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Particle Breakage Criteriain Discrete Element Modelling
John de Bono; Glenn McDowell

University of Nottingham

Abstract

Previous work by the authors, using the discrete element method (DEM) has used the octahedral shear
stress within a sphere together with a Weibull distribution of strengths aize effect on average
strength, to determine whether fracture occurs or not. This leads to fratiEe sze distribution

and a normal compression line which are consistent with experimental data. dddhene is no
agreement in the literature as to what the fracture criterion should be wgeditas not clear whether
other criteria could lead to the correct evolution of voids ratid particle size distribution under
increasing stress. Various possibilities for the criterion have bediedtin detail here to ascertain
whether these other criteria may give the correct behaviour under normal ssimpr&he use of the
major principal stress within a particle, the mean stress, and the stresatedlfrdm the maximum
contact force on a particle are each investigated as alternatives to the octahedral shear stribgs. Onl
criterion based on the maximum contact force is shown to give behaviouvetbsxperimentally

and the simulations shed further insight into the micro mechanics of normal compression.

I ntroduction

Particle crushing is usually modelled using the discrete element method (DEI)am@ of two
methods: either agglomerates or replaceable particles. Agglomerates invobsengpg individual

soil grains by groups of smaller sub-particles that are bonded together and can fragminemt te

bonds are broken. The replacement method, favoured by the authors involves modelling grains with
single particles and replacing them with smaller fragments once some charactegistiovithin the
original particle is deemed to have overcome the particle strength.

The most obvious advantage of using the replacement method is computational efficiency, the number
of particles in such a model is equal to the number of soil grains modelled, witteshdondarge
guantities of smaller sub-particles; and there is no arbitrary comminutioh itimpbsed by the
existence of elementary particles. The replacement method also avoids the griotiierant in
determining the current voids ratio for an aggregate of agglomerates, which are gmdobave

internal voids. Although useful in a qualitative sense, agglomerates aredlimitiaeir ability to
correctly quantitatively model the evolution of voids ratio.

A prerequisite for the replacement method is a suitable breakage criterion, e@asarenof some
characteristic particle stress which can be related to experimentally-obtartiel# g&rengths. Such
strengths are typically measured by crushing single particles diametrioegiiyeen flat platens
(McDowell and Amon, 2000; McDowell, 2002; Nakata et al., 2001). Jaeger (126Fested that the
tensile strength of particles could be measa®d
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whereF is the diametric force at failure, addthe particle size. Measured in this way, the average
particle strengtho,,, is usually found to be a function of size, with smaller particles exighiigher
average strengths and therefore being statistically stronger. This is usually exprdsséorm:t
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where the parametdr is a constant and is a function of the statistical distribution of flawken t
material.

The key task then is relating available particle strength data, for thefadisenetric compression, to
some characteristic measure of particle stress which may result from abgrmeicomplex loading
configurations. Any suitable measure of characteristic particle stress in DEM nessilydinked to
the stresses measured experimentally, i.e., for diametric compression, the chigattesstshould
be proportional toF/d’. Furthermore, the ideal measure of particle stress must be physically
reasonable and give the correct results with regard to experimental data, ite.tteagmergence of
a fractal particle size distribution during compression, and the evolution ofr@lnmsmpression line
when (the logarithm of) voids ratio is plotted against the logarithm of miestress. Following
McDowell and Bolton (1998), the emergence of a fractal particle sizébdisdn (PSD) implies that
any suitable breakage regime must take into consideration the coordination numbelbyvshealler
particles (which have higher strengths but fewer contacts) suffer highesesttbsn comparatively
larger particles (lower strengths but more contacttherwise, if it were simply the weakest particles
that are most likely to crush, then the result wouldalmiform matrix of fine particles, behaviour
which is not evident in geotechnical literature.

In their previouswork, the authors’ used the octahedral shear stress, ¢, as the characteristic particle
stress (and therefore to determine whether a particle should break), defined as:

1
q= 3 [(o; — 0'2)2 + (0, — 0'3)2 + (01 — 53)2]1/2 (3)

and calculated from the average principal stresses. Although the intersasstvighin a loaded
sphere are not uniform, and vary with position, it is generallypaedethat the maximum tensile
stress is proportional t/d” (e.g. Chau et al., 2000; Hiramatsu and Oka, 1966; Jaeger, 1967). In the
DEM software used, it was found thatis proportional toF/d?, for a particle subject to diametric
compression by forceB, so the octahedral shear stress could easily be related to the strengths
according to Eq. (1). The software, PFC3D (Itasca, 2015), returns the averageessess; for a
particle according to:
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whereV is the particle volumeN, the total number of contacts on the particl€, and x* are
locations of the contact and particle respectively, E;‘fd’) is the force acting on the particle at
contact (c). Hence, for two equal and opposite Idadsting on particle, the major principal stress is:
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while the other two principal stresses are zero. Therefore the oclalstdar stressy is
approximately 0.%/d? (McDowell et al., 2013).



The octahedral shear stress also provides a convenient way of taking into aadtiplg contacts; it
seemed logical that a particle is more likely to break if it has few dsréa a large shear stress,
whereas if a particle has many contacts, and is uniformly loaded with a low sthessg (but
potentially large hydrostatic stress), the particle will be less likely to break.edsening agrees with
the widely-accepted notion that coordination number plays a pivotal role in the emesféaceal
particle size distributions from the crushing of granular materials (McDowellDamiell, 2001;
Palmer and Sanderson, 1991; Steacy and Sammis, 1991; Turcotte, 1986). The use of Eg. (3) means
that a particle with 3 orthogonal pairs of equal opposing forces watldreak, ag) = 0. In reality,
such a particle might fail, although one would expect larger forces would beecegiien compared
to the case of 2 (diametric) contact forces (e.g. Ben-Nun and Einav, 2010; Tsouabuil899)
however, if 6 alternative orthogonal and equal forces are superposed and superpostttadghe
particle, under a large hydrostatic stress but zero octahedral shear stress, woulelygabreak—

so the desired effect is for all intents and purposes ahiBvusingg.

