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Abstract—This paper investigates the use of grey theory to en-
hance the concept of an R-fuzzy set, with regards to the precision
of the encapsulating set of returned significance values. The use of
lower and upper approximations from rough set theory, allow for
an R-fuzzy approach to encapsulate uncertain fuzzy membership
values; both collectively generic and individually specific. The
authors have previously created a significance measure, which
when combined with an R-fuzzy set provides one with a refined
approach for expressing complex uncertainty. This pairing of an
R-fuzzy set and the significance measure, replicates in part, the
high detail of uncertainty representation from a type-2 fuzzy
approach, with the relative ease and objectiveness of a type-1
fuzzy approach. As a result, this new research method allows
for a practical means for domains where ideally a generalised
type-2 fuzzy set is more favourable, but ultimately unfeasible
due to the subjectiveness of type-2 fuzzy membership values.
This paper focuses on providing a more effective means for the
creation of the set which encapsulates the returned degrees of
significance. Using grey techniques, rather than the arbitrary
configuration of the original work, the result is a high precision set
for encapsulation, with the minimal configuration of parameter
values. A worked example is used to demonstrate the effectiveness
of using grey theory in conjunction with R-fuzzy sets and the
significance measure.

I. INTRODUCTION

The research conducted by Yang and Hinde in [1], was
the first work that proposed the concept of an R-fuzzy set.
It should be understood that the membership value of an R-
fuzzy set, is itself a set, more specifically, it is a rough set.
If using the voting method for example, the lower bound will
contain all memberships values that have been agreed with by
all in the consensus. Whereas, the upper bound will contain
any membership value that has an affinity, but not necessarily
absolute inclusion to the descriptor that the R-fuzzy set is
being modelled for. There are several existing paradigms and
concepts related to uncertainty, all of which have their own
inherent difficulties in extracting clear and crisp information.
The foundational understanding of sets from a classical sense is
with regards to absolute inclusion, or absolute exclusion from
the set. However, absoluteness can not always be guaranteed,
more realistically, the inclusion of vagueness is often prevalent,
this is heightened when considering perception based domains.
For precise reasoning a crisp understanding is needed, but this
becomes problematic when considering natural language. As

is evident in our daily communications, we are often obliged
to use words which are themselves associated with inherent
vagueness and ambiguity. Therefore, to mimic and understand
human based reasoning, an entirely crisp, classical use of logic
can not solely be relied upon. The concept of fuzzy provides
the foundation that R-fuzzy is built upon.

One current enhancement to R-fuzzy sets is that of the
significance measure, which was originally proposed by Khu-
man et al. in [2]. This provided the functionality needed for
inspecting the importance of any membership value contained,
within the membership set of an R-fuzzy set. By inferring from
the coefficient value returned by the degree of significance
for any given encapsulated membership value, one is able
to understand its significance, relative to all other collected
fuzzy membership values for any given R-fuzzy set. The
extended work by Khuman et al. in [3], demonstrated that
the significance and R-fuzzy paring allows for a connecting
bridge such that, the higher order of detail one can expect from
a generalised type-2 fuzzy approach, could be replicated to a
high degree of success. Such is the effectiveness of this new
research, one is able to use it for domains where a generalised
type-2 fuzzy approach would be more ideal, but owing to its
subjectiveness and computational complexities, not used.

Due to the versatility of grey theory, there are many areas
of application and emerging domains such as natural language
processing [4]. Grey theory places a particular interest on
problem areas associated with poor information, small samples
and high abstraction, a common trait of uncertain systems [5].
Grey provides a means to garner an informed and accurate con-
clusion based on what little, uncertain information is available.
This is generally achieved through the processes of generating,
excavating and extracting meaningful content.

The novelty of this paper is with regards to the addition of
grey system theory, specifically, the use of the typical grey
whitenisation weight function. This is used for the config-
uration of the membership function which encapsulates the
returned degrees of significance for any given R-fuzzy set. By
using the whitenisation weight function to plot the returned
degree of significance, one is able to provide a more robust,
versatile heuristic, as compared to the arbitrary selection of
points given in the original paper [2]. Not only are the
significance degrees correctly intersected, the minimal number



of parameter values are always used, instead of the various
points that the original worked adopted.

