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Unsupervised Labelling of Sequential Data for Location
Identification in Indoor Environments

Iker Pereza,∗, James Pinchina, Michael Browna, Jesse Bluma, Sarah Sharplesb

aHorizon Digital Economy Research Institute, The University of Nottingham, UK
bFaculty of Engineering, The University of Nottingham, UK

Abstract

In this paper we present indoor positioning within unknown environments
as an unsupervised labelling task on sequential data. We explore a probabilistic
framework relying on wireless network radio signals and contextual information,
which is increasingly available in large environments. Thus, we form an infor-
mative spatial classifier without resorting to a pre-determined map, and show
the potential of the approach using both simulated and real data sets.

Results demonstrate the ability of the procedure to segregate structures of
radio signal observations and form clustered regions in association to areas of
interest to the user; thus, we show it is possible to differentiate location between
closely spaced zones of variable size and shape.

Keywords: Unsupervised Labelling, Sequential Data, Indoor Positioning,
Ubiquitous Computing, Graphical Models

1. Introduction

The practical determination of a pedestrian’s position indoors remains an
open problem; signals from satellite based positioning systems such as the Global
Positioning System (GPS) are attenuated and delayed by building structures,
to the extent that they are undetectable or yield very poor position estimates.
A variety of alternative technologies have been developed; largely turning to
signals of opportunity such as WiFi or Bluetooth (e.g. Mok & Retscher (2007);
Yang et al. (2015)), or relying on inertial technologies and detailed building
information (e.g. Pinchin et al. (2012)). An overview on the topic and available
options for the deployment of indoor positioning systems can be found in Harle
(2013) and Gu et al. (2009).
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Positioning methodologies associated to the use of signals of opportunity
commonly resort to supervised learning approaches; these dissociate statistical
structures of signal observations from various fingerprinted locations within a
training set, and then construct a predictive model mapping observed signals
to vector locations (Madigan et al. (2005)); however, the collection of enough
data for useful applications is labour intensive (cf. Chen et al. (2006)). Within
indoor environments, the need for extensive dedicated hardware and repeated
physical surveys of the space also deters real-world applications; buildings may
not necessarily be accessible and can be subject to constant alterations on their
layout. The requirement for constant map maintenances usually yields imple-
mented solutions unusable over short time-periods (Bolliger et al. (2009)); thus,
there is a need to study alternative approaches that allow drawing meaningful
inference regarding the whereabouts of a device (cf. Sharples et al. (2015)),
while ignoring the internal arrangement of infrastructure.

In this paper, we address the problem of retrospectively labelling sequences
of locations of a mobile device, within some unknown indoor environment. La-
bels must be assigned in an spatially informative manner; and in this particular
context, we are restricted to the use of observations on WiFi access points
(APs) and their received signal strength indicators (RSSIs), along with meta-
data linked to the activities undertaken by device carriers. In standard wireless
networks, especially within large indoor environments, there commonly are mul-
tiple APs serving end-users, uniquely identifiable through their MAC address;
such signals can be received by hardware in many mobile devices and there ex-
ists literature on their use for (mostly supervised) location estimation (see Roos
et al. (2002); Youssef et al. (2003); Ladd et al. (2004) and references therein).
In addition, the rise of ubiquitous computing permits the feed of substantial
contextual information for use within an unsupervised learning scheme.

A motivational example to this work is given by the task of locating medical
doctors within a hospital, while lacking any knowledge regarding the internal
arrangement of the buildings or the placement of APs. We note that hospitals,
as well as universities, airports or museums, are generally vast and complex
spaces encompassing several buildings. While it is possible to fingerprint the
environment in order to infer precise room-level positioning, information on
doctors’ duties over their shifts can be of sufficient discriminative power, in order
to segregate structures of observations of WiFi signals over differing locations.
Thus, this can enable the construction of an informative spatial classifier that
segregates physical points over clusters associated to specific labels.