By using the octahedral shear stress within particles to govern breakage) aocurate size-effect
on strength, the authors reproduced the correct behaviour when simulating the normessiomof
silica sand, with the correct normal compression line and realistic particledisizéoutions
(McDowell and de Bono, 2013). However, there remains some uncertainty over tloé tnee
octahedral shear stress, as it is not practical to obtain measures oé partichths for an unlimited
combination of contact forces experimentally in order to validate use af. tAdditionally, there
appears to be no clear consensus in the literature as to what measure of strefe ssaadda point
often raised by the referees of our previously published work and so this papenimkgs detailed
study provoked by the thoughts of previous referesig)ilar work by other researchers employ
variety of breakage criteria. Some of these criteria will now be summariteaygt the list is by no
means exhaustive.

A Review of Breakage Criteria used in DEM

One of the earliest attempts to model particle crushing in DEM using tlaeeamnt method was by
Astrom and Herrmann (1998). In two-dimensions, they investigated two breakage,ooiberibased
on the total pressure from all compressive contact forces on a partctghtdr based on the largest
contact force acting on a particle. The first regime, using the total preleslite,unstable breakage
that was concentrated in a single location (which was mitigated somewhat bychigon of
gravity). However, it is difficult to gauge if this unstable breakage svdanction solely of the
breakage criteria, or the lack of a size-hardening effect ar ilqglacement mechanism. Their latter
regime, using the largest contact force on a particle to govern breakagedrésuihore stable
breakag, and their results suggested that an increasing number of contacts reduces thalenafni
associate forces. This breakage criterion was also later used by Couroyer(2608) in 3D.
However, a difficulty in assessing these criteria lies in the factribatize-effect on strength was
present, and Couroyer et al. (2000) did not replace broken particles.

In a different approach, Tsoungui et al. (1999) calculated the principal stressasHd2D) particle,
meaning that arbitrary sets of contact forces could be representegt bynplio pairs of opposing
stresses or forces, which they assumed analogous to biaxial loading. They usetkfivetd analysis
to compare the maximum tensile stress in a particle under diametric loading,mh@ximum tensile
stress from biaxial loading. They found that the presence of minor principasf reduced the
maximum tensile stress, and therefore their characteristic stressfuwastion of both the major and
minor principal forces. Employing a hardening-law of the form given in Eq. {2}, simulations
(and therefore their breakage criterion) resulted in realistic pasimedistributions, however, with
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increasing stress their material reached a state of reduced breakage, most plobatdythe
comminution limit they imposed on the fragments.

Later, Lobo-Guerrero et al. (2005; 2006) elected to calculate particle stressthesingaximum
contact force, aBna/d (in 2D), and employing a size-effect on particle strength. Use of the maximu
contact forces does not consider any additional contacts on a particle, howevaoothewrticle
coordination number into account by only allowing particles with 3 or fewetacts to break. This
imposition however is somewhat artificial, and may prevent a true fractalbdigin from
emerging—if only the smallest particles may break (larger particles will hangre contacts),
eventually larger particles (although only very few of them) will need to fragment in order to maintain
fractal proportions. Hence this obfuscates the suitability of their dgeakriteria, as does the fact
their model did not obey conservation of mass when replacing broken paniebssing it would not
be capable of modelling the evolution of voids ratio. This breakage criter@snalso used by
Marketos and Bolton (2009) and Elghezal et al. (2013) but in three dimensions, mepattiiig
stress a& ,,/d >, with similar difficulties associated with judging the suitability of thiseiin.

In another approach, Ben-Nun & Einav (2008) usedatteragenormal contact forcek,, as the
basis of their breakage criterion. They measured the characteristicirstaegsparticle as,.Jd (in

2D) but then used a number of empirical multiplicative factors to accounhdoeffects that the
particle curvature, imperfections, and coordination number have on the induced stressianddikel
of breakage, with an appropriate hardening law for particle strengthse Whiluse of,,. does not
give attention to the number of contact forces, their position or magnitude, thelinedion number
multiplier meant that the probability of breakage decreased withcaeasing number of contacts,
giving preference to smaller particles, but not preventing largercleartirom breaking. Their
compression simulations resulted in encouraging fractal particle size disttfyuaind notably their
simulations obeyed conservation of mass and did not have an arbitrary comminution limit.
Subsequently Ben-Nun and Einav (2010) compared their breakage rule to that used prbyiously
Tsoungui et al. (1999) (based on a measure of average shear stress), and found breakage
rules resuktdin similar fractal particle size distributions.

Esnault and Roux (2013) presented a DEM study which compared the use of a Von Mises crit
(using the average particle stresses), with the stress calculated fromgts tamtact force on a
particle Enadd?). However, like many others, they allowed a 52% volume loss with each breakage,
which, as they mentioned, neglects the mechanical role of smaller particlehisgmnadtich we are
more interested in here.

