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Abstract 

The micro mechanics of one-dimensional and isotropic normal compression of granular soil have 

recently been revealed using the discrete element method. By modelling soil grains as spheres and 

implementing a new crushing model, the authors have previously investigated the influence of 

fracture mechanism, particle strengths (and distributions), and the size-hardening law on both the 

normal compression line and resultant particle size distribution; this resulted in a new compression 

law.  In this work, irregular pĂƌƚŝĐůĞ ƐŚĂƉĞ ŝƐ ŝŶƚƌŽĚƵĐĞĚ͕ ƵƐŝŶŐ ͚ĐůƵŵƉƐ͛ ;ŐƌŽƵƉƐ ŽĨ ƐƉŚĞrical 

particles), allowing different relative densities of the same material to be subjected to normal 

compression. An investigation into the mechanics of yielding is presented, in which the onset of 

ĐƌƵƐŚŝŶŐ ŝƐ ƌĞůĂƚĞĚ ƚŽ ƚŚĞ ĂǀĞƌĂŐĞ ƉĂƌƚŝĐůĞ ŽĐƚĂŚĞĚƌĂů ƐŚĞĂƌ ƐƚƌĞƐƐ ĂŶĚ ͚ǇŝĞůĚ͛ ŝƐ ƐĞĞŶ ƚŽ ďĞ Ă ĨƵŶĐƚŝŽŶ 
of the available void space. Beyond yield, the normal compression lines for the clumps at different 

initial densities are examined and compared to that for spheres.  The effect of coordination number 

and particle shape on the normal compression are studied, and in particular the micro mechanics 

behind the evolution of a fractal particle size distribution are revealed. 

1. Introduction 

It has recently been demonstrated by the authors that it is possible to accurately model the one-

dimensional compression of sand using the discrete element method [1]. It was shown that the 

normal compression line (NCL) for a sand should be linear when plotted on double-logarithmic axes 

(confirming earlier propositions, e.g. [2,3]), and that the compression indexͶi.e. the slope of the 

compression line in log e-log ɐ spaceͶis solely a function of the size-hardening law for the particles. 

This proposition was further demonstrated by a subsequent work focused on isotropic normal 

compression [4], in which isotropic boundary conditions were shown to give rise to anisotropic local 

shear stresses within a granular soil sample. For one-dimensional normal compression, the 

McDowell and de Bono [1] compression law is given by the equation: 

 log ݁ ൌ log ݁୷ െ ͳʹܾ log  ୷ (1)ߪߪ

 

where e is the current voids ratio, ʍ is the applied stress, ey is the value on the linear log-log plot at a 

stress corresponding to the yield stress ʍy, and b controls the size effect on average particle strength 

ʍav: 

ୟ୴ߪ  ן ݀ି௕ (2) 

 



where d is the particle diameter. This new compression law correctly predicts the slope of the NCL 

for a range of discrete element method (DEM) simulations using spheres and demonstrates 

agreement with experimental results for granular soil. One of the key features of this recent work 

was the development of an original crushing model, which allowed particle breakage to be 

implemented to DEM simulations.  

The work presented here utilises the same crushing model, but introduces irregular particle shape. 

By using non-spherical particles while keeping variables such as the particle strengths and the 

hardening-law the same, the effects that particle shape has on yielding are investigated; as is the 

influence of initial density and average coordination number, which can now be varied due to the 

ability of non-spherical particles to interlock, and maintain higher voids ratios.  

2. DEM Model 

2.1 Particle Breakage 

The software used in this work is PFC3D [5], a commercial DEM code. This software uses two 

physical entitiesͶballs and wallsͶĂŶĚ ƵƐĞƐ NĞǁƚŽŶ͛Ɛ Ϯnd
 Law combined with a force-displacement 

law at the contacts to establish accelerations, velocities and displacements of particles using a time-

stepping scheme. Key assumptions of the code include treating the particles as rigid bodies, and 

using a soft-contact approach, whereby the particles are allowed to overlap one another. The 

magnitude of contact overlap is related to the contact force by the stiffness model; a Hertzian 

contact model being used in the simulations presented here. A detailed description of the underlying 

theory can be found in the software manual [5]. 

