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Abstract 
 

Survivin is a cancer-associated protein that exists in several locations in the cell.  Its 

cytoplasmic residence in interphase cells is governed by CRM1-mediated nuclear 

exportation, and its localisation during mitosis to the centromeres and midzone microtubules 

is that of a canonical chromosomal passenger protein. In addition to these well-established 

locations, survivin is also a mitochondrial protein, but how it gets there and its function 

therein is presently unclear.  Here we show that the first 10 amino acids at the NH2 terminus 

of survivin are sufficient to target GFP to the mitochondria in vivo, and ectopic expression of 

this decapeptide decreases cell adhesion and accelerates proliferation.  The data support a 

signalling mechanism in which this decapeptide regulates the tyrosine kinase, C-Src, leading 

to reduced focal adhesion plaques and disruption of F-actin organisation. This strongly 

suggests that the NH2 terminus of survivin is a mitochondrial targeting sequence that 

regulates C-Src, and that survivin acts in concert with C-Src to promote tumorigenesis.  
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Introduction 

Survivin is a cancer-associated protein that inhibits cell death and is essential for mitosis 

(Altieri, 2008). Although its expression is usually confined to G2-phase and mitosis, survivin 

is often expressed throughout the cell cycle in cancer. Its abundance in tumours correlates 

with increased resistance to chemotherapy and radiation, treatments lethal to cells through 

DNA damage and apoptosis induction. When present in interphase, survivin is predominantly 

cytoplasmic and is actively shuttled out of the nucleus by CRM1/exportin (Colnaghi et al., 

2006; Knauer et al., 2007; Rodriguez et al., 2002; Stauber et al., 2007). Nuclear expression of 

survivin has been correlated with relapse-free prognosis for some cancer patients (Knauer et 

al., 2007) and longer survival in others (Okada et al., 2001; Tonini et al., 2005), although 

several papers argue the opposite, (see Wheatley, 2011). Supporting the cytoprotective role of 

cytoplasmic survivin, we and others have shown that mutating its nuclear export signal, or 

forcing nuclear location, abrogates cytoprotection from irradiation and apoptosis (Colnaghi et 

al., 2006; Connell et al., 2008; Knauer et al., 2007), and may have therapeutic potential 

(Rexhepaj et al., 2010).  

 

In addition to the cytoplasmic and nuclear pools, in cancer cells some survivin resides in the 

mitochondria (Dohi et al., 2004). As for other mitochondrial and cytoplasmic proteins (Itoh et 

al., 2005), when overexpressed the mitochondrial pool of survivin is eclipsed by the abundant 

cytoplasmic population.  However, subcellular fractionation has clearly shown its presence in 

this organelle, and its abundance increases in response to hypoxia and treatment with 

adriamycin/etoposide (Ceballos-Cancino et al., 2007; Dohi et al., 2004). Despite its early 

detection in mitochondria, how survivin enters them and functions therein remain unclear. 

Kang et al., (2011) showed that a cofactor called aryl hydrocarbon receptor-interacting 

protein facilitates entry of survivin into mitochondria by interacting with its C-terminal 
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residue, D142 (Kang et al., 2011).  Alternatively survivin may be chaperoned into 

mitochondria by Hsp90, which interacts with its baculovirus-inhibitor-of-apoptosis repeat 

domain (Fortugno et al., 2003).   

 

As mitochondria are instrumental in apoptosis, one might expect the primary function of 

mitochondrial survivin to relate to its status as an inhibitor of apoptosis protein. In fact, Dohi 

et al. (2004) found survivin had to be released from mitochondria to effectively counter cell 

death. The functional relevance of mitochondrial survivin may also be linked to its interaction 

with Hsp90 (Fortugno et al., 2003), as treatment with the survivin-Hsp90 antagonist 

shepherdin compromises mitochondrial integrity (Hoel et al., 2012; Vishal et al., 2011). 

Survivin may also influence mitochondrial dynamics by modulating the sculpting proteins, 

Drp1/Fis1 (Hagenbuchner et al., 2013). Either way, one would expect that compromising 

mitochondrial integrity would affect apoptosis and metabolism (Hagenbuchner et al., 2013; 

Rivadeneira et al., 2015).  