More recently, several other researchers have also opted to use the maximum contact force
calculate the particle stress usifig.,/d >. Amongst them, Hanley et al. (2015) presented large-scale
DEM results with a focus on the triaxial behaviour of crushable sand. The ultimate &&D
shearing appeared realistic, suggesting that their choice of criterion coulgropregie for use in
DEM, although they started with an already well-graded distribution. Ciantia(80&5) also used
criterion of the formF/d?, while also considering varying contact area. This was following work by
Russell et al. (2009; 2009), who, using a modified Von Mises type criterions{@iséen, 2000)
demonstrated that the maximum mobilised stress (not the maximum tens#ip issigle a sphere is a
function solely of the largest compressive contact force, occurring almost yditeslthw it
independent of all other contacts. However, in the context of leading d¢talfrparticle size
distributions, it is difficult to gauge whether this was an appropriate breakagaglilkee some of the
aforementioned work, their simulations involved a comminution limit and did not abeervation



of mass—which inevitably influences the evolving/resultant particle size distdbutas well as the
mechanical response).

Tapias et al. (2015), used yet another set of criteria for partiedddge, using what can be described
as a combination of agglomerates and the replacement method. As mentioned above, sbeeeahre
problems associated with agglomerates when modelling large-scale problemdielessetthey
calculated particle stress from the largest contact force, and allowedgh®merates to fragment
when one of two conditions was met. The first of these was largely stmithose outlined above,
when the stress intensity factor En./d %) reached the fracture toughness for the particle. The second
condition was when an initial particle flaw (which were distributed randomly, emtkdl by particle
size) had grown to the size of the particle. Initial flaws were allowed to graler any stress
intensity resulting from contacts, meaning that given enough time, any loadgdepcould
eventually fail, although larger initial flaws and greater intensities wasldltrin faster crack growth.
However, the limitations of agglomerates outlined previously hinder any assgssnsuch breakage
criteria.

Hence, there is no agreement in the literature as to what the characstristic which governs
breakage should be. The focus of this paper is therefore to examine alternatiigefaritgushing to
ascertain whether each gives rise (a) to a realistic normal compressioantingb) a fractal
distribution of particle sizes with the correct fractal dimension. Inwkaig, it is hoped that further

micro mechanics of normal compression can be exposed and that a suitable breakage criterion can be
established, based on comparison with existing experimenégal dat

Background to Compression and Breakage M odel

The simulations presented here all asaono-disperse, cylindrical sample, initially 20 mm x 20 mm,
subjected to one-dimensional normal compression by applying vertical stresseinisremith a
resulting vertical strain. When a particle is deemed to have broken, it isegfsctwo smaller
spherical fragments, equal in size, which together have the same volume as the original sphere (details
of the breakage criteria investigated will be given shortly). Particles sfi2i fragments, with the
size ratiobetween any new fragment and its ‘parent’ particle constant. Newly-placed fragments
overlap, aligned in the direction of the minor principal stress axis of thkitgegaartide, and within
the original particle boundaries. Breakage is implemented by checking all paaticdese, and any
particle in which the stress is equal or greater than the strengtplésed by new fragments. The
fragments are then allowed to move apart, by completing a number of timestepswhighgno
breakages may occur. The approach is fully described by McDowell and de Bono (2013).

The first step in the sequential modelling procedure is to apply a macrostregi increment to the
upper wall of the sample. Particles are then checked and allowed to break. Any particles tha¢ break ar
replaced by fragments, which are then allowed to move apart, releasing the edeapdiby the
artificial overlap. This continues until no further breakages occur, after whechacroscopic stress

is re-applied. After achieving a macroscopic stress with no subsequent breakage, tlst&rassxt
increment is applied and the simulation continues. This process continueseusitthtitation reaches

a point where the quantity and size of the smallest particles rendersndstep too small to be
computationally economical. The macroscopic stress increment used is 125 kPa, and maximum
velocity of the upper boundary is limitéd 0.1 m/s. Model specifics are given in Table 1. For further
details on the modelling procedure, including discussion of its limitationdrédakage mechanism,
readers are directed to prior publications (de Bono, 2013; McDowell and de Bono, 2013; McDowell et
al., 2013).



Table 1 General DEM parameters

General Simulation Properties

Oedometer Size: Height x Diameter (mm) 20x 20
Walll Friction Coefficient 0
Contact Model Hertz-Mindlin
Initial (Largest) Particle Siz&, (mm) 2
Initial No. of Particles 857
Particle Friction Coefficient 0.5
Particle Shear Modulu§ (GPa) 28
Poisson’s Ratio, v 0.25
Particle Density (kg/f) 2650
Initial Voids Ratio 0.75

Investigating 4 Breakage Regimes

The results consist of four simulations, each using a different breakage regime, fereatdifiethod

of measuring particle stress and the associated strengths. The first simulation uses the octaledral shea
stressq, as the characteristic measure of stress, and is the same as that usedyBvibashuthors

(de Bono and McDowell, 2015, 2014; McDowell and de Bono, 2013). A further two simulations use
the mean particle stregs,and the major principal particle stress,to determine particle breakage.
The remaining simulation will usestress criterion calculated from the maximum contact force, with
the particle stress calculated &g, = Fia/d 2 referred to herein as th6.y Stress. Th Foay Stress is

one of the more commonly used criteria in the literature, although it doeselad¢ to any
characteristic stress calculated from the stress tensor for the sphere (re@iéved in the DEM
software), but rather to a critical stress within the sphere (e.g. Chéu 20Q0; Russell and Muir
Wood, 2009). The-.« stress will be of particular interest due to a combination of ltdively
common use and the uncertainty of the role of coordination number in such a regimebdehas
suggested that using tikg,., Stress to govern breakage indirectly accounts for the number of contacts
on a particle, whereby (larger) particles with many contacts will, on averagesimalier contact
forces. However, it remains to be seen if the number of contacts on a patithetorrect effect on

the maximumecontact force, especially since much of the published work using.ihestress as a
criterion imposes artificial conditions relating to the coordination number.