To address this issue, we divert from traditional coordinate-system position-
ing and resort to an unsupervised labelling approach on sequential data. Here,
labels respond to unknown physical locations, identifiable from meta-data in-
formation; for instance, hospital wards, university faculties or museum galleries.
We propose a scalable probabilistic model formalizing a joint distribution over
signal observations and position-label sequences, and reduce the problem to
an inference and learning task on a dynamic Bayesian Network (dBN). The
method relies on an intuitive Input-Output network where transitions are as-
sumed under the influence of activity information and thus defined through a

2



maximum-entropy classifier. Hence, we resort to belief-propagation and numer-
ical optimization routines to learn device location-label sequences, AP observa-
tion probabilities and density of RSSIs.

Within an unsupervised learning scheme and to the best of our knowledge,
the proposed approach first allows to draw meaningful inference on sequential
indoor location, while overcoming the need for inertial measurements on a device
along with assumptions regarding physical models for transition dynamics (cf.
Shin et al. (2012); Wang et al. (2012)). In addition, the underlying learning task
is tractable without resorting to variational or simulation-based approximate in-
ference methods. Its practical benefits are varied; on one hand, indoors spatial
classifications do not rely on a pre-determined map and can respond to environ-
mental or AP placement alterations. Also, physical clusters associated to labels
may be influenced through outdoors structural observations of buildings gained
from satellite images, or from a conceptual understanding of meta-data. Tests
on simulated data and a small-scale study within a major university hospital in
the United Kingdom show that, given a sufficiently rich data set regarding the
activity of mobile device carriers, it is not only possible to dissociate positioning
within large and physically separated building-blocks, but also between areas of
interest relatively close to each other and of significantly differing forms.

The rest of the paper is organized as follows. In Section 2 we review recent
work on indoor positioning and probabilistic approaches to the matter, and we
offer an overview of literature discussing Bayesian Networks and Graphical Mod-
els. In Section 3 we formulate the labelling problem, while Section 4 discusses
parameter learning within the model, allowing the formation of a positioning
classifier. Section 5 presents results on simulated data and a case study within a
university hospital and, finally, Section 6 offers a discussion on the advantages,
key contributions and possible extensions of the work.

2. Related Work

A probabilistic indoor positioning approach commonly requires mapping
WiFi signal strength distributions to different locations; these distribution fin-
gerprints can later be used for classification, inferring the most likely posterior
location given a set of signal observations. These differentiated stages are usu-
ally referred to as offline and online phases and some examples of this work
include Kaemarungsi & Krishnamurthy (2004); Brunato & Battiti (2005); Roos
et al. (2002); Youssef et al. (2003); Yim (2008). Alternative approaches based on
triangulation and trilateration (Bahl & Padmanabhan (2000); Krishnan et al.
(2004); Peterson et al. (1998); Li et al. (2000)) study physical signal propaga-
tions. Their aim is to locate a device by measuring angles or distances to signal
sources. Such an approach is usual in global positioning problems and it re-
quires detailed maps along with physical changes over time. We refer the reader
to Liu et al. (2007) for a technical review on existing wireless indoor positioning
solutions.

Indoor positioning problems have seldom been posed as purely unsupervised
tasks; working with labelled data is standard and the use of clustering or la-
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tent variable models has been limited to the task of improving computational
scalability (cf. Swangmuang & Krishnamurthy (2008); Ma et al. (2008)). Yet,
recent work in Shin et al. (2012); Wang et al. (2012); Pinchin et al. (2014) has
begun studying varied unsupervised schemes aiming to bypass the need for fin-
gerprinting. The premise in Shin et al. (2012); Wang et al. (2012) is to combine
identifiable signatures present in common locations along with odometry trac-
ings. On the other hand, work in Pinchin et al. (2014) integrated contextual
information regarding reception devices within a positioning classifier, with aims
of improving the behavioural understanding of the device carriers.

