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Particle Breakage Criteria in Discrete Element Modelling 

John de Bono; Glenn McDowell 

University of Nottingham 

Abstract 

Previous work by the authors, using the discrete element method (DEM) has used the octahedral shear 
stress within a sphere together with a Weibull distribution of strengths and a size effect on average 
strength, to determine whether fracture occurs or not.  This leads to fractal particle size distributions 
and a normal compression line which are consistent with experimental data.  However there is no 
agreement in the literature as to what the fracture criterion should be and as yet it is not clear whether 
other criteria could lead to the correct evolution of voids ratio and particle size distribution under 
increasing stress.  Various possibilities for the criterion have been studied in detail here to ascertain 
whether these other criteria may give the correct behaviour under normal compression. The use of the 
major principal stress within a particle, the mean stress, and the stress calculated from the maximum 
contact force on a particle are each investigated as alternatives to the octahedral shear stress.  Only the 
criterion based on the maximum contact force is shown to give behaviour observed experimentally 
and the simulations shed further insight into the micro mechanics of normal compression. 

Introduction 

Particle crushing is usually modelled using the discrete element method (DEM) using one of two 
methods: either agglomerates or replaceable particles. Agglomerates involve representing individual 
soil grains by groups of smaller sub-particles that are bonded together and can fragment as/when the 
bonds are broken. The replacement method, favoured by the authors involves modelling grains with 
single particles and replacing them with smaller fragments once some characteristic stress within the 
original particle is deemed to have overcome the particle strength. 

The most obvious advantage of using the replacement method is computational efficiency, the number 
of particles in such a model is equal to the number of soil grains modelled, with no need for large 
quantities of smaller sub-particles; and there is no arbitrary comminution limit imposed by the 
existence of elementary particles. The replacement method also avoids the problems inherent in 
determining the current voids ratio for an aggregate of agglomerates, which are porous and have 
internal voids. Although useful in a qualitative sense, agglomerates are limited in their ability to 
correctly quantitatively model the evolution of voids ratio. 

A prerequisite for the replacement method is a suitable breakage criterion, i.e. a measure of some 
characteristic particle stress which can be related to experimentally-obtained particle strengths. Such 
strengths are typically measured by crushing single particles diametrically between flat platens 
(McDowell and Amon, 2000; McDowell, 2002; Nakata et al., 2001). Jaeger (1967) suggested that the 
tensile strength of particles could be measured as: 

 � = ��ଶ (1) 

where F is the diametric force at failure, and d the particle size. Measured in this way, the average 
particle strength, σav, is usually found to be a function of size, with smaller particles exhibiting higher 
average strengths and therefore being statistically stronger. This is usually expressed in the form: 
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 �av ∝ �−� (2) 

where the parameter b is a constant and is a function of the statistical distribution of flaws in the 
material. 

The key task then is relating available particle strength data, for the case of diametric compression, to 
some characteristic measure of particle stress which may result from any number of complex loading 
configurations. Any suitable measure of characteristic particle stress in DEM must be easily linked to 
the stresses measured experimentally, i.e., for diametric compression, the characteristic stress should 
be proportional to F/d2. Furthermore, the ideal measure of particle stress must be physically 
reasonable and give the correct results with regard to experimental data, i.e. lead to the emergence of 
a fractal particle size distribution during compression, and the evolution of a normal compression line 
when (the logarithm of) voids ratio is plotted against the logarithm of effective stress. Following 
McDowell and Bolton (1998), the emergence of a fractal particle size distribution (PSD) implies that 
any suitable breakage regime must take into consideration the coordination number, whereby smaller 
particles (which have higher strengths but fewer contacts) suffer higher stresses than comparatively 
larger particles (lower strengths but more contacts)—otherwise, if it were simply the weakest particles 
that are most likely to crush, then the result would be a uniform matrix of fine particles, behaviour 
which is not evident in geotechnical literature. 

In their previous work, the authors’ used the octahedral shear stress, q, as the characteristic particle 
stress (and therefore to determine whether a particle should break), defined as: 

 � = ͳ͵ [ሺ�ଵ − �ଶሻଶ + ሺ�ଶ − �ଷሻଶ + ሺ�ଵ − �ଷሻଶ]ଵ ଶ⁄  (3) 

and calculated from the average principal stresses. Although the internal stresses within a loaded 
sphere are not uniform, and vary with position, it is generally accepted that the maximum tensile 
stress is proportional to F/d2 (e.g. Chau et al., 2000; Hiramatsu and Oka, 1966; Jaeger, 1967). In the 
DEM software used, it was found that q is proportional to F/d2, for a particle subject to diametric 
compression by forces F, so the octahedral shear stress could easily be related to the strengths 
according to Eq. (1). The software, PFC3D (Itasca, 2015), returns the average stress tensor, σij for a 
particle according to: 

 �௜௝ = ͳܸ∑ቀ�௜ሺcሻ − �௜ሺpሻቁ�c �௝ሺc,pሻ (4) 

where V is the particle volume, Nc the total number of contacts on the particle, x(c) and x(p) are 
locations of the contact and particle respectively, and Fj

(c,p) is the force acting on the particle at 
contact (c). Hence, for two equal and opposite loads F acting on particle, the major principal stress is: 

 �ଵଵ = ͳቆͶ͵ � ቀ�ʹቁଷቇ × ʹ × (�ʹ × �) 
�ଵଵ = 6���ଶ 

(5) 

 