The particle strengths used here are taken from McDowell (2002), who reportsttetigths of
various sizes of silica sand particles. The average crushing force and average cstrsismg
calculated according to Eq. (1) are reproduced in Table 2. McDowell found thatethgttssr of the
silica sand particles fitted Weibull distributions. A Weibull distribution is dbsdrby a characteristic
value, in this case referred to as the Weibull strenggia value whereby 37% of particles are
stronger); and the Weibull modulus, which defines the variability. The Weibull strength is similar
to, and proportional to the mean, while the modulus is directly related to the emgfGtivariation.
The Weibull strengths for each size of particle are also given in Table 2.

Table 2 Experimental Particle Strengths from McDowell (2002)

Particle Average Crushing | Average Strength, | Welbull Crushing | Weibull Strength,
Size (mm) Force (N) oav (MPa) Force (N) oo (MPa)
2 149.05 37.26 166.8 41.7
1 59.01 59.01 66.7 66.7
0.5 33.12 132.48 36.85 147.4




For the silica sand, the Weibull modules a material property, was found to be approximately 3.3,
and from Weibulfls survival probability for a block of material under tension, it is fmeso express
the size effect on strength as:

0y o d~3/m (6)

assumingthat ‘bulk fracture’ dominates (if surface-initiated fracture dominates then this equation
would used ™). This equation is the hardening law used in all simulations, and is used when
attributing random strengths to new fragments, i.e., the Weibull strength of anglepaizie is
determined by Eq. (6), and together with the Weibull modulus, defines the distmilfitcim which
random strengths are attributed. Details of the strengths and stresses for atatiosimill now be
outlined, and are summarised in Table 3.

Criteria I: Octahedral Shear Stress, q

This simulation uses the octahedral shear stress as the characteristie giegss, defined by Eq. (3)
For a sphere loaded by two flat walls in PFC, the value of induced octahedral sheaiisstres
approximately equal to 0.9 E/d?, hence the initial 2 mm particles are given a Weibull strength of
37.5 MPa (in terms of octahedral shear stress). These 2 mm particles are given sandgths
drawn from a Weibull distribution defined by characteristic value of 37.5 MPa amdlaus of 3.3.
From Eg. (6), it can be seen that particles of the next smaller izd,.59 mm, will have a
characteristic strength of 46.2 MPa.

Criteria Il: Mean Particle Stress, p

This simulation uses the mean particle strpg® govern breakage. This breakage criterion, like one
of those investigated by Ben-Nun and Einav (2010), enables particles to crush undetakigdr
stress. The mean particle stress is calculated from the principal st(esses: + g3) / 3, which are
obtained from the (average) stress tensor for the particle. From Equationg, (@hd($3), it can be
deduced that for diametric compressipris approximately equal to 0.647/d® From the strengths

in Table 2, this means the initial particles (2 mm) are given a chastict&veibull strength (in terms

of p) of 26.5 MPa.

Criteria Ill: Major Principal ess, o,

This simulation uses the major principal particle stressp govern breakage, obtained from the
average patrticle stress tensor. From Eq. (5), for diametric loading, the major pratepa,o; is
equal to approximately 1.91F7d2 Therefore the initial 2 mm particles have a characteristic Weibull
strength of 79.6 MPa (in terms &j).

Criteria IV: Frax Stressgenm

In this simulation, the measure of stress used to govern breakgages calculated from the largest
contact force, abma/d % whereF . is the largest normal contact force acting on the particle. Hence
the Weibull strength for the 2 mm particles can be taken directly fromoMe) (2002), and is
41.7 MPa.



Table 3 Summary of Simulation and Experimental Particle Stresses and Strengths

2mm Particles
Simulation Experimental | Proportionality to [Weibull Strengtl
N Characteristic Particle Stress Weibull F/d2in diametric | in Simulation | Weibull
ame Strength E/d %) compression (MPa) Modulus
. . Octahedral She 1 6v2 F
q-S|muIat|on Stress q= 5[(01 —03)? + (0, — 03)* + (07 — 03)*]"/? q= 3i X ﬁ Go=37.5
3
. . i 2 F
p-simulation MeaSntrZS;tlcle _ ("1+‘;—2+"3) p=—x—; Po = 26.5
41.7 i 33
. . Major Principal _ 6 _F _
a-Simulation Stress o 0=~ X 7 010=79.6
. . Finax F
F-simulation| FuaxStress Orm =13 Om =73 Ormo=41.7




Normal Compression

The compression results for the four simulations are presented in Figure $jd#dhg experimental
results from the silica sand that the strengths are taken from. As disdnisse authors’ previous
work (McDowell and de Bono, 2013), the NCL can be described by the following law:

o

1
loge =loge, —ﬁloga—y 7

where the slope is given by (1H)2The parametds describes the hardening law for the particles, and
is the exponent in Equation (6) (in these simulatidms,-0.91). It has been shown that this
compression law correctly describes the slope of the NCL for a range of Ingrteems (McDowell

and de Bono, 2013). Using the strength data used here, this law predicts NCLdopéth of
approximately 0.5. An ideal line with this slope is included in Figure 1, and it ceeelpethat the-

and F-simulations (as well as the experimental results) demonstrate the best agré@ment
compression law. The;-simulation appears to demonstrate some agreement but at high stresses the
slope of the NCL beings to change, whilst fhsimulation does not display a linear NCL. $he
observations are reflected in tRevalues, obtained individually for each NCL and best fit-trend lines
the g-simulation reveals aR® value of 0.92 (the trend-line shown), fReimulation reveals 0.93, the
o1-Simulation 0.85 and the-simulation gives 0.11. The simulations are terminated when the
computational timestep beames too small, which although occurs at different stresses in the four
simulations,is invariably when there is a large number of particles covering a very wide range of
sizes.