The essential features of the crushing model will now be briefly summarised; however readers are 

ĚŝƌĞĐƚĞĚ ƚŽ ƚŚĞ ĂƵƚŚŽƌƐ͛ ƉƌŝŽƌ ƉƵďůŝĐĂƚŝŽŶƐ ĨŽƌ ĨƵůů ĚŽĐƵŵĞŶƚĂƚŝŽŶ [1,4]. To determine whether 

fracture of a particle should occur or not, the average octahedral shear stress within each particle is 

used: 

ݍ  ൌ ͳ͵ ሾሺߪଵ െ ଶሻଶߪ ൅ ሺߪଶ െ ଷሻଶߪ ൅ ሺߪଵ െ ଷሻଶሿଵߪ ଶΤ  (3) 

 

which is calculated from the average principal stresses (ʍ1, ʍ2, ʍ3) for each particle. The average 

principal stresses are retrieved by software, and are calculated according to: 

ഥ௜௝ሺ௣ሻ࣌  ൌ ͳܸሺ௣ሻ ෍ ቀݔ௜ሺ௖ሻ െ ௜ሺ௣ሻቁேౙሺ೛ሻݔ ௝ሺ௖ǡ௣ሻܨ
 (4) 

 

where V
(p)

 is the volume of the particle (p), Nc
(p)

 is the number of contacts on the particle, xi
(c)

 and xi
(p)

 

are the locations of the contact and particle respectively, and Fj
(c,p)

 is the force acting on the particle 

at contact (c). 

Equation (3) provides a simple criterion to facilitate breakage taking into account multiple contacts 

as well as different contact forces on a particle surface, while avoiding the use of computationally-

demanding agglomerates. 



McDowell [6] measured the tensile strength of sand grains by diametral compression between flat 

platens as ʍ = F / d
2
 [7] and showed that the stresses at failure for a given particle size satisfied a 

Weibull distribution of strengths. These distributions were described by a characteristic value of 

strength, ʍ0 and a Weibull modulus, m. In PFC3D, the value of octahedral shear stress, q induced in a 

spherical particle compressed diametrically between two walls is proportional to F / d
2
 [4]; hence, it 

is assumed that for a particle under multiple contacts, the particle will break if the octahedral shear 

stress, calculated using Equation (3), is greater than or equal to its strength, where the strengths of 

the particles satisfy a Weibull distribution of q values. Assuming the Weibull size effect is applicable 

to soil particles [e.g. 8], then the size-hardening parameter b in Equation (2) is equal to (3 / m). 

Rewriting this equation in terms of octahedral shear strength the particle strengths can be related to 

size by: 

଴ݍ  ן  ݀ି ଷ௠ (5) 

 

where q0 is the characteristic particle strength, and is a value of the distribution such that 37% 

(exp[-1]) of random strengths are greater (and for a given m is proportional to the mean); and m is 

the modulus (which is related to the coefficient of variation). 

In their previous work on normal compression [1,4,9], the authors allowed each (spherical) particle 

to split into two new fragments, the new sphere fragments overlapping enough to be contained with 

the bounding parent sphere, while obeying conservation of mass. The axis joining the new spheres 

was aligned in the direction of minor principal stress. The simulation procedure started by applying a 

small, macroscopic vertical stress increment. Then, all particles were checked and allowed to break if 

their strength was exceeded; this step was followed by a number of computational timesteps to 

allow overlapping fragments to move apart. These two steps were repeated if necessary until no 

further breakages occurred, after which the stress was reapplied (if necessary).  An example of the 

results for such simulation using spheres, which will form the basis of comparison for the following 

simulations is given in Figure 1.  This graph presents the one-dimensional compression behaviour for 

a simulation of silica sand, with d0 = 2 mm, q0 = 37.5 MPa and m = 3.3. The normal compression line 

for the spheres in this figure demonstrates a slope of approximately 0.5, as predicted by Equation (1) 

and shown by the dotted line.  