 

while the other two principal stresses are zero. Therefore the octahedral shear stress q is 
approximately 0.9 F/d 2 (McDowell et al., 2013).  
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The octahedral shear stress also provides a convenient way of taking into account multiple contacts; it 
seemed logical that a particle is more likely to break if it has few contacts and a large shear stress, 
whereas if a particle has many contacts, and is uniformly loaded with a low shear stress (but 
potentially large hydrostatic stress), the particle will be less likely to break. This reasoning agrees with 
the widely-accepted notion that coordination number plays a pivotal role in the emergence of fractal 
particle size distributions from the crushing of granular materials (McDowell and Daniell, 2001; 
Palmer and Sanderson, 1991; Steacy and Sammis, 1991; Turcotte, 1986). The use of Eq. (3) means 
that a particle with 3 orthogonal pairs of equal opposing forces would not break, as q = 0. In reality, 
such a particle might fail, although one would expect larger forces would be required when compared 
to the case of 2 (diametric) contact forces (e.g. Ben-Nun and Einav, 2010; Tsoungui et al., 1999); 
however, if 6 alternative orthogonal and equal forces are superposed and superposed again then the 
particle, under a large hydrostatic stress but zero octahedral shear stress, would be unlikely to break – 
so the desired effect is for all intents and purposes achieved by using q.  

By using the octahedral shear stress within particles to govern breakage, and an accurate size-effect 
on strength, the authors reproduced the correct behaviour when simulating the normal compression of 
silica sand, with the correct normal compression line and realistic particle size distributions 
(McDowell and de Bono, 2013). However, there remains some uncertainty over the use of the 
octahedral shear stress, as it is not practical to obtain measures of particle strengths for an unlimited 
combination of contact forces experimentally in order to validate use of the q. Additionally, there 
appears to be no clear consensus in the literature as to what measure of stress should be used (a point 
often raised by the referees of our previously published work and so this paper is essentially a detailed 
study provoked by the thoughts of previous referees); similar work by other researchers employ a 
variety of breakage criteria. Some of these criteria will now be summarised, although the list is by no 
means exhaustive. 

A Review of Breakage Criteria used in DEM 

One of the earliest attempts to model particle crushing in DEM using the replacement method was by 
Åström and Herrmann (1998). In two-dimensions, they investigated two breakage criteria, one based 
on the total pressure from all compressive contact forces on a particle, the other based on the largest 
contact force acting on a particle. The first regime, using the total pressure, led to unstable breakage 
that was concentrated in a single location (which was mitigated somewhat by the inclusion of 
gravity). However, it is difficult to gauge if this unstable breakage was a function solely of the 
breakage criteria, or the lack of a size-hardening effect or their replacement mechanism. Their latter 
regime, using the largest contact force on a particle to govern breakage resulted in more stable 
breakage, and their results suggested that an increasing number of contacts reduces the magnitude of 
associate forces. This breakage criterion was also later used by Couroyer et al. (2000) in 3D. 
However, a difficulty in assessing these criteria lies in the fact that no size-effect on strength was 
present, and Couroyer et al. (2000) did not replace broken particles. 

In a different approach, Tsoungui et al. (1999) calculated the principal stresses for each (2D) particle, 
meaning that arbitrary sets of contact forces could be represented simply by two pairs of opposing 
stresses or forces, which they assumed analogous to biaxial loading. They used finite element analysis 
to compare the maximum tensile stress in a particle under diametric loading, to the maximum tensile 
stress from biaxial loading. They found that the presence of minor principal forces reduced the 
maximum tensile stress, and therefore their characteristic stress was a function of both the major and 
minor principal forces. Employing a hardening-law of the form given in Eq. (2), their simulations 
(and therefore their breakage criterion) resulted in realistic particle size distributions, however, with 
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increasing stress their material reached a state of reduced breakage, most probably due to the 
comminution limit they imposed on the fragments. 

Later, Lobo-Guerrero et al. (2005; 2006) elected to calculate particle stress using the maximum 
contact force, as Fmax/d (in 2D), and employing a size-effect on particle strength. Use of the maximum 
contact forces does not consider any additional contacts on a particle, however, they took particle 
coordination number into account by only allowing particles with 3 or fewer contacts to break. This 
imposition however is somewhat artificial, and may prevent a true fractal distribution from 
emerging—if only the smallest particles may break (larger particles will have more contacts), 
eventually larger particles (although only very few of them) will need to fragment in order to maintain 
fractal proportions. Hence this obfuscates the suitability of their breakage criteria, as does the fact 
their model did not obey conservation of mass when replacing broken particles, meaning it would not 
be capable of modelling the evolution of voids ratio. This breakage criterion was also used by 
Marketos and Bolton (2009) and Elghezal et al. (2013) but in three dimensions, measuring particle 
stress as Fmax/d

 2, with similar difficulties associated with judging the suitability of this criterion. 

In another approach, Ben-Nun & Einav (2008) used the average normal contact force, Fave as the 
basis of their breakage criterion. They measured the characteristic stress in any particle as Fave/d (in 
2D) but then used a number of empirical multiplicative factors to account for the effects that the 
particle curvature, imperfections, and coordination number have on the induced stress and likelihood 
of breakage, with an appropriate hardening law for particle strengths. While the use of Fave does not 
give attention to the number of contact forces, their position or magnitude, their coordination number 
multiplier meant that the probability of breakage decreased with an increasing number of contacts, 
giving preference to smaller particles, but not preventing larger particles from breaking. Their 
compression simulations resulted in encouraging fractal particle size distributions, and notably their 
simulations obeyed conservation of mass and did not have an arbitrary comminution limit. 
Subsequently Ben-Nun and Einav (2010) compared their breakage rule to that used previously by 
Tsoungui et al. (1999) (based on a measure of average shear stress), and found that both breakage 
rules resulted in similar fractal particle size distributions. 

Esnault and Roux (2013) presented a DEM study which compared the use of a Von Mises criterion 
(using the average particle stresses), with the stress calculated from the largest contact force on a 
particle (Fmax/d

 2). However, like many others, they allowed a 52% volume loss with each breakage, 
which, as they mentioned, neglects the mechanical role of smaller particles, something which we are 
more interested in here.  

