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Efficient minimal preference change

Natasha Alechina∗ Fenrong Liu† Brian Logan∗

Abstract

In this paper, we study a minimal change approach to preference dynam-

ics. We treat a set of preferences as a special kind of theory, and define mini-

mal change preference contraction and revision operations in the spirit of the

Alchourrón, Gärdenfors, and Makinson theory of belief revision. We charac-

terise minimal contraction of preference sets by a set of postulates and prove

a representation theorem. We also give a linear time algorithm which imple-

ments minimal contraction by a single preference. We then define minimal

contraction by a set of preferences, and show that the problem of a minimal

contraction by a set of preferences is NP-hard.

1 Introduction

Preferences are central both to individual decision making, and to strategic inter-

actions between rational agents. They have been studied in many research fields,

including philosophy, AI, and social choice theory. Since the 1990s, the dynamics

of preference change has become a major focus of research. For example, Hansson

[18] has proposed postulates for several preference change operations in the spirit

of the Alchourrón, Gärdenfors and Makinson (AGM) theory of belief revision. Van

Benthem & Liu [6] have proposed a dynamic epistemic logic (DEL)-based dy-

namic preference logic to model the changes before and after some informational

event takes place. A comprehensive collection of research papers in preference

change from different fields can be found in [16]. In this paper, we also focus

on the of dynamics of preference, but we take more computationally oriented ap-

proach. As in [18], we are inspired by an analogy between preference change and

the AGM theory of belief revision, however we seek efficient algorithms (at most

polynomial in the size of the agent’s preference set) for minimal preference change

which may be employed by feasible, resource-bounded agents.
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†Department of Philosophy, Tsinghua University, Beijing, China,
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We focus on two cases: the contraction and revision of an agent’s set of prefer-

ences by a single preference, and by a set of preferences. In preference contraction,

the agent wishes to remove one or more preferences from its set of preferences, to-

gether with any preference(s) from which the target preference(s) can be derived

by transitivity. A minimal preference contraction is a contraction that removes the

smallest number of preferences necessary to make the target preference(s) under-

ivable. Contraction may be triggered by a change in the agent’s information about

a domain leading to a change in its preferences, for example if it no longer has any

reason to prefer one alternative to another, or as a result of the agent revising its

preferences, that is, when the agent acquires a new preference that is inconsistent

with its existing preferences and must remove one or more preferences to restore

consistency. A minimal revision is a revision that removes the smallest number of

preferences necessary to restore consistency.

As an example of preference revision, consider the following scenario:

Example 1 When choosing between the fruits apple (A), orange (O), pear (P) and

banana (B), Alice initially prefers oranges to bananas (B<O), apples to oranges

(O<A), pears to bananas (B < P ), apples to pears (P<A) and pears to oranges

(O<P ). In addition, we assume that Alice is rational and accepts transitivity as a

property of her preferences. For instance, she prefers apples to bananas (B<A).

Now Alice receives new information that the health benefits of bananas far

outweigh those of apples, so she has a new preference A<B which is inconsistent

with her current preferences.

To restore consistency, Alice must contract by her existing preference B<A.

There are several ways in which this could be done. For example, she could remove

O<A, B<P and O<P . However such a contraction is not minimal. Alice can

make B<A underivable by removing only two preference statements: either B<O

andB<P in whichB lies on the left side, or alternatively the preference statements

O<A and P<A in whichA lies on the right side. We will show below that these are

minimal contractions. We also give an efficient algorithm for minimal contraction

based on this idea.

We follow the tradition of representing preferences as binary relations between

two alternatives. In other words, we interpret preference in a qualitative sense

rather than in terms of utility. In addition, we assume the preference relation is

closed with respect to some intuitive properties, for example, transitivity for strict

preference. Most notably, we do not assume completeness or connectedness of

preference relation. This means, for two alternatives A and B, there could be

no preference relation between them. We interpret minimal change in the most

straightforward sense of ‘minimal’: as the minimal cardinality change to the pref-

erence relation.
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This paper extends [1] where we defined minimal preference contraction and

showed how to define revision in terms of contraction. We gave postulates for ra-

tional minimal preference contraction, proved a representation theorem, and gave

a linear time minimal preference contraction algorithm. To the best of our knowl-

edge, [1] contained the first representation theorem for minimal change preference

contraction in the literature. We also investigated the problem of contracting by

a set of preferences, and gave a polynomial time algorithm for a special case of

that problem where the set of prefernces to be removed are uncoupled (essentially,

when the order in which contractions by elements of the set are performed does

not matter). In this paper, we prove a new result that the problem of minimal con-

traction by a set of preferences is NP-hard. This means that for the general case,

it is impossible to do minimal contraction by a set of preferences in polynomial

time (unless P = NP ). We also consider the problem of minimal preference ag-

gregation, and discuss the implications of adopting a different primitive preference

relation. The latter discussion is based on the results in the informal proceedings

of LAMAS 2014 [2].

The paper is organised as follows. In Section 2 we introduce preference re-

lations and preference sets. In Section 3 we consider the problem of minimal

preference contraction, giving a set of postulates and an efficient algorithm, and

in Section 4 we briefly discuss the notion of minimal preference revision. In Sec-

tion 5 we turn to the problem of minimal contraction by a set of preferences, and

show that it is NP-hard. We can however characterise a special case of contraction

by a set of preferences, and we give postulates and a polynomial algorithm for this

special case. In Section 6 we discuss preference aggregation, and in Section 7 we

discuss an alternative choice for the primitive preference relation (≤). We briefly

survey related work in Section 8, and conclude in Section 9.

2 Formal Preliminaries

We assume that an agent’s preferences are given by a set of binary relations over

some finite set of alternatives A. An agent’s preference state is represented by a

preference set consisting of preference sentences (or simply preferences) which are

atomic statements involving preference relations. Here we assume that we have a

set of preference relations (and corresponding connectives in atomic sentences).

The relations are < (where A < B means that B is strictly preferred to A), ≡
(where A ≡ B means that A and B are equally preferred), and # (where A#B

means that A and B are incomparable). These basic relations were taken as primi-

tive in, for example, [3].

In addition to atomic sentences built using preference relations, a preference set
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may contain a special sentence ⊥, which is used to indicate a problem (derivability

of an inconsistency).

