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shown, for the first time, to explain quantitatively the voids reduction with increasing vertical stress.
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1. Introduction

The authors have recently published much work accurately
modelling the one-dimensional and isotropic normal compression
of sand using the discrete element method [1–3]. The most notable
outcome of this work was the development of a new compression
law, in which the slope of the normal compression line (NCL) is
solely a function of the size-hardening effect of the individual par-
ticles. The NCL is linear when plotted on two logarithmic axes, and
the compression law is given by:

log e ¼ log ey � 1
2b

log
r
ry

ð1Þ

where e is the current voids ratio, ey is the voids ratio at yield, r is
the current stress, ry the stress at yield, and 1/2b describes the
slope of the compression line, where b represents the size effect
on particle strength rav:

rav / d�b ð2Þ
where d is particle size (diameter). The basis of the above compres-
sion law is that a fractal particle size distribution (PSD) emerges as a
result of particle crushing during normal compression. It was
shown in the authors’ previous work, by analysing the distribution
of particles and contacts that fractal PSDs do indeed emerge during
compression [1]. The first aim of this paper is to provide an in-depth
analysis of the development of a fractal particle size distribution
produced by particle crushing, and in particular what occurs at
the fine end of such a distribution as new particle sizes emerge.
The second is to examine some of the assumptions in and validate
the compression law given in Eq. (1), and to quantitatively ascertain
which particles determine the current voids ratio.
2. Background to model

The work presented here uses a cylindrical sample, initially
20 mm � 20 mm in size, subjected to one-dimensional normal
compression to a stress of 45 MPa. The initial sample consists of
857 spheres, 2 mm in diameter, enclosed within rigid walls. The
particles are attributed strengths in terms of octahedral shear
stress, q:

q ¼ 1
3
½ðr1 � r2Þ2 þ ðr2 � r3Þ2 þ ðr1 � r3Þ2�

1=2 ð3Þ

where r1–3 are the average principal stresses within the particle,
which are returned by the discrete element software, PFC3D 5 [4].
This breakage criterion was chosen as it provides a convenient mea-
sure of particle stress, that can be applied to the case of diametral
compression (for which the available particle strength data relates
to), while also being able to take into account more complex loading
geometries, with multiple contacts. The use of Eq. (2) means that a
particle loaded with few contacts will, in general, have a larger
stress than one loaded more uniformly with many contacts, and
therefore would be more likely to break, which seemed physically
reasonable. Fundamentally, this criterion satisfies the requirements
of taking into account multiple contacts and leads to the correct
normal compression behaviour (i.e. the correct slope of the NCL
and fractal particle size distributions [1]).
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The strengths are attributed to the particles according to a Wei-
bull distribution, where the modulus, m, is 3.3 and the characteris-
tic strength, q0 is a function of particle size according to:

q0 / d�3=m ð4Þ
The characteristic strength, q0, is a value of strength such that 37%
of particles are stronger, and is used as a gauge of the average
strength for a particular particle size (it is similar in magnitude
and proportional to the mean value of the distribution). Weibull
statistics are commonly applied to soil particle fracture [e.g. 5,6],
a justification of which can be found in McDowell and Amon [7].
The modelling procedure and breakage mechanism is identical to
that used in all of the previous works by the authors’ [e.g. 1]. The
modulus of 3.3 is obtained from experimental particle crushing
tests [8], as are the strengths.

When a particle breaks, it is replaced by two smaller sphere
fragments, equal in size to one another, and which together have
the same volume as the original sphere, ensuring conservation of
mass. Particles always split into 2 fragments, and the size ratio of
any new fragment and its ‘parent’ sphere is constant, regardless
of scale. The new fragments overlap to an extent that they are
located within the boundary of the original sphere (shown
schematically in [1,2,9]). The two new fragments are aligned in
the direction of the minor principal stress axis of the breaking ‘par-
ent’ particle. Although this overlap causes an increase in local pres-
sure, the two fragments move apart in the direction of the minor
principal stress, just as would occur for a single particle crushed
between flat platens. Particle breakage is implemented by checking
all particles at once, and all particles in which the stress is greater
than the strength are replaced by fragments. The overlap between
new fragments is released immediately upon breakage by complet-
ing a number of computational timesteps, during which time the
particles are allowed to move apart until the system is stable and
has reached equilibrium. In previous work [1], the use of 3 and 4
fragments in a symmetric splitting mechanism was also investi-
gated, and it was found that there were no differences in either
the normal compression lines or the ultimate particle size distribu-
tions. In additionally, using random, non-symmetrical fragmenta-
tion mechanisms (following experimental observations) also
results in no differences to the resulting NCL or PSDs.

The sequential modelling procedure begins by applying a
macroscopic stress increment to the sample. Particles are then
checked and allowed to break if necessary. If any particles break,
they are replaced by fragments, which are then allowed to move
apart, releasing the energy induced by the artificial overlap. This
continues until no further breakages occur, after which the macro-
scopic stress is re-applied. Once a macroscopic stress is achieved
Table 1
Summary of DEM properties for the simulation.

General simulation properties
Oedometer size: height � diameter (mm) 20 � 20
Contact model Hertz–Mindlin
Wall friction coefficient 0
Wall shear modulus, G (GPa) 75
Wall Poisson’s ratio, m 0.30
Particle friction coefficient 0.5
Particle shear modulus, G (GPa) 28
Particle Poisson’s ratio, m 0.25
Particle density (kg/m3) 2650
Initial (largest) particle size, d1 (mm) 2
Initial no. of particles 857
Initial voids ratio 0.75
Initial particles (d1) 37% strength (MPa) 37.5
Weibull modulus, m 3.3
Final no. of particles 25,527
Final voids ratio 0.43
with no subsequent breakage, the simulation continues and the
next stress increment is applied. This continues until the simula-
tion reaches a point where the size of the smallest particle renders
the timestep too small to be computationally economical, which is
at 45 MPa in the simulation presented here.