 

2.2 Particle Shape 

In this work the results of three simulations, similar to that shown in Figure 1 but with irregularly-

shaped particles, and subjected to compression from varying initial density, are presented. With the 

exception of the particle geometry and varying initial voids ratio, the oedometer dimensions (7 mm 

x 30 mm) and simulation procedure (summarised below)are identical to that in the authors͛ previous 

work [1,4,9]. 

To capture more realistic particle ƐŚĂƉĞ͕ ƚŚĞ ͚ĐůƵŵƉ͛ ĨĞĂƚƵƌĞ ŽĨ ƚŚĞ ƐŽĨƚǁĂƌĞ ŝƐ ƵƐĞĚ͖ ĐůƵŵƉƐ ĐŽŶƐŝƐƚ 
of rigid bodies of overlapping spheres, in which internal contacts are ignored. In the case shown in 

Figure 2(a), two-ball clumps are used which comprise two equally-sized spheres with the centre of 

mass of mass of each constituent sphere located on the surface of its partner-sphere. The initial 

samples are generated using the radius-expansion method, i.e. the clumps are created at a greatly 

reduced size, then gradually expanded. 

As previously for the spheres, when a clump breaks it is replaced by two smaller, identically-shaped 

fragments. The new fragments are placed perpendicularly, with the vector connecting their centres 

of mass aligned with longitudinal axis of the parent clump, as shown in Figure 2(b). Due to the clump 

geometry, the fragments are not created within the volume of the parent clump, however their 

placement is bounded by the longitudinal extent of the original clumpͶindicated by thin dotted 

lines in the figure. The new fragments are given a random orientation by applying a rotation about 

the axis of the parent clump, also labelled in the figure. 

 
Figure 1. Voids ratio as function of applied vertical stress, for DEM simulation of the normal compression of 

an initially monodisperse assembly of spheres; plotted on double logarithmic axes with the predicted slope 

shown [9]. 

 



For the sake of comparison with the spheres, the initial clumps in all the three simulations are given 

a characteristic value of strength, q0 of 37.5 MPa, and a Weibull modulus, m of 3.3, equal to that of 

the spheres case, and obtained from experimental data [1]. For the previous simulations with 

spheres, it was not possible to obtain a significant range of initial densities under stress, due to the 

inability of the particles to interlock, which is the motivation for investigating various initial densities 

with clumps. To achieve these differing initial densities, different target voids ratios are specified 

during sample generation (e.g. specifying a higher e0,for a given sample volume and particle size 

results in fewer clumps being generated). 

After application of the first load increment (125 kPa), the three clump simulations have voids ratios 

of 0.74, 0.80 and 0.84, and are terŵĞĚ ͚ĚĞŶƐĞ͕͛ ͚ŵĞĚŝƵŵ͛ ĂŶĚ ͚ůŽŽƐĞ͛ herein respectively.  These each 

consist correspondingly of 640, 575 and 535 particles. Although these numbers are small, and will 

initially result in relatively significant boundary effects, simulations with larger samples and/or more 

initial particles were not computationally feasible. Previous exploratory simulations (with spheres), 

with larger samples appeared to result in the same compression behaviour as smaller samples, but 

were unable to reach high pressures due to the large number of particles covering a very wide range 

of scales, thus rendering the timestep too small. Even so, the simulations shown here were 

terminated once the timestep became unsustainable; for the clumps this was generally when 

dmax / dmin ш 20 (i.e., when the smallest particle in existence was <0.1 mm in diameter). This ratio is 

significantly less than that achieved for the sphere simulation (dmax / dmin ш 150 at the point of 

termination), due to the clumps by their nature being more computationally demanding. 

  
 

(a)       (b) 
Figure 2. Two-dimensional schematic of the two-balled clump used in the new three simulations (a), and the 

clump splitting/replacement mechanism (b). 