Given the inherent sequential structure in the positioning of a reception de-
vice, probabilistic graphical models provide a suitable framework for labelling
purposes in this work. These models encode complete distributions over ran-
dom variables using graph-based representations, and some special cases such
as the state-space Kalman Filter have long found vast applications in global po-
sitioning systems (e.g. Krakiwsky et al. (1988); Gustafsson et al. (2002); Fung
& Grimble (1983); Sasiadek et al. (2000)). Additionally, Hidden Markov Mod-
els (HMMs), Maximum-Entropy Markov Models (MEMMs) and Conditional
Random Fields (CRFs) have also been studied for diverse supervised labelling
problems with sequential data (Dietterich (2002); Lafferty et al. (2001); McCal-
lum et al. (2000)), and recent work has used properties of HMMs and Markov
Random Fields for developing indoor positioning systems (Seitz et al. (2010b,a);
Hoang et al. (2013); Shen et al. (2012)). For an introduction on learning dBNs
we refer the reader to Ghahramani (2001); Murphy (2002); also, general theory
on graphical models can be found in Koller & Friedman (2009); Jordan (1998).

3. Formulation and Reduction of the Labelling Problem

Let xt ∈ X denote the location-label of a mobile device at time t ∈ {1, · · · , T},
for some T > 1. Furthermore, let at ∈ A define a binary vector representing
observed and unobserved access points within a wireless network, over a single
scan of the device. In addition, denote by rt ∈ R the set of RSSIs (if any) during
the scan. Here, X defines a family of labels associated with a set of unknown
location-clusters {X1, · · · , Xn}, rather than a finite family of coordinates on a
discretized Cartesian system (cf. Seitz et al. (2010b,a); Hoang et al. (2013)).
Further, each cluster is a collection of coordinates within some undefined Eu-
clidean Space. The set A is formed by the combinatorial space of m binary
outputs, with cardinality |A| = 2m, and

R =
{

(R1, · · · , Rm) : Ri ∈ R− ∪ {∅} for i ∈ {1, · · · ,m}
}
.

Note that observable signal strength measurements from WiFi networks are
often given in units of decibel-milliwatts (dBm) and are strictly negative; phys-
ical models (Harley (1989); Hashemi (1993)) suggest a signal propagation ac-
cording to a log-normal function within indoor environments. However, such an
assumption breaks under the presence of walls or furniture (cf. Campos et al.
(2014)) and different experiments have arrived at different distributions (Ladd
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et al. (2004)). A general model remains unavailable and discrete Gaussian ap-
proximations are common (cf. Seitz et al. (2010b,a)), sometimes incorporating
a signal strength decay factor based on euclidean log-distance (Madigan et al.
(2005)). In addition, given a large location-cluster in association to a label, its
global signal-reception strength will be susceptible to noise from the changing
distances to APs on the reception device (device carriers altering their position
within the physical clustered area). Thus, the resulting observations in our work
reflect weighted averaged distributions over the positioning of the devices within
clusters in {X1, · · · , Xn}, and normal approximations perform well.

Signal observations are independent given the location-label of a reception
device; also, in order to ease notation we assume reception capability is equiv-
alent across devices. Hence, the conditional dependence structure between the
above variables is such that

P(at, rt|xt = x) = P(rt|at, xt = x)P(at|xt = x)

=

m∏
i=1

[
I{at(i)=0}(1− px,i) + I{at(i)=1}

px,i
σx,i

ψ
(rt(i)− µx,i

σx,i

)]
,

(1)

where ψ(·) denotes the standard normal probability density function. Here,
px,i is the probability of observing AP i from cluster x over a single scan; µx,i
and σx,i represent the mean and standard deviation of its RSSI. Note than an
extension allowing for varying reception strengths of devices is straightforward.