More recently, several other researchers have also opted to use the maximum contact force to 
calculate the particle stress using Fmax/d

 2. Amongst them, Hanley et al. (2015) presented large-scale 
DEM results with a focus on the triaxial behaviour of crushable sand. The ultimate PSDs after 
shearing appeared realistic, suggesting that their choice of criterion could be appropriate for use in 
DEM, although they started with an already well-graded distribution. Ciantia et al. (2015) also used a 
criterion of the form F/d 2, while also considering varying contact area. This was following work by 
Russell et al. (2009; 2009), who, using a modified Von Mises type criterion (Christensen, 2000) 
demonstrated that the maximum mobilised stress (not the maximum tensile stress) inside a sphere is a 
function solely of the largest compressive contact force, occurring almost directly below it, 
independent of all other contacts. However, in the context of leading to fractal particle size 
distributions, it is difficult to gauge whether this was an appropriate breakage rule, as, like some of the 
aforementioned work, their simulations involved a comminution limit and did not obey conservation 
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of mass—which inevitably influences the evolving/resultant particle size distribution (as well as the 
mechanical response).  

Tapias et al. (2015), used yet another set of criteria for particle breakage, using what can be described 
as a combination of agglomerates and the replacement method. As mentioned above, there are several 
problems associated with agglomerates when modelling large-scale problems; nonetheless, they 
calculated particle stress from the largest contact force, and allowed their agglomerates to fragment 
when one of two conditions was met. The first of these was largely similar to those outlined above, 
when the stress intensity factor (∝ Fmax/d

 2) reached the fracture toughness for the particle. The second 
condition was when an initial particle flaw (which were distributed randomly, and limited by particle 
size) had grown to the size of the particle. Initial flaws were allowed to grow under any stress 
intensity resulting from contacts, meaning that given enough time, any loaded particle could 
eventually fail, although larger initial flaws and greater intensities would result in faster crack growth. 
However, the limitations of agglomerates outlined previously hinder any assessment of such breakage 
criteria. 

Hence, there is no agreement in the literature as to what the characteristic stress which governs 
breakage should be.  The focus of this paper is therefore to examine alternative criteria for crushing to 
ascertain whether each gives rise (a) to a realistic normal compression line and (b) a fractal 
distribution of particle sizes with the correct fractal dimension. In this way, it is hoped that further 
micro mechanics of normal compression can be exposed and that a suitable breakage criterion can be 
established, based on comparison with existing experimental data. 

Background to Compression and Breakage Model 

The simulations presented here all use a mono-disperse, cylindrical sample, initially 20 mm x 20 mm, 
subjected to one-dimensional normal compression by applying vertical stress increments with a 
resulting vertical strain. When a particle is deemed to have broken, it is replaced by two smaller 
spherical fragments, equal in size, which together have the same volume as the original sphere (details 
of the breakage criteria investigated will be given shortly). Particles split into 2 fragments, with the 
size ratio between any new fragment and its ‘parent’ particle constant. Newly-placed fragments 
overlap, aligned in the direction of the minor principal stress axis of the breaking particle, and within 
the original particle boundaries. Breakage is implemented by checking all particles at once, and any 
particle in which the stress is equal or greater than the strength is replaced by new fragments. The 
fragments are then allowed to move apart, by completing a number of timesteps during which no 
breakages may occur.  The approach is fully described by McDowell and de Bono (2013). 

The first step in the sequential modelling procedure is to apply a macroscopic stress increment to the 
upper wall of the sample. Particles are then checked and allowed to break. Any particles that break are 
replaced by fragments, which are then allowed to move apart, releasing the energy induced by the 
artificial overlap. This continues until no further breakages occur, after which the macroscopic stress 
is re-applied. After achieving a macroscopic stress with no subsequent breakage, the next stress 
increment is applied and the simulation continues. This process continues until the simulation reaches 
a point where the quantity and size of the smallest particles renders the timestep too small to be 
computationally economical. The macroscopic stress increment used is 125 kPa, and maximum 
velocity of the upper boundary is limited to 0.1 m/s. Model specifics are given in Table 1. For further 
details on the modelling procedure, including discussion of its limitations, the breakage mechanism, 
readers are directed to prior publications (de Bono, 2013; McDowell and de Bono, 2013; McDowell et 
al., 2013). 
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Table 1 General DEM parameters 

General Simulation Properties 
Oedometer Size: Height x Diameter (mm) 20 x 20 
Wall Friction Coefficient 0 
Contact Model Hertz-Mindlin 
Initial (Largest) Particle Size, d (mm) 2 
Initial No. of Particles 857 
Particle Friction Coefficient 0.5 
Particle Shear Modulus, G (GPa) 28 
Poisson’s Ratio, ν 0.25 
Particle Density (kg/m3) 2650 
Initial Voids Ratio 0.75 

 

Investigating 4 Breakage Regimes 

The results consist of four simulations, each using a different breakage regime, i.e. a different method 
of measuring particle stress and the associated strengths. The first simulation uses the octahedral shear 
stress, q, as the characteristic measure of stress, and is the same as that used previously by the authors 
(de Bono and McDowell, 2015, 2014; McDowell and de Bono, 2013). A further two simulations use 
the mean particle stress, p and the major principal particle stress, σ1 to determine particle breakage. 
The remaining simulation will use a stress criterion calculated from the maximum contact force, with 
the particle stress calculated as σFm = Fmax/d

 2, referred to herein as the Fmax stress. The Fmax stress is 
one of the more commonly used criteria in the literature, although it does not relate to any 
characteristic stress calculated from the stress tensor for the sphere (readily retrieved in the DEM 
software), but rather to a critical stress within the sphere (e.g. Chau et al., 2000; Russell and Muir 
Wood, 2009). The Fmax stress will be of particular interest due to a combination of its relatively 
common use and the uncertainty of the role of coordination number in such a regime. It has been 
suggested that using the Fmax stress to govern breakage indirectly accounts for the number of contacts 
on a particle, whereby (larger) particles with many contacts will, on average, have smaller contact 
forces. However, it remains to be seen if the number of contacts on a particle has the correct effect on 
the maximum contact force, especially since much of the published work using the Fmax stress as a 
criterion imposes artificial conditions relating to the coordination number.  

