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ABSTRACT

This paper reports on research to explore the potential for

using electromyography (EMG) measurements in pedestrian

navigation. The aim is to investigate whether the relationship

between human motion and the activity of skeletal muscles in

the leg might be used to aid other positioning sensors, or even

to determine independently the path taken by a pedestrian.

The paper describes an exercise to collect sample EMG data

alongside leg motion data, and the subsequent analysis of this

data set using machine learning techniques to infer motion

from a set of EMG sensors.

The sample data set included measurements from multiple

EMG sensors, a camera-based motion tracking system and

a foot mounted inertial sensor. The camera based motion

tracking system at MMU allowed many targets on the subjects

lower body to be tracked in a small (3m x 3m x 3m) volume

to millimetre accuracy.

Processing the data revealed a strong, but not trivial, relation-

ship between leg muscle activity and motion. Each type of

motion involves many different muscles, and it is not possible

to conclude merely from the triggering of any single muscle

that a particular type of motion has occurred. For instance,

a similar set of leg muscles is involved in both forward

and backward steps. It is the precise sequencing, duration

and magnitude of multiple muscle activity that allows us

to determine what type of motion has occurred. Preliminary

analyses of the data suggest that subsets of the EMG sensors

can be used to distinguish, for instance, forward motion from

backward motion, and it is expected that further analysis will



reveal additional correlations that will be useful in inferring

the subjects motion in more detail.

This paper will introduce the EMG personal navigation con-

cept, describe the data collected, explore the machine learning

techniques applied to the dataset, and present the results of

the analysis.

Index Terms—EMG, Physiology, Indoor Location

I. INTRODUCTION

Pedestrian navigation, particularly in situations where GNSS

signals are sparse, is the focus of much research. A common

approach is to obtain an integrated solution thought the com-

bination of information from several sources, such as WiFi

fingerprinting, inertial sensors, vision sensors or sparse GNSS

measurements.

Electromyography (EMG) measures the electrical activity

generated by skeletal muscles. Since skeletal muscles are

responsible for a pedestrians movement, EMG observations

may offer a complimentary source of information to a dead

reckoning system or even provide an entirely independent dead

reckoning solution. The relationship between the activity of

a large number of skeletal muscles and the movement of a

pedestrians limbs is a complex one. However the premise

behind this study is that limb, especially leg, movement is

predictable from EMG measurements. Our objective is to

explore this premise using EMG and position data collected

in laboratory trials.

One objective of this study was to determine whether EMG

measurements could provide a more reliable means of either

detecting, or eliminating false detections of static periods in a

foot mounted inertial navigation system (INS). Various studies

have shown that foot-mounted inertial sensors can be used

to determine a pedestrians motion to a useful accuracy (e.g.

[10], [14], [16], [1]), but this concept works best when the

pedestrians steps are distinct and when external constraints

can be used. For example external information may be used

to limit the accumulated errors in heading estimation which

is a common feature of inertial-based navigation. This is

especially true the case of the low cost inertial sensors that are

usually used in this context. The foot-mounted INS technique

relies strongly on being able to detect the period in each step

when the foot is stationary on the floor, so that so-called

zero velocity updates (ZUPTs) can be applied to constrain the

growth of errors caused by the accelerometer and gyro sensor

errors. During periods of distinct, regular walking paces these

static periods are usually easy to identify, but if the pedestrian

undertakes more complex movements, for example, shuffling

on the spot then it may not be possible to identify a suitable

ZUPT occurrence for several seconds, or false ZUPTs may be

selected, leading to rapid growth in the integrated trajectory

errors.

A more ambitious objective of the study is to attempt to

recreate a pedestrians trajectory entirely from EMG measure-

ments. If a person step length and direction can be estimated

from lower limb EMG measurements then a full trajectory

can potentially be recreated. In the past EMG signals have

been used to count steps taken by a pedestrian and a neural

network used to estimate step length when a GPS trajectory

is available [5] [6]. In this work we aim to move beyond the

simple regular stride case. Our method is designed to learn the

mapping between the sequence and magnitude of EMG signals

and the resulting movement in order to have the potential to

determine the type and scale of both regular and irregular

movements.

This study has made an initial investigation of the potential for

this concept, by using machine learning techniques applied to a

set of leg muscle measurements. We incorporate no knowledge

of the location of each muscle within the skeleton so the

encouraging results from the machine learning approach are

expected to improve once a skeletal model is incorporated in

future work.