0.9

0.8 A

0.7 A

0.6 1

0.5 1 — g-simulation
— p-simulation
— o,-simulation

F-simulation
-~ Experimental Data (McDowell, 2002)

Voids Ratio, e

0.4 1

0.3

0.1 1
Vertical Stress, o, (MPa)

Figure 1. Compression Resultsfor the Four Simulations

The most prominent observation from Figure 1 is that the four simulations ediffeient yield
stresses. The-simulation yields first, at around a vertical stress of 5 MPa, whilej#ienulation
yields last at approximately, = 11 MPa. The vyield stresses for the four simulations do not correlate
with the initial particle strengths, due to the different measuresesssincreasing at different rates.
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For each simulation, the average (mean) characteristic stress for all pa&staaésilated and plotted
against applied vertical stress in Figure 2, for the stage before yielding ¢gbarsthe four samples
are physically similar, and consist of the same quantity of solely 2 mm patrticles).

12

-
o

- g-simulation
— p-simulation
— o,-simulation
8 - F-simulation

Average Measure of Particle Stress (MPa)
(=2}

Vertical Stress, o, (MPa)

Figure 2. Average particle stress as a function of applied vertical stress

Figure 3a) displays the voids ratios plotted against the average particle stresalised by initial
characteristic strength (Table 2) for each simulation. In this case tlepgilts for all simulations
coincide at a normalised particle stress of approximately 0.3. This echoesviglcBod Humphreys
(2002), who observed yielding at applied stresses of approximately 25% dfataeteristic particle
strength for different materials, due to strong force chains forming throughxapately one quarter
(the proportionality depends on particle angularity (Nakata et al., 200&))ling signifies the onset
of particle breakage. Figure 3(b) shows the total number of particles in eachisimpllatted against
the normalised particle s8s major crushing begins at the same point in each simulation. The
average coordination number at yield is approximately the same for all simulatiBhsafthough
there is little scope for variation due to the fact that all sampl&allyiconsist of mono-disperse
spheres in the densest possible packing.
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Figure 3. Voids ratio (a) and total number of particles (b), in each simulation plotted against normalised average
particle stress

The compression law in Eq. (7) was based on the assumption that a fractal pagidistsbution
with a fractal dimension of approximately 2.5 emerges during compression. This vedas dras
numerous historical experimental observations (McDowell and Daniell, 2001; Turto&é).
Progressive particle size distributions (PSDs) for the four materialplatted in Figure 4 at 1 MPa
intervals, although some are coincident. For gr@mulation, thePSD broades andresults in a
smooth PSD at the final stress of 45 MPa. Although not immediately clear frostyla of plot, the
grading curve does become fractal in character. HHsenulation displays similar behaviour, and
exhibits realistic particle size distributions with increasing stress. Themamat ando;-simulations
however displayanincreased degre® crushing of the largs particles, and the PSDs are not fractal
in character.
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Figure 4. Progressive Particle Size Distributionsfor the four simulations and cor responding experimental test

To assess the fractal nature and obtain the fractal dimension, PSDs angatfeshon logarithmic

axes (Turcotte, 1986Because the particle size distributions are discriegg,dan be plotted in terms
of the number of particles of each particular size, given in Figurethis plot, the fractal dimension
should emerge as the slofiéese graphs show that tipeandF-simulations result in realistic crushed
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PSDs; for both simulations the final fractal dimension is approximately 2.5, lemdP$Ds appear
linear across a range of sizes. This agrees with experimental data foedcguahular materials
(Palmer and Sanderson, 1991; Turcotte, 1986), and therefore suggests that both thess ofeasur
stress are appropriate to govern breakage.

The PSD for thep-simulation appears skewed on the log-log scale in Figure 5(b), with no
distinguished linearity (although a best-fit trendline is given to inglita gradient). ThBSDin this
simulation can be categorised as uniform, with the majority of particles Within a narrow size
range compared to thgg andF-simulations. For thes-simulation, the grading curve is not quite
linear, and in any case the slope is too steep, with a gradient in ex8edgepbnd the usual limit for

a fractal dimension (McDowell and Daniell, 2001; Palmer and Sanderson, 1991; Samimi$9&7;

Turcotte, 1986).
€Y (b)

10000

10000

g-simulation p-simulation

1000 1000

. "

% 100 . bl
P~ y = 889.53x2485 ™ =
10 10 \
y = 2901.5%7:352
\
1 1
0.1 1 0.1 1
Particle Size, d (mm) Particle Size, d (mm)
10000 10000
o,-simulation F-simulation
.
1000 1000 \\
.
.
s ® ™~
% 100 A 100 Ny
% EN z y = 846.78x 28
N
y =1064.2x3718 ™
b
10 10
1 1
0.1 1

0.1 1

Particle Size, d (mm) Particle Size, d (mm)

Figureb5. Final Particle Size Distributionsfor the Four Simulations plotted on L ogarithmic Axes

The evolution of the fractal dimensions obtained fromghandF-simulationsis plotted in Figure 6
The values of the fractal dimensioD, appear to approach a constant value, despite extensive
crushing continuing to occur once a value of approximately betweed.2 lBas been reached.
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Figure 6. Evolution of fractal dimension calculated from particle size distributions

