. This is shown as a

higher probability of forming k obfuscation path seen in the analytical model figure 2b. LPAF ability to utilize these

extra social-related nodes enhances the overall success ratio as more encounters are being utilized for obfuscation

and to achieve the obfuscation privacy-level requirement k. Figure 9b shows the associated overall average message

delay, we notice that as k increases we experience greater delay as message gets buffered longer awaiting suitable

encounters. On the other hand, we can see as social group size increases, the delay drops to minutes. This drop in

delay with higher |S| is consistent with the time delay presented on the x axises on figure 4a with different values

of |S| in the analytical model evaluation. As we can see ϕs (t) rising faster in time (less delay) |S| increases.
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Fig. 9: Comparison of LPAF performance at different ratios of social group sizes |S| and for various privacy levels (k).

B. Real-World Data Trace Simulation Using UIUC Dataset

1) Network Model

The UIUC [45] dataset is a real-world data trace collected at the University of Illinois. It contains the Media

Access Control (MAC) addresses of Bluetooth devices and Wi-Fi access points collected by the University of Illinois

Movement (UIM) framework using Google Android phones. Each phone regularly scans its surrounding, and an

encounter occur when the scanning device detects another device in its communication area. The data collected

is for 28 devices, and it spans a 3 weeks period during March 2010. Despite the lack of nodes’ exact location

information (e.g., GPS) at the time of recording events, this dataset is particularly useful for evaluating location-

privacy as it contains the MACs of Wi-Fi access-point encountered by the mobile devices. As these access-points

are stationary, a device that records one of these MACs shows that it was present at the location of this access

point. Subsequently, We have used these Wi-Fi MACs to represent the nodes’ location at the time when the phone

recorded an access-point MAC.

In order to build the social relationship between users, we preform analysis on the regularity of users existing at

the same location similar to [9], [11]. We statistically study the frequency of devices encountering each other and

encountering similar Wi-Fi access-points, which indicates that users carrying these devices exist at the same location

regularly. We then generate a user-to-user (pair-wise) total encounter frequency. As participants in this dataset are

faculty, staff, and students; more socially connected nodes meet inside as well as outside the university campus. We

run two distinct social network scenarios (low and moderate social networks |S|), to compare performance obtained

to that from the analytical model in figures 3a and 4a. In low |S|, two users are considered friends if their encounter

frequency falls within the upper quartile (the top 25%) of the distribution of all node-pairs encounters frequency.

The resulting social network has average |S| equal to 5, and a standard deviation of 4; and it is shown in figure 10a

(i.e., |S| ≈ 18%). While in the moderate |S| shown in figure 10b scenario, two users are socially connected if

their encounter frequency is greater than the average encounter frequency of all users’ pairs. The resulting social

network has average |S| equal to 10 friends and standard deviation of 5 (i.e., |S| ≈ 50%).
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(a) UIUC low social network (|S|≈ 18%). (b) UIUC moderately social network (|S|≈ 50%).
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Fig. 10: UIUC real-world data trace analysis.

We adopt the definition of contact time and inter-any-contact time from [46], where contact time refers to a pair-

wise measure of the period when two users are within the communication area of each other, and can exchange data

if they wish to; and inter-any-contact-time is a user metric that shows the average duration between any contact

with other nodes (i.e., isolation periods). Figure 10c shows the contact time distribution between users’ pairs. The

figure shows that the contact time follows the power-law distribution as observed in [46]. The figure shows that

only 5% of the users have a contact time greater than 5 seconds, and ≈ 1% of the nodes have contact time above

100 seconds. These are typical connectivity characteristics of opportunistic communication in DTN. Figure 10d

showing the inter-any-contact time which indicates periods of complete user isolation. We observe that 50% of

the users have isolation periods of about 300 seconds, and ≈ 20% of all users have isolation periods above 1000

seconds. The inter-any-contact time is useful to analysis, as it shows that users have long isolation periods at which

no data exchange can be performed which is not a privacy-related constraint but due to network topology formed

through users’ movement (or lack of).

The dataset duration is split into three equal simulation duration of one week (7 days), which represents an

adequate window for enough events occurring between nodes to allow data dissemination in the OppMNet. All
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MACs for external devices were discarded, i.e., only the 28 participants were sending/receiving/relaying message

during the simulations. We repeat the simulation three times using the different simulation periods for all protocols,

and results were averaged. A socially well-connected node is chosen to be the untrusted LBS (n1 in figure 10a), and

the remaining 27 nodes act as query sources (senders). LBS queries were sent at random intervals with a constant

rate of one query every 6 hours.