In this paper we first describe the measurement of electric

signals from skeletal muscles at the skin surface, so called

‘surface EMG’. We then go on describe the machine learning

regime implemented for this work and it’s application to a

dataset collected in a short data collection campaign.

II. ELECTROMYOGRAPHY

Movement such as walking is generated by the active con-

traction and active force generation of skeletal muscles. Since

active muscle forces cause movement, there is a rationale for

the idea that measuring muscle activations can predict the

subsequent movement. Muscle is electrically excitable tissue,

and electromyography concerns the electrical measurement of

muscle activity. EMG, the electrical activity of skeletal muscle,

can be described mathematically as a random (stochastic)

process which is amplitude modulated. When muscular effort

is low, the amplitude of EMG is low; when muscular effort is

high, the amplitude of EMG is high ([3], [7], [18]).

Skeletal muscles are composed of individual muscle fibers that

contract when stimulated by a motor neuron. Motor neurons

originate in the ventral horn of the spinal cord, they project to a

muscle, and via multiple branches they form connections with

many muscle fibers, typically one or more thousand for leg

muscles. A motor unit is the smallest functional subdivision

of a muscle. It consists of the motor neuron, its axon and all

the muscle fibers that are innervated by its branches. When

motor units are sufficiently stimulated, they transmit electrical

impulses at rates ranging typically 5-20 impulses per second.

The resulting motor unit wave train is a convolution of this se-

quence of impulses with the motor unit action potential which

is an impulse response function with a polyphasic pattern

characteristic of the motor unit. The motor unit action potential

train transmits into and along the corresponding muscle fibers



Fig. 1. Sample EMG signal recorded from the Left Vastus Medialis muscle
during forward and reverse stepping

causing contraction of those fibers. Typically muscles in the

leg contain hundreds of motor units and increasing muscle

contraction is graduated by the progressive recruitment of

small motor units with fewer muscle fibers to larger motor

units containing more muscles fibers and which generate larger

forces with faster twitch times. Thus muscles contain up to

several hundred sources spatially distributed within the muscle

and with a temporal distribution which is largely random

and unsynchronized. The combined electrical activity of the

muscle comprises the temporal and spatial summation of

all sources. Combined, this signal is an interference pattern.

When observed from the skin surface outside the muscle, the

resultant signal has the characteristic of amplitude modulated

random noise in which the time varying amplitude represents

approximately the time varying level of active contraction and

level of active force generation within the muscle ([3], [18]).

In figure 1 the signal recorded by an EMG electrode on the

Left Vastus Medialis muscle is shown. Over this 15s period

the participant repeatedly walked two paces forwards and two

backwards.

Measuring the Electrical Muscle Signal

The electrical muscle signal is measured most easily from elec-

trodes on the skin surface immediately outside the muscle. The

alternative to surface recording is electrodes within the muscle.

Measurement from the surface has the advantage of sampling

a greater muscle volume which is more representative of

contraction of the whole muscle. Electrode configurations

vary including mono-polar, bipolar and multipolar. Bipolar

and multipolar configurations usually provide differential mea-

surement which allows better noise local noise rejection and

local pre-amplification prior to further amplification and signal

processing. The signal is typically high pass filtered at source

to remove slowly varying skin-contact potentials and modern

electrodes, such as the Delsys, Trigno sensors used in this

work encode the signal digitally at source improving signal

to noise ratios. The measured waveform is typically rectified

and subsequently low pass filtered to extract the time varying

amplitude. Adaptive, optimal pre-whitening is sometimes used

as a preliminary post processing step to optimise the signal to

noise ratio [7]. Electrodes are placed superficial to the muscle

of interest where the belly of the muscle is substantial. Since

the junction between nerve and muscle usually occurs centrally

in the muscle belly in a region known as the motor point, and

since action potentials spread to the ends of the muscle from

the motor point, electrodes are usually placed slightly distal

to the motor point [3].

Current Uses of EMG

The motor neuron originating from the spinal cord integrates

all spinal and supraspinal neural input and provides the final

common path for motor output from the nervous system. The

motor unit provides the basic unit of actuation and, through

connection of one motor neuron to thousands of muscle fibers,

muscle provides an amplified version of that motor signal.