3.1. Meta-data and Graphical Model

In addition to radio signal scans, this paper assumes the presence of contex-
tual information regarding the activities of device carriers. Such information is
becoming increasingly accessible with the rise of ubiquitous computing, and can
take the form of a log with tasks, duties or any indications suggesting a carrier
likely visited a uniquely named location over a bounded time-span. Thus, it is
possible to determine an amount of identifiable spatial clusters {X1, · · · , Xn} in
association to labels named after meta-data locations. In addition, it is possible
to define a probability distribution over labels X , for any time t ∈ {1, · · · , T}.

Let dt ∈ D be a vector of counts associating activity-log data to the family

{X1, · · · , Xn} at time t, with D = N0 ×
n· · · × N0; for instance, dt could reflect

active duties that a doctor has in association to each location of interest in
a hospital. Then, the assigned label of a reception device forms a categorical
distribution whose prior membership probabilities can be defined in proportion
to counts in dt, so that

P(xt = x|dt = d) ∝ δd(x) for δ > 1 . (2)

We refer to δ as the weighting parameter; it reflects the relevance of counts in d.
An extension allowing for combinations of weights is straightforward; however,
the focus here is on a single value for simplicity. We notice that if d = 01×n
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xt

at(i)

rt(i)

dt

i = 1, · · · ,m

Figure 1: Graphical model for variables xt, at, rt and dt, we note that x is a latent node.

then the underlying distribution is uniform. Figure 1 presents the relation within
location-label, signal observation and count variables in plate notation.

Latent location-label nodes and signal observation structures can be inferred
from the model in Figure 1 through iterative expectation-maximization (Moon
(1996)). However, two radio scans will be relatively close in time and sequential
patterns should be exploited to improve the prediction accuracy of a classifier.
The complete dependence structure within variables is represented with a dBN
as in Figure 2, a type of network in relation to tree structured HMMs or hidden
Markov decision trees (Jordan et al. (1997); Ghahramani (2001)).

x2

a2(i)

r2(i)

d2

x1

a1(i)

r1(i)

d1

x3

a3(i)

r3(i)

d3

· · ·

i = 1, · · · ,mi = 1, · · · ,m i = 1, · · · ,m

Figure 2: Dynamic Bayesian Network representing a partial structure of dependencies within
activity data, latent location-labels and signal observation variables.

3.2. Exponential Transitions and Likelihood Function

In this network (Figure 2), we require label transitions to be under the
influence of activity information. We define a maximum-entropy classifier such
that

P(xt = x′|xt−1 = x,dt = d) ∝

{
eνxd(x

′) if x′ = x,

eλx,x′+νxd(x
′) if x′ 6= x,

(3)

where counts in d are features and {λx,x′ , νx : x, x′ ∈ X and x 6= x′} are
independent weights for each transition origin. Note that it is possible to extend
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the framework and incorporate additional information, such as odometry data
or precise location information (for instance, card swipes or fingerprint scans).
Additionally,

eλx,x′+νxd(x
′) = eλx,x′ δd(x

′)
x

with δx = eνx , so that λ values define an uninfluenced transition matrix for
each origin x; and νx incorporates count data proportionally as in (2). The
prior initial state distribution is assumed uninformative, so that P(x1 = x′|d1 =
d) ∝ 1 .

The log-likelihood function conditional on activity data is given by

l(a1:T , r1:T , x1:T |d1:T ) = logP(x1|d1)

+

T∑
t=1

logP(at, rt|xt) +
T∑
t=2

logP(xt|xt−1,dt),

with probability functions as described in (1) and (3).

4. Parameter and Location Estimation

Given the model structure, the learning task is reduced to estimating param-
eters and states. Here, a training procedure offering a good trade-off between
computational cost and quality of fit requires an inner forward-backward loop.
However, traditional Baum-Welch equations do not accommodate for condi-
tional label transitions in a parameter update stage (cf. Ghahramani (2001)),
and exact Bayesian inference through MCMC simulations is impractical in prob-
lems with high dimensionality and long data sets (Rydén et al. (2008)). Thus,
we iterate between belief propagation, analytical Maximum Likelihood updates
and Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) in an ex-
pectation maximization routine, helping scalability and handling computational
restrictions. We note that L-BFGS is, to date, the preferred algorithm for fit-
ting maximum-entropy models and CRFs, and has largely surpassed generalized
iterative scaling algorithms for use with MEMMs (Malouf (2002)).