2) Simulation Results in UIUC

This section shows the success ratio and delay comparing protocols that offer location-privacy in the OppMNet.

We examine the performance of LPAF under two social scenarios (i.e., low and moderate social network). This is

in order to validate the impact of the social group size, with results obtained from the analytical model evaluation

in section IV-B.

Figure 11a shows a set of experiments comparing location-privacy protocols performance using UIUC real-

world data trace. The social network between nodes is the one presented in figure 10b with moderate social group

size (|S| ≈ 50%). We can see that LPAF has better performance; with a higher –better– (≈ 70%) median success

ratio, and higher –better– min/max success ratios; compared to SLPD and ALAR. We can also see that the range

between the minimum and maximum success ratios is big, represented by the lower/upper whiskers respectively;

due to the difference in the network topology across the three weeks, and the change in participants movements

and quality of collected contacts during the trace collection. Figure 11b presents the delay which is calculated as

a percentage of the maximum achievable by the three protocols. Even thou LPAF median delay is close to ALAR,

it shows lower –better– min/max delay (≈ 50 and 88%) respectively. And lower –better– quartiles (the boxplot for

LPAF is lower than that of ALAR). This is because LPAF is employing MMP to guide the query to reach the LBS

during obfuscation.
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Fig. 11: Moderate Social: Using real-world data trace to compare LPAF performance against other location-privacy preserving

protocols in OppMNet in figure 10b.
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Figure 12 shows the same evaluation as in figure 11, but in a low social network scenario. The social network

between nodes is the one presented in figure 10a with low social group size (|S| ≈ 18%). Figure 12a shows

that LPAF manages to be slightly higher –better– mean success ratio than the other two protocols, and that LPAF

performance drops (lower boxplot) to become very close to SLPD and ALAR. This is due to the restriction imposed

by the limited number of friends to obfuscate queries, and the drop in probability of forming k obfuscation path

seen in the analytical model figure 2b. LPAF drop in success ratio validates the analytical model performance seen

in figure 3a, where we see lower percentage of nodes receiving packets as |S| decreases.
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Fig. 12: Low Social: Using real-world data trace to compare LPAF performance against other location-privacy preserving

protocols in OppMNet in figure 10a.

Figure 12b shows the delays incurred by the different protocols. Firstly, we can see that LPAF and SLPD have

both suffered additional delays higher than ALAR. This is due to the two protocols reliance on the social network

size (|S|), and hence more time is spent searching for friends in a low social network. Secondly, by comparing this

figure to figure 11b, we can see that LPAF delay has increased as |S| decreased. This relation validates the earlier

finding in the analytical model figure 3a which shows a slower rise –higher delay– as |S| decreases.

C. Security Discussion

Our proposed protocol provides k-anonymity through obfuscation, where the Location Service Provider control-

ling the LBS is unable to distinguish the originating location or identify the source of a query out of –at least–

k users (anonymity set) who have participated in obfuscating that query. We assume a trusted-community security

model, and consider only an external attacker capable of eavesdropping on limited traffic in the network (as it

will be discussed next). By trusted-community, we refer to the mutual trust between users who belong to the same

social group (as defined in section I), which includes only known friends that the user entrust to perform location
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obfuscation for different LBS queries. We further assume that members of the social group do not launch attacks,

nor collude with an attacker to determine the source’s location.

Traffic analysis attacks similar to [47] can be harmful to k-anonymity protocols including our proposed protocol

LPAF. Using traffic analysis, the attacker collects information about who is communicating with whom and when.

We only consider an attacker with limited presence, i.e., able to eavesdrop over all the traffic along the obfuscation

path, but only a subset of forwarded queries over the obfuscation path. In which case, the attacker can only monitor

forwarding activities less than k over the obfuscation path, and will have incomplete knowledge about the remaining

obfuscation hops on that path. For a successful attack, the attacker needs to be able to isolate the path followed

by a certain query from the rest of the traffic in the network and identify the source node over that path which

is not possible if the attacker do not monitor that path. Our protocol makes such an attack non-trivial because:

1) socially-related users normally are co-located and meet at regular times where they exchange other types of

messages which makes it difficult to perform traffic analysis to isolate obfuscated queries, 2) the attacker needs to

eavesdrop over all network traffic as the obfuscation path the query takes is unknown. With repeated traffic analysis

over time, an attacker can learn about social relation between various nodes which provide includes a group of size

≤ k, hence does not compromise the k-anonymity.