Hence EMG provides the main, most direct measure of motor

output from the nervous system and finds uses in scientific

and clinical application.

In neurophysiology, investigation of the timing and extent of

motor output in relation to well defined electrical, magnetic

and mechanical stimuli identifies the contribution of individual

neural pathways (spinal, trans-cortical, slow central loops)

influencing motor output [18]. Movement is caused by a re-

dundant, higher dimensional muscle system. In biomechanics,

EMG allows investigation of how individual muscle forces

and patterns of activation cause generation and impedance of

movement. Sensori-motor control requires learning the map-

ping between motor command, force generation and move-

ment. Training and storing internal neural models representing

these mappings enables more accurate control and more ac-

curate planning of control. These trained internal models also

allow sensory analysis of muscle activation signals to estimate

configuration of the body in a process known as proprioception

[15]. EMG measurement contributes to investigation of these

processes.

Clinically, EMG is used in diagnosis and rehabilitation. For

example many myopathies including inflammatory and au-

toimmune myopathies are diagnosed in part by measurement

and identification of abnormal motor unit and muscle activa-

tion patterns [8]. In neurological disorders, EMG contributes

to diagnosis. For example in motoneurone disease, EMG

identification of systemic fasciculation provides crucial diag-

nosis. In peripheral nerve and partial spinal cord injury, EMG

measurement of spinal output, following transcranial magnetic,

electrical or mechanical stimulation, allows diagnosis of the

extent and level of lesion. In rehabilitation, measurement and

real-time use of EMG provides feedback in sensori-motor



relearning [17] and provides myoelectric control of active

prostheses [11].

III. PREDICTION OF MOVEMENT USING EMG SIGNALS

The prediction task was cast as a supervised learning problem,

with the aim of predicting the change in distance of each foot

over a small fixed time window. In general a short term causal

relationship can be considered to exist between muscle acti-

vation (measured in proxy by the EMG sensors) and change

in distance within short temporal windows. Therefore features

were constructed as short multi-variate time series capturing

the current, and a limited number of prior, EMG measurements

across all recorded sensors. A (non-linear) mapping between

these features and each variable to be predicted was then

learnt using a training data set annotated with the feature of

interest to be subsequently predicted. Such feature construction

is based on the assumption that the limited temporal window is

able to provide an accurate (potentially non-linear) mapping

between the set of generated features and the position data,

with each feature discriminative enough to map only to a

single value in the domain of the variable of interest.

A. Feature encoding

Specifically a feature was modelled as a temporally lagged

multi-variate time series of fixed length, l. Under such an

encoding one feature was constructed per time point using a

lagged sliding window of length l over a set of m individual

sensor readings. Formally:

Ft = Tt−(l−1), . . . , Tt−1, Tt (1)

where t denotes the temporal instant at which the variable of

interest is being measured and:

Tj =







v1
...

vm






(2)

denotes the vector of measurements across all sensors for time

instant j, with vk denoting the scalar measurement for sensor

k at time j. Under such an encoding a single feature can by

represented as a m× l matrix:

Ft =







v1,t−(l−1), . . . , v1,t−1, v1,t
...

vm,t−(l−1), . . . , vm,t−1, vm,t






(3)

In order to make all sensor measurements comparable uni-

variate time series corresponding to individual sensors within

each feature were each standardised to have zero mean and

unit variance. Formally, let Sq denote a single row within Ft

and let µSq
and σSq

denote the mean and standard deviation

of Sq respectively, then:

Sq =
Sq − µSq

σSq

(4)

Given a training set of temporally aligned EMG measurements

of length L for an individual, a set of such features was

extracted using a sliding window: F = {F1, . . . , Fn} resulting

in |F| = n = L − (l − 1) features. In the training set

feature labels were additionally extracted from a corresponding

ground truth of the horizontal movement travelled, computed

from a recording of absolute positional data. In the test set

these labels we also extracted for use as the ground truth.

A detailed description of the experimental setup and the

acquisition of the EMG and ground truth positioning data is

provided later in section IV.