Section II will describe the preliminaries for approxi-
mations, R-fuzzy sets and the significance measure. Also
introduced is the grey whitenisation weight function. Section
III presents the observations, using a worked example to
demonstrate the benefit of a grey heuristic based approach, as
compared to original arbitrary selection. Section IV provides
the conclusion and summary of the paper.

II. PRELIMINARIES

We begin with approximations, the bounding that encom-
passes an R-fuzzy set.

A. Approximation Preliminaries

Definition 1 (Approximations [6]): Assume that Λ =
(U, A) is an information system and that B ⊆ A and X ⊆ U.
Set X can be approximated based on the information contained
in B, via the use of a lower and upper approximation set.

The lower approximation should be understood to contain
all observed objects that wholeheartedly belong to the set
X with regards to the information contained in B. It is the
union of all equivalence classes in [x]B which are absolutely
contained within set X , and is given by:

BX = {x | [x]B ⊆ X} (1)

B(x) =
⋃
x∈U
{B(x) : B(x) ⊆ X}

The upper approximation should be understood to contain
all observed objects that have a possible overlap to the set X
with regards to the information contained in B. It is the union
of all equivalence classes that have a non-empty intersection
with set X , and is given by:

BX = {x | [x]B ∩X 6= ∅} (2)

B(x) =
⋃
x∈U
{B(x) : B(x) ∩X 6= ∅}

B. R-Fuzzy Set Preliminaries

We now present the concept of R-fuzzy sets, which makes
use of the approximations as given in Definition 1.

Definition 2 (R-fuzzy sets [1]): Let the pair apr =
(Jx, B) be an approximation space on a set of values Jx =
{v1, v2, . . . , vn} ⊆ [0, 1], and let Jx/B denote the set of all
equivalence classes of B. Let

(
MA(x),MA(x)

)
be a rough

set in apr. The membership set of an R-fuzzy set A is a rough
set
(
MA(x),MA(x)

)
, where x ∈ U, given by:

A = {
〈
x,
(
MA(x),MA(x)

)〉
|

∀x ∈ U,MA(x) ⊆MA(x) ⊆ Jx} (3)

A =
∑
x∈U

(
MA(x),MA(x)

)
/x

Where
∑

denotes the union of all admissible x elements
over the universe of discourse. For each xi ∈ U, there will be
an associated membership description d (xi) which describes
the relationship of the element xi with regards to the set A ⊆
U. Assume C is a set of available evaluation criteria. For each
pair ((xi), cj) where xi ∈ U and cj ∈ C, a subset Mcj(xi) ⊆
Jx is created, given by:

Mcj(xi) = {v | v ∈ Jx, v
(d(xi),cj)−−−−−−→ YES} (4)

The lower approximation for the rough set M(xi) is given
by:

M(xi) =
⋂
j

Mcj(xi) (5)

The upper approximation for the rough set M(xi) is given
by:

M(xi) =
⋃
j

Mcj(xi) (6)

Therefore the rough set approximating the membership
d(xi) for xi is given as:

M(xi) =

⋂
j

Mcj(xi),
⋃
j

Mcj(xi)

 (7)

C. Significance Measure

This section will present the significance measure origi-
nally proposed by Khuman et al. in [2].

Definition 3 (Degree of significance): Assume that an R-
fuzzy set has already been established using the same notation
given in Definition 2. In doing so, one will already know
of the available membership values contained in Jx, and
the preferences given by all in the criteria set C. The total
number of all generated subsets for a given R-fuzzy set is
denoted by |N |. The number of subsets that contain the specific
membership value one is inspecting is given by Sv . Each value
v ∈ Jx is evaluated by cj ∈ C, the frequency of which is
the number of times v occurred over |N |, this results in the
significance measure given by:

γĀ{v} =
Sv
|N |

(8)