 



Also, for the sake of comparison, the initial clumps are equal in volume to the initial spheresͶi.e. 

each individual clump has a volume equal to a sphere with a diameter of 2 mm. This means that the 

clump and the sphere samples (before crushing) consist of particles with the same nominal 

diameter, d0. It is this nominal diameter that is used with Equation (5) when attributing strengths to 

new clump fragments, ensuring they follow the same hardening law as for the spheres. The 

boundary conditions and initial properties that apply to all the simulations discussed in this work are 

reported in Table 1 below. 

 

 

3. Normal Compression of Clumps 

3.1 Macroscopic yield 

The compression results of the loose, medium and dense clump simulations are presented in Figure 

3. The three simulations appear to converge to a unique normal compression line, consistent with 

experimental studies [2,e.g. 10]. TŚŝƐ ŝƐ ĂůƐŽ ŝŶ ĂŐƌĞĞŵĞŶƚ ǁŝƚŚ ƚŚĞ ĂƵƚŚŽƌƐ͛ ĐŽŵƉƌĞƐƐŝŽŶ ůĂǁ (Eq. 1), 

ǁŚŝĐŚ ƐƚĂƚĞƐ ƚŚĂƚ ƚŚĞ ƐůŽƉĞ ŽĨ ƚŚĞ NCL ŝƐ ƐŽůĞůǇ Ă ĨƵŶĐƚŝŽŶ ŽĨ ƚŚĞ ƉĂƌƚŝĐůĞƐ͛ ƐŝǌĞ-hardening law, and 

predicts a slope of 0.5; the law is shown in Figure 3 by the dotted line. The hardening law for the 

clumps (and therefore slope of the NCL) is the same as that for the spheres; thus the dotted lines in 

Figures 1 and 3 are identical. 

Yielding in normal compression is usually considered to be the point at which the compressive 

behaviour transitions from elastic to plastic; and is usually assumed to represent the onset of 

particle crushing [e.g. 11ʹ14]. As such, the macroscopic yield stress is often related to the particle 

strengths. According to the experimental literature [e.g. 10,13], for a given material, the earlier 

yielding of looser samples is attributed to the logic that such samples have lower coordination 

numbers (i.e. on average, the particles have fewer contacts). This implies that the particles are 

subjected to higher induced stresses, which causes major particle breakage (i.e. yielding) to begin at 

lower applied stresses. From visual inspection of Figure 3, by taking either the point where the first 

͚change in direction͛ occurs, the point of maximum curvature, or ďǇ ƵƐŝŶŐ CĂƐĂŐƌĂŶĚĞ͛Ɛ ŵĞƚŚŽĚ [e.g. 

15]; it is clear that the higher the initial voids ratio, the lower the apparent yield stress. 

Table 1. General DEM properties that apply to all simulations. 

 

General Simulation Properties 

Oedometer Size: Height x Diameter (mm) 7 x 30 

Wall Friction Coefficient 0 

Contact Model Hertz-Mindlin 

Initial (Nominal) Particle Size, d0 (mm) 2 

Particle Friction Coefficient 0.5 

Shear Modulus, G (GPa) 28 

PŽŝƐƐŽŶ͛Ɛ ‘ĂƚŝŽ͕ ʆ 0.25 

Particle Density (kg/m
3
) 2650 

37% Strength (for d0), q0 (MPa) 37.5 

Weibull Modulus, m 3.3 
 



Furthermore, from Figure 3 it is apparent that for the loosest sample (e0 = 0.84), the first deviation 

from the stiff, elastic initial part of the compression curve occurs at 9 MPa. For the medium sample 

(e0 = 0.80), a similar but smaller deviation occurs at 9 MPa, and the first major decrease in voids ratio 

occurs at 11 MPa. Similar behaviour can be observed for the dense sample (e0 = 0.74), for which 

there is a small decrease in voids ratio at 9 MPa, and the first major decrease occurs at 13 MPa. At 

stresses higher than this, the three NCLs approximately converge and follow the same path. 