In the case where the attacker is omni-present (i.e., the attacker can monitor all traffic in the network), a privacy

attacks can be easily launched to identify a certain query source. Firstly, the attacker can then link these events

to the obfuscated LBS query and trace-back the LBS query to deduce the complete obfuscation path back to the

original source with high accuracy. Secondly, this situation in OppMNet is equivalent to the attacker being able to

physically monitor the wireless medium over the whole network or physically track the victim node, and hence he

does not need to intercept the LBS query to know the victim location, as the existence of the wireless signal from

the victim node is sufficient to reveal its existence at this area. In this case, obfuscation is not useful to provide

higher privacy.

The proposed privacy protocol relies on the user social-network, and subsequently the movement pattern of users

in this group can greatly affect the user privacy. For example, considering a simplified scenario of a social group

of two friends (A and B). If both friends visit the same set of locations over the day at the same times, then

neither of them can offer obfuscation service to the other (i.e., the two users become identical in terms of their

movement profile; and if A exists at one location, then it trivial to infer that B exists there too). Considering real-life

human-movements, similarity between the users’ visited locations is being observed [11], but it is shared among

the whole social group, which subsequently provide a larger anonymity set and plausible deniability [48].
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VI. RELATED WORK

There has been little attention given to location privacy threats in Opportunistic Mobile Networks, with insufficient

user centric analysis and solutions. Most existing research rely on an online TTP, such as mobile phone operators [49]

or online centralized server [50], which is generally not applicable to OppMNet.

One way to provide higher location privacy is to limit access to location information through access control

mechanisms [22], [50]. Wernke et al. [50] present PShare, a secure location sharing protocol. PShare distributes

location data across multiple location servers to increase robustness against attack and ensure imprecise user position

in case a server is compromised. Puttaswamy and Zhao [22] present a solution where LS servers are treated as

un-trusted data-stores and LBSs are offered by friends in the network. All location information sent to the LS is

encrypted and only authorized users or applications are granted access. Both schemes assume an online LS, and

access control is applied using public-private keys or multi-secret sharing.

Another approach for providing higher location privacy is to obfuscate the location information by generating

false location update-events that causes diluted users movement traces at LBSs side. Meyerowitz and Choudhury [7]

propose CacheCloak, an anonymization system for communication in Vehicular ad-hoc networks (VANETs). Rongx-

ing et al. propose SPRING [51], where road-side units (RSUs) are positioned at highly-social intersects are used

to store temporarily the forwarded packets, and hence prevent an adversary from tracking its source. The two

approaches rely on a pre-trusted and controlled nodes (e.g., anonymizing server, or RSUs) to offer obfuscation.

TABLE V: Comparison of Location-Privacy offered by various protocols.

Privacy / Anonymity GSM Mobile-IP SPRING

[51]

Mano et al.

[52]

SUNC

[53]

SpotME

[54]

ALAR

[40]

LPAF

Privacy-aware No No Yes Yes No Yes Yes Yes

Delay tolerant No No Yes No No Yes Yes Yes

No pre-trust server No No No No Yes Yes Yes Yes

k-Anonymity No No No Yes No No No Yes

Decentralized No No Yes No Yes Yes No Yes

Sparse topology No Yes No No No Yes No Yes

Encryption No Yes Yes No Yes No Yes Partially

Energy efficient No No No No No No No Partially

Location-aware Yes Yes No Yes No Yes No Yes

Profile-aware No No No Yes No No No Yes

Adaptive No No No No No No No Yes

Context aware No No No Yes No No No Yes

Location prediction Yes Yes No No No No No Yes

Our proposed protocol is based on k-anonymity [55] which is a widely used approach for anonymity in many

fields such as communication networks and databases. In traditional networks, k-anonymity is used in privacy

solutions such as Tor [56] for Internet, P2P VoIP [57], where the anonymized user is indistinguishable from at least

k−1 other users called the anonymity set. One popular way of offering location k-anonymity is through cloaking.