The macroscopic stress increment used is 125 kPa, and maxi-
mum velocity of the upper boundary is limited at 0.1 m/s. Gravity
is not applied in these simulations. The voids ratio is calculated
using the volume of particles and the volume of the container,
and is calculated after the overlap and artificial energy has been
dissipated following breakages. Relevant model specifics are given
in Table 1, however, for full details on the modelling procedure,
including discussion of its limitations, the use of the octahedral
shear stress as a criterion, the breakage mechanism, and how the
principal stresses are calculated, readers are directed to prior pub-
lications [1,2,10].
3. Normal compression results

The DEM normal compression results are given in Fig. 1, along
with experimental results for the sand that the strength data is
obtained from. The slope of the compression line according to
Eqs. (1) and (3) should be approximately 0.5, this ideal slope is
shown in the figure by the dashed line. As can be seen, the simula-
tion, as well as the experimental results demonstrates agreement
with the slope predicted from the size-hardening law for the par-
ticles. The simulation is also consistent with the authors’ previous
results using the same particle properties (although the current
work uses a statistically different sample, of a different shape).
The yield stress ry is approximately 10 MPa.

Progressive particle size distributions from the simulation are
shown in Fig. 2(a), at 5 MPa intervals. The PSDs are shown in the
conventional manner: the percentage by mass finer plotted against
particle size, on semi-logarithmic axes. To avoid clutter, only the
extreme PSDs are labelled in the figure, i.e. at 5 MPa and 45 MPa,
the intermediate curves are in consecutive order. Experimental
PSDs for the corresponding silica sand are given in Fig. 2(b). The
use of a monodisperse initial sample in the simulation allows the
Fig. 1. Normal compression behaviour for simulation of crushable sand.



Fig. 2. Particle size distributions from the simulation at 5 MPa intervals (a) and from experiments on the corresponding silica sand (b), from McDowell [8].

J.P. de Bono, G.R. McDowell / Computers and Geotechnics 78 (2016) 11–24 13
effects of breakage to be easily observed, however it is worth not-
ing that in previous work [1], the authors investigated using an ini-
tially graded sample and results were consistent with
experimental observations (the well-graded sample had a different
initial voids ratio and yield stress, but both materials had the same
normal compression line and ultimate PSDs, which converged at
high stresses). It is clear in Fig. 2(a) that substantial crushing takes
place, the result being at 45 MPa a smooth grading curve, with an
appearance typical of experimental results [e.g. 11–13], and the
overall trend is the same as that displayed in Fig. 2(b). As stress
increases, the grading curve expands to cover an increasing range
of particle sizes, which is effected by a continuously decreasing
smallest particle size (particles of the largest size remain through-
out). The plotted values correspond to the actual particle sizes, i.e.
the x-coordinates of the data are 2.0, 1.59, 1.25, . . . , 0.079 mm.

To visualise the crushing that has taken place, comparative
images of the numerical samples are given in Fig. 3, which show
the granular sample before compression (a), and at the terminal
stress of 45 MPa (b). The difference is clear, with a vastly greater
number of particles and a smaller sample volume in (b). Also
shown in (c) is a cross-section of the crushed sample, which gives
Fig. 3. Images of the sample before compression (a), after compression to 45 MPa (b), a
size/generation of particle, white representing the largest, black the smallest.
a view of the distribution of various particle sizes inside the
sample.

4. Fractal distribution

As mentioned in the introduction, the foundation of the com-
pression law in Eq. (1) is that a fractal PSD emerges during com-
pression, with a fractal dimension (D) of 2.5. A fractal particle
size distribution is one in which the number of particles, N, of size
L, that are greater than a size d, can be expressed as:

NðL P dÞ / d�D ð5Þ
If this relation is plotted on logarithmic axes, then the fractal
dimension D is revealed as the slope of the grading curve. It is well
documented that compression of granular materials results in frac-
tal particle size distributions, exhibiting fractal dimensions in the
region of 2.0–3.0, remarkably usually 2.5 [11,14–16]. Progressive
results are shown using logarithmic axes in Fig. 4, again at 5 MPa
intervals.

The first thing to note in Fig. 4 is that as the macroscopic stress
increases, the y-intercept of the PSD moves upwards, due to an
nd corresponding cross-section of the crushed sample (c), the shades indicate the



Fig. 4. Evolution of fractal particle size distribution.

14 J.P. de Bono, G.R. McDowell / Computers and Geotechnics 78 (2016) 11–24
increasing total number of particles in existence. Also, the inclined
section of the PSD becomes steeper, and covers an expanding range
of sizes. This behaviour is the same as that shown previously by the
authors as well as others modelling particle breakage using DEM
[1,5,17]. The horizontal, left-hand section of each data curves rep-
resents sizes smaller than the range of particle sizes in existence.
The right-hand, inclined section represents the fractal distribution
of particle sizes, and this section of the PSD becomes approxi-
mately linear after 30 MPa, thereafter appearing to exhibit a con-
stant slope, implying fractal particle geometry. This slope is
approximately 2.7 for the data at 45 MPa, slightly larger than the
expected value of 2.5, although still in an acceptable range, given
that this may be attributed to the finite nature of the discrete dis-
tribution, in particular the slightly increased gradient across the
largest particle sizes, and this will be addressed shortly. Also note
that after the vertical stress of 30 MPa, there are virtually no signif-
icant changes to the quantities of particles that lie on the linear,
fractal part of the PSD.