We assume that a preference set may be incomplete (it is possible that no re-

lation holds between some alternatives A and B), but that the agents are rational,

i.e., they don’t accept A < B and B < A or A#B at the same time, and that they

can complete their preference sets using transitivity of < and ≡ and symmetry of

#, etc. (so the sets are deductively closed with respect to the corresponding rules).

We postulate the following natural set of rational reasoning rules or integrity

constraints in the sense of [16] for preference relations. Rule 1 states that # is

symmetric, rules 2–4 state that ≡ is an equivalence relation, rule 5 states that <

is transitive, and the remaining rules state that at most one of #,≡, <,> can hold

between two alternatives.1

1. A#B ⇒ B#A

2. A ≡ A

3. A ≡ B ⇒ B ≡ A

4. A ≡ B,B ≡ C ⇒ A ≡ C

5. A < B,B < C ⇒ A < C

6. A < B,B < A ⇒ ⊥

7. A ≡ B, A < B ⇒ ⊥

8. A ≡ B, A#B ⇒ ⊥

9. A#B, A < B ⇒ ⊥

We denote by Cn(S) the closure of a set S under the rules above. Formally,

Cn(S) is the set of preferences which contains S, A ≡ A for every A ∈ A, and

1Rules of the following form (i.e., which mix two different connectives):

A ≡ B,B < C ⇒ A < C

A ≡ B,B#C ⇒ A#C

are excluded for two reasons. First, we do not have an efficient minimal contraction algorithm for the

‘mixed’ case. Second, one might consider such rules to be too strong as a closure condition. If the

agent uses different criteria to form preferences, it may have a preference regarding B and C, and

consider A and B indistinguishable, but may not have a preference regarding A and C. For example,

an agent may consider ice cream and sorbet to be equally nice as deserts, and prefer fruit salad to

ice cream on health grounds, but not have any opinion or information on the relative healthiness of

sorbet and fruit salad.
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in addition for every rule p1, . . . , pn ⇒ p above, if p1, . . . , pn ∈ Cn(S), then

p ∈ Cn(S). A set of preferences S is deductively closed iff S = Cn(S). Note that

Cn(S) is a closure under logical consequence, but in a very weak logic (weaker

than the classical logic; in particular, Cn(S) is not closed under modus tollens).

Sometimes we will use the notation S ⊢ p to say that p can be derived from S

and the reasoning rules above by application of the following inference rule (where

n ≤ 2):

p1, . . . , pn p1, . . . , pn ⇒ p

p

Clearly for any p, ⊢ p (p is derivable from an empty set) if, and only if, p is of the

form A ≡ A. We do not assume any logical connectives or any other inference

rules.

In what follows, we assume that the agent’s set of preferences S is deductively

closed. The set of preferences is consistent if and only if it does not contain ⊥.

3 Minimal Contraction

In this section, we introduce the operation of minimal contraction of a preference

set by a single preference.

Definition 1 (Minimal contraction) Given a preference set S and a preference p,

such that 6⊢ p, a minimal contraction of S by p is any operation − that returns a

set S − p such that:

(1) S − p ⊆ S

(2) S − p 6⊢ p

(3) for any other set S′ such that S′ ⊆ S and S′ 6⊢ p, it holds that |S′| ≤ |S − p|.

3.1 Minimal Contraction Postulates

Before stating the postulates characterising minimal contraction, we introduce the

following abbreviations: by A<

S
we denote {C : A < C ∈ S}; by A>

S
we denote

{C : C < A ∈ S}; and by A≡
S

we denote {C : A ≡ C ∈ S} \ {A}. The cost

cS(p) of p ∈ S (intuitively, the number of preferences a contraction by p has to

remove from S) is defined as follows:

• cS(A < B) = |A<

S
∩B>

S
|+ 1

• cS(A ≡ B) = 2 ∗ |A≡
S
|
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• cS(A#B) = 2

We briefly outline the reasons why cost is defined in this way (for full details see

the proof of Theorem 1). To start with the simplest case, in order to make A#B
underivable, we need to remove A#B and B#A from S, hence cS(A#B) = 2.

In order to make A < B underivable, we need to remove one of the premises in

each possible application of the transitivity rule A < C,C < B ⇒ A < B. The

minimal number of premises to remove is equal to the number of such transitivity

rule applications, which is equal to |{C : C ∈ A<

S
∩ B>

S
}|. Similarly, to remove

A ≡ B we need to remove A ≡ C and C ≡ A for all C in the equivalence class of

A and B.

The following postulates characterise minimal contraction.

C-Closure S − p = Cn(S − p)

C-Inclusion S − p ⊆ S

C-Vacuity If p 6∈ S, S − p = S

C-Success If p is not of the form A ≡ A, then p 6∈ S − p

C-Equivalence If Cn(p1) = Cn(p2), then S − p1 = S − p2

C-Minimality If p ∈ S, then |S − p| = |S| − cS(p)

The postulates of C-Closure, C-Inclusion, C-Vacuity, C-Success and C-Equivalence

are standard postulates for contraction of beliefs. The C-Minimality postulates

characterise specifically minimal contraction of preferences, because for prefer-

ences it is possible to predict the cardinality of the resulting set.

Theorem 1 The result of any minimal contraction satisfies the minimal preference

contraction postulates above, and every contraction satisfying these postulates is

a minimal preference contraction.

Proof. For the case when p 6∈ S, clearly the minimal contraction is S itself, and all

the postulates hold for S − p = S trivially.

Let us consider the case when p ∈ S. We show first that every minimal con-

traction satisfies the postulates. C-Inclusion holds by Definition 1, and C-Vacuity

trivially since p ∈ S. To show that C-Closure holds, assume by contradiction that

S − p is a minimal contraction and it is not deductively closed. Since S − p 6⊢ p

(by Definition 1 (2)) and S − p is not deductively closed, then there must be a

consequence q of S− p such that q 6∈ S− p. Since S− p 6⊢ p and S ⊢ q, it follows
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that (S − p) ∪ {q} 6⊢ p. Since S − p ⊆ S (by Definition 1 (1)), S ⊢ q, and since

S is deductively closed, q ∈ S. Hence there is a set S′ = (S − p) ∪ {q} such

that conditions (1) and (2) of Definition 1 hold for S′, and its cardinality is greater

than that of S − p. Hence S − p is not a minimal contraction because it violates

condition (3): a contradiction. C-Success holds for all p which are not derivable

from an empty preference set because there is always a subset of S which does not

derive p (in the worst case, ∅).