 

C-Src is a non-receptor tyrosine kinase that is targeted to the plasma membrane by 

myristoylation and is frequently overexpressed or aberrantly activated in cancer, particularly 

epithelial cancers (Frame, 2002; Giaccone and Zucali, 2008). C-Src, the first proto-oncogene 

identified, was discovered as the endogenous homologue of the oncogene, V-Src. C-Src is 

involved in many cellular events and, like survivin, interfaces life and death at several levels. 

At the plasma membrane, C-Src regulates cell-matrix attachment via focal adhesions (FA) 

and the F-actin cytoskeleton.  However, somewhat paradoxically, prolonged C-Src activity 

prevents FA turnover causing increased adhesion. C-Src can be directed to mitochondria by 

proline-rich cofactors that interact with its SH3 domain including Dok4 (Itoh et al., 2005), 

and T-cell leukemia virus type-1 protein (Tibaldi et al., 2011).  
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This study aimed to determine how survivin enters the mitochondria and its function therein. 

We report that expression of an NH2-terminal survivin truncation lacking the first 10 residues 

causes increased abundance of FA and F-actin in cells, which we attribute to its ability to 

activate C-Src.  Conversely, adhesion is decreased following the expression of the NH2 

terminal decapeptide alone. Finally, we show that the NH2-terminus is a mitochondrial 

targeting sequence (MTS) that binds C-Src. Collectively, these data suggest that survivin 

liaises with C-Src to promote tumorigenesis.  
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Results and Discussion. 

Cells expressing survivin11-142-GFP are highly adherent. 

We recently showed that HeLa cells expressing an NH2-terminal truncation of survivin, 

survivin11-142-GFP were resistant to apoptosis and sensitized to irradiation (Wheatley, 2015).  

During handling we also noticed that they were more adherent than controls, suggesting that 

FAs were affected.  Therefore, we grew cells on glass coverslips, fixed and probed them with 

anti-vinculin antibodies and counterstained with rhodamine-phalloidin to visualise F-actin.  

Compared with GFP controls, survivin11-142-GFP cells had more prominent FAs and much 

stronger F-actin fibres (Figure 1A).  

 

The NH2 terminus of survivin regulates C-Src activity  

It is well established that the formation/ dynamics of FAs and the F-actin integrity are 

dependent on C-Src activity (Frame, 2002). Thus, we examined whether C-Src activity was 

altered in these cells. Lysates from cells expressing GFP, survivin-GFP or survivin11-142-GFP 

were interrogated for changes in C-Src expression and activity by immunoblotting with pan-

C-Src and phospho-C-SrcY416 antibodies, respectively. Strikingly, although C-Src was 

present at similar levels in all samples, its activity was highly elevated in cells expressing 

survivin11-142-GFP (Figure 1B). 

 

As truncating the first 10 residues of survivin had such a profound effect on adhesion and C-

Src activity we turned our attention to the NH2 terminus itself. Interestingly, 3 of these 10 

residues, 4, 6, and 7 are prolines: MGAPPTLPAW. While enrichment of prolines within this 

decapeptide might explain why structural data was not forthcoming (Verdecia et al., 2000; 

Sun et al., 2005), from a functional perspective it suggests the potential to interact with SH3 

domain-containing proteins, eg. C-Src. To test this, we checked whether survivin1-10-GFP 
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(and survivin-GFP), could immunoprecipitate endogenous C-Src, and gained a positive result 

in each case (Figure 1C). Mediation of C-Src-survivin interaction by the NH2 terminus was 

further corroborated by the inability of survivin11-142-GFP, to co-IP C-Src in this experiment.  

Thus we conclude that these NH2 terminal 10 residues are necessary and sufficient to bind to 

C-Src.  

 

Survivin1-10 is a mitochondrial targeting sequence. 

By fusing the first 30 nucleotides of the human survivin gene to GFP –cDNA we engineered 

MGAPTLPPAW-GFP. When expressed in HeLa cells we discovered that it localised to 

mitochondria (Figure 2A). To verify this biochemically cells expressing GFP or survivin1-10-

GFP were fractionated by differential centrifugation; whole cell extracts and mitochondrial-

enriched fractions were probed with anti-GFP antibodies (Figure 2B). Anti-VDAC and anti-

tubulin antibodies were used to identify mitochondrial fractions and cytoplasmic 

contamination respectively. Survivin1-10-GFP was clearly present in the mitochondrial 

fraction, whereas GFP was excluded (Figure 2B). Next, super-resolution microscopy was 

used to image survivin1-10-GFP in living cells. Structured illumination showed that survivin1-