B. Prediction model

A multi-variate time series aware k-NN regressor was im-

plemented as the prediction model. A k-NN regressor is a

(almost) non-parametric prediction algorithm which, given

an input feature, predicts the outcome as a weighted result

of the labels of the k closest features in a feature space

populated by previously seen instances [12]. k-NN models

are inherently able to learn non-linear relationships between

the input features and the variable of interest. While almost

completely non-parametric, k-NN regressors are defined by

the choice of a distance measure. In standard k-NN models

each feature is a vector and the distance measure used is one

of the standard Lp measures, most commonly the Manhattan

or Euclidean distance. In contrast, time series aware k-NN

regressors enable the consideration of distance measure that

acknowledge the presence of the temporal dimension such

as dynamic time warping. Finally, a multi-variate time series

aware k-NN regessors generalise these distance functions to

multi-variate time series.

In this work we consider two different functions, the extension

of the Manhattan distance to the temporal multi-variate case by

assuming independence between temporal measurements and

the mean dynamic time warping score across individual sensor

(univariate) time series per feature. The former assumes strict

temporal alignment is important and represents the computa-

tionally simplest approach. The latter is a variant of Dynamic

Time Warping (DTW) [4], a measure of similarity between

two time series with a relaxed alignment between time points,

measuring the distance as the distance under which the time

series are closest when allowing them to varying in time or

speed with respect to one another. Such a measure has been

shown to perform well across a number of domains [9].

Formally, let Ft,i,j denote the ith row and jth column in the

matrix representation of an arbitrary feature Ft. Then the two

distance measures used were:

Manhattan:

δ(Fp, Fq) =

m
∑

i=1

l
∑

j=1

|Fp,i,j − Fq,i,j | (5)



DTW:

δ(Fp, Fq) =
1

m

m
∑

i=1

DTW (Fp,i, Fq,i) +DTW (Fp,i, Fq,i)

2

(6)

where DTW (·, ·) is the standard DTW using the Manhattan

distance the local cost measure as defined in [13]1.

The distance measures were used in a standard k-NN regressor,

with k = 3 and a uniform weighting applied to the three

resultant predictions.

IV. DATA COLLECTION & SIGNAL PRE-PROCESSING

A. Experimental Setup

A 10-camera motion analysis system (VICON Nexus Oxford

Metrics) was used to measure the body kinematics. Move-

ments were tracked using 24 retro reflective markers placed

bilaterally on the second metatarsal head, the lateral and

medial malleoli, the navicular tuberosity, the tibial tuberosity,

the medial and lateral tibial condyles, the medial and lateral

femoral condyles, the anterior and posterior iliac spines. The

position of the markers was tracked at 100 Hz in a locally

defined reference frame.

Having shaved and cleaned the skin, ten surface wireless EMG

electrodes (Trigno, Delsys, Boston, MA, USA) were placed on

one participant. Data were recorded at 1000Hz bilaterally from

the gastrocnemius medialis, tibialis anterior, vastus lateralis

and medialis and semi-membranosus muscles.

Data collection was performed in 15s periods with the partic-

ipant asked to perform a set of predefined movements in each

session. Three types of motion are considered in this work,

forward / backward steps, a ”figure 8” path and a circular

path. The type and extent of the motions was limited by the

space in which the retro-reflective markers could be tracked

by the VICON system.

B. Signal Pre-processing

Position measurements from the VICON tracking system

were rotated to a local level reference frame before being

differenced to give horizontal and vertical change in position

for each measurement epoch.

The recorded EMG signals were downsampled via an absolute

summation over discrete windows of 15 data points, with each

resulting data point representing the magnitude of the muscle

activation over a 0.05 second period. The horizontal distance

travelled per foot was then computed from the data from

the VICON system and downsampled to match the sampling

rate of 0.05 second periods. This was again performed using

discrete windows, this time of 5 data points using a standard

summation function, with each resulting data point then repre-

senting the total movement over a 0.05 second period. Features

1In this work we use the implementation from [2].

were then constructed as described in section III from the

EMG signals based on a lag of 10 points (l = 10) representing

a time period of half a second.

V. RESULTS

The two predictive models were evaluated by dividing the

EMG recordings from the data collection campaign into two

groups, one for training and one for testing, such that one of

each motion type existed in each set. Each set was duplicated

and annotated with the positional data of either the right or

left foot. Per foot models for each of the two model variants

were then trained and predictions from the test set made and

compared to the ground truth. The models were evaluated

based on the Mean Absolute Error (MAE) and the Explained

Variance (EV) and subsequently plotted for visual inspection.