C-Equivalence holds rather trivially because the only cases when two syntacti-

cally different preferences have the same set of consequences are: Cn(A ≡ B) =
Cn(B ≡ A) and Cn(A#B) = Cn(B#A); due to symmetry rules, any success-

ful contraction by one of A ≡ B, B ≡ A has to get rid of both of them, similarly

for A#B, B#A. Now let us consider C-Minimality. We need to prove that any

minimal contraction removes exactly |S| − |S− p| sentences for each of the cases.

In particular, we need to prove that:

• a minimal contraction by A < B removes exactly |A< ∩ B>| + 1 prefer-

ences;

• a minimal contraction by A ≡ B removes exactly 2 ∗ |A≡| preferences;

• a minimal contraction by A#B removes exactly 2 preferences.

Let us consider the easiest case first. If A#B ∈ S and we want to remove it and

make sure that S 6⊢ A#B, we need to remove A#B itself, and B#A (note that

since A#B ∈ S and S is deductively closed, B#A ∈ S). Clearly if one of those

preference is left in S then it would be possible to derive A#B. So both A#B
and B#A have to be removed. On the other hand, from the inspection of the

reasoning rules, there is no other way to derive A#B. So these two preferences

are the only ones which have to be removed. Hence any contraction satisfying (2)

will remove these 2 sentences, and any contraction satisfying (3) will only remove

these 2 sentences.

Now consider the case of A < B ∈ S. In order to contract by A < B, we

need to remove A < B itself from S. However A < B may still be derivable

using the transitivity rule. The number of possible derivations of A < B using

the rule A < C,C < B ⇒ A < B is exactly |A< ∩ B>|. We need to ‘destroy’

each such derivation, and in order to do this we need to remove at least one of the

premises in each derivation, namely either all premises of the form A < C or all

premises of the form C < B. So any contraction satisfying (1) and (2) needs to

remove at least |A< ∩ B>|+ 1 preferences (1 is for A < B itself). Conversely, if

one of the preferences for each possible derivation is removed, then A < B is no

longer derivable, so the operation already satisfies (1) and (2). Note that once we
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destroyed all one step derivations by removing a premise, there is no possibility

of that premise being re-derivable. Consider A < C for C ∈ A< ∩ B>. If it is

derivable, then one premise in the derivation of A < C is A < D with D < C

(because C < B and D < C), so D ∈ A< ∩ B>. But then A < D has also

been removed and hence A < C is not re-derivable. Hence, in order to satisfy (3),

the operation should not remove anything else. Hence any minimal contraction

removes exactly |A< ∩B>|+ 1 preferences.

In the case when A ≡ B ∈ S, any contraction operation needs to remove A ≡
B and B ≡ A. However after this A ≡ B may still be derivable by transitivity,

using A ≡ C,C ≡ B ⇒ A ≡ B. The number of such derivations is the number of

elements in A≡ \ {B} (we are only considering uses of the transitivity rule where

C is different from both A and B). If for some of those derivations, both premises

are left in S, then A ≡ B can be re-derived. So any contraction satisfying (1) and

(2) needs to remove at least one of the premises, either A ≡ C or C ≡ B. Note

that in order to properly removeA ≡ C, we also need to remove C ≡ A, otherwise

A ≡ C will be rederivable by symmetry. This means that any contraction needs to

remove at least 2∗|A≡| preferences: A ≡ B,B ≡ A, and 2∗(|A≡\{B}|). To show

that this number of removed preferences is sufficient, and hence that no minimal

contraction needs to remove more, we exhibit a concrete contraction which satisfies

(1) and (2) and removes only 2 ∗ |A≡| preferences. Namely, consider a contraction

which removes A from its equivalence class in S: it removes all A ≡ C, C ≡ A

for C ∈ A≡. In the resulting set, A is not connected by ≡ to any other alternative,

hence A ≡ B is not derivable.

The other direction: if an operation satisfies the postulates, it is a minimal

contraction. Clearly, since the operation satisfies C-Closure, C-Inclusion and C-

Success, it satisfies conditions (1)-(2) of Definition 1. To show that it satisfies (3),

we need to prove that there is no set of strictly larger cardinality than S − p which

still satisfies (1)-(2), in other words that every successful contraction has to remove

at least as many preferences as is stated in C-Minimality postulates. The argument

is exactly as above. 2

3.2 Minimal Contraction Algorithm

We give an algorithm for the minimal contraction of S by a preference p such that

6⊢ p.

The algorithm for computing S − p is given by cases (see Algorithm 1). Note

that the first case p 6∈ S is not strictly necessary since if p 6∈ S then the set which

the algorithm removes from S is empty, hence the result of contracting S by p is

S.
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Algorithm 1 Minimal preference contraction algorithm

procedure MINIMAL-CONTRACTION(S, p)

case p 6∈ S

return

case p == A < B

A< := {C | A < C ∈ S}
B> := {C | C < B ∈ S}
for each C ∈ A< ∩ B> do

S := S \ {A < C}

end for

S := S \ {A < B}

case p == A ≡ B

A≡ := {C | A ≡ C ∈ S,C 6= A}
for each C ∈ A≡ do

S := S \ {A ≡ C ∈ S,C ≡ A}

end for

case p == A#B

S := S \ {A#B,B#A}

Theorem 2 Algorithm 1 computes a minimal preference contraction.

Proof. We show that the result of applying the algorithm to a preference set S

and p ∈ S, p not of the form A ≡ A, always satisfies the conditions in Defini-

tion 1. Condition (1) holds because the algorithm only removes sentences from S.

Condition (2) holds because the algorithm removes a premise from every possi-

ble derivation of p. Condition (3) holds because the set returned by the algorithm

satisfies the minimal contraction postulates hence it is a minimal contraction by

Theorem 1. 2

Theorem 3 The time complexity of the algorithm for minimal contraction is in

O(|A|).

Proof. We assume that we can order the alternatives in some order (e.g., lexico-

graphic order) and for each relation (<,≡,#) we can recover the ordered set of

alternatives to which an alternative A is related in constant time (e.g., a hash table

for each relation implemented as an array of length |A| mapping from alternatives

to sets (lists) of alternatives). Then we can determine in time linear in |A| whether

p 6∈ S (recall that S is deductively closed).