If the returned degree of significance for any given mem-
bership value is γĀ{v} = 1, then it can be understood for the
value being inspected, that it has been agreed upon by all in
the criteria set C. Therefore it will categorically belong to the
lower approximation:

MA = {γĀ{v} = 1 | v ∈ Jx ⊆ [0, 1]} (9)

Eq. (3) presented the notation of an R-fuzzy set, it also
indicated that the lower approximation is a subset of the upper
approximation MA(x) ⊆MA(x). Therefore, for any member-
ship value to be given a γĀ{v} = 1, one will know that it will
undoubtedly also be included in the upper approximation. This
is also the case for any returned degree of significance which
is greater than 0:

MA = {γĀ{v} > 0 | v ∈ Jx ⊆ [0, 1]} (10)



D. Grey Theory

The use of whitenisation weight functions from grey theory
provides for a heuristic based approach that the original
R-fuzzy and significance framework lacked. Much like the
original work, the whitenisation functions themselves are based
on the returned degrees of significance for each R-fuzzy set
that has been modelled. However, unlike the original arbitrary
values decided for the function points, the grey approach
provides a more efficient and streamlined perspective. By using
an iterative process of optimisation and a combination of
traditional triangular and trapezoidal membership functions,
the encapsulated degrees of significance are precisely modelled
using less parameter overhead.

There are several types of whitenisation functions, but this
paper only considers the typical whitenisation function with
fixed starting points. These starting points will be indicative
of the starting and end points of the encapsulated candidate
membership values contained within its R-fuzzy set. Rather
than intersecting each apex height for each triggered member-
ship value for a given set, the grey whitenisation function uses
the minimum parameters required to contain all membership
values with their correct corresponding intersections. The
incorporation of a threshold value e to regulate the error rate of
each whitenisation configuration is used to secure preciseness.

Definition 4 (Typical weight function of whitenisation [7]):
Assume a continuous function with fixed end points, which are
increasing on the left L(x) and decreasing on the right R(x),
this is described as a typical weight function of whitenisation.

f(x) =


L(x) =

x− x1

x2 − x1
, if x ∈ [x1, x2)

1, if x ∈ [x2, x3]

R(x) =
x4 − x
x4 − x3

, if x ∈ (x3, x4]

(11)

Definition 4 describes the typical trapezoidal whitenisation
function with fixed weights. For this to be transformed into a
triangular whitenisation weight function, one simply replaces
the interval at the apex [x2, x3], with a single value.

III. OBSERVATIONS

For sake of continuity we consider the same example
presented in [1] and [3]. We will employ the use of the
whitenisation weight functions to demonstrate its effectiveness
in retaining the secondary grade of detail garnered from the
R-fuzzy and significance approach.

Example 1: F = {f1, f2, . . . , f10} is a set which is
populated by 10 flights, where for each flight its noise level in
decibels (dB) has been recorded. These 10 flights have all been
recorded from a single specific airport, the values of which are
given by N = {10, 20, 30, 50, 40, 70, 20, 80, 30, 60}. It can be
easily inferred that for each Ni there is a corresponding Fi
value. For example, f1 has an associated noise value of 10(dB),
f2 has an associated noise value of 20(dB), and so on and so
forth. For an R-fuzzy set to be generated one has to be made
aware of the criteria set C, which in this case is populated by 6
individuals C = {p1, p2, . . . , p6}, all of whom gave their own

perceptions based on the noise values for each of the flights
contained in set F . Table 1 shows these collected perceptions.