According to the definition, a strict fractal distribution would be
infinite (i.e. span all particle sizes), but in reality a fractal PSD for a
soil must be limited [18], and is bounded by a largest and smallest
particle size. Naturally, the largest particle size in this simulation is
2 mm (the size of the original, unbroken particles). If the size of
these largest particles is d1, then the fragments produced directly
by any of these particles breaking will have a diameter
d2 (= d1 � 0.5(1/3))—where d2 is the next-smallest size after d1. The
continuing breakage of fragments produces a discrete distribution
with particle sizes d1, d2, d3, . . . , ds, the latter being the smallest
particle size in the sample. The subscript denotes what can be ter-
med as the ‘Rank’ of the particle, i.e. the original (and largest) par-
ticles are the 1st rank, their direct fragments comprise the 2nd
rank, and so on, up until the smallest rank of particles, which con-
sists of the particles that are of the smallest size ds.

For such a discrete distribution, for any given rank (size) of par-
ticle, the number of particles larger can be expressed as:

NðL P diÞ / d�D
i ð6Þ

and likewise for the next rank (the next-smaller size):

NðL P diþ1Þ / d�D
iþ1 ð7Þ
Because the number of fragments produces by any fracture is con-
stant (= 2), and di+1 / di, subtracting Eq. (6) from (7) leads to:

NðL ¼ diÞ / d�D
i ð8Þ

Fig. 5 shows the particle size distributions displayed in terms of the
actual number of particles of size d (not including those larger), on
double-logarithmic axes. A similar trend is observed, and in this
case the slope of the fractal PSD at 45 MPa is exactly 2.5, which is
highlighted in Fig. 5(b). What is also revealed by plotting this data
is the nature of the emerging ranks of particles. Clearly, the particle
distribution is only fractal across the linear section of the grading
curve, which at 45 MPa spans between 2 mm and around 0.4 mm.
Ranks of particles smaller than 0.4 mm are not fully developed,
and are fewer in number rather than greater, contrary to the above
definition.

An interesting observation which may also be made here is that
if the data in Fig. 5(a) is plotted in terms of percentage of particles,
as presented in Fig. 6(a), then it can be seen that percentage of any
one particle size never exceeds more than approximately 20% of
the total number. Moreover, the most numerous particle rank con-
sistently comprises almost exactly 21% of the total particles,
regardless of the actual particle size. It would appear that any
emerging particle size increases in number until constituting
approximately 21% of the total number. At this point, the rank then
ceases to grow in number, and as such the overall percentage of
this rank begins to decrease, as more numerous smaller particles
come in to existence. The rank subsequently becomes, and remains
fractal as the percentage continually decreases.

The actual quantities of each various size of particle can be com-
pared perhaps more naturally if the data is plotted on linear axes,
which is given in Fig. 6(b). The same trend as above can be seen, i.e.
starting at the largest particles, (d1 = 2 mm), the subsequent (smal-
ler) ranks increase in quantity, reaching a peak, after which the
subsequent ranks display a rapidly decreasing quantity. This trend
occurs from 20 MPa onwards. At 45 MPa, the simulation was ter-
minated due to it becoming too computationally cumbersome. At
this point there were 157 particles of size d1, with each subsequent
rank increasing in quantity up to d8 (0.4 mm), for which there are
5406 particles. The following ranks display decreasing quantities of
particles, with just 2 of the final size d15 (0.079 mm). Although the
total number of particles at this stage, 25,527 does not seem
overtly problematic, the computational timestep is proportional
to the square-root of the mass of the smallest particle, so very
small particles cause the timestep to become very small [4].

Recalling Eq. (7), assuming D = 2.5, and considering particle vol-
ume (/ d3) the total volume of a given size of particle can be
expressed as:

VðL ¼ diÞ / NðL ¼ diÞ � d3
i

VðL ¼ diÞ / d0:5
i

ð9Þ

The above relationship for the simulation is plotted in (a), in terms
of the volume of each particle size against d, which shows the data
at 5 MPa intervals throughout the simulation. For simplicity, the
volume is represented in terms of percentage in (a), while Fig. 7
(b) shows the final set of data (obtained at 45 MPa), plotted in terms
of actual volume, with a trend line indicating the slope of 0.5. The
agreement shown by the data in (b) also confirms a fractal dimen-
sion of 2.5—as the gradient of the linear PSD in such a plot is equal
to (3 – D) [18]; however the agreement only holds for the fully
developed ranks of particle. It is worth noting the tiny volume of
the smaller particle sizes: sizes 0.079–0.31 mm constitute 40% of
the total particles, but approximately just 3% of the total
volume/mass.



Fig. 5. Number of particles plotted as a function of particle size, throughout the simulation (a) and at 45 MPa (b).

Fig. 6. Number of particles plotted as a function of particle size, in terms of percentage (a) and on linear axes (b).
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5. Smallest particle size

The first hypothesis used in arriving at the compression law in
Eq. (1) was that the current macroscopic stress is proportional to
the strength of the smallest particles:

rv / q0;s ð10Þ

and recalling that strength is a function of size according to Eq. (3)
(/ ds

(�3/3.3)), the current vertical stress can be related to the size of
these smallest particles:

rv / d�ð3=3:3Þ
s ð11Þ

These equations can be easily checked in the simulation; if the
strengths of the smallest particles are proportional to the vertical
stress, then the smallest particle size will follow the relation given
in Eq. (10), and vice versa. However, as can be seen throughout
Figs. 4–7, a clear distinction can be made in the simulations
between the actual, absolute smallest particle size and the smallest
fractal particle size. The absolute smallest particle size, denoted as
dsa corresponds to the smallest particle(s) in the sample, which
can be seen does not conform to the ideal linear slope of the fractal
distribution. Hence it would be more appropriate to check the
above relations using the smallest fractal size of particle, denoted
dsf—which will be taken to be the smallest particle size that lies
on the linear, fractal section of the PSDs in Figs. 4–7. As an example,
at 45 MPa, the absolute smallest particle size, dsa, is 0.079 mm; the
smallest fractal size, dsf, is 0.63 mm. This is labelled in Fig. 7(b). Inci-
dentally, the smallest fractal particle size regularly constitutes
approximately 15% of the total number of particles; by drawing a
horizontal line through 15% on Fig. 6(a), the point of intersection
with each curve roughly indicates the smallest fractal particle size.
The two quantifications of smallest particle size are plotted against
vertical stress in Fig. 8(a). It is evident here that the size of the
smallest fractal particles, dsf, decreases in magnitude intermittently,
but overall does show acceptable agreement with the above equa-
tion; a trend line (with an exponent of –1.1) is shown. The size of
the absolute smallest particle(s), dsa, likewise decreases during
compression but does not follow the correct behaviour according
to Eq. (10). This suggests that the above equations apply to the



Fig. 7. Total particle volume as a function of particle size, progressively (a) and at 45 MPa (b).

Fig. 8. Smallest particle size as a function of vertical stress (a) and strengths of the smallest particles as a function of applied stress (b).
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smallest fractal particle rank. The corresponding characteristic
strengths of these two classifications of smallest particles are given
in Fig. 8(b). The strengths of the smallest fractal particles here
should show proportionality (through the origin) with vertical
stress, and although the strength of the smallest fractal particles
shows the correct overall trend, the data is very discontinuous in
nature.

The above results therefore suggest that it is the smallest fractal
particle size, dsf, which is most suitable to be considered as the
smallest particle size. This is because dsf conforms to the fractal
PSD, so therefore correlates with N and V according to Eqs. (4)
and (8), as well as the vertical stress rv, according to Eq. (10).

To further substantiate that the material is fractal, and behaving
in accordance with the above relations, it is possible to trace the
total number of particles. For a fractal distribution, putting ds into
Eq. (4) gives the total number of particles. Using the fractal dimen-
sion D = 2.5, rearranging, and substituting into Eq. (10) leads to:

NðL P dsÞ / r2:75
v ð12Þ
This relation is plotted in Fig. 9, which displays the total number of
particles in the sample as a function of applied stress. A trend line
with a slope of 2.75 is shown in this logarithmic plot, and can be
seen to fit the data very well. Not only does this graph confirm that
the fractal sample exhibits the correct behaviour, it indicates that it
does so from a vertical stress of approximately 10 MPa onwards, i.e.
the yield stress.
6. Voids ratio

The behaviour discussed above suggests that the size of the
smallest fractal particles, dsf can therefore be inferred from the cur-
rent vertical stress according to Eq. (10), as shown in Fig. 8(a). Eq.
(8) states that in a fractal distribution with a dimension of 2.5, the
total volume of particles of a given size is proportional to the
square-root of the diameter. Putting dsf into Eq. (10), then
rearranging and substituting into Eq. (8) provides a link between



Fig. 9. Total number of particles as a function of vertical stress.

Fig. 10. Volume of the smallest fractal particles in relation to voids ratio.
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the current stress and the volume of the smallest fractal particles,
which can be approximately written as:

VðL ¼ dsfÞ / r�0:5
v ð13Þ

The fundamental assumption in the compression law is that the vol-
ume of the smallest particles is directly proportional to the volume
of voids, and therefore, the voids ratio, e:

VðL ¼ dsfÞ / e ð14Þ
thus:

e / r�0:5
v ð15Þ

which is the slope of the NCL on logarithmic axes (Fig. 1). However,
if the voids ratio is proportional to the volume of the smallest fractal
particles then, recalling Eq. (8):

e / d0:5
sf ð16Þ

where dsf is the diameter of the smallest fractal particles. The evi-
dent problem with this is that smallest fractal particle size does
not decrease in a continuous manner, as was shown in Fig. 8(a),
therefore this equation fails to account for the continuous decrease
in voids ratio witnessed during normal compression. In addition,
physically checking the assumption in Eq. (13), by comparing the
volume of the smallest fractal particles with the voids ratio does
not show a comprehensive correlation. The volume of these parti-
cles, as a function of voids ratio is plotted in Fig. 10. Although the
total volume of the smallest fractal particles does decrease during
the simulation, as does the voids ratio, there does not appear to
be a direct proportionality between them. Moreover, the volume
of these particles at times increases, which is clearly in contradiction
of a continuous decrease in voids ratio. To exemplify this, between
30 and 45 MPa (when e 6 0.5), from Fig. 8(a) it can be seen the size
of the smallest fractal particles is constant at 0.63 mm, during this
increment the quantity, and therefore total volume of these parti-
cles increases (Figs. 5–7), whilst the voids ratio decreases. Further-
more, even though the smallest fractal size of 0.63 mm does not
change during this time, the percentage of mass finer than
0.63 mm increases by almost 9% of the total mass (Fig. 2). By only
focusing on the smallest fractal particles, this change goes unac-
counted for, but will inevitably have an influence on the voids ratio.
It therefore seems that a more intricate definition of the ‘smallest’
particles is required in an evolving particle size distribution, which
has constantly emerging sizes. This will be addressed in the follow-
ing sections. Despite this, it can be said Eqs. (9)–(11) hold true, and
the macroscopic behaviour agrees with that predicted by the com-
pression law.