For the A < B case, the maximum size of A< and B> is bounded by |A|,
since A and B can be related to at most |A| − 1 alternatives by <. Computing the

set of alternatives C ∈ A< ∩ B> is also linear in |A| (to be precise it requires
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at most 2|A| operations) and the number of such alternatives C is again bounded

by |A|. Removing the preferences A < C for C ∈ A< ∩ B> requires at most

|A| operations (if the set of preferences is implemented as, e.g., a linked list) and

replacing the new set in the map is constant time. For the A ≡ B case, replacing

the entry for A in the ≡ map is a constant time operation. For the A#B case, we

need to remove a single entry from the set of preferences for A in the # map. This

requires at most |A| operations. The running time of the algorithm isO(|A|) hence

also linear in the size of the preference set. 2

4 Preference Revision

Clearly, if an agent acquires a new preference, its preference set may become in-

consistent. For example, if the agent used to prefer B to A (A < B) and C to B

(B < C) and has decided that it prefers A to C, its preference set is inconsistent

since it contains both A < C by transitivity from the old preferences and C < A

(the new preference). In order to incorporate the new preference and have a con-

sistent preference set, the agent needs to remove some of the old preferences. We

are interested in minimal preference revision, that is, we wish to remove as few

sentences as possible to restore consistency. As in AGM belief revision, we define

revision in terms of contraction by a preference sentence. Before we do this, we

need to define the notion of an S-complement of p (intuitively, a preference in S

which together with p derives ⊥):

• A ≡ B−S = S ∩ {A < B,B < A,A#B}

• A < B−S = S ∩ {A ≡ B,B < A,A#B}

• A#B−S = S ∩ {A ≡ B,A < B,B < A}

Note that if S does not contain ⊥, and S ∪ {p} is inconsistent, then p−S contains

a single preference. We will abuse notation slightly and use p−S to refer to this

preference.

Revision of a preference set S by a preference p, S ∗ p is defined as follows:

S ∗ p =

{

Cn(S ∪ {p}) if S ∪ {p} 6⊢ ⊥
Cn((S − p−S) ∪ {p}) otherwise

Contracting S by the S-complement of p makes p consistent with the result, and

we can add p to the resulting set and close it under consequence. This is essentially

the Levi identity [26, 14]: S ∗ p = (S − ¬p) + p.
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5 Minimal Contraction by a Set of Preferences

In this section we turn to the problem of contracting by a set of preferences. As in

the case of single preferences, we concentrate on contraction rather than revision

by a set of preferences, since ‘minimal change’ has a more intuitive and straight-

forward interpretation in the case of contraction.

We define a minimal contraction of a preference set S by a set of preference

sentences X as follows:

Definition 2 (Minimal contraction by a set) An operation − is a minimal contrac-

tion of S by a set X if it satisfies the following properties:

1. S −X ⊆ S

2. if p ∈ X and 6⊢ p, then S −X 6⊢ p

3. for any other set S′ such that S′ ⊆ S and S′ 6⊢ p for any p ∈ X where 6⊢ p,

it holds that |S′| ≤ |S −X|.

A minimal revision of a preference set S by a set of preferences S′ can be

defined analogously to Hansson’s consolidation [19]: first compute Cn(S ∪ S′),
then minimally contract by contradictions (remove enough sentences to make ⊥
underivable). Note that contracting S′ by all sentences X inconsistent with S may

not be enough to make ⊥ underivable from S ∪ (S′ \X).
A natural question to ask is whether a minimal contraction of S by p1 followed

by a minimal contraction of S−p1 by p2 is a minimal contraction of S by {p1, p2}.

The answer is negative. Consider the following example:

• S = {A < B,A < C,C < B} ∪ {A ≡ A | A ∈ A}

• p1 = A < B

• p2 = C < B

A minimal contraction of S by A < B computed by Algorithm 1 is S − A <

B = {C < B} ∪ {A ≡ A | A ∈ A}. It removes two preferences, A < B

itself and A < C. A minimal contraction of this set by C < B removes C < B.

The set (S − p1) − p2 is {A ≡ A | A ∈ A} which is the result of removing

three preferences from S. However, it is possible to make A < B and C < B

underivable from S by removing just two preferences: A < B and C < B. Recall

that Algorithm 1 makes a particular choice in contraction by A < B: it removes

sentences of the form A < C where C ∈ A< ∩ B>. It could have just as well

removed sentences of the form C < B. For a single step contraction is does not
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matter which choice is made, since the number of removed sentences would be the

same in each case. However for the iterated case, we need to look ahead to decide

which choice to make. The problem of computing a minimal contraction by a set

is, of course, decidable, but may require considering exponentially many (in |X|)
choices.

Here we show that minimal contraction by a set of preferences which only

involve the ≡ relation is already an NP-hard problem. The decision version of

the problem is as follows: given a preference set S, a set of preferences X , and a

number k, is there a set S′ ⊆ S such that |S \ S′| ≤ k and S′ does not derive any

preferences in X?

Theorem 4 The problem of minimal contraction by a set of preferences is NP-

hard, even if all preferences are of the form A ≡ B.

Proof. The proof is by reduction from a known NP-complete problem: minimal

edge multicut. The problem is as follows. Given a graph G = (V,E) and a set

of pairs of vertices H = {(s1, t1), . . . , (sn, tn)}, remove a minimal number of

edges from G so that there is no path between si and ti for all pairs (si, ti) in H .

(The decision version is: given G, H and k, is there a set of edges of cardinality

≤ k such that removing this set from G makes all pairs in H disconnected.) This

problem is NP-complete even if G is a clique, that is of the form (V, V 2) [23].

The reduction to the problem of minimal contraction by a set of preferences is as

follows. Let G = (V, V 2), and H = {(s1, t1), . . . , (sn, tn)}. Let A = V and

S = {s ≡ s′ | s, s′ ∈ V }. The setX of preferences that we are going to minimally

contract S by is X = {si ≡ ti | (si, ti) ∈ H}. Let X ′ = S \ (S − X). We

need to show that H ′ = {(s, s′) | s ≡ s′ ∈ X ′} is a minimal multicut of G. It is

clear that with edges in H ′ removed from G, there is no path between any of the

pairs (si, ti) in H (otherwise there would have been a corresponding derivation by

transitivity in S − X). It is also minimal. Assume there is a smaller set of edges

that can be removed from G so that there is no path between all pairs in H . Then

the corresponding set of preferences could have been removed from S and destroy

all derivations by transitivity of preferences in X . 2

5.1 Minimal Contraction by an Uncoupled Set of Preferences

However, we can perform efficient minimal contraction by a set of preferences and

characterise minimal set contraction in an important special case where X has a

specific form (which we call uncoupled) defined below. This special case covers,

for example, contraction by a set of (some other) agent’s preferences when that

agent has a linearly ordered preference set. Given a set X , we will denote by
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X(<) all elements ofX which are of the formA < B, byX(≡) all elements ofX

which are of the form A ≡ B (we assume X does not contain tautologies A ≡ A),

and by X(#) all elements of X of the form A#B. The set X can therefore be

represented as a set of disjoint setsX1, . . . , Xk, where eachXi is an element in the

partition of X(<), X(≡), or X(#) as explained below.