TABLE I. CORRESPONDING PERCEPTION VALUES AGAINST NOISE
LEVELS

# f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

dB 10 20 30 50 40 70 20 80 30 60

p1 NN NN NN AC AC AN NN VN NN AN

p2 NN NN AC AC AC AN NN VN AC AN

p3 NN AC AC AN AC VN AC VN AC AN

p4 NN NN NN AC AC AN NN VN NN AN

p5 NN AC AC AC AC AN AC VN AC AN

p6 NN NN AC AC AC VN NN VN AC AN

The contained terms can be understood as meaning:

NN → Not Noisy AC → Acceptable
AN → A Bit Noisy VN → Very Noisy

The fuzzy membership set Jx is created using a simple
linear function:

µ(fi) =
li − lmin

lmax − lmin
(12)

The resulting fuzzy membership set is given as follows:

Jx = {0.00, 0.14, 0.29, 0.57, 0.43, 0.86, 0.14, 1.00, 0.29, 0.71}

It is not expected that to know the precise decibel level of
a flight, nor do individuals need to know when they converse
between one another. As it was shown in [1], an R-fuzzy
framework allows one to answer the question of, how can
one express an objective type-1 fuzzy membership function
if the precise decibel readings at not known? Assume that
there was an additional flight f11 but with no known exact
decibel reading. However, f11 has been given the description
of being AC, what fuzzy membership value would one apply to
this abstract concept? As it can be seen from Table 1, a single
observation can have a variety of interpretations, no one single
value could encapsulate the multitude of perceptions. Hence
why a fuzzy set in this regard is no good, as a fuzzy approach
would look to associate it to a single crisp value.

If we know that f11 is AC, we can set the descriptor to
d(f11) = AC, whereby any instance of AC occurring, its
associated membership values are recorded. Using equation
Eq. (4), the generated subsets for Mpj(f11) are given as
follows:

Mp1(f11) = {0.57, 0.43}
Mp2(f11) = {0.29, 0.57, 0.43}
Mp3(f11) = {0.14, 0.29, 0.43}
Mp4(f11) = {0.57, 0.43}
Mp5(f11) = {0.14, 0.29, 0.57, 0.43}
Mp6(f11) = {0.29, 0.57, 0.43}

Once collected, Eq. (5) and Eq. (6) are used to create the
lower and upper approximations. The final generated R-fuzzy
set is given by Eq. (7), therefore we are presented with:

M(f11) = ({0.43}, {0.14, 0.29, 0.43, 0.57})
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1

0.83

0.67

γ
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0
0.00 0.14 0.29 0.43 0.57 0.71 0.86 1.00

AC

Fig. 1. A discrete representation for AC, given by the significance degree
coefficient values

By using Eq. (8), one is able to calculate the degree of
significance for each and every encapsulated fuzzy member-
ship value, from Jx that has been triggered. The greater the
returned coefficient values, the stronger criteria set C agreed
to its sentiment.

one is able to obtain the following significance coefficient
values for each of the membership values contained in Jx.
The greater the value the greater its significance in relation
to its descriptor, and the more individuals that agreed with its
sentiment:

γ AC{0.00} =
0

6
= 0.00 γ AC{0.14} =

2

6
=

1

3
= 0.33

γ AC{0.29} =
4

6
=

2

3
= 0.67 γ AC{0.43} =

6

6
= 1.00

γ AC{0.57} =
5

6
= 0.83 γ AC{0.71} =

0

6
= 0.00

γ AC{0.86} =
0

6
= 0.00 γ AC{1.00} =

0

6
= 0.00

The discrete visualisation for AC using the returned degrees
of significance is presented in Fig. 1.

It is at this point the novelty of this paper becomes
apparent, the original work by Khuman et al. in [2], [3]
made use of arbitrary values to provide the convex hull of
the encapsulated significance values. We will now make use
of the whitenisation weight function given in Definition 4 to
provide for a continuous representation. We will begin by
structuring a triangular based whitenisation function. Using
the values given in the membership set Jx, we have our initial
left anchor point at 0.00. It would not be viable to have the
set start at 0.43, as this would indicate its returned degree of
significance is 0. As we already know the fuzzy membership
value of 0.43 returned a significance degree of 1, we can
have that act as the apex index. Once the membership value
reaches 0.71, the significance degree returns a value of 0, so
therefore this becomes the right most anchor point. For this
initial state, the parameter values are given as [0, 0.43, 0.71].
Using a triangular membership characteristic function, similar
to the one presented in Definition 4, we can cross check the
degree of membership to the new membership set is the same

Jx

1

0.83

0.67

γ

0.33

0
0.00 0.14 0.29 0.43 0.57 0.71 0.86 1.00

AC

Fig. 2. A continuous representation for AC, given by the significance
degree coefficient values with a trapezoidal whitenisation weight function of
[0, 0.43, 0.54, 0.71]

as the returned degree of significance, the results are presented
in Table 2.