In response to one of the referee’s interest in work and new surface created, there now follows an
analysis of this issue. From the definition of a fractal, it can be statethéhaumber of particleN

(of sizeL), equal or greater than a sideis proportioml to d®. For theg- and F-simulations, the
fractal dimensiorD = 2.5, as shown in Figure 5 above. Considering the surface area of any particle is
proportional tod?, then the total surface area of particles equal or larger thari siaa be expressed

as:

S(L=d;) « N(L = dy) * d;°

S(L = dy) o d;%® (8)

Hence, the total surface area of all particles can be found bydisimthis equation:

Sr(L = dg) o« d5%° 9

Considering that the current vertical stress is proportional to the strerigtine smallest
particles(McDowell and Bolton, 1998; McDowell and de Bono, 2013), and recalling the hardening
law in Eq.(6), one can relate the stress to smallest particledsisr oc d; 22, If this is taken here as
approximatelys o« ds* (with b = 1), combining this with the surface area then leads to a total particle
surface area:

St o 0> (10)
The new surface area resulting from crushing is often linked to the plasticpgrformed on the

system during compression, e.g. McDowell and Bolton (1998). Russell (2011) aled teasurface
area to the energy put into the system, which led to alternative compression lawsgigetndn

Eq. (7).
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The plastic work done on the sample (neglecting elastic stiains)

WocfaVsde (11)

For theg- andF-simulations, which obey the compression law:

e x g 05 (12)

according to Eq(7) with b = 1, differentiating Eq(12) gives:

j—z x o-15 (13)

Separation of the variables and multiplicatiorstwyives:

ode x 07 %dg (14)

The total work donéyV, during compression is then given by:

W « j o7 % do (15)

Upon integration, substitution of the surface agaysing Eq. (10) into the integraf° leads to:

WOCS_SO

Wo AS (16)

i.e., the plastic work is proportional to the increase in surface arearéldiion is plotted in Figure 7
for the two simulations. The work plotted (actually work done per unit volumsotfls) is
cumulative, calculated for each incrementaaie (using the increment average stress). The new
surface area created in both simulations appear to agree quite well wité) Eq.(
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Figure 7 Increasein surface area as a function of plastic work

Discussion

The stress-strain behaviour and resulting PSDs show that both the octahesiratrassy andF ..
stress orn, appear suitable for governing particle breakage; whilst the mean pattedsp and the
major principal particle stress; appear unsuitable. These latter two regimes result in compression
lines that do not conform well with the compression law, and unrediStis.

During normal compression, the decrease in voids ratio is facilitated loptiaual crushing of the
smallest particles, with new smaller fragments filling the voids. Simuteshg for a fractal
distribution to emerge and remain consistent, the largest particles must remajnimast] only a
very small number of them must occasionally break to maintain the fratihsion (e.g., assuming

a constanD = 2.5, 1 particle of sizé = 2 mm should break for approximately every 3000 particles of
d = 0.25mmthat break).

Smaller particles are statistically stronger than larger particles, hence they laquer stresses to
break. In all cases, the calculated particle stresses involve thelfesu it seems reasonable that a
typical contact force will result in larger stresses in smaller pestielhich is conducive to breakage
of the smallest particles (although clearly the quantity and magnitude of clomtast will also wield
influence on the particle stress). However, at high values, adhere must be some factor which
protects the larger particles, mitigating the induced particle stress and preventing sulsizmtiits

of the largest (and weakest) particles from breaking.

It was anticipated that for thg-simulation, the mean particle stress would not be appropriate to
govern breakage, as the many contact forces acting on large particlesmvitbute to large principal
stresses (EqQ. (4)), hence large mean particle stress, and thergfovdditconsistently be the largest
particles breaking, resulting enpersistently uniform PSD and hindering any decrease in voids ratio.
This indeed appears to be the case, with nearly all of the original 2 mmlgsatieaking
immediately following yield, followed by nearly all of the next biggegedi1.59 mm) breaking. At
the final stress of 17 MPa, more than 90% of the mass is finer than 1.2&svshown in Figure .1
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this simulation displays reduced compressibility. other words, if particles break under hydrostatic
stress, large particles continue to break, giving a comminution limit typetedhd because the
particle size distribution tends to a uniform mush of decreasing sized fieegpitls ratio will tend
towards being constant; this is exactly evident in Figure 1.

The behaviour of thes;-simulation, interestingly appears to be between that ofgthand p-
simulations. Like th@-simulation, the largest particles, with many contact forces acting on them, will
be subject to large;. Hence the use @f to govern breakage means the largest particles will be very
susceptible to breakage. However, in comparison with pdsémulation, this effect is notas
pronounced, due to the lack of consideratiom0&ndas; smaller particles, with few contacts, will
also have large;, even though the other principal stresses may be low. This fits with the observed
intermediate behaviour, with evident crushing of the largest particles (bafsrstbstantial), yet a
slightly greater portion of smaller particles when compared tp-gimulation.

The F-simulation by contrast, demonstrates realistic behaviour and results that are sintharg-
simulation. This at first seems surprising, as the use of the singésstarontact forcesfm = Frna/d ?)

is indiscriminate to the number of contacts acting on a particle, and wolighpear to minimise the
crushing of the largest, weakest particles. This behaviour, and the isyniliéin the g-simulation can
be understood by considering how comparatively large and small particles are loaded.