Starting values {p(0)x,i , µ
(0)
x,i , σ

(0)
x,i : x ∈ X , i ∈ {1, · · · ,m}} are averaged-out

over the signal observation data set. Additionally,

λ
(0)
x,x′ < 0 and ν(0)x > 0 for all x, x′ ∈ X with x 6= x′.

These strict inequalities impose a starting positive correlation between activity
information and location-labels, and allow for identifiability in the problem. As
per usual, forward-backward equations compute

γx(t) = P(xt = x|a1:T , r1:T ,d1:T ) (4)

and

ξx,x′(t− 1) = P(xt−1 = x, xt = x′|a1:T , r1:T ,d1:T ),
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under the current estimate for model parameters. At each iteration k, parameter
updates are given by

p
(k)
x,i ←

∑
t γx(t)I{at(i)=1}∑

t γx(t)
, µ

(k)
x,i ←

∑
t γx(t)I{at(i)=1}rt(i)∑
t γx(t)I{at(i)=1}

and

σ
(k)
x,i ←

∑
t γx(t)I{at(i)=1}(rt(i)− µ

(k)
x,i )

2∑
t γx(t)I{at(i)=1}

,

for all x ∈ X and i ∈ {1, · · · , n}. In addition, transition parameters in (3) are
numerically updated so that

(ν(k)x , {λ(k)x,x′ : x′ ∈ X with x 6= x′})← arg max
ν,λ

S(x, ν,λ)

for all x ∈ X , with

S(x, ν,λ) =

T∑
t=2

ξx,x(t− 1)νdt(x) +

T∑
t=2

∑
x′∈X
x′ 6=x

ξx,x′(t− 1)(νdt(x
′) + λx′)

−
T∑
t=2

γx(t− 1) log(eνdt(x) +
∑
x′∈X
x′ 6=x

eνdt(x
′)+λx′ ).

The above steps are repeated until convergence, and sequential location-
labels are assigned according to resulting distributions in (4). Alternatively, it
is possible to use the Viterbi algorithm to extract the most likely sequence of
labels.

5. Coordinate Classifier and Results

In order to test the validity of the labelling approach, we resort to both
simulated and real data sets. Simulations present human transitions within
an indoor environment; reception device carriers move through a set of num-
bered locations as they must complete assigned tasks, aiming to recreate the
working environment within a hospital. Also, WiFi network scans are produced
and recorded over small, equally-spaced intervals. Figure 3 offers a step-wise
procedure diagram for each 30 minute simulation in our experiment.

We notice that task assignments and the choice to complete them in one or
another order is randomized; thus, it is not possible to assume a device is in any
given location at any point in time. After each simulation, positioning data is
ignored and only sequences of tasks and WiFi observations are stored; in Figure
4 we observe a sample task-flow obtained from a single simulation, including
creation times, completion times and locations assigned. For instance, during
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Define C Define a cartesian map C of the environment, including:

• 160×120 coordinates for open area of 40×30m2.

• 6 numbered locations for task assignments.

• 3 WiFi access points.

Iterate Set random starting point in C and tasks in locations to 0.

Iterate over time, in 15 second intervals during 30 minutes.

Transition Determine transition according to currently assigned tasks:

• No transition if either, 1) No tasks to complete or 2)
Currently within a location with a task assigned.

• Transition in the direction to a (random) location with
a task assigned, subject to gaussian noise.

Scan From current position, record AP and RSSI observations

according to stochastic model for signal propagation.

Update Update Tasking Information:

• Randomly determine whether a task is completed in
current location; if so, delete it.