10-GFP was coincident with MitoTracker throughout the mitochondria rather than simply 

binding to the exterior (Figure 2C). To ascertain whether survivin1-10-GFP could be targeted 

to the mitochondria independently of any cofactors, we in vitro translated (IVT) 35S- 

methionine labelled GFP or survivin1-10-GFP to compare their import into isolated 

mitochondria, using the MTS of cytochrome-c oxidase subunit VIIIA as a positive control 

(MTS-GFP). Figure 2D shows IVT and radiolabelling, followed by assessment of association 

of each protein with the mitochondria after washing in buffer (control), after incubation in 

trypsin (to remove exteriorly bound proteins), or after trypsin and Triton X-100, which 

eliminates all proteins, GFP acted as negative control; its signal was low after the control 
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wash, and eliminated by trypsin treatment, highlighting its failure to be imported. In contrast, 

MTS-GFP, survivin1-10-GFP and survivin-GFP were successfully imported into the 

mitochondria, as evidenced by protein remaining after trypsin treatment. These data suggest 

that survivin1-10-GFP and survivin-GFP are mitochondrial residents and can enter this 

organelle independently of cofactors.  

 

Mitochondrial targeting sequences are normally NH2-terminally placed amphiphilic stretches 

of 17-40 amino acids that tend to form amphipathic α-helices that engage with translocase 

complexes of the outer and inner mitochondrial membrane. The mitochondrial localisation of 

survivin1-10 and its ability to access isolated mitochondria in vitro suggest that it is a bona fide 

MTS despite its short length. Consistent with this, survivin1-10 conforms to the amphiphilic 

requirements of a canonical MTS when mapped on a hydropathy plot (Figure 2E), with 

hydrophobic residues predominantly on one side, and hydrophilic residues on the other.  

 

The NH2 terminus of survivin regulates substrate adhesion 

Whilst handling we noted that cells expressing survivin1-10-GFP grew more rapidly than 

controls (Figure 2F) and were less adherent (Figure 3A). To determine whether the prolines 

were critical to adhesion, we substituted them for alanines and transiently expressed this 

mutated survivin1-10∆P –GFP into HeLa cells. Proline-alanine substitution restored FAs and F-

actin assembly (Figure 3A). Moreover, when observed live the percentage of 

unspread/floating cells was reduced from 96.2% (N=104) cells expressing survivin1-10-GFP, 

to 10.8% (N=277) in cells expressing survivin1-10∆P-GFP.  Live imaging also revealed that 

mitochondrial targeting was abolished by P∆A mutation.  (Figure 3B). The presence of both a 

proline-rich sequence and a MTS in the NH2 terminus fits with a precedent described for 

Dok4 (Itoh et al., 2005) and HTLV1 (Tibaldi et al., 2011), suggesting that it is a C-Src-
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regulator and a mitochondrial chaperone. 

 

Conclusion 

We report the novel findings that the NH2 terminus of survivin is both a C-Src regulator and 

an MTS. The data suggest that much of what survivin achieves in cancer may be 

accomplished in collaboration with C-Src. 
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Materials and Methods.  

Unless otherwise indicated, tissue culture reagents were obtained from Invitrogen, cloning 

enzymes from NEB, and all other reagents from Sigma-Aldrich. 

Molecular cloning 

Wild type survivin1-10-GFP was generated by annealing 2 primers corresponding to the first 

30 nucleotides of human survivin cDNA, with 5’ EcoRI and 3’ HindIII sites. The annealed 

DNA fragment was ligated into pBS-GFP then shuttled into pcDNA3.1 (Invitrogen) using 

EcoRI/ Xho1. The triple mutation that translates to MGAaTLaaAW was made by site-

directed mutagenesis with the 5′ primer: 5’atgggtgccgcgacgttggccgctgcctgg3’ and 3′ primer: 

5’ccaggcagcggccaacgtcgcggcacccat3’ (Eurofins, MWG Operon), Vent polymerase, dNTPs 

and survivin1-10-GFP cDNA as template, using Stratagene Quickchange II kit (Agilent 

Technologies). Template was digested with DpnI and nascent cDNA transformed into 

competent DH5α  E.coli cells. All sequences were verified prior to use.   