The particle strengths used here are taken from McDowell (2002), who reported the strengths of 
various sizes of silica sand particles. The average crushing force and average crushing stress 
calculated according to Eq. (1) are reproduced in Table 2. McDowell found that the strengths of the 
silica sand particles fitted Weibull distributions. A Weibull distribution is described by a characteristic 
value, in this case referred to as the Weibull strength, σ0 (a value whereby 37% of particles are 
stronger); and the Weibull modulus, m, which defines the variability. The Weibull strength is similar 
to, and proportional to the mean, while the modulus is directly related to the coefficient of variation. 
The Weibull strengths for each size of particle are also given in Table 2.  

Table 2 Experimental Particle Strengths from McDowell (2002) 

Particle 
Size (mm) 

Average Crushing 
Force (N) 

Average Strength, 
σav (MPa) 

Weibull Crushing 
Force (N) 

Weibull Strength, 
σ0 (MPa) 

2 149.05 37.26 166.8 41.7 
1 59.01 59.01 66.7 66.7 

0.5 33.12 132.48 36.85 147.4 
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For the silica sand, the Weibull modulus m, a material property, was found to be approximately 3.3, 
and from Weibull’s survival probability for a block of material under tension, it is possible to express 
the size effect on strength as: 

 �଴ ∝ �−ଷ �⁄  (6) 

assuming that ‘bulk fracture’ dominates (if surface-initiated fracture dominates then this equation 
would use d -2/m). This equation is the hardening law used in all simulations, and is used when 
attributing random strengths to new fragments, i.e., the Weibull strength of any particle size is 
determined by Eq. (6), and together with the Weibull modulus, defines the distribution from which 
random strengths are attributed. Details of the strengths and stresses for each simulation will now be 
outlined, and are summarised in Table 3. 

Criteria I: Octahedral Shear Stress, q 

This simulation uses the octahedral shear stress as the characteristic particle stress, defined by Eq. (3). 
For a sphere loaded by two flat walls in PFC, the value of induced octahedral shear stress is 
approximately equal to 0.9 * F/d 2, hence the initial 2 mm particles are given a Weibull strength of 
37.5 MPa (in terms of octahedral shear stress). These 2 mm particles are given random strengths 
drawn from a Weibull distribution defined by characteristic value of 37.5 MPa and a modulus of 3.3. 
From Eq. (6), it can be seen that particles of the next smaller size, d = 1.59 mm, will have a 
characteristic strength of 46.2 MPa. 

Criteria II: Mean Particle Stress, p 

This simulation uses the mean particle stress, p to govern breakage. This breakage criterion, like one 
of those investigated by Ben-Nun and Einav (2010), enables particles to crush under hydrostatic 
stress. The mean particle stress is calculated from the principal stresses: (σ1 + σ2 + σ3) / 3, which are 
obtained from the (average) stress tensor for the particle. From Equations (4), (5), and (3), it can be 
deduced that for diametric compression, p is approximately equal to 0.64 * F/d 2. From the strengths 
in Table 2, this means the initial particles (2 mm) are given a characteristic Weibull strength (in terms 
of p) of 26.5 MPa. 

Criteria III: Major Principal Stress, σ1 

This simulation uses the major principal particle stress, σ1 to govern breakage, obtained from the 
average particle stress tensor. From Eq. (5), for diametric loading, the major principal stress, σ1 is 
equal to approximately 1.91 * F/d 2. Therefore the initial 2 mm particles have a characteristic Weibull 
strength of 79.6 MPa (in terms of σ1). 

Criteria IV: Fmax Stress, σFm
 

In this simulation, the measure of stress used to govern breakage, σFm, is calculated from the largest 
contact force, as Fmax/d

 2, where Fmax is the largest normal contact force acting on the particle. Hence 
the Weibull strength for the 2 mm particles can be taken directly from McDowell (2002), and is 
41.7 MPa. 
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Table 3 Summary of Simulation and Experimental Particle Stresses and Strengths 

 2mm Particles 

Simulation 
Name 

Characteristic Particle Stress 
Experimental 

Weibull 
Strength (F/d 2)  

Proportionality to 
F/d 2 in diametric 

compression 

Weibull Strength 
in Simulation 

(MPa) 
Weibull 
Modulus 

q-simulation Octahedral Shear 
Stress � = ͳ͵ [ሺ�ଵ − �ଶሻଶ + ሺ�ଶ − �ଷሻଶ + ሺ�ଵ − �ଷሻଶ]ଵ ଶ⁄  

41.7 

� = 6 ʹ͵� × ��ଶ q0 = 37.5 

3.3 
p-simulation Mean Particle 

Stress ݌ = ሺ�ଵ + �ଶ + �ଷሻ͵ ݌  = �ʹ × ��ଶ p0 = 26.5 

σ1-simulation Major Principal 
Stress 

�ଵ �ଵ = 6� × ��ଶ σ1,0 = 79.6 

F-simulation Fmax Stress �Fm = �ma୶�ଶ  �Fm = ��ଶ σFm,0 = 41.7 
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Normal Compression 

The compression results for the four simulations are presented in Figure 1, alongside the experimental 
results from the silica sand that the strengths are taken from. As discussed in the authors’ previous 
work (McDowell and de Bono, 2013), the NCL can be described by the following law: 

 log ݁ = log ݁୷ − ͳʹ� log ��୷ (7) 