• Randomly determine whether to assign a new task in
current or alternative location; if so, add it.

Figure 3: Step-wise procedure diagram for a 30 minute simulation of transitions.

the 12th minute, we observe two active tasks in association to location 6, along
with a single task linked to location 3; this enables the construction of counts
d within the model, and offers prior knowledge on where a device is likely to
be. A small set of real tasking-data within a university hospital, along with
radio scans, is also available and used for model-testing purposes within a wider
environment.

5.1. Cartesian Coordinate Classifier

We recall that the spatial sequential-labelling approach introduced in this
paper bypasses the need to know the layout of a environment; its aim is to
cluster signal observations under the influence of a maximum-entropy model
for transitions, and assign location-labels accordingly. Hence, a specific point
in a room could be associated with different labels depending on the signal
scan obtained, specially in areas distant from any point of interest identified in
the meta-data. However, for model-testing purposes within a known Cartesian
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Figure 4: Task-flow with assigned locations for a simulated transition interval. Creation and
completion times are represented by circled dots.

coordinate system C, a classifier h(·) : C → X can be constructed. Note that

P(xy = x) =
∑
A

∫
R
P(xy = x|ay, ry)P(ay, ry)dry

= Eay,ry

[ P(ay, ry|xy = x)∑
x∈X P(ay, ry|xy = x)

]
, (5)

where y = (y1, y2) ∈ C denotes a position in a 2-dimensional Cartesian map.
Here, P(ay, ry) denotes the distribution of signal observations as seen from y
and can be approximated with a collection of fingerprints sufficiently large.
Then, h is defined so that

h(y) = arg max
x

P(xy = x) ,

and P(xy = x) in (5) is approximated averaging the inner part of the expectation
across fingerprints.

5.2. Results on Simulated Data

Here, we discuss results obtained from feeding meta-data and radio scans
from multiple simulated transitions into the model. We recall that the learning
procedure ignores physical positioning data; yet, we aim to evaluate its ability
to form segregated physical clusters in association to labels in the presented
experiment (see Figure 3). Note that each label is associated to one out of six
locations where simulated tasks are carried out.

First, the top plot in Figure 5 presents prior membership probabilities over
time in relation to 6 different locations, as introduced in (2). This information
relates to a single simulation for a mobile device carrier within the recreated
indoor environment; it offers an insight on the location a device is likely to be
spatially associated with. Probabilities are displayed on a gray-scale and higher
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intensities reflect higher likelihoods. On the other hand, the bottom plot shows
labelled locations as inferred from radio scans and estimated transitions; these
represent the sequence of inferred labels over time for the device carrier.
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Figure 5: Prior activity likelihood and label sequence plots in relation to locations within the
indoor environment. Probabilities displayed on a gray-scale.

In addition, Figure 6 displays the Cartesian map representation C of the sim-
ulated environment, along with color-coded label membership intensities over
coordinates y ∈ C, as deduced from (5). There, we observe how segregated
clusters of coordinates are formed in association to each activity-point of inter-
est; at any given time, it is safe to assume no task is being undertaken in one
location provided no corresponding label was assigned. Also, we observe that
the location of APs (represented by red dots) is likely to influence the shape of
coordinate groups.
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Figure 6: Color-coded map of the environment with learnt clusters, distance shown in meters.
Red dots represent the location of APs.

5.3. Results on Real Data

The data set used includes information regarding duties over night shifts
for several doctors. This tasking-data is for a 1-week time-window and has
been retrieved from a hospital management system in place within a university
hospital. This information has been merged with WiFi radio scans obtained
from devices carried by doctors; and the joint structure of the data resembles
that discussed in the simulated experiment.