Small particles have few contacts and will generally not be loaded isotropicalfyFgg is large,
then bothq and Fna/d? will be large, due to the absence of additional (lateral) contacts. In both
simulations the smallest particles will have high stresses and continually Bheatactor preventing
excessive breakage of large particles in Figimulation can be attributed to the contact forces
required to break particles. In this case the particle stress is a functioa sihgle largest contact
force only,sothe size-effect on strength can be rewritten in term of fasé&, oo« d ' It is evident
that larger particles require greater critical forces to break. Hetatéstically, a large particle will
break if it comes into contact with an equal- or larger-sized particle vdaichsustain the contact
force. Statistically, if a large particle is in contact with a mucllemone, the mutuahaximum
contact force will cause the smaller particle to break. This impliestitat there are few enough of
the largest and dispersed particles remaining, they would not be susceptible agdrddle PSD for
this simulation in Figure 5(d) shows limited evidence of this: there éaegar proportion of 2nm
particles than expected, and after further crushing of the smaller sizeothisdislocate the fractal
distribution.

To illustrate these phenomena, one can consider an idealised loaded particle, suElga® iB.
Figure 8(a) shows a single particle, size 1 m, subjected to unit forces. For diametric loading, the
different measures of stress within this sphere @re0.9,0; = 1.91,p = 0.64, antsg, = 1 (units of
Pa), as labelled. If this sphere is now subjected to additional unit forces, druigatropic manner
(i.e. 3 orthogonal pairspsdemonstrated in (b), then the shear sttpdecreases, whilst there is no
change in the major principal stress nor theF . Stresspgrn. The mean stregshowever increases.

If this particle is subjected to auditionalset of isotropic, orthogonal forces, offset by some rotation,
shown in (c), then both the octahedral shear styes®l theF .« Stresse, do not change, whilst the
major principal stress; and mean stregsboth double in magnitude. This is similar to what happens
in the simulations-where the largest particles accumulate contacts as crushing progressesrHowev
as noted, in such cases the contact forces will generally be smaller in magnithderase is shown

in (d), which shows an identical configuration to (c) but vethaller forces Again the octahedral
shear stress will be zero. Thg,y Stresds also smaller, but; andp are still relatively large compared
to case (a), despite smaller contact forces. Although highly-idealised, thés sershow that for a

17



given size of particle, those with fewest contacts will, in general, be under dgbstlahear stresg

and the largesFn.x Stressorm, Whilst those with the most contacts, even if the contact forces are
smaller, will exhibit the largest major principal and mean stresses. Mdanthle smallest particles
will always be loaded with the fewest contacts, such as in (e), which shows ar gragicle loaded
diametrically. In this case, all measures of stress are larger than an egfyMaladed larger sphere
(a), despite smaller forces. However in comparison to (d), which representtateeof larger
particles, the small particle (e) has much lamyesr, andoy, but asmallervalue ofp. Lastly, it is

also worth noting that in theg andF-simulations, for a large particle to break, there would need to be
either anisotropic or relatively large contact forces acting on it, regplgctiThese scenarios are
illustrated in (f), which is similar to (d) apart from one pair of opposiogtact forces largen
magnitude. Compared to (d), in this cagendor, (andoy) have increased significantly, whilsthas
increased by a much lesser extent. Hence, there is a clear similarity gn dnel F-simulations,
whereby the smallest particles (regardless of their actual size), are cdiysisthjected to the fewest
contacts but largest stresses.
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Figure 8. Diagram showing how the four measures of stressvary with changing F, d and number of contacts

Figure 9 shows how the average coordination number increases with particle size, the data
corresponding to points where the total number of particles is approximately @580simulations.

The same trend is seen for all simulations. The smallest particles have average cownclimaliers

less than 1, this is because a portion of them are not in contact wéthpattticles; while those that

are carrying load have betweerb3Xontacts. The 4 sets of data appear almost identical, despite quite
different gradings; thg- andF-simulations at this point consist of fractal PSDs¢ontrast to the-
simulation, which comprises a narrower distribution of particle sizes (so althbeglaverage
coordination number with respect to particle size is similar in allulsitions, the frequency
distribution of coordination numbers are different). The observed trends arentbeasany point

during the simulations, i.e. regardless of the range of sizes of particlesrayuheiity, the smallest
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particles always have the same number of contacts, while the largest padiclesoge as crushing
progresses.

100

Zr g-simulation

O p-simulation

= g,-simulation
F-simulation

Average Coordination Number

0.1

0.1 1
Particle Size, d (mm)

Figure 9. Average coordination number with respect to particle size when each simulation contains approximately
25,000 particles.

The average characteristic particle stress as a function of particle platted in Figure 10, the data
corresponding to the final vertical stress (which is different for eaahlatiion). The average particle
stresses in this instance are calculated only considering load-carrying pdpasiides with 61
contacts are neglected, if they wete then the average stresses for the smallest sizes of particles
would be lower). The data is plotted on logarithmic axes, and for comparison, the averafe parti
strengthsare also shown. These are thetual particle strengths, which differ slightly from the
theoretical strengths according to Eq. (6) (which would dictate a slope of -0.91y theefact that
particles of a particular size have a distribution of strengths, and the weakelepamntush first.
Nonetheless, although different in magnitudes, the average particle strengths tfwlosame
relationship with size in all simulations. For the and F-simulations, the average particle stress
increases steadily with reducing particle size, and the average stress curve isregbphpxiarallel

with the average strengths. The data ffesimulation however, displays no linear trend between
average stress and particle size, and although the very smallest particles gigtithit higher
average stresses, the values for most sizes are similar. The differemeerbéte average stress and
strength in thisg) simulation is narrowest for the largest 2 mm patrticles, and in general the average
particle stresgncreasesvith particle sizeelative to its strength