7. Particle stresses

An advantage of using DEM is the ability to observe and mea-
sure discrete variables such as contact forces and particle stresses.
Particle stresses (PFC3D will calculate the stress tensor for a loaded
sphere) result from the contact forces exerted on the particles, and
given in Fig. 11 are cross-sectional views of the sample at various
stages throughout the simulation, which display the contact forces
on a central vertical plane at 5 MPa intervals. The thickness of each
black line indicates the magnitude of the contact force. In Fig. 11
(a), at 5 MPa, the maximum contact force shown is approximately
64 N. In (b), taken at 10 MPa, the contact forces are noticeably
greater in magnitude—the largest force in this image is 181 N.
Beyond this stress, i.e. across (c)–(i), the quantity of contacts
increases greatly as the number of particles increases due to crush-
ing, the result in Fig. 11(i) being a dense network of force chains.
However, during this time, the magnitude of the largest contact
force does not increase significantly, despite the vertical applied
stress increasing from 10 to 45 MPa. As indicated by the thickness
of the lines, the largest contact forces remain approximately con-
stant around 200 N. What can also be observed is that once a
well-graded PSD has emerged, the most prominent contact forces
(i.e. the thickest black lines) do not change dramatically with
crushing. For example, between images (h) and (i), there are almost
7000 breakages during this interval, however the largest contact
forces remain relatively unaltered, with the key difference being
a greater quantity of contacts in (i). This will be due to the fact that
it is mainly the smallest particles that are breaking, which carry
relatively minor contact forces—the shear stress in such particles
will be high due to the few contacts and size effect on this stress
(proportional to d�2).

Further insight can be gained by analysing the actual particle
stresses. The octahedral shear stress in each particle is monitored
continuously in the event that the particle’s strength is exceeded,
hence it is a straightforward matter to calculate the average
(mean) stress for any size of particle. Fig. 12 shows the average



Fig. 11. Cross-sectional views showing contact forces on a central vertical plane, from 5 MPa (a) through to 45 MPa (i), at 5 MPa intervals.
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octahedral shear stress, qav for each of the first 6 ranks of particles
(2–0.63 mm), as a function of the vertical applied stress, rv.
Inspecting the graph shows that as soon as compression starts
the average stress in the original, 2 mm-sized particles increases
steadily, until some of the particle strengths are exceeded and a
small number of them break. At this point—around 5 MPa—a very
small number of smaller particles (d2) come into existence. By
approximately 10 MPa, an increasing number of the original d1
particles have now broken, and the population of the next rank
of d2 particles has increased to a more significant level. The average
shear stress in the original (and largest) d1 particles increases much
less rapidly from this point onwards, due to the existence of a siz-
able quantity of smaller particles, which provide additional con-
tacts to the larger particles, lessening the induced shear stress. At
approximately this same stage (10 MPa), a small number of the
2nd Rank (d2) particles break, producing smaller fragments of size
d3, this process continues, and repeats itself as rv increases, pro-
ducing smaller and smaller particles. The average stress, qav for
the largest d1 particles appears to reach an almost stable value at
around rv = 25 MPa, beyond which there is little further increase
with increasing rv. The average stress for any rank follows a similar
trend: a fairly rapid increase, then increasing at decreasing rate,
and appearing to approach a stable value. Consecutively smaller
sizes ultimately bear increasingly larger stresses (compare the
rightmost points of the 6 curves). The stage at which the rate of
increase of average stress for any given rank begins to reduce
seems to be associated with the rank becoming fully developed,
at which point there will be a much greater quantity of smaller par-
ticles. It also corresponds with what was observed earlier in Fig. 5,
that the quantities of fractal particles become stable. Although the
average shear stresses are only shown for the first 6 ranks of par-
ticles (for clarity), similar behaviour is evident across the entire
range of particle sizes. These observations are consistent with
those made from Fig. 11—for the shear stress in the largest parti-
cles to increase, which are surrounded by many contacts, they
would need to be exposed to a few very large, anisotropic contact



Fig. 12. Average shear stress for the first 6 particle ranks as a function of vertical
stress.
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forces. As was shown in Fig. 11, the magnitude of the largest con-
tact forces ceases to increase significantly with increasing vertical
stress.

Fig. 13(a) represents similar data but in this case shows the
average particle stress, qav as a function of particle size. It provides
a snapshot of the distribution of average particle stresses at various
stages of compression; each data curve represents a given macro-
scopic vertical stress. The overall trend for any particular data
curve shows that the average particle shear stress increases with
reducing particle size—however for the smallest few particle sizes
(i.e. those that have not fully developed) the average stress then
decreases quite rapidly with reducing particle size. However, this
is somewhat misleading; the reason the smallest few ranks of par-
ticle display lower average stresses is not due to these particles
simply having smaller induced stresses, but rather due to a signif-
icant proportion of them not being in a state of stress—i.e. not hav-
ing any contacts, and carrying no load, whilst those that are
stressed are in fact under a significant shear stress. This only
applies to the ranks of particles that are not fully developed. The
reason that many of these particles have no contacts is due to
Fig. 13. Average particle shear stress as a function of particle size
the simulations not applying gravitational acceleration; if gravity
was included then these ‘floating’ particles would come to rest
with 3 contacts, resting under their own weight but still not carry-
ing any external load. This can be shown perhaps more clearly by
neglecting unstressed particles—and calculating the mean stress
only considering the loaded particles, referred to here as the
mechanical average particle stress. For example, if there are 1000
particles of size di, but only 900 are stressed, the mechanical aver-
age stress would simply be the mean stress of these 900 particles.
Fig. 13(b) shows this data, in the same manner as the graph in part
(a), however note the change in scale. In Fig. 13(b) one can see that
the smallest particles—those that are stressed—are in fact under
very large stresses. The mechanical average stress increases
throughout with reducing particle size. These graphs reveal that
although the overall average stress in the smallest few particle
ranks is low—evidently it is still possible that some of these parti-
cles will be under stresses sufficiently large enough to cause break-
age. Indeed, this could explain the shape of the particle size
distributions in Figs. 5–7, in which there are numerous sub-
fractal particle sizes. The emergence of new sizes of particles
appears clearly to be a continuous and ongoing process—and the
development of a particle size becoming fractal is gradual, not an
instantaneous event. This highlights the limitations of simply con-
sidering an entire rank, e.g. the smallest fractal size of particle, as
the smallest size.