Cloaking is the technique by which the geo-spatial dimension is divided into areas called cloaks, and the user
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is k-anonymized if the formed cloaking region is occupied by at least k−1 other users, so the user’s location is

hidden among k anonymity set. Spatial and temporal cloaking introduced by Gruteser and Grunwald [58] are using

a centralized location broker service to form the cloaking region. Cloaking techniques are not suitable to OppMNet

because of the small communication area and nodes mobility.

On the other hand, Mixing offers location privacy by ensuring that user’s identity is kept private, and it is

based on untraceable email communication proposed by Chaum [59]. A number of Mixing techniques have been

proposed [14]. During the mixing process, a trusted entity performs shuffling of users’ identities inside a specially

constructed mix-zone, so that old and new user identities are not linkable. This process requires that nodes physically

move into and stay inside the mix-zone throughout the mixing process in order to prevent eavesdropping by an

attacker. Mixing is not suitable for OppMNet as it requires that a specified number of nodes co-exist inside the mix

zone for the whole duration this operation.

Mano and Ishikawa [52] propose an anonymization for users of location-based services in mobile environments

using a trusted third-party entity, which hides the location and profile attributes of the query from un-trusted service.

Yanfei, et al. propose SUNC [53], a privacy-preserving scheme to maintain source unobservability in multi-hop

wireless networks. SUNC utilizes network coding and specifically designed dummy messages to ensure packet

unlinkability and source anonymity. SUNC assumes a multi-hop wireless network, and does not consider the long

delays, mobility and disruption impact typically expected in DTNs.

Zakhary and Radenkovic propose “Social-based Location Privacy in DTNs” (SLPD) [39]. SLPD is a location-

privacy protocol that obfuscate queries using the social relationship between nodes and aims to achieve a predefined

privacy level. SLPD is not adaptive to the topology or individual nodes’ connectivity patterns. The authors compare

their work to “Oracle-Based k-Anonymity Protocol” (OBK), a benchmark k-anonymity location-privacy protocol,

which requires an Oracle with complete future knowledge of the network. OBK is used to evaluate the effectiveness

of the offered k-anonymity privacy by relying on centralized and trusted matchmaker server, and is not practically

applicable to OppMNets scenario.

Lu, X., et al. propose “Anti-localization anonymous routing for DTNs” (ALAR) [40] to allow a source to send

messages without revealing its physical location while communicating opportunistically over DTNs. ALAR focuses

on ensuring nodes’ location-privacy while transmitting sensitive messages by preventing an adversary from obtaining

the complete message. The source splits each message into multiple S segments (each is called split), and each

split is transmitted through an alternative disjoint path (k). ALAR uses Epidemic routing to send as many copies,

but only when the node (source or intermediary) has k neighbors in its communication area that have not been

observed for any of the previously sent splits for the same message.
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Quercia et al. propose SpotME [54], a technique for preserving users’ location-privacy through reporting of

fake locations. The approach uses randomized response algorithm, and is addressing specific targeted applications.

Table V shows a summary of comparison between various proposed protocols in different environments, according

to a list of identified key criterion for providing location privacy in OppMNets. Song et al. [60] study, comparing

four different general techniques for location prediction, shows that using more sophisticated predictors is not

necessary and does not increase accuracy significantly compared to Markov predictors. Authors show that using

Markov predictors beyond the second order (i.e., making predictions based on history of size n >= 3 previous

locations) decrease the prediction accuracy.

Geo-routing [61], [62] is a research area where location information is being used to assist in routing data in

various ad-hoc networks. The work presented in this paper differs from geo-routing in many aspects. Firstly, geo-

routing searches for the shortest path to a given location, but LPAF does not necessarily search-for the shortest

path. LPAF aims to find a path that preserves the user’s location privacy through subsequent obfuscations. Secondly,

nodes participating in geo-routing need to exchange information about their movement patterns in order to enable

centralized or distributed predictions of nodes’ locations at different times. On the other hand, LPAF prevents nodes

from sharing detailed location information, as this negatively impacts the user’s location-privacy, and only allows

aggregated Markov predictions inside the social group to be shared. Finally, the proposed protocol allows queries

to be forwarded over a path that goes in a roundabout way to avoid revealing sources’ location information to

the LBS, hence the nodes on the obfuscation path do not deliver the query to the LBS even if communication

opportunity arose as this leaks the source location-information.