 

As yielding is unequivocally linked to particle crushing, the actual breakage occurring in the different 

samples will now be quantitatively analysed. Considering first of all the loose sampleͶas stated 

above, the first deviation from the initial elastic curve occurs at 9 MPa, which is indicated in Figure 3 

by a star symbol. At this stress, 19 particles have already broken, constituting 2.43% of the mass of 

the sample that has fractured; and the average octahedral shear stress for all particles, qave, is 

7.94 MPa. During the next increment (9ʹ10MPa), there are a further 72 breakages, representing 

8.18% of the mass that fractures; and the voids ratio decreases by 0.044. If this point (ʍv = 9 MPa) is 

taken as the yield point, and assuming that the earlier yielding of this loose sample is due to fewer 

inter-particle contacts and (therefore) higher particle stresses, two suppositions follow: (1) the 

average particle stress, qave for the two denser samples will be lower at this applied stress; and (2) 

the average particle stress, qave at yield for all three samples will be (approximately) the same, due to 

the initial samples having identical mean strengths. 

However, analysis of the two other simulations reveals that at this macroscopic stress of 9 MPa, the 

medium and dense samples have average particle stresses of 7.16 and 7.92 MPa respectively, similar 

to the loose sample and showing no correlation with voids ratio (these points are also indicated in 

Figure 3). A further interesting observation is that during the corresponding load increment 9ʹ
10 MPa, 5.2% (by mass) of the medium sample, and 16.7% of the dense sample fracturesͶin 

 
Figure 3. Voids ratio as a function of vertical stress for 3 simulations using  clumps, with varying initial 

densities; plotted on double logarithmic axes with the predicted slope shown. 
 



comparison to 8.18% (see above) in the loose sample. However, it is the loose sample that 

undergoes the largest reduction in voids ratio (by a large margin), which gives the appearance of 

yield in Figure 3 (a reduction of 0.044, compared to 0.017 and 0.013 for the medium and dense 

samples respectively). These observations suggest that the apparent earlier yielding of loose samples 

is not solely related to the higher particle stresses, but also that due to the larger voids, a small (or 

given) amount of particle breakage facilitates a much larger amount of subsequent rearrangement 

and packing of fragments into the voidsͶleading to a greater decrease in volume, which is not 

necessarily the case for the denser samples. Equally, for denser materials, the initial voids are 

inherently smaller, so a greater degree of crushing must be required to produce fragments small 

enough to fit into the voids, requiring higher stresses. 

3.2 Measuring particle breakage, stress and coordination number 

The total number of particles in each simulation is given as a function of applied stress in Figure 4(a). 

An interesting observation that can be made is that the first observable breakage in all simulations 

(including the spheres) occurs after an applied stress of 7 MPa, marked by the slight increase in the 

number of particles. This suggests that the macroscopic stress at which crushing begins appears 

independent of initial density. After a macroscopic stress of 9 MPa is reached, the number of 

particles increases rapidly in all simulations, at an apparently similar rate (although there are 

fluctuations, due to the relatively small number of particles). Similarly, Figure 4(b) shows the number 

of particles, this time as a function of the average particle stress, qave. This figure shows how the 

number of particles increase as the average particle stress increases, indicating that a value of 7ʹ
8 MPa appears to be the critical value at which substantial particle crushing begins; thenceforth the 

number of particles increases rapidly in all simulations. This particular plot agrees with the notion 

that yieldͶor more explicitly the onset of crushingͶis triggered by the same particle stresses in all 

simulations (regardless of the actual macroscopic yield stress), due to the particles having the same 

strengths. 

 
(a)      (b) 

Figure 4. The total number of particles plotted as a function of vertical applied stress (a) and average particle 

stress (b), for all clump and sphere simulations. 