 

where the slope is given by (1 / 2b). The parameter b describes the hardening law for the particles, and 
is the exponent in Equation (6) (in these simulations, b = -0.91). It has been shown that this 
compression law correctly describes the slope of the NCL for a range of hardening laws (McDowell 
and de Bono, 2013). Using the strength data used here, this law predicts NCLs with slopes of 
approximately 0.5. An ideal line with this slope is included in Figure 1, and it can be seen that the q- 
and F-simulations (as well as the experimental results) demonstrate the best agreement this 
compression law. The σ1-simulation appears to demonstrate some agreement but at high stresses the 
slope of the NCL beings to change, whilst the p-simulation does not display a linear NCL. These 
observations are reflected in the R2 values, obtained individually for each NCL and best fit-trend lines: 
the q-simulation reveals an R2 value of 0.92 (the trend-line shown), the F-simulation reveals 0.93, the 
σ1-simulation 0.85 and the p-simulation gives 0.11. The simulations are terminated when the 
computational timestep becomes too small, which although occurs at different stresses in the four 
simulations, is invariably when there is a large number of particles covering a very wide range of 
sizes. 

 

Figure 1. Compression Results for the Four Simulations 

 

The most prominent observation from Figure 1 is that the four simulations exhibit different yield 
stresses. The p-simulation yields first, at around a vertical stress of 5 MPa, while the q-simulation 
yields last at approximately σv = 11 MPa. The yield stresses for the four simulations do not correlate 
with the initial particle strengths, due to the different measures of stress increasing at different rates. 
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For each simulation, the average (mean) characteristic stress for all particles is calculated and plotted 
against applied vertical stress in Figure 2, for the stage before yielding occurs (when the four samples 
are physically similar, and consist of the same quantity of solely 2 mm particles). 

 

Figure 2. Average particle stress as a function of applied vertical stress 

 

Figure 3(a) displays the voids ratios plotted against the average particle stress normalised by initial 
characteristic strength (Table 2) for each simulation. In this case the yield points for all simulations 
coincide at a normalised particle stress of approximately 0.3. This echoes McDowell and Humphreys 
(2002), who observed yielding at applied stresses of approximately 25% of the characteristic particle 
strength for different materials, due to strong force chains forming through approximately one quarter 
(the proportionality depends on particle angularity (Nakata et al., 2001)). Yielding signifies the onset 
of particle breakage. Figure 3(b) shows the total number of particles in each simulation plotted against 
the normalised particle stress:  major crushing begins at the same point in each simulation. The 
average coordination number at yield is approximately the same for all simulations (≈ 5), although 
there is little scope for variation due to the fact that all samples initially consist of mono-disperse 
spheres in the densest possible packing. 
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Figure 3. Voids ratio (a) and total number of particles (b), in each simulation plotted against normalised average 
particle stress 

 

The compression law in Eq. (7) was based on the assumption that a fractal particle size distribution 
with a fractal dimension of approximately 2.5 emerges during compression. This was based on 
numerous historical experimental observations (McDowell and Daniell, 2001; Turcotte, 1986). 
Progressive particle size distributions (PSDs) for the four materials are plotted in Figure 4 at 1 MPa 
intervals, although some are coincident. For the q-simulation, the PSD broadens and results in a 
smooth PSD at the final stress of 45 MPa. Although not immediately clear from this style of plot, the 
grading curve does become fractal in character. The F-simulation displays similar behaviour, and 
exhibits realistic particle size distributions with increasing stress. The remaining p- and σ1-simulations 
however display an increased degree of crushing of the largest particles, and the PSDs are not fractal 
in character. 

(a) 

(b) 
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(a)       (b) 

 

(c)       (d) 

 

(e) 

 

Figure 4. Progressive Particle Size Distributions for the four simulations and corresponding experimental test 

 

To assess the fractal nature and obtain the fractal dimension, PSDs are often plotted on logarithmic 
axes (Turcotte, 1986). Because the particle size distributions are discrete, they can be plotted in terms 
of the number of particles of each particular size, given in Figure 5. In this plot, the fractal dimension 
should emerge as the slope. These graphs show that the q- and F-simulations result in realistic crushed 
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PSDs; for both simulations the final fractal dimension is approximately 2.5, and the PSDs appear 
linear across a range of sizes. This agrees with experimental data for crushed granular materials 
(Palmer and Sanderson, 1991; Turcotte, 1986), and therefore suggests that both these measures of 
stress are appropriate to govern breakage.  

The PSD for the p-simulation appears skewed on the log-log scale in Figure 5(b), with no 
distinguished linearity (although a best-fit trendline is given to indicate the gradient). The PSD in this 
simulation can be categorised as uniform, with the majority of particles lying within a narrow size 
range compared to the q- and F-simulations. For the σ1-simulation, the grading curve is not quite 
linear, and in any case the slope is too steep, with a gradient in excess of 3, beyond the usual limit for 
a fractal dimension (McDowell and Daniell, 2001; Palmer and Sanderson, 1991; Sammis et al., 1987; 
Turcotte, 1986). 