The first column contains the membership values which
belong to the membership set Jx. The second column presents
the degrees of significance γ for each of the corresponding
membership values from the membership set Jx, for the
generated R-fuzzy set. The third column presents the returned
degree of inclusion based on the initial state of the parameter
values chosen for the whitenisation weight function. The
membership values in Jx are in turn passed through to the
weight function from which the results are recorded. The
fourth column calculates the error given by e. This is simply
the absolute difference between the degree of significance
we know to be true γ, against the values returned by the
whitenisation weight function. The main goal of the weight
function is encapsulate the returned degrees of significance
such that they stay true to the original values and that the error
e is a small as possible. The error rate for this example has been
set to e = 0.01, so if any value after the absolute difference
has been calculated has exceeded this threshold, the weight
function parameters will need to be readjusted and recalculated
accordingly.

According to fourth column in Table 2, the error value
for the membership value 0.57, returned an error of 0.3300,
highlighted in red, this far exceeds the error threshold of 0.01.
The fifth column indicates a change in the parameter values
for the weight function, as such the new error values are
presented in the sixth column. These new parameter values
have reduced the error for the membership value to 0.1633,
still unacceptable according to our threshold of 0.01. But
more alarming, the membership value of 0.71 has now also
registered as a viable candidate, even though the returned
degree of significance was an absolute 0. Based on the prox-
imity of the membership values to one another, a triangular
based whitenisation function will not be able to effectively
encapsulate the membership values according to their associ-
ated returned degrees of significance. Therefore, the seventh
column indicates that a trapezoidal membership function be
used with the parameters set at [0, 0.43, 0.54, 0.71]. With these
new values the returned errors are below the error threshold



TABLE II. WHITENISATION OF AC

Jx γ Weight Function Error Weight Function Error Weight Function Error

[0, 0.43, 0.71] e [0, 0.43, 0.85] e [0, 0.43, 0.54, 0.71] e

0.00 0 0 0.0000 0 0.0000 0 0

0.14 0.33 0.3256 0.0044 0.3256 0.0044 0.3256 0.0044

0.29 0.67 0.6744 0.0044 0.6744 0.0044 0.6744 0.0044

0.43 1 1 0.0000 1 0 1 0

0.57 0.83 0.5 0.3300 0.6667 0.1633 0.8235 0.0065

0.71 0 0 0.0000 0.3333 0.3333 0 0

0.86 0 0 0.0000 0 0.0000 0 0

1.00 0 0 0.0000 0 0.0000 0 0

TABLE III. WHITENISATION OF AN

Jx γ Weight Function Error Weight Function Error Weight Function Error

[0.43, 0.71, 1.00] e [0.54, 0.71, 1.00] e [0.54, 0.71, 0.80, 0.98] e

0.00 0 0 0.0000 0 0.0000 0 0.0000

0.14 0 0 0.0000 0 0.0000 0 0.0000

0.29 0 0 0.0000 0 0.0000 0 0.0000

0.43 0 0 0.0000 0 0.0000 0 0.0000

0.57 0.17 0.5 0.3300 0.1765 0.0065 0.1765 0.0065

0.71 1 1 0.0000 1 0.0000 1 0.0000

0.86 0.67 0.4828 0.1872 0.4828 0.1872 0.6667 0.0033

1.00 0 0 0.0000 0 0.0000 0 0.0000

TABLE IV. WHITENISATION OF VN

Jx γ Weight Function Error Weight Function Error Weight Function Error

[0.71, 1.00, 1.00] e [0.78, 1.00, 1.00] e [0.81, 0.96, 1.00, 1.00] e

0.00 0 0 0.0000 0 0.0000 0 0.0000

0.14 0 0 0.0000 0 0.0000 0 0.0000

0.29 0 0 0.0000 0 0.0000 0 0.0000

0.43 0 0 0.0000 0 0.0000 0 0.0000

0.57 0 0 0.0000 0 0.0065 0 0.0000

0.71 0 0 0.0000 0 0.0000 0 0.0000

0.86 0.33 0.5172 0.1872 0.3636 0.0336 0.3333 0.0033

1.00 1.00 1 0.0000 1 0.0000 1 0.0000

of e = 0.01, making this configuration the final configuration.
The continuous representation of AC is presented in Fig. 2.