Definition 3 (Uncoupled set of preferences) A set X is an uncoupled set of prefer-

ences if, and only if, it satisfies the following properties:

• the subset X(<) of X is partitioned into subsets X(A1, An, <) of the form

{A1 < A2, A2 < A3, A1 < A3, . . . , A1 < An}

(where all Ai are linearly ordered between A1 and An) and no alternative

occurs in two different partitions of X(<)

• the subset X(≡) of X is partitioned into subsets X(A,≡) of the form

{A ≡ A1, A ≡ A2, . . . , A ≡ An}

and no alternative occurs in two different partitions of X(≡)

As a notational convenience for the postulates below, X(#) is partitioned into

two parts, X(#)1 which contains A#B such that B#A 6∈ X , and X(#)2 which

contains A#B,B#A such that A#B,B#A ∈ X .

5.2 Postulates for Minimal Contraction by an Uncoupled Set

We provide a representation theorem and an efficient algorithm for contraction of

S by an uncoupled set of preferences X . Essentially, minimal contraction by an

uncoupled setX can be reduced to minimal contractions by single sentences corre-

sponding to an element of the partition ofX . Since these single sentences represent

disjoint subsets of X , and never require the removal of the same preferences from

S, the order of these single preference contractions does not matter.

The following postulates characterise a minimal contraction of S by an uncou-

pled set of preferences X ⊆ S.

CX-Closure S −X = Cn(S −X)

CX-Inclusion S −X ⊆ S

CX-Vacuity If X ∩ S = ∅, S −X = S

CX-Success If p ∈ X is not of the form A ≡ A, then p 6∈ S −X
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CX-Minimality |S−X| = |S|−Σics(Xi) where the costs of contracting by each

Xi are defined as follows:

• cS(X(A1, An, <)) = cS(A1 < An)

• cS(X(A,≡)) = (|A≡
X
|+1) ∗ |A≡

S
|, where by A≡

X
we denote the set of

alternatives occurring in X(A,≡)

• cS(X(#)) = 2 ∗ |X(#)1|+ |X(#)2|

Theorem 5 The result of any minimal set contraction by an uncoupled set of pref-

erences satisfies the minimal set contraction postulates above, and every contrac-

tion by an uncoupled set satisfying these postulates is a minimal set contraction.

Proof. We first show that every minimal set contraction satisfies the postulates.

The proof for CX-Closure, CX-Inclusion, CX-Vacuity, CX-Success is very similar

to Theorem 1. For CX-Minimality, observe that since the partitionsXi do not share

alternatives, the sets of sentences which have to be removed to contract by each Xi

are disjoint. Note that

• for each X(A1, An, <), it is sufficient and necessary to remove {A1 < C |
C ∈ A<

1
∩A>

n } to make all sentences in X(A1, An, <) underivable.

• for each X(A,≡), it is sufficient and necessary to remove connections be-

tween alternatives occurring in X(A,≡) and other members of the equiva-

lence class of A in S, so assuming that |A≡| = m and X(A,≡) contains oc-

currences of alternativesA,A1, . . . , An, then we need to remove (n+1)∗m
sentences (2 ∗ m for removing sentences connecting A to the equivalence

set, 2 ∗ (m− 1) for removing sentences connecting A1, . . . , 2 ∗ (m− n) for

removing sentences connecting An).

• for the whole of X(#), we need to remove 2 ∗ |X(#)1| and |X(#)2|.

For the other direction, assume an operation satisfies the postulates for minimal set

contraction. Then it clearly satisfies (1) and (2) of Definition 2. It also satisfies (3),

since any other contraction by X has to remove at least as many preferences. 2

Note that a postulate corresponding to C-Equivalence: if Cn(X1) = Cn(X2),
then S − X1 = S − X2, does not hold. For example, let X1 = {A ≡ B,A ≡
C,B ≡ C}, X2 = {A ≡ B,A ≡ C}, and S = {A ≡ B,A ≡ C,B ≡ C,A ≡
A,B ≡ B,C ≡ C}. Clearly Cn(X1) = Cn(X2) = S. However, S − X1 =
{A ≡ A,B ≡ B,C ≡ C}, and S − X2 = {B ≡ C,A ≡ A,B ≡ B,C ≡ C}.

This is because contracting by X is not the same as contracting by X and all its

(non-trivial) consequences: some consequences of X that already belong to S may
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remain after we make every single sentence of X underivable from S. So if the

closures of two sets are the same, they may differ in whether they contain any non-

trivial consequences of themselves, and the results of contracting by them may be

different.

5.3 Minimal Contraction by an Uncoupled Set Algorithm

We also give a concrete polynomial time algorithm for contraction by an uncoupled

set of preferences (see Algorithm 2).

Algorithm 2 Minimal preference set contraction algorithm

procedure MINIMAL-SET-CONTRACTION(S,X)

for each Xi ⊆ X do

case Xi == X(A,<)
A< := {C | A < C ∈ X}
A>

n := {C | C < An ∈ X}
for each C ∈ A< ∩ A>

n do

S := S \ {A < C}

end for

S := S \ {A < An}

case Xi == X(B,>)
B<

1
:= {C | B1 < C ∈ X}

B> := {C | C < B}
for each C ∈ B<

1
∩ B> do

S := S \ {C < B}

end for

S := S \ {B1 < B}

case Xi == X(A,≡)
A≡ := {C | A ≡ C ∈ X}
AX,≡ := {D | D occurs in X(A,≡)}
for each D ∈ AX,≡ ∪ {A} do

for each C ∈ A≡ \ {D} do

S := S \ {D ≡ C,C ≡ D}

end for

end for

case Xi == X(#)
for each A#B ∈ X(#) do

S := S \ {A#B,B#A}

end for

end for

The algorithm contracts by each Xi ⊆ X in turn; since the Xi are disjoint, in
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the worst case there are |X| members of the partition. Each contraction by Xi is

linear in |A|, by an argument similar to the proof of Theorem 3. This means that

the time complexity of Algorithm 2 is O(|X| × |A|).