The g;-simulation displays intermediate behaviour; smaller particles are under laegsestthan the
larger particles, with average stress increasing with reducing size, butetlué nacrease igessthan

the g- and F-simulations. As such, a disproportionate quantity of the large particles brebk as t
overall stress increases.
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Figure 10. Average particle stresses with respect to size

The average stresses for individual particle sizes are plotted against tleel apglss in Figure 11.
Only the first 6 sizes of particle are shown for clarity. In all satiahs, the particle stresses increase
with applied stress, however there are markedly different patterns of behaeiogen the- andF-
simulations and th@- and o;-simulations. In the former, the average stress in the largest, 2 mm
particles increases approximately linearly, until smaller particles come irstieree, at which point
the rate of increase reduces, with little change beyond a vertical stress of 20HdRaerage stress

of the next-smallest size of partickt= 1.59 mm, at first increases, to a value higher than that of the
2 mm particles, but then the rate of increase also reduces; this pattenuemtith subsequently
smaller sizes bearing increasingly larger stresses. It appears that the avessgéoistany sizefo
particle stops increasing rapidly once there are many smaller particles im@xisaé which point
these particles will become surrounded and have additional contacts. Eesitindation, this will be

due to the additional contacts mitigating the induced octahedral shear stress.H-sinthtation, this

will be due to the scarcity of contacts with similar or larger sizedcfest which are able to bear
large contact forces.

In contrast, in thep- and g;-simulations, it appears that the average stress for all particle sizes
increases linearly with increasing vertical stress. Irpteenulation, the 6 particle sizes shown exhibit
similar values of average stress, which will be of most signifiedar the largest and weakest
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particles, and is consistent with the PSDs shown in Figure 4(b) which show very fleevlafdgest
particles remaining after compression. Theimulation shows similar behaviour, with the average
stress in the largest particles increasing rapidly with increasingalestress; however, the smallest
particles are under moderately greater stresses. This is consistent witbtithre of intermediagt

behaviour between thgg andp-simulations.

These graphs, as well as those in the previous two figures, demonstrate tué\sipgitween the-

and F-simulations, where the average stress in the smallest particles (whatever tredirsae)
increases approximately linearly with increasigwhilst the average stresses in the larger particles
are mitigated and tend to approximately steady values. So in both cases, the parétiéss always
with the fewest number of contacts, are consistently subjected to the largest steessieg,many of
them to break, creating new ‘smallest’ particles, which then start ‘protecting’ the previously smallest
particles. This process is continuous, and is the same regardless of scale.
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Figure 11. Average particle stressesin different sized-particles as a function of applied stress
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Conclusions

This work has sought to clarify the suitability of various breakagerieritéhen modelling particle
breakage in DEM, which was achieved by investigating the use of four different comeasares of
stress to determine whether or not a particle should break. In each casentjthsised were from
experimental single particle crushing tests on a silica sand.

The simulation using the octahedral shear stress resulted in the correct macrsgespistrain
behaviour, as well as a realistic fractal particle size distributionchwhias consistent with all
previous work by the authors, which used the same breakage regime. Notably, th&asinuging

the Fax StressF ey / d 2, also produced the correct macroscopic behaviour. Although this is one of the
more common breakage criteria used in DEM by other researchers, it has often been chosen arbitrarily
with no justification, or due to the theory that the maximum criticalsstwithin a solid sphere is a
function only of the maximum contact force (e.g. Chau et al., 2000; Ciantia et al. RAxEe]l et al.,
2009). However, it was unclear whether this criterion would result iedirect behaviour in DEM.

Both of these two breakage criteria were shown to result in continuousapeeak the smallest
particles with increasing applied stress, whilst minimising breakage ofathjest and weakest
particles, leading to the correct normal compression line and fractal particle size distsibut

For the simulation that used the octahedral shear stggs#he additional contacts acting on
comparatively larger particles act to mitigate the induced stress, thusgriabse weaker particles
to survive when the applied vertical stress is high. This effect meansithttdtparticles with fewest

contacts that will be most likely to be subjected to high shear stressesnTiigimeans that

particles in contact with those much larger will be subjected to higdarsstresses, as large
neighbouring particles physically prevent additional particles from forming contacts.

For the simulation that considered the particle stress calculated from the umaxiomtact force
(Fmax/ d?), a similar effect was evident. Once comparatively large particles were in contact with many
surrounding smaller particles, the only way in which these particles would isréathey were in
contact with eqal- or larger-sized particles. Hence, the use of both of these alternative measures of
stress to determine breakage result in a regime whereby contacts between s&arger-sized
particles is minimised, and both lead to the emergence of a fractal distrilnitioa dimension of

2.5, consistent with experimental results.

Of the other two criteria investigated: the mean particle sipe®] the major principal stregg both
resulted in poor modelling of the macroscopic behaviour in comparison to experimeuital fdse

use of mean particle stregsneant that the largest particles, which have many contacts (all of which
contribute to the mean stress), will always be the most likely to baeakas such, it is primarily the
largest particles that are continuously breaking; this resulted in arrpfnticle size distribution and

the evolution of a constant voids ratio. The user,0in governing breakage resulted in somewhat
intermediate behaviour. In this case the largest particles, with many contad &amtributing to
large principal stresses, will be under large valgedut so too will many of the smallest particles,
which have fewer contacts and therefore low values ahdos.

This paper has therefore served as a detailed investigation intctbesfaffecting particle breakage
during normal compression and has provided insight into the evolution of frasti@butions of
particle sizes which accompany a normal compression line.
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