(a)       (b) 

 

(c)       (d) 

 

Figure 5. Final Particle Size Distributions for the Four Simulations plotted on Logarithmic Axes 

 

The evolution of the fractal dimensions obtained from the q- and F-simulations is plotted in Figure 6. 
The values of the fractal dimension, D, appear to approach a constant value, despite extensive 
crushing continuing to occur once a value of approximately between 2.0–2.5 has been reached. 
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Figure 6. Evolution of fractal dimension calculated from particle size distributions 

 

In response to one of the referee’s interest in work and new surface created, there now follows an 
analysis of this issue. From the definition of a fractal, it can be stated that the number of particles N 
(of size L), equal or greater than a size d, is proportional to d-D. For the q- and F-simulations, the 
fractal dimension D =  2.5, as shown in Figure 5 above. Considering the surface area of any particle is 
proportional to d2, then the total surface area of particles equal or larger than size d can be expressed 
as:  

 �ሺ� ≥ �iሻ ∝ �ሺ� ≥ �iሻ ∗ �௜ଶ 

 �ሺ� ≥ �iሻ ∝ �௜−଴.5  
 

(8) 
 

Hence, the total surface area of all particles can be found by using ds in this equation: 

 �Tሺ� ≥ �sሻ ∝ �s−଴.5 (9) 
 

Considering that the current vertical stress is proportional to the strength of the smallest 
particles(McDowell and Bolton, 1998; McDowell and de Bono, 2013), and recalling the hardening 
law in Eq.(6), one can relate the stress to smallest particle size, ds as σ ∝ ds

 -3/3.3. If this is taken here as 
approximately σ ∝ ds

 -1 (with b = 1), combining this with the surface area then leads to a total particle 
surface area: 

 �T ∝ �଴.5 (10) 
 

The new surface area resulting from crushing is often linked to the plastic work performed on the 
system during compression, e.g. McDowell and Bolton (1998). Russell (2011) also related the surface 
area to the energy put into the system, which led to alternative compression laws to that given in 
Eq. (7).  
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The plastic work done on the sample (neglecting elastic strains) is 

 ܹ ∝ ∫� sܸd݁ (11) 

 

For the q- and F-simulations, which obey the compression law: 

 ݁ ∝ �−଴.5 (12) 
 

according to Eq. (7) with b = 1, differentiating Eq. (12) gives: 

 d݁d� ∝ �−ଵ.5 (13) 

 

Separation of the variables and multiplication by σ gives: 

 �d݁ ∝ �−଴.5d� (14) 
 

The total work done, W, during compression is then given by: 

 ܹ ∝ ∫�−଴.5 d� (15) 

 

Upon integration, substitution of the surface area, ST using Eq. (10) into the integral σ 0.5 leads to: 

 ܹ ∝ � − �଴ ܹ ∝Δ� 
(16) 

 

i.e., the plastic work is proportional to the increase in surface area. This relation is plotted in Figure 7 
for the two simulations. The work plotted (actually work done per unit volume of solids) is 
cumulative, calculated for each increment as σde (using the increment average stress). The new 
surface area created in both simulations appear to agree quite well with Eq.(16).  
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Figure 7 Increase in surface area as a function of plastic work 

 

Discussion 

The stress-strain behaviour and resulting PSDs show that both the octahedral shear stress, q and Fmax 
stress, σFm appear suitable for governing particle breakage; whilst the mean particle stress, p and the 
major principal particle stress, σ1 appear unsuitable. These latter two regimes result in compression 
lines that do not conform well with the compression law, and unrealistic PSDs. 

During normal compression, the decrease in voids ratio is facilitated by the continual crushing of the 
smallest particles, with new smaller fragments filling the voids. Simultaneously, for a fractal 
distribution to emerge and remain consistent, the largest particles must remain mostly intact; only a 
very small number of them must occasionally break to maintain the fractal dimension (e.g., assuming 
a constant D = 2.5, 1 particle of size d = 2 mm should break for approximately every 3000 particles of 
d = 0.25 mm that break).  

Smaller particles are statistically stronger than larger particles, hence they require larger stresses to 
break. In all cases, the calculated particle stresses involve the term d-2, so it seems reasonable that a 
typical contact force will result in larger stresses in smaller particles, which is conducive to breakage 
of the smallest particles (although clearly the quantity and magnitude of contact forces will also wield 
influence on the particle stress). However, at high values of σv, there must be some factor which 
protects the larger particles, mitigating the induced particle stress and preventing substantial quantities 
of the largest (and weakest) particles from breaking. 

It was anticipated that for the p-simulation, the mean particle stress would not be appropriate to 
govern breakage, as the many contact forces acting on large particles will contribute to large principal 
stresses (Eq. (4)), hence large mean particle stress, and therefore it would consistently be the largest 
particles breaking, resulting in a persistently uniform PSD and hindering any decrease in voids ratio. 
This indeed appears to be the case, with nearly all of the original 2 mm particles breaking 
immediately following yield, followed by nearly all of the next biggest size (1.59 mm) breaking. At 
the final stress of 17 MPa, more than 90% of the mass is finer than 1.26 mm. As shown in Figure 1, 
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this simulation displays reduced compressibility.  In other words, if particles break under hydrostatic 
stress, large particles continue to break, giving a comminution limit type effect and because the 
particle size distribution tends to a uniform mush of decreasing sized fines, the voids ratio will tend 
towards being constant; this is exactly evident in Figure 1. 

The behaviour of the σ1-simulation, interestingly appears to be between that of the q- and p-
simulations. Like the p-simulation, the largest particles, with many contact forces acting on them, will 
be subject to large σ1. Hence the use of σ1 to govern breakage means the largest particles will be very 
susceptible to breakage. However, in comparison with the p-simulation, this effect is not as 
pronounced, due to the lack of consideration of σ2 and σ3; smaller particles, with few contacts, will 
also have large σ1, even though the other principal stresses may be low. This fits with the observed 
intermediate behaviour, with evident crushing of the largest particles (but not as substantial), yet a 
slightly greater portion of smaller particles when compared to the p-simulation. 

The F-simulation, by contrast, demonstrates realistic behaviour and results that are similar to the q-
simulation. This at first seems surprising, as the use of the single largest contact force (σFm = Fmax/d

 2) 
is indiscriminate to the number of contacts acting on a particle, and would not appear to minimise the 
crushing of the largest, weakest particles. This behaviour, and the similarity with the q-simulation can 
be understood by considering how comparatively large and small particles are loaded. 