6 Preference Aggregation

In this section we briefly consider the problem of preference aggregation. We

assume that there are n agents, and each agent i has a deductively closed consistent

set of preferences Si; however S1 ∪ . . . ∪ Sn is not guaranteed to be consistent.

The problem of minimal change aggregation is how to produce a consistent joint

preference set while retaining as many of the original preferences as possible.

Definition 4 (Minimal change preference aggregation) Given preference sets S1, . . . , Sn,

a minimal change preference aggregation of these sets is any operation ⊕ that sat-

isfies the following properties:

1. S1 ⊕ . . .⊕ Sn ⊆ Cn(S1 ∪ . . . ∪ Sn)

2. S1 ⊕ . . .⊕ Sn 6⊢ ⊥

3. for every other S′ such that S′ ⊆ Cn(S1 ∪ . . . ∪ Sn) and S′ 6⊢ ⊥, it holds

that |S′| ≤ |S1 ⊕ . . .⊕ Sn|

Unfortunately, as in the case of iterated preference contraction, the minimal

change preference aggregation problem is a combinatorial problem, so there is no

efficient algorithm for computing S1⊕ . . .⊕Sn. The most obvious (and obviously

exponential) algorithm for implementing a minimal change preference aggregation

is:

Algorithm 3 Minimal preference aggregation algorithm

procedure MINIMAL-AGGREGATION(S1, . . . , Sn)

U := Cn(S1 ∪ . . . ∪ Sn)
for each k ∈ {0, . . . , |U |} do

for each X ⊆ U , |X| = k do

if U \X 6⊢ ⊥ return U \X

An efficient preference aggregation algorithm that is not guaranteed to produce

a minimal cardinality result is possible. The lexicographic aggregation proposed

in [3] is shown to be the only aggregation operation that satisfies a set of desirable

properties and does not suffer from Arrow’s paradox. (The reason Arrow’s result

does not apply is because agents’ preferences are not assumed to be total orders.)
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For the un-prioritised case that we are considering in this paper (i.e., all agents are

assumed to be equally important), lexicographic aggregation is equivalent to taking

the intersection of preference sets S1, . . . , Sn. Although the intersection operation

on preference relation may remove too many preferences from the result of the

aggregation and is not guaranteed to be minimal, it does have attractive properties.

Let us define the intersection aggregation of S1, . . . , Sn as S1 ∩ . . . ∩ Sn.

Fact 1 If S1, . . . , Sn are consistent and deductively closed, then the intersection

aggregation satisfies properties 1-2 of Definition 4.

It is also easy to implement an efficient algorithm for computing the intersec-

tion aggregation:

Fact 2 There exists an algorithm for computing S1 ∩ . . . ∩ Sn which runs in time

O(|S1 ∪ . . . ∪ Sn|) (if we assume that the elements of S1, . . . , Sn are sorted).

It is also straightforward to characterise the intersection aggregation axiomati-

cally by the following, rather obvious, postulate:

Intersection-Aggregation p ∈ S1 ⊕ . . .⊕ Sn iff p ∈ Si for i ∈ {1, . . . , n}

This postulate looks similar to unanimity [4] (which says that if a preference is in

every agent’s set of preferences, then it is also in the result of the aggregation). It

is however much stronger because it requires that only such preferences are in the

aggregated set of preferences.

It was shown in [3] that in addition to unanimity, this operation also satisfies

several desirable properties for a preference aggregation mechanism, such as no

dictator.

7 Choice of Preference Relations

We have chosen <, ≡ and # as our primitive preference relations. A natural ques-

tion to ask is whether, for example, ≤ would be a good (or better) choice. Clearly,

A < B is definable as (A ≤ B)∧¬(B ≤ A) and A ≡ B as (A ≤ B)∧ (B ≤ A).
(On the other hand, according to our semantics, A#B is not definable as ¬(A ≤
B) ∧ ¬(B ≤ A), since there is a difference between the absence of any prefer-

ence between A and B, and A and B being considered incomparable.) In order

to define < in terms of ≤, we need to add explicit negation to the language (i.e.,

in addition to A ≤ B, the set of preference sentences may contain sentences of

the form ¬(A ≤ B)). In addition, the closure rules need to include reflexivity and

transitivity of ≤:
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Refl A ≤ A

Trans A ≤ B, B ≤ C ⇒ A ≤ C

and also say that A ≤ B and ¬(A ≤ B) are incompatible:2

Neg A ≤ B, ¬(A ≤ B) ⇒⊥

Let us denote the derivability relation with respect to Refl, Trans, and Neg ⊢≤,

and the corresponding closure operation Cn≤.

Definition 5 (Minimal contraction by a ≤-preference) Given a preference set S

and a ≤-preference p, such that 6⊢≤ p, a minimal contraction of S by p is any

operation − that returns a set S − p such that:

(1) S − p ⊆ S

(2) S − p 6⊢≤ p

(3) for any other set S′ such that S′ ⊆ S and S′ 6⊢≤ p, it holds that |S′| ≤ |S−p|.

Similarly to the case of <, let A
≤
S

denote {C | A ≤ C ∈ S} and A
≥
S

denote

{C | C ≤ A ∈ S}. The cost cS(A ≤ B) for A ≤ B ∈ S is defined as follows:

cS(A ≤ B) = |A≤
S
∩B≥

S
|+ 1

The cost cS(¬(A ≤ B)) of removing ¬(A ≤ B) is always 1 since negative prefer-

ences cannot be derived.

The following postulates characterise minimal contraction of preferences where

the only preference relation is ≤:

C-Closure S − p = Cn(S − p)

C-Inclusion S − p ⊆ S

C-Vacuity If p 6∈ S, S − p = S

2Although the following inference rules also make sense:

Neg-Trans1 A ≤ B, ¬(A ≤ C) ⇒ ¬(B ≤ C)

Neg-Trans2 B ≤ C, ¬(A ≤ C) ⇒ ¬(A ≤ B)

we do not adopt them purely for reasons of efficiency (it does not appear to be possible to provide a

linear time contraction algorithm for ¬(A ≤ B) if it can be derived using several rules which have

premises both of the form A ≤ B and ¬(A ≤ B)).
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C-Success If p is not of the form A ≤ A, then p 6∈ S − p

C-Equivalence If Cn≤(p1) = Cn≤(p2), then S − p1 = S − p2

C-Minimality If p ∈ S, then |S − p| = |S| − cS(p)

Theorem 6 The result of any minimal contraction by a ≤-preference satisfies the

minimal preference contraction postulates above, and every contraction satisfying

these postulates is a minimal contraction by a ≤-preference.