VII. CONCLUSION AND FUTURE WORK

We proposed new privacy-preserving protocol LPAF that offers adaptive, fully-distributed, socially-driven location-

privacy forwarding. LPAF employs a distributed light-weight Markov-based location-prediction model to guide the

obfuscation phase of message propagation to the location based services. LPAF utilizes social links between nodes

to form an obfuscation path between the source and the LBS to offer best-effort k-anonymity location privacy. We

evaluate the proposed protocol using analytical model simulation; and extensive experiments in both city-center

map-based heterogeneous mobility scenario, and using real-world data trace. Results show that by adapting the

privacy within tolerance to nodes’ own connectivity and incorporating location prediction, LPAF performs better

than existing location-privacy protocols in terms of success ratio with small overhead. LPAF is able to maintain

around 10% success ratio at high user privacy-level requirement when other protocol fails by adaptively lowering

the achievable location privacy to the network conditions.
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As future work, we plan to extend the protocol to handle situation where the exact location of the nodes is not

known, and examine additional movement models and rural scenarios.
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[50] M. Wernke, F. Dürr, and K. Rothermel, “Pshare: Position sharing for location privacy based on multi-secret sharing,” in PerCom. IEEE,

2012.

[51] L. Rongxing, L. Xiaodong, and S. Xuemin, “Spring: A social-based privacy-preserving packet forwarding protocol for vehicular delay

tolerant networks,” in INFOCOM. IEEE, 2010.

[52] M. Mano and Y. Ishikawa, “Anonymizing user location and profile information for privacy-aware mobile services,” in LBSN. ACM,

2010.

[53] F. Yanfei, C. Jiming, L. Xiaodong, and S. Xuemin, “Preventing traffic explosion and achieving source unobservability in multi-hop

wireless networks using network coding,” in GLOBECOM, 2010.

[54] D. Quercia, I. Leontiadis, L. McNamara, C. Mascolo, and J. Crowcroft, “Spotme if you can: Randomized responses for location

obfuscation on mobile phones,” in ICDCS. IEEE, 2011.

[55] L. Sweeney, “k-anonymity: a model for protecting privacy,” Int. J. Uncertain. Fuzziness Knowl.-Based Syst., vol. 10, no. 5, pp. 557–570,

2002.

[56] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-generation onion router,” DTIC Document, Tech. Rep., 2004.

[57] M. Srivatsa, A. Iyengar, and L. Liu, “Privacy in voip networks: A k-anonymity approach,” in INFOCOM. IEEE, 2009.

[58] M. Gruteser and D. Grunwald, “Anonymous usage of location-based services through spatial and temporal cloaking,” in MobiSys.

ACM, 2003.

[59] D. L. Chaum, “Untraceable electronic mail, return addresses, and digital pseudonyms,” Communications of the ACM, vol. 24, no. 2,

pp. 84–90, 1981.

[60] L. Song, D. Kotz, R. Jain, and X. He, “Evaluating next-cell predictors with extensive wi-fi mobility data,” Mobile Computing, IEEE

Transactions on, vol. 5, no. 12, pp. 1633–1649, 2006.

[61] K. Akkaya and M. Younis, “A survey on routing protocols for wireless sensor networks,” Ad hoc networks, vol. 3, no. 3, pp. 325–349,

2005.

[62] Z. C. Taysi and A. G. Yavuz, “Routing protocols for geonet: A survey,” Intelligent Transportation Systems, IEEE Transactions on,

vol. 13, no. 2, pp. 939–954, 2012.


	Introduction
	Location-Privacy Problem analysis in OppMNet
	Problem Definition
	Why encryption is not the solution to location privacy

	Achieving k-Anonymity with Location Privacy-aware Forwarding in OppMNets
	LPAF Algorithm
	Distributed and Collaborative Measurements
	Social Awareness
	Location Awareness — Markov Proximity
	Distributed multi-hop location-obfuscation prediction


	LPAF Analytical Analysis
	Analytical Model
	Analytical Model Evaluation

	Performance Evaluation
	Pseudo Simulation in Urban Scenario
	Network Model
	Simulation Results in City-Center

	Real-World Data Trace Simulation—UIUC
	Network Model
	Simulation Results in UIUC

	Security Discussion

	Related Work
	Conclusion and future work
	References