Table 3, Table 4 and Table 5, present the findings for
the R-fuzzy sets; AN , VN and NN , respectively. The high-
lighted values in red indicate where an error has exceeded
the threshold. The parameter values for the functions are
changed accordingly until all errors for all membership values
are as minimal as possible. Simply put, if a parameter value
is not allowing for the correct expected response, increase
it. If the use of a triangular whitenisation function does not
unequivocally encapsulate the returned degree of significance
with the correct intersections, then make use of a trapezoidal
membership function instead, and repeat the process.

IV. CONCLUSION

As was the case with the original work, using grey
whitenisation weight functions has allowed for a continuous
representation, where the degrees of significance are also
the degrees of membership, akin to a fuzzy perspective.
The use of grey whitenisation weight functions allow for a
more simplistic membership set using the minimal number
of parameter points. A continuous visualisation of Example

TABLE V. WHITENISATION OF NN

Jx γ Weight Function Error

[0, 0, 0.43] e

0.00 1.0 1 0

0.14 0.67 0.6744 0.0044

0.29 0.33 0.3256 0.0044

0.43 0 0 0

0.57 0 0 0

0.71 0 0 0

0.86 0 0 0

1.00 0 0 0

1 using the grey whitenisation method can be seen in Fig. 3.
For your convenience, the original continuous plot for Example
1 using arbitrary values is presented in Fig. 4. By visually
inspecting these two very different plots, one can see that
the membership functions given by the grey whitenisation
functions, are smoother and use far less parameters in their
construction as compared to the arbitrary values given for Fig.
4.

In the original work by khuman et al. in [2], [3], it was
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Fig. 3. A continuous visualisation for Example 1, based on all the generated significance measures for the R-fuzzy sets of NN, AC, AN and VN
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NN AC AN VN

Fig. 4. The original continuous visualisation based on arbitrary values for Example 1 by Khuman et al. [3], based on all the generated significance measures
for the R-fuzzy sets of NN, AC, AN and VN

shown that the combination of the R-fuzzy framework and
the analysis of the significance measure allows for a harmonic
pairing. One which replicates in part the high detail of un-
certainty representation from a type-2 fuzzy approach, with
the relative ease and objectiveness of a type-1 fuzzy approach.
As a result, this new research method allows for a practical
means for domains where ideally a generalised type-2 fuzzy
set is more favourable, but ultimately unfeasible due to the
subjectiveness of type-2 fuzzy membership values. By securing
a higher degree of accuracy by using the significance measure,
problem domains can then be entirely encapsulated using grey
whitenisation weight functions. This not only provides a basis
to infer from, but is completely dynamic allowing for the
addition of extra criterion C, additional descriptors d(xi).

The use of grey theory was done to demonstrate the
effectiveness of marrying together of grey, R-fuzzy and the
significance measure. The originally intended use of whiteni-
sation from a purely grey perspective is mainly with regards
to clustering [5], [7]. Using a grey whitenisation weight func-
tion allows for the classification of observations or objective
indices, into definable classes. This is the intended future
research of this framework. By making use of R-fuzzy sets to
encapsulate the individual and general consensus of a problem
domain, the significance measure can then allow for a type-

2 fuzzy degree of detail to be obtained. The classification
of this higher ordered detail can then be analysed using the
whitenisation weight functions from grey theory, to provide
for a thorough and more detailed approach in garnering and
inference. The more detailed one can harness from the domain
the more informed the solution.
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