The proof is very similar to the proof for the multiple preferences relations.

Proof. For the case when p 6∈ S, clearly the minimal contraction is S itself,

and all the postulates hold for S − p = S trivially.

Let us consider the case when p ∈ S. We show first that every minimal con-

traction satisfies the postulates. C-Inclusion holds by Definition 5, and C-Vacuity

trivially since p ∈ S. To show that C-Closure holds, assume by contradiction that

S − p is a minimal contraction and it is not deductively closed. Since S − p 6⊢ p

(by Definition 5 (2)) and S − p is not deductively closed, then there must be a

consequence q of S− p such that q 6∈ S− p. Since S− p 6⊢ p and S ⊢ q, it follows

that (S − p) ∪ {q} 6⊢ p. Since S − p ⊆ S (by Definition 5 (1)), S ⊢ q, and since

S is deductively closed, q ∈ S. Hence there is a set S′ = (S − p) ∪ {q} such

that conditions (1) and (2) of Definition 5 hold for S′, and its cardinality is greater

than that of S − p. Hence S − p is not a minimal contraction because it violates

condition (3): a contradiction. C-Success holds for all p which are not derivable

from an empty preference set because there is always a subset of S which does

not derive p (in the worst case, ∅). C-Equivalence holds rather trivially because

for all atomic non-tautological p1, p2, Cn≤(p1) 6= Cn≤(p2) if p1 6= p2 (because

Cn≤(p) = {p} ∪ {A ≤ A | A ∈ A}. For tautological p1, p2 contraction is not

defined since it is impossible to construct a deductively closed preference set which

does not contain them. (Alternatively, we could have defined S − A ≤ A = S, in

which case again C-Equivalence would hold.)

Now let us consider the minimality postulates. We need to prove that any

minimal contraction by A ≤ B removes exactly |A≤ ∩B≥|+ 1 preferences.

In order to contract by A ≤ B, we need to remove A ≤ B itself from S.

However A ≤ B may still be derivable using the transitivity rule. The number of

possible derivations of A ≤ B using the rule A ≤ C,C ≤ B ⇒ A ≤ B is exactly

|A≤ ∩ B≥|. We need to ‘destroy’ each such derivation, and in order to do this we

need to remove at least one of the premises in each derivation, namely either all

premises of the formA ≤ C or all premises of the formC ≤ B. So any contraction

satisfying (1) and (2) needs to remove at least |A≤ ∩B≥|+ 1 preferences (1 is for

A ≤ B itself). Conversely, if one of the preferences for each possible derivation is
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removed, then A ≤ B is no longer derivable, so the operation already satisfies (1)

and (2). (Note that if A ≤ C for C ∈ A≤ ∩ B≥ is itself derivable, one premise

in the derivation of A ≤ C is A ≤ D where D ≤ C since C ≤ B,D ≤ C, so

D ∈ A≤ ∩B≥, so A ≤ D will be removed and hence A ≤ C is not re-derivable.)

Hence, in order to satisfy (3), the operation should not remove anything else. Hence

any minimal contraction removes exactly |A≤ ∩B≥|+ 1 preferences.

The other direction: if an operation satisfies the postulates, it is a minimal

contraction. Clearly, since the operation satisfies C-Closure, C-Inclusion and C-

Success, it satisfies conditions (1)-(2) of Definition 5. To show that it satisfies (3),

we need to prove that there is no set of strictly larger cardinality than S − p which

still satisfies (1)-(2), in other words that every successful contraction has to remove

at least as many preferences as is stated in C-Minimality postulates. The argument

is exactly as above. 2

The algorithm for computing S − p is given below. It assumes that p is not

tautological (in that case contraction is not defined). Note that if p 6∈ S, the set

{C | C ∈ A≤ ∩ B≥} is empty so S \ {A ≤ C | C ∈ A≤ ∩ B≥} = S.

Algorithm 4 Minimal preference contraction algorithm for ≤
procedure MINIMAL-CONTRACTION-≤(S, p)

case p 6∈ S

return

case p = ¬(A ≤ B)
S := S \ {¬(A ≤ B)}

case p = A ≤ B

A≤ := {C | A ≤ C}
B≥ := {C | C ≤ B}
for each C ∈ A≤ ∩ B≥ do

S := S \ {A ≤ C}

end for

S := S \ {A ≤ B}

Theorem 7 Algorithm 4 computes a minimal preference contraction.

Proof. We show that the result of applying the algorithm to a preference set

S and p which is not of the form A ≤ A, always satisfies the conditions in Defi-

nition 5. Condition (1) holds because the algorithm only removes sentences from

S. Condition (2) holds because the algorithm removes a premise from every pos-

sible derivation of p. Condition (3) holds because the algorithm result satisfies the

minimal contraction postulates hence it is a minimal contraction by Theorem 6. 2

Theorem 8 The time complexity of Algorithm 4 is in O(|A|).
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Proof. We assume that we can order the alternatives in some order (e.g., lex-

icographic order) and we can recover the ordered set of alternatives to which an

alternative A is related by ≤ in constant time (e.g., a hash table mapping from al-

ternatives to sets (lists) of alternatives A≤ and A≥). The maximum size of A≤ and

B≥ is bounded by |A|, since A and B can be related to at most |A| alternatives by

≤. Computing the set of alternatives C ∈ A≤ ∩ B≥ is also linear in |A| (to be

precise it requires at most 2|A| operations) and the number of such alternatives C

is again bounded by |A|. Removing the preferences A ≤ C for C ∈ A≤ ∩ B≥

requires at most |A| operations (if the set of preferences is implemented as, e.g., a

linked list) and replacing the new set in the map is constant time. 2

The problem of minimal contraction of a set of ≤ preferences S by a set of ≤
preferences X can be shown to be NP-hard (just as in the case of multiple prefer-

ences relations).

Theorem 9 The problem of minimal contraction by a set of ≤ preferences is NP-

hard.