Due to the size of the indoor environment and the small amount of ob-
servations available, we do not aim to achieve ward-level labelling. The focus
rather lies in the creation of super-clusters; aiming to segregate physical areas
that include several locations of interest. For that matter, tasking information
on different wards in the hospital is grouped together whenever there exists
some certainty regarding ward proximity; such knowledge may be gained both
from meta-data information and outdoors observations of building structures.
In practice, should a doctor have a task associated to a (named or numbered)
ward, then he has a task associated to the greater (named or numbered) region
that ward falls in. Hence, we study the ability of the proposed methodology in
order to form segregated regions in association to groups of locations (wards).

In this trial, over 500 APs where observed and a subset of most-relevant ones
was isolated, using characteristic associations to different wards as noticed in
tasking information. In Figure 7 we find the probability of observing different
APs from formed super-clusters within the hospital (each in association to one
area label); we recall that signal reception capabilities are assumed uniform
across devices, and we notice significant associations between certain APs and
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specific clusters. Also, high probability values are rare within large regions,
given the limited range of radio signals; on the contrary, the opposite is true
in small isolated areas such as the Nurse Coordinator room, where reception
devices were stored in-between doctor shifts. In addition, Figure 8 presents the
distribution of signal reception strength for various APs, as observed from a
single clustered region in association to the South label; we recall that these
represent weighted distributions over different points within the clustered area.
The weighting is associated to the time device carriers spend at specific physical
points. Normal approximations to signal densities are shown in dashed red.
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Figure 7: Probability of observing APs from 4 different super-clusters within the hospital.
The horizontal axis denotes the APs.

Finally, Figure 9 presents a 2-dimensional scaled map of the hospital, along
with color-labelled fingerprints distributed over different regions and floors; the
choice of fingerprint placements is made in relation to observed wards within
the tasking data set. Information relating doctor duties is strongly linked to
southern areas of the hospital, while their presence elsewhere is rare. Thus,
we notice the ability to segregate radio scans from small parts within southern
buildings, whereas the northern block is grouped as a whole.

6. Discussion

The work in this paper has addressed an indoor positioning problem as an
unsupervised labelling task on sequential data; exploiting the use of contempo-
rary techniques in pattern recognition and natural language processing, in order
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Figure 8: RSSIs for various APs, as observed from south supercluster. Normal approximations
to signal densities are shown in a dotted red line.

to formalize informative spatial classifiers within unknown ubiquitous environ-
ments. Tests on simulated data have shown the ability of the framework in order
to dissociate structures of radio signal observations within small places; forming
clustered regions in association to areas of interest to the user. Furthermore, a
small-scale study within a large hospital environment has confirmed the poten-
tial of such a probabilistic approach in order to extend on current positioning
literature in relation to the extraction of indoor location landmarks (cf. Wang
et al. (2012)).

Some restrictions in the present approach relate to the process of AP selec-
tion in large environments, prior to a labelling study. Lacking on knowledge
regarding the placement of APs presents a challenge in order to ensure a choice
with proper signal covering of the entire environment. In addition, an extensive
amount can increase the complexity, become computationally demanding and
raise traditional concerns on identifiability and starting parameter choices; also,
in combination with poor quality or not sufficiently large contextual information
can lead to over-fitting. Super-clusters in Figure 9 are biased by patterns of few
task allocations within the contextual information available; thus, further work
is required in order to determine an optimal training data-set size for practical
applications and achieving ward-level labelling.

In conclusion, the work first proposes an efficient method and valuable work-
ing framework that provides evidence regarding the power of labelling as an
inference solution for real-world unsupervised indoor location; resorting to in-
creasingly available information within the context of hospitals, museums or

14



Figure 9: Hospital map along with color-labelled fingerprints. North, central, south west,
south and southeast areas represented by blue, red, green, orange and yellow colors respec-
tively.

airports. Additionally, the paper contributes to the study of indoor positioning
without relying on pre-determined maps (cf. Shin et al. (2012); Wang et al.
(2012)), and extends on literature analysing applications of graphical models
generally focused on the fields of biology, language processing and computer
vision. Finally, the work presents practical applications in the managerial and
behavioural study within a workplace ((Pinchin et al., 2014)).
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