Cell culture and proliferation 

HeLa cells (derived from ATCC stock) were cultured at 37°C in 5% CO2 humidified 

incubator in Dulbecco’s Modified Eagle’s Medium (DMEM) with 10% HyClone bovine 

serum (FBS), L-glutamine (2 mM), 1% penicillin-streptomycin and 1% fungizone. To create 

lines stably expressing GFP-tagged proteins, cells in antibiotic-free DMEM were transfected 

with pcDNA3.1 constructs using FuGENE 6 (Promega) in Opti-MEM. To select for positive 

transformants, G418 (50 μg/ml) was added 24h post-transfection and FACS sorted. Cell 

number was assessed using a resazurin-based assay in which cells were incubated for 1 h at 

37˚C in 10 μg/ml resazurin in DMEM and measured spectrophotometrically (FLUOstar 

Galaxy, BMG Labtechnologies) with excitation 530 nm and emission 590 nm.  
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Mitochondrial assays 

Fractionation: 106 cells were resuspended in mitochondrial isolation buffer (10 mM HEPES, 

pH 7.5, 200 mM Mannitol, 1 mM EGTA, 70 nM sucrose with protease inhibitors), and lysed 

with 25 strokes in a 2cm3 glass homogenizer. Nuclei were removed by 5 min centrifugation at 

1000xg. The supernatant was re-spun (2000xg) to remove contaminating nuclei, then at 

10,000xg, (15 min, 4°C) to pellet mitochondria, which were re-washed and pelleted 2 more 

times to ensure purity.  

Import: GFP, MTS-GFP, survivin1-10-GFP and survivin-GFP were translated in vitro (IVT) 

from pcDNA templates using T7 RNA polymerase, incorporating35S-methionine using a 

rabbit reticulocyte lysate system (Promega). Radiolabelled proteins were incubated for 1h at 

37°C with mitochondria isolated from HeLa cells in import buffer (20 mM HEPES pH7.5, 

3% (w/v) fatty acid-free BSA, 250 mM sucrose, 80 mM KCl, 5 mM MgCl2 supplemented 

with 2 mM ATP and 10 mM sodium succinate), before washing in buffer or incubation in 

150 µg/ml trypsin or trypsin plus 1% triton (15 min, on ice).   

Immunoblotting 

Cell lysates were prepared in M-PER (ThermoFisher, 45 mins, RT), with standard protease (1 

µg/ml) and phosphatase inhibitors including 2 mM sodium orthovanadate. Standard 

procedures were used for SDS-PAGE (12%) and transfer to nitrocellulose (PALL). To detect 

GFP-tagged proteins, membranes were probed with anti-GFP antibodies (1/1000, Roche). 

Additional primary antibodies used: tubulin (B512, 1/2000, Sigma); C-Src (SC-18, 1/1000, 

Santa Cruz); phosphor-C-SrcY416(1/1000, Cell Signalling); VDAC (D73D12, 1/1000, Cell 

Signalling). Incubations were carried out in PBS with 5% milk and 0.1% Tween 20, except 
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for phosphor-SrcY416, for which TBST/ 5% BSA was used.  Horse-radish peroxidise-

conjugated secondary antibodies (DAKO, 1/2000), enhanced chemiluminescence 

(GeneFlow) and X-ray film (GE Healthcare) were used to detect bands. 

Immunoprecipitation 

Three million cells were harvested by scraping and lysed in 200µl lysis buffer (10mM Tris-

HCl pH 7.5; 150mM NaCl; 0.5mM EDTA; 0.5% NP-40) supplemented with standard 

protease inhibitors, 2U benzonase and 2 mM MgCl2. Lysates were clarified by centrifugation 

(20,000 rfg,  2 min, 4oC) then diluted in dilution buffer (10mM Tris-HCl pH 7.5; 150mM 

NaCl; 0.5mM EDTA). For every 500µl of extract, 25µl of prewashed GFP-trap_A beads 

(50% slurry, Chromotek) were added (note; the exact quantity was optimised to the 

expression of GFP-tagged protein in each sample). Lysates and beads were incubated for 1h 

at 4oC with rotation then pelleted by centrifuged 2,500 g for 2 min at 4oC and washed in ice-

cold dilution buffer.  Proteins were boiled off the beads (95oC for 10 min) in lysis buffer with 

SDS-sample buffer.   