Small particles have few contacts and will generally not be loaded isotropically, so if Fmax is large, 
then both q and Fmax/d

 2 will be large, due to the absence of additional (lateral) contacts. In both 
simulations the smallest particles will have high stresses and continually break. The factor preventing 
excessive breakage of large particles in the F-simulation can be attributed to the contact forces 
required to break particles. In this case the particle stress is a function of the single largest contact 
force only, so the size-effect on strength can be rewritten in term of force as Fm,0 ∝ d 1.1. It is evident 
that larger particles require greater critical forces to break. Hence, statistically, a large particle will 
break if it comes into contact with an equal- or larger-sized particle which can sustain the contact 
force. Statistically, if a large particle is in contact with a much smaller one, the mutual maximum 
contact force will cause the smaller particle to break. This implies that once there are few enough of 
the largest and dispersed particles remaining, they would not be susceptible to breakage. The PSD for 
this simulation in Figure 5(d) shows limited evidence of this: there are a larger proportion of 2 mm 
particles than expected, and after further crushing of the smaller sizes this would dislocate the fractal 
distribution. 

To illustrate these phenomena, one can consider an idealised loaded particle, such as in Figure 8. 
Figure 8(a) shows a single particle, size d = 1 m, subjected to unit forces. For diametric loading, the 
different measures of stress within this sphere are: q = 0.9, σ1 = 1.91, p = 0.64, and σFm = 1 (units of 
Pa), as labelled. If this sphere is now subjected to additional unit forces, but in an isotropic manner 
(i.e. 3 orthogonal pairs), as demonstrated in (b), then the shear stress q decreases, whilst there is no 
change in the major principal stress σ1, nor the Fmax stress, σFm. The mean stress p however increases. 
If this particle is subjected to an additional set of isotropic, orthogonal forces, offset by some rotation, 
shown in (c), then both the octahedral shear stress q and the Fmax stress σFm do not change, whilst the 
major principal stress σ1 and mean stress p both double in magnitude. This is similar to what happens 
in the simulations—where the largest particles accumulate contacts as crushing progresses. However, 
as noted, in such cases the contact forces will generally be smaller in magnitude; such a case is shown 
in (d), which shows an identical configuration to (c) but with smaller forces. Again the octahedral 
shear stress will be zero. The Fmax stress is also smaller, but σ1 and p are still relatively large compared 
to case (a), despite smaller contact forces. Although highly-idealised, this serves to show that for a 
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given size of particle, those with fewest contacts will, in general, be under the largest shear stress q, 
and the largest Fmax stress, σFm, whilst those with the most contacts, even if the contact forces are 
smaller, will exhibit the largest major principal and mean stresses. Meanwhile, the smallest particles 
will always be loaded with the fewest contacts, such as in (e), which shows a smaller particle loaded 
diametrically. In this case, all measures of stress are larger than an equivalently-loaded larger sphere 
(a), despite smaller forces. However in comparison to (d), which represents the state of larger 
particles, the small particle (e) has much larger q, σFm, and σ1, but a smaller value of p. Lastly, it is 
also worth noting that in the q- and F-simulations, for a large particle to break, there would need to be 
either anisotropic or relatively large contact forces acting on it, respectively. These scenarios are 
illustrated in (f), which is similar to (d) apart from one pair of opposing contact forces larger in 
magnitude. Compared to (d), in this case, q and σFm (and σ1) have increased significantly, whilst p has 
increased by a much lesser extent. Hence, there is a clear similarity in the q- and F-simulations, 
whereby the smallest particles (regardless of their actual size), are consistently subjected to the fewest 
contacts but largest stresses. 
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(a)    (b)    (c) 

 

(d)    (e)    (f) 

 
Figure 8. Diagram showing how the four measures of stress vary with changing F, d and number of contacts 

 

Figure 9 shows how the average coordination number increases with particle size, the data 
corresponding to points where the total number of particles is approximately 25000 in all simulations. 
The same trend is seen for all simulations. The smallest particles have average coordination numbers 
less than 1, this is because a portion of them are not in contact with other particles; while those that 
are carrying load have between 3–5 contacts. The 4 sets of data appear almost identical, despite quite 
different gradings; the q- and F-simulations at this point consist of fractal PSDs, in contrast to the p-
simulation, which comprises a narrower distribution of particle sizes (so although the average 
coordination number with respect to particle size is similar in all simulations, the frequency 
distribution of coordination numbers are different). The observed trends are the same at any point 
during the simulations, i.e. regardless of the range of sizes of particles or their quantity, the smallest 
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particles always have the same number of contacts, while the largest particles gain more as crushing 
progresses. 

 

Figure 9. Average coordination number with respect to particle size when each simulation contains approximately 
25,000 particles. 

 

The average characteristic particle stress as a function of particle size is plotted in Figure 10, the data 
corresponding to the final vertical stress (which is different for each simulation). The average particle 
stresses in this instance are calculated only considering load-carrying particles (particles with 0–1 
contacts are neglected, if they weren’t, then the average stresses for the smallest sizes of particles 
would be lower). The data is plotted on logarithmic axes, and for comparison, the average particle 
strengths are also shown. These are the actual particle strengths, which differ slightly from the 
theoretical strengths according to Eq. (6) (which would dictate a slope of -0.91), due to the fact that 
particles of a particular size have a distribution of strengths, and the weaker particles crush first. 
Nonetheless, although different in magnitudes, the average particle strengths follow the same 
relationship with size in all simulations. For the q- and F-simulations, the average particle stress 
increases steadily with reducing particle size, and the average stress curve is approximately parallel 
with the average strengths. The data for p-simulation however, displays no linear trend between 
average stress and particle size, and although the very smallest particles exhibit slightly higher 
average stresses, the values for most sizes are similar. The difference between the average stress and 
strength in this (p) simulation is narrowest for the largest 2 mm particles, and in general the average 
particle stress increases with particle size relative to its strength. 