Proof (sketch). The proof is very similar to the proof of Theorem 4, with encoding

of (s, t) edges as pairs of preferences s ≤ t, t ≤ s instead of s ≡ t. 2

8 Related Work

In this section we briefly discuss related work, focusing on the main ideas and

similarities to our approach, rather than providing a full-fledged comparison.

Van Benthem and Liu [6] propose a dynamic preference logic. They adopt

the framework of dynamic epistemic logic, and introduce dynamic operators to

interpret the triggers of preference change. In later work, Liu [28, 29] presents

a structured model of preference, called the two-level model, which can account

for both preference and reasons for preference, and investigates the dynamics of

preference at both levels. Lang and van der Torre [25] study the relation between

belief revision and preference change in general. They identify four different cases

for preference change, and propose AGM postulates for the case in which prefer-

ence change is triggered by belief revision. Grüne-Yanoff and Hansson [16] also

consider this issue, and argue that preference change cannot be reduced to belief

change, and must consider priorities. Preference change under social peer pressure

is studied by Liang and Seligman [27].

In [18] Hansson describes four types of preference change: contraction and re-

vision of preference relations, and addition and subtraction of alternatives. In our

approach, we do not consider changes to alternatives and we focus on contraction
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and revision of preference relations. Hansson defines contraction in terms of re-

vision with the intuition that “to contract your state of preference by α means to

open it up for the possibility that ¬α” and gives postulates for this operation. On

the technical side, Hansson introduces a measure of similarity between preference

relations R1 and R2 in order to define a minimal preference revision operator. In

the case of finite sets of alternatives, the measure is minimising the cardinality of

the symmetric difference ∆(R1, R2) between R1 and R2 (for any sets X and Y ,

X∆Y is equal to (X\Y ) ∪ (Y \X)). A similar idea is used in the field of social

choice theory, for example in [21, 22], where the distance between two preference

relations essentially counts the minimal number of (pairwise) “inversions” of alter-

natives necessary to transform one binary relation into the other. Note that if R2

is the result of the contraction of R1 by a preference or a set of preferences, we

have R2 ⊆ R1, so minimising the symmetric difference corresponds to minimis-

ing the cardinality of the set of removed preferences. Our work can thus be seen

as using the same measure of distance between preference relations as Hansson’s

and other approaches that minimise the number of tuples in the symmetric differ-

ence, such as [21, 22]. However, Hansson considers a full logical language with

negations, disjunctions etc. of preferences, and the computational complexity of

the preference change operations he defines is clearly much higher than ours. In

essence, our approach is the same as Hansson’s but reasoning only about atomic

preferences with simple inference rules and not closing preference sets under full

classical reasoning.

Rationality constraints, or inference rules relating specifically to preferences,

have been discussed by Hallden [17], von Wright [35] and Grüne-Yanoff and Hans-

son [16], among others. In our approach, we adopt only the basic rules proposed

in [16].

Our approach is also related to work on minimal belief base contraction, for ex-

ample, Rott [33], where minimal contraction of a finite belief baseH by φ involves

identifying maximal subsets of H which do not entail φ. However, the meanings

of ‘minimal’ and ‘maximal’ is different from those used in our approach. For us,

‘maximal’ refers to cardinality; for belief base revision, H ′ is a maximal subset

of H not entailing φ if for every ψ ∈ H \ H ′, H ′ ∪ {ψ} entails φ. One example

of when this definition of maximal does not imply maximal cardinality is where

H = {p, q, p ∧ q → r, p ∧ q} and φ = r. Then one maximal subset of H which

does not entail r is {p, q, p ∧ q} of cardinality 3, and another is {p, p ∧ q → r}
which is of cardinality 2.

There exists considerable work on iterated belief revision, see, for example

[8, 10, 11, 20]. There are some similarities between our work and the work of Ma

et al. [30], who study belief revision postulates for revision of a partial preorder

by a partial preorder. Our preference sentences correspond to their units, and our
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revision by a set of preference sentences corresponds to their revision of a preorder

by a preorder. However there are also some differences: Ma et al. assume similar

closure properties, but in addition they require closure under the rule

A ≡ B,B < C ⇒ A < C

which we do not have. The concrete revision operations they propose are exponen-

tial in the size of the original preorder (preference set) since they require consider-

ing all possible permutations of that set. Booth and Meyer [7] highlight potential

connections between iterated belief revision and preference aggregation, as they

study revision of a total preorder in the context of iterated belief revision.

There is a very extensive body of literature in social choice theory on prefer-

ence aggregation, e.g., [32, 9, 15]. We focus here on Andreka et al. [3], as we share

the basic setting of preference relations between two alternatives. However, the dif-

ference with our setting is that they consider complete preference sets (for each pair

A,B, one of A < B, B < A, A ≡ B or A#B holds), and their setting includes

priorities over agents and preference criteria. They use lexicographic ordering for

aggregating preferences. They do not consider computational complexity, but their

preference aggregation (for finite sets) can be implemented in polynomial time.

9 Conclusion and Future Work

In this paper, we consider a simple setting of preference change where it is possi-

ble to define minimal preference contraction. We give rationality postulates and an

efficient algorithm for that setting. Then we study minimal contraction by a set of

preferences and show that this problem is NP-hard. We provide a characterisation

and an efficient algorithm for the case where the set of preferences is uncoupled.

We briefly comment on the problem of preference aggregation and on our choice

of basic preference relations. Finally, we discuss related work, highlighting simi-

larities and differences with our approach.

There are a number of possible directions for future work. In our approach, we

adopt only the basic rationality constraints on preferences proposed in [16]. More

advanced constraints proposed in [16] involve priorities, and domain specific con-

straints. In future work, we would like to extend our approach to incorporate these

more advanced constraints. The definition of minimality (of change) assumed in

our paper is based on the minimal number of preferences which have changed. This

corresponds to using the Hamming distance between preference relations to mea-

sure their dissimilarity. There is a large literature on alternative distance measures

between preferences, for example [5, 13, 21, 22, 24, 31, 36]. It has been argued in

for example [34, 12], that the Hamming distance as a measure of dissimilarity may
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not be appropriate when the elements in the preference set are logically related. For

example, A ≡ B and B ≡ A are logically related (logically equivalent in fact).

It can be argued that logically equivalent formulas should only count once when

the distance between two preference sets is computed. In future work, we plan to

consider efficient minimal preference revision for different measures of minimality

which take into account logical relations between preferences.
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