Microscopy 

Fixed: Cells were cultured on glass coverslips +/- poly-l-lysine, then fixed with 4% 

formaldehyde, permeabilized using 0.15% Triton-x-100 in PBS and blocked with 1% BSA 

before immunoprobing with anti-vinculin antibodies (1/1000, Santa Cruz, 1h RT), and Cy5-

secondary anti-rabbit antibodies (1/1000, AbCam; 1h RT). Samples were counterstained with 

20 nM rhodamine-phalloidin and DAPI, then mounted with Mowiol. Images were acquired 

using an inverted (Olympus IX71) microscope with 40 x (NA1.2, oil) and 60 x (NA1.4, oil) 

objectives, DeltaVision software (GE.Healthcare) and a Coolsnap HQ2 camera 
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(Photometrics). Maximum projections of deconvolved 0.3 μm Z-stacks prepared in 

Photoshop are presented. 

Live: Cells were grown in glass-bottomed dishes (Willco) +/- poly-l-lysine. Prior to imaging, 

medium was replaced with MitoTracker® CMXRos (25 nM) in phenol-red free CO2-

independent medium and imaged as above. For super-resolution a Zeiss Elyra PS.1 

microscope was used in structured illumination mode, with the following settings: objective 

Plan-Apochromat 63x/1.4 Oil DIC M27, filter set LBF -488/561, cmos camera exposure time 

20 ms. Two imaging tracks were set up in fast frame mode which alternates the excitation 

lasers (solid state 488nm and 561 nm at 20% and 10% laser power settings, respectively). 

Channel alignment was confirmed using 100 nm beads scanned with the same settings. Image 

processing and alignment was carried out using Zeiss Zen Black 2012 software.  
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Figures 

 

Figure 1: The NH2 terminus of survivin regulates C-Src.  (A) HeLa cells expressing GFP, 

or survivin11-142-GFP (green) were grown on glass coverslips, fixed and probed to visualise 

FAs with anti-vinculin antibodies (blue) and F-actin with rhodamine-phalloidin (red), scale 

bars 5 µm.  (B) Asynchronous cell lysates immunoblotted with anti-phospho-C-Src, C-Src 

and anti-tubulin antibodies. Anti-GFP verified expression of each construct. (C) Using GFP-

Trap C-Src co-immunoprecipitated with survivin1-10-GFP and survivin-GFP but not GFP or 

survivin11-142-GFP. 
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Figure 2: The first 10 amino acids of survivin are an MTS. (A) HeLa cells expressing 

survivin1-10-GFP or GFP (green) were grown on poly-lysine coated slides, stained with 

MitoTracker (red) and imaged live. Scale bars 20 µm (upper) and 5 µm (lower). (B) 

Immunoblot of fractionated cells: 25 µg each whole cell extracts, (WCE) and cytoplasmic 

fractions (cyto); 8 µg mitochondrial fraction (mito). Anti-GFP detects GFP and survivin1-10-

GFP, anti-VDAC and anti-tubulin highlight mitochondrial and cytoplasmic fractions 

respectively. (C) Structured illumination of mitochondria in live cells expressing survivin1-10-

GFP stained with MitoTracker. Scale bar 1 µm. (D) Mitochondrial import assay: GFP, MTS-
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GFP, survivin1-10-GFP and survivin-GFP translated in vitro (IVT), labelled with 35S-

methionine then incubated with mitochondria isolated from HeLa cells for 1 h at 37°C. 

Mitochondria were washed in isolation buffer (control) or treated with 150 µg/ml trypsin (trp) 

or trypsin and 1% Triton X-100 (tri). Mitochondrial retention of proteins was assessed by 

SDS-PAGE and phosphor-imaging. (E) Hydropathy wheel plot of the first 10 residues of 

survivin. Residue type: circles (hydrophilic); diamonds (hydrophobic) Hydrophobicity scale 

is green (high) to yellow (zero). Hydrophilicity scale is red (high) to orange (low). (F) Rate of 

cell growth of each line was compared in exponential phase. Mean and standard deviation of 

three independent experiments is shown.  A paired T-test demonstrated that the increased 

growth rate of 1-10-GFP cells is significantly different from the GFP control, variance in 

other lines was not significant (ns).  
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Figure 3: Survivin1-10-GFP is a proline-rich sequence that reduces cell adhesion. (A) Cells 

expressing survivin1-10 –GFP or survivin1-10∆P-GFP (green) were grown on uncoated glass 

coverslips and stained as in Figure 1A. (B) Live cells expressing survivin1-10∆P-GFP stained 

with MitoTracker. Scale bars 10 µm. 
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