The σ1-simulation displays intermediate behaviour; smaller particles are under larger stresses than the 
larger particles, with average stress increasing with reducing size, but the rate of increase is less than 
the q- and F-simulations. As such, a disproportionate quantity of the large particles break as the 
overall stress increases. 
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(a)       (b) 

 

(c)       (d) 

 

Figure 10. Average particle stresses with respect to size 

 

The average stresses for individual particle sizes are plotted against the applied stress in Figure 11. 
Only the first 6 sizes of particle are shown for clarity. In all simulations, the particle stresses increase 
with applied stress, however there are markedly different patterns of behaviour between the q- and F-
simulations and the p- and σ1-simulations. In the former, the average stress in the largest, 2 mm 
particles increases approximately linearly, until smaller particles come into existence, at which point 
the rate of increase reduces, with little change beyond a vertical stress of 20 MPa. The average stress 
of the next-smallest size of particle, d = 1.59 mm, at first increases, to a value higher than that of the 
2 mm particles, but then the rate of increase also reduces; this pattern continues with subsequently 
smaller sizes bearing increasingly larger stresses. It appears that the average stress for any size of 
particle stops increasing rapidly once there are many smaller particles in existence, at which point 
these particles will become surrounded and have additional contacts. For the q-simulation, this will be 
due to the additional contacts mitigating the induced octahedral shear stress. For the F-simulation, this 
will be due to the scarcity of contacts with similar or larger sized particles, which are able to bear 
large contact forces. 

In contrast, in the p- and σ1-simulations, it appears that the average stress for all particle sizes 
increases linearly with increasing vertical stress. In the p-simulation, the 6 particle sizes shown exhibit 
similar values of average stress, which will be of most significance for the largest and weakest 
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particles, and is consistent with the PSDs shown in Figure 4(b) which show very few of the largest 
particles remaining after compression. The σ1-simulation shows similar behaviour, with the average 
stress in the largest particles increasing rapidly with increasing vertical stress; however, the smallest 
particles are under moderately greater stresses. This is consistent with the notion of intermediate 
behaviour between the q- and p-simulations. 

These graphs, as well as those in the previous two figures, demonstrate the similarity between the q- 
and F-simulations, where the average stress in the smallest particles (whatever their actual size) 
increases approximately linearly with increasing σv, whilst the average stresses in the larger particles 
are mitigated and tend to approximately steady values. So in both cases, the smallest particles, always 
with the fewest number of contacts, are consistently subjected to the largest stresses, causing many of 
them to break, creating new ‘smallest’ particles, which then start ‘protecting’ the previously smallest 
particles. This process is continuous, and is the same regardless of scale. 

 

(a)       (b) 

 

(c)       (d) 

 

Figure 11. Average particle stresses in different sized-particles as a function of applied stress 
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Conclusions 

This work has sought to clarify the suitability of various breakage criteria when modelling particle 
breakage in DEM, which was achieved by investigating the use of four different common measures of 
stress to determine whether or not a particle should break. In each case, the strengths used were from 
experimental single particle crushing tests on a silica sand. 

The simulation using the octahedral shear stress resulted in the correct macroscopic stress-strain 
behaviour, as well as a realistic fractal particle size distribution, which was consistent with all 
previous work by the authors, which used the same breakage regime. Notably, the simulation using 
the Fmax stress: Fmax / d

 2, also produced the correct macroscopic behaviour. Although this is one of the 
more common breakage criteria used in DEM by other researchers, it has often been chosen arbitrarily 
with no justification, or due to the theory that the maximum critical stress within a solid sphere is a 
function only of the maximum contact force (e.g. Chau et al., 2000; Ciantia et al., 2015; Russell et al., 
2009). However, it was unclear whether this criterion would result in the correct behaviour in DEM. 
Both of these two breakage criteria were shown to result in continuous breakage of the smallest 
particles with increasing applied stress, whilst minimising breakage of the largest and weakest 
particles, leading to the correct normal compression line and fractal particle size distributions. 

For the simulation that used the octahedral shear stress, q, the additional contacts acting on 
comparatively larger particles act to mitigate the induced stress, thus enabling these weaker particles 
to survive when the applied vertical stress is high. This effect means that it is the particles with fewest 
contacts that will be most likely to be subjected to high shear stresses. This in turn means that 
particles in contact with those much larger will be subjected to high shear stresses, as large 
neighbouring particles physically prevent additional particles from forming contacts. 

For the simulation that considered the particle stress calculated from the maximum contact force 
(Fmax / d

 2), a similar effect was evident. Once comparatively large particles were in contact with many 
surrounding smaller particles, the only way in which these particles would break is if they were in 
contact with equal- or larger-sized particles. Hence, the use of both of these alternative measures of 
stress to determine breakage result in a regime whereby contacts between same- or larger-sized 
particles is minimised, and both lead to the emergence of a fractal distribution with a dimension of 
2.5, consistent with experimental results.  

Of the other two criteria investigated: the mean particle stress, p and the major principal stress σ1, both 
resulted in poor modelling of the macroscopic behaviour in comparison to experimental results. The 
use of mean particle stress p meant that the largest particles, which have many contacts (all of which 
contribute to the mean stress), will always be the most likely to break, and as such, it is primarily the 
largest particles that are continuously breaking; this resulted in a uniform particle size distribution and 
the evolution of a constant voids ratio. The use of σ1 in governing breakage resulted in somewhat 
intermediate behaviour. In this case the largest particles, with many contact forces contributing to 
large principal stresses, will be under large values σ1, but so too will many of the smallest particles, 
which have fewer contacts and therefore low values of σ2 and σ3. 

This paper has therefore served as a detailed investigation into the factors affecting particle breakage 
during normal compression and has provided insight into the evolution of fractal distributions of 
particle sizes which accompany a normal compression line. 
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