In either of the graphs in Fig. 13, by comparing the data curves
at consecutive stress increments, it can be seen that the average
octahedral stress, regardless of particle size, increases with the
applied stress. However, the increase in the average stress is much
smaller in magnitude for the larger particles. For example, for the
vertical stress increment 40–45 MPa: in Fig. 13(a) the average
shear stress in particles of size d1 (2 mm) increases by 0.3 MPa,
whilst the average stress for the d7 particles of size 0.5 mm
increases by approximately 6 MPa. This large increase in stress
can be mainly attributed to a reduction in the number of stress-
free particles. This reaffirms what was observed in the previous fig-
ure, that the shear stress borne by the largest particles (which have
more contacts) increases much less rapidly with increasing vertical
stress.

Eq. (9) states that the applied stress is proportional to the
strengths of the smallest (and therefore strongest) particles. Con-
sidering that when any particle breaks, the resulting fragments
belong to the next-smaller size, when the smallest particle size
, overall average stress (a) and mechanical average stress (b).
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decreases, it must be the smallest, and therefore statistically the
strongest particles that are being crushed, so the applied stress
must also be proportional to some statistical average of maximum
particle stress. Taking the maximum particle stress as the maxi-
mum average stress exhibited by any rank, i.e. the peak values of
the curves in Fig. 13(a), shows a linear relationship with the
applied vertical stress, this is shown by the solid curve in Fig. 14.
The maximum particle stresses shown here invariably correspond
to the smallest fractal particle size—for example at 45 MPa, the
maximum particle stress is 36 MPa, which is carried by the parti-
cles of size d6 = 0.63 mm. However, by plotting this data instead
of the maximum particle strengths allows a more linear correlation
to be observed, as the maximum particle stress increases continu-
ously, and through the origin—whereas the maximum particle
strength is always non-zero and rises in a discontinuous manner.
The fact that the largest stress corresponds to the smallest fractal
particle size is hardly surprising—of the range of fractal sizes, these
particles are the smallest, and will therefore have fewest contacts,
and are therefore statistically more likely to be under a larger shear
stress. Many of the particles smaller than this, i.e. the sub-fractal
sizes, as mentioned will be stress free, thus the average stress will
be lower.

A similar trend can be observed by considering the maximum
mechanical particle stress—i.e. the peak values from Fig. 13(b). In
this case, the maximum particle stresses roughly correspond with
the absolute smallest particle size, and a less reliable correlation is
seen with the applied stress. This data is shown by dashed line in
Fig. 14.

To analyse how the distribution of stresses compare to the par-
ticle strengths (at a stress of 45 MPa), 4 sets of data are given in
Fig. 15. This graph shows both measures of average particle stress,
and two measures of strength—the theoretical and actual average
particle strengths. All of these are plotted in terms of octahedral
shear stress, and on logarithmic axes. The theoretical strengths
are denoted by the dashed line, and follow the law given in Eq.
(3). The adjacent data, denoted by the crosses, represents the actual
mean particle strengths in the simulation for each size. The differ-
ence in these two curves reveals that due to crushing, the average
strengths of the fully-developed ranks increase during the simula-
tion. The largest difference between the theoretical and actual
Fig. 14. Maximum average st
mean strengths naturally occurs for the 2 mm particles. Due to
the Weibull distribution of strengths, a form of ‘natural selection’
takes place, where the weakest particles are more likely to crush
whilst the stronger, above-average strength particles are more
likely to survive. Initially, before any particular rank of particle
has been subjected to substantial crushing, the theoretical and
actual mean strengths coincide. Hence, at 45 MPa, towards the
finer end of the scale (<0.25 mm) these two curves converge, as
these ranks are not fully developed and are yet to undergo signif-
icant crushing. Fig. 15 also enables the difference between the
overall and mechanical average particle stresses to be visualised
more clearly. By comparing the lower two curves, one can see that
for particles that are subjected to a shear stress (dotted line), this
stress increases consistently and approximately linearly (on log–
log axes) with reducing size. By contrast, the overall average parti-
cle stress appears linear only across the range of fully developed
fractal particle ranks, and the disparity for the emergent sizes
(<0.63 mm) shows that a significant quantity of these small parti-
cles are not in-contact with any neighbouring particles. Nonethe-
less, these two curves are coincident for the fully developed
ranks (2–0.63 mm), and it can be observed that the average parti-
cle stress and the average actual particle strengths appear parallel.
Although not shown in Fig. 15, both of these curves exhibit a slope
of approximately –0.8, so both the average particle stress and the
strengths follow the same relationship with size—the average
stresses for any size of particle is proportional to the average
strength.

From Fig. 15, at 45 MPa the 0.63 mm particles have the largest
average stress. For all intents and purposes, they are also the small-
est particle size for which all particles are carrying load (the aver-
age particle stress is equal to the mechanical average stress).
Therefore these are the smallest particles that, as a whole rank,
are all actively in-contact with surrounding particles. These
particles are also the smallest fractal particle size. This could be
interpreted as implying that the voids are in some way associated
with this particle size, or possibly that this size of particle
represents the largest voids in the sample (if it were otherwise, a
number of these particles might have no contacts and be stress
free). It might therefore seem that the total void space may be a
function of the volume of these particles. However, it was
ress of any particle rank.



Fig. 15. Comparison of stresses and strengths plotted against particle size, after compression to 45 MPa.
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investigated earlier if the volume of voids was proportional to the
volume of these particles (the smallest fractal particles) and this
was not the case.