The results for all models are shown in Table I and plots for

the models based on the Manhattan distance shown in figures

V and V. Plots for the DTW version are omitted due to their

similarity to the Manhattan distance based model. Given a

predicted time series (in this case the values represent the

distance moved) D̂ = d̂1, . . . , d̂n and the known ground truth

time series D = d1, . . . , dn the MAE and EV are respectively

defined as:

EV (d, d̂) = 1−
V ar(d− d̂)

V ar(d)
(7)

MAE(d, d̂) =
1

n

n
∑

i=1

|di − d̂i| (8)

Right Left

MAE EV MAE EV

k-NN (Manhattan) 0.0053 0.9494 0.0086 0.8716

k-NN (DTW) 0.0057 0.9168 0.0087 0.8716

TABLE I
PREDICTION RESULTS AS MEASURED BY THE MEAN ABSOLUTE ERROR

(MAE, 0 BEST) AND EXPECTED VARIANCE (EV, 1 BEST) FOR

PREDICTING THE DISTANCE TRAVELLED PER FOOT.

The results depicted in figure V (based on the Manhatten

distance) shows the result of comapring the predictied velocity

to the measured velocity from the vicon tracking system.

The prediction shows a cumulative distance travelled error of

3.32m (left foot) and 0.43m (right foot) after 45s of walking.

The predicted velocity was seen to have errors which were

normally distributed and the cumulative distance travelled

error is the result of a random walk.

VI. CONCLUSION

In this work we have demonstrated the prediction of human

movement from measurements of the signals generated by leg

muscles (via electromyography measurements). We have used

machine learning methods to determine a non-linear mapping



Fig. 2. Predicted (red) and observed (blue) velocity of the left toe using the
model based on the Manhatten Distance.

Fig. 3. Cumulative difference between predicted and observed horizontal
distance travelled for the left foot (blue) and right foot (red)

between EMG signals and foot velocity. We have used this

mapping to predict distance travelled for both feet over a bref

45 second dataset. At the end of the trajectory the cumulative

distance travelled error was 3.32m (left foot) and 0.43m (right

foot). the predicted velocity was seen to have errors which

were normally distributed when compared to the output from

a camera based tracking system.

Navigation based on EMG techniques has the potential to

provide standalone pedestrian dead reckoning system or offer

data complimentary to other navigation systems. For example

in future work the velocity predicted from EMG measurements

may be used to aid a foot mounted inertial navigation system

in situations where zero velocity periods are sparse or difficult

to identify. The ability to map EMG signals to movement

also has application in other disciplines. In this paper we

propose the application of this form of study to research in

neurophysiology, biomechanics and sensori-motor control and

it’s use in clinical and rehabilitation settings.

This work presents initial findings from this potentially fruitful

area of research. Further analysis is needed to explore this

potential.

VII. FUTURE WORK

The analysis presented in this work shows much potential

for further development and application in systems of per-

sonal navigation, scientific investigation of neurophysiology,

biomechanics and sensori-motor control and in clinical and

rehabilitation settings. A current and topical question in neu-

rophysiology is the extent to which proprioception uses central

neural signals of motor effort and peripheral signals of muscle

activity in the neural process of estimating configuration and

movements. Using machine learning approaches, investigation

of the predictive, information content of EMG provides an

exemplary model of what might be possible for the human

nervous system. Combined with neurophysiological measure-

ment this approach can progress understanding of neural

function. Equally, combined with experimental investigation

this approach can advance understanding of the neural mod-

elling that occurs during sensori-motor learning in which the

nervous system learns the mapping between motor output and

movement control.

Analysis of the explanatory power of subsets of the mus-

cle predictors can advance biomechanical understanding of

force and movement generation from the redundant muscle

system and can advanced individualised diagnosis of normal

and disordered function in musculoskeletal and neurological

conditions. Ability to relate subsets of muscle predictors

to movement can help develop diagnosis of partial muscle

dropout following peripheral and spinal cord nerve damage.

These techniques have likely application in myoelectric control

of active prostheses, and also in clinical analysis of gait and

postural disorders in conditions ranging from decline with

ageing and decreasing balance control, to neurological deficits

such as cerebral palsy, Parkinsons disease, dystonia, to deficits

following stroke and spinal cord injury. Applications also

include monitoring of safe, efficient movement patterns in spe-

cialist occupations precluding remote line of sight navigational

systems such as mining and firefighting and in monitoring of

vulnerable elderly citizens in residential care homes.
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