As mentioned earlier, a more appropriate definition of the
‘smallest’ particles is required. The above figures clearly show that
the smallest particles are constantly changing, and that even the
sub-fractal particles are crushing and producing smaller particles.
At this point it seems worthwhile to consider the definition of
the smallest particles to include all particles up to and including
the smallest fractal size (e.g., at 45 MPa, all particles with
d 6 0.63 mm). The total volume of these particles however again
shows no clear and robust correlation with the volume of voids,
as presented in Fig. 16. The problem appears to be the abrupt
change in what is considered the smallest fractal particle size. This
results in a dramatic and sudden decrease in the calculated vol-
ume, which is not accompanied by an equally dramatic decrease
in voids ratio.
Fig. 16. Volume of fractal and sub-fractal particles in relation to the voids ratio.
It is contended here that instead of considering the ‘smallest
particles’ to be defined by size, there exists a group of ‘critical par-
ticles’ that are defined by some other means, and which determine
the voids ratio. The reasoning behind this, is that whilst the small-
est fractal particles may indeed represent, or be associated with
the largest voids in the system, it is unlikely that all of the voids
in the system of particles are equal in size, or that they become
effectively smaller either uniformly or instantaneously. The filling
of voids by newly-created fragments is a gradual, yet sporadic pro-
cess. The definition of what defines and characterises these critical
particles will now be discussed.

8. Coordination number

To gain further insight on what happens at the fine end of the
PSD, as well as to shed more light on what characteristic might
define the above-mentioned critical particles, it is possible to anal-
yse the average coordination number of the particles. The coordi-
nation number is the number of contacts that a particle has with
any neighbouring particles or boundaries; thus the average coordi-
nation number referred to here is the average number of contacts
that a particle has, and again this can be analysed with respect to
different ranks. The average coordination number is shown as a
function of particle size in Fig. 17 on logarithmic scales, at progres-
sive stages throughout the simulation. Firstly, it is clear to see that
the average coordination number, regardless of particle size,
increases with increasing vertical stress (and therefore with
increasing total number of particles). What is also noticeable in
Fig. 17 is that the relationship between the average coordination
number and particle size shows a very consistent slope, which
appears approximately linear over the fractal sizes. The slope
appears independent of vertical stress, and is approximately 1.7.

Fig. 18 shows the frequency distribution of particle coordina-
tion numbers for the entire sample at the final stress of 45 MPa.
The graph in (a) displays only the lower range of coordination
numbers, which have the largest occurrence. As can be seen, the
highest frequency corresponds to 0 contacts, which is unsurprising
as the smallest particles vastly outnumber the larger particles, and
as shown in Fig. 13, many of the smallest particles are unstressed.



Fig. 17. Coordination number as a function of particle size throughout the simulation.

Fig. 18. Frequency distribution of coordination numbers at 45 MPa.
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There are virtually no particles with just 1 contact, which makes
sense as this is a transitory state—the unopposed contact force
would repel the particle. Considering the particles are perfect
spheres, the minimum number of contacts that one would expect
a load-carrying particle to have is 4, and as can be seen from the
graph this is second most frequent coordination number (after
0). There are also a relatively small proportion of particles with
2–3 contacts each, all of which are quasi-stationary (with low
velocities). Beyond the coordination number of 4, the frequency
decreases with increasing coordination number. This same data
but over the full range of values is presented in Fig. 18(b), on log-
arithmic axes. The largest coordination number of any particle is
54, which expectedly corresponds to a 2 mm particle. There is a
clear linear trend in this graph, suggesting that the frequency dis-
tribution of contacts in a fractal distribution can be expressed as a
power function. The slope of this trend is approximately –3. This is
a similar observation as made by Yang and Cheng [19], but in this
case in three dimensions. Throughout the simulation, as crushing
progresses, the peak frequency remains consistently associated
with 4 contacts, whilst the maximum coordination number in
the sample increases.
9. Critical particles

It is clear from Fig. 17 that the average coordination number
reduces with decreasing particle size. As mentioned above, 4 can
be considered the minimum number of contacts required for a
load-carrying particle to be in a stable position within the system.
Therefore one would expect the smallest particles to have 4 (or
fewer) contacts. These particles will not be in contact with any
smaller particles (otherwise they would have more contacts), but
rather equally-sized and larger particles which prevent the
formation of further contacts. It is proposed here that the void
space surrounding such a particle, with 4 or fewer contacts is pro-
portional to the particle volume, and therefore that particles with a
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coordination number less than or equal to 4 should be considered as
the critical particles.

The term critical particles is used here instead of smallest par-
ticles because, whilst these particles are considered the smallest,
they need only be the smallest particle on a local scale. For exam-
ple, consider the sample at 45 MPa: there may exist 1 particle of
size d6 = 0.63 mm, which has 4 contacts, whilst simultaneously
elsewhere in the sample there exists another particle of size d6
but with 8 contacts, surrounded by smaller fragments of the emer-
gent sizes d7, d8, or d15 (for instance). The former particle, with 4
contacts is—locally—the smallest particle, whilst the latter, with 8
contacts is not. Clearly, the voids around these two identically-
sized particles will be different. Thus, considering critical particles,
defined by their number of contacts, provides a more suitable def-
inition than simply size alone, and enables a much more contem-
poraneous categorisation of particles.

When a small particle, with 4 contacts breaks, the chances are
that the 2 new fragments will be small enough to fit into the void
and with 4 or fewer contacts. In other words, the immediate frag-
ments of a critical particle will also be critical, so would not directly
contribute to a reduction in the critical volume. However, the cre-
ation of these 2 new particles provides additional contacts to the
surrounding neighbouring particles, which means previously-
critical particles gain contacts and become non-critical, thereby
Fig. 19. Volume of critical particles (with 4 or less contacts) plotted against voids
ratio.

Fig. 20. Effective particle size (a) and effective particles’ stren
causing a reduction in the volume of critical particles. Thus, indi-
vidual particles within a rank may become non-critical at any
moment, avoiding the problem of having to consider a whole rank
as either critical or non-critical.

The volume of all particles with 4 or less contacts can be tracked
throughout the simulation, and this measured value is now plotted
against the voids ratio in Fig. 19. The correlation is clear, and
strongly implies that the volume of these particles is what deter-
mines the volume of voids. The data in Fig. 19 is from a vertical
stress of 10 MPa onwards, i.e. from the point when the internal
stresses are large enough to initiate breakage. What is remarkable
about this, is that the sample cannot be considered to have reached
a fractal distribution at this point, suggesting that there is a robust
relationship between these critical particles and the voids ratio.
Considering that the volume of solids is constant, the voids ratio
can be easily converted to give the volume of voids. Following this,
the gradient of the linear relationship between the volume of crit-
ical particles and the volume of voids is approximately 0.37. This
shows that for the sample used in this work, the volume of voids
is approximately 2.7 times bigger than the total volume of the crit-
ical particles. Thus, this may be interpreted as on average, each
critical particle (one with 64 contacts) has an associated void
space approximately 3.7 times larger in volume (including the vol-
ume of the particle).

The relationship observed between the volume of these critical
particles and the voids ratio confirms the fundamental assumption
underlying the compression law (while also showing the difficulty
in defining the ‘smallest particles’ in a constantly evolving particle
size distribution). To re-affirm this, it is possible to calculate the
average, or ‘effective diameter’ of these critical particles. This is
obtained simply by dividing their total volume by the number of
particles, then finding the diameter of an equivalent sphere of this
(mean) volume. This effective diameter is plotted against vertical
stress in Fig. 20(a), and is shown to demonstrate excellent agree-
ment with the relationship in Eq. (10). Likewise, Fig. 20(b) shows
both the average strength and average stress of these particles,
which agree with Eq. (9) and show direct proportionality to the
vertical stress. Both of these graphs show more continuous and
reliable correlations than in Fig. 8, which involved fixed values that
were associated with a single particle size.

At any stage during compression (after yielding), there always
exists sub-fractal particles (Fig. 6). As discussed earlier, many, if
not all, of these sub-fractal particles will be considered critical,
hence the effective diameter of the critical particles, de will be
gth and average stress (b) as functions of applied stress.
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smaller than the smallest fractal particle size, dsf. Equally, this
effective particle size will be larger than the absolute smallest par-
ticle size dsa (which, as a rank is not fully-developed, and often only
corresponds to a handful of particles). Clearly then the effective
size of the critical particles is bounded by the absolute smallest
size, and the smallest fractal particle size: dsa < de < dsf. The critical
particles as a group consist of particles across this range.

Before yield, which occurs at approximately 10 MPa, there is a
negligible amount of particle crushing, and the sample is effec-
tively still mono-disperse and consists of only 2 mm particles.
Hence dsa = dsf, therefore de = 2 mm. This can be seen in Fig. 20.
Immediately upon yielding, substantial crushing initiates, which
produces smaller, but as yet non-fractal particle sizes, so dsa
decreases, and therefore so does the effective particle size de, also
clearly visible in Fig. 20. The rate of decrease in de with stress, as
highlighted in the figure is dictated by the hardening law defined
in Eq. (3).

10. Conclusions

After compression to high stresses, the numerical sample was
comprehensively shown to consist of a fractal distribution of par-
ticle sizes. Progressive particle size distributions showed that at
any instant during normal compression, the fractal distribution
spans a finite range of sizes, and this range increases during com-
pression. Beyond the lower end of this range of fractal particle
sizes, there are numerous particle sizes in a state of development,
which grow in population until becoming fractal. Any new, emerg-
ing particle size was shown to gradually increase in quantity, until
comprising approximately 20% of the total number, at which point
the number of particles of this size stabilises, becoming part of the
fractal distribution, after which the representative percentage of
these particles decreases, as new smaller sizes of particle develop
(increasing the overall number of particles).

The macroscopic behaviour of the sample was consistent with
prior results by the authors, and agreed with their previously pub-
lished compression law. A number of assumptions inherent in the
authors’ previous compression law were examined in the simula-
tion, all of which were shown to be reasonable. The average
strength of the smallest fractal particle size was shown to be
proportional to the vertical stress, and as such the smallest fractal
particle size decreased with stress according to the size-hardening
law. This meant that the total number of particles also increased
with vertical stress correctly according to the evolving fractal dis-
tribution. In addition, the distribution of particle stresses, strengths
and coordination numbers were analysed. For each fractal particle
size, the average particle stress was proportional to the average
particle strength, with both following the same relationship with
particle size at the maximum applied stress. It was shown that
the smallest particles, in particular those that have not yet devel-
oped and have not yet become fractal in nature (and constitute a
very small overall percentage), are continually crushing, producing
smaller and smaller particles.

A key assumption in the authors’ previous work is the associa-
tion of the overall void space with the size of the smallest particles.
However, there may only be one such particle, and so this would be
inappropriate. The use of the smallest fractal size was also inappro-
priate because many smaller particles contribute to the available
void space. Therefore a suitable definition of the smallest particle
to be associated with the current available void space was
required. The significant outcome of this was that the void space,
and therefore the voids ratio, was shown to be directly propor-
tional to the volume of the smallest, or ‘critical’ particles, which
were defined as those particles having 4 or fewer contacts. This
relation proved to be valid from the yield stress (approximately
10 MPa) onwards (i.e. as soon as particle breakage begins) before
the global particle size distribution can be said to be fractal.

This work has therefore provided a detailed study of emerging
fractal distributions during normal compression and provided
insight into why the established normal compression line exists,
based on fractal mechanics of void compression as stress increases.
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