 



Figure 5 shows how the average particle stress, qave, increases with increasing vertical stress, and 

that qave for all simulations is almost identical up to the commencement of particle crushing, 

implying that the average particle stress is independent from the initial density, in agreement with 

the inference made from Figure 4(a). Although the similarity in Figure 5 for the three clump 

simulations may not seem greatly surprising, what is quite remarkable is that the average particle 

stress for the sphere simulation also coincides with that for the clumps, especially when considering 

Figure 6(a)Ͷwhich shows the average coordination number (for all particles) for the four 

simulations plotted as a function of vertical stress. This graph shows that the sphere simulation has a 

noticeably lower coordination number, yet the average particle stress appears identical to the clump 

simulations (which have higher average coordination numbers). Part (b) displays the average 

coordination number excluding particles with no physical contacts, sometimes referred to as the 

͚ŵĞĐŚĂŶŝĐĂů͛ ĐŽŽƌĚination number, and again the sphere simulation reveals the lowest value through 

the test. Particles with no contacts result from the simulations having no gravityͶif gravity was 

ŝŶǀŽŬĞĚ ƚŚĞŶ ŽŶĞ ǁŽƵůĚ ĞǆƉĞĐƚ ͚ĨůŽĂƚŝŶŐ͛ ƉĂƌƚŝĐůĞƐ ƚŽ assume 2ʹ3 contacts, and transmit no forces 

other than its weight. For all simulations, the average coordination number (which takes into 

account all particles) decreases substantially once significant crushing occurs and the overall number 

of particles grows exponentially. The mechanical coordination number (ignoring floating particles) 

on the other hand increases continuously with increasing stress, with the rate of increase decreasing 

at high stresses. 

 
Figure 5. The average particle octahedral shear stress, qave, for all simulations plotted as a function of 

applied vertical stress. 

 



 

3.3 Fractal Crushing 

The observations from Figure 4 that particle crushing begins at the same stage (i.e. the same ʍv and 

qave) for all four simulations, and the fact that the normal compression lines converge suggest that at 

a given voids ratio, the materials should have equivalent particle size distributions (albeit with 

different quantities of particles, due to the initial difference). Figure 7 shows the progressive particle 

size distributions (PSDs) for all simulations, whereby it is apparent that at any given stress, the PSDs 

for all four simulations are approximately the same. The graphs also show how the range of particles 

sizes increase with increasing stress. Although the particle size distributions for the clump 

simulations have not developed to an extent to reliably confirm a fractal character, the shapes of the 

evolving grading curves do indicate the emergence of fractal distributions. Furthermore, previous 

simulations with spheres (including the one presented in this work) have been shown to produce 

fractal distributions [1,4]. 

The assumption of emergent fractal particle size distributions during normal compression is the basis 

of the compression law given in Equation (1). Hence, the observations from Figures 4ʹ6 that the 

coordination number is not significant seems incongruent, considering it is widely accepted that the 

coordination number is the dominating influence that controls the likelihood of whether a particle 

will break or not, and is key to understanding why fractal distributions emerge [e.g. 12]. Table 2 

shows a breakdown according to coordination number for the dense clump simulation at three 

stages during compression. For each stage (ʍv = 1, 10, 20 MPa), the particles are categorised 

depending on their coordination number, and for each category four measures are reported: the 

number of particles, the average particle octahedral shear stress (qave), the maximum particle stress 

(qmax), and the standard deviation (S.D.). 

 
(a)      (b) 

Figure 6. The average coordination number (a) and the average mechanical coordination number (b) for all 4 

simulations plotted as a function of vertical stress. 

 



 

Considering firstly just the average particles stresses, at an applied vertical stress of 1 MPa, the most 

common number of contacts for any particle is 5 or 6, and almost all clumps have between 3 and 8 

contacts with neighbouring particles. The average octahedral shear stress for the particles, qave, is 

slightly larger for those with 9ʹ10 contacts (although there are only 10 such particles); and is the 

smallest for the one particle with just 2 contacts. However, there is not much variation in average 

stress between coordination numbers of 3ʹ10 (just a single clump has 11 contacts); moreover the 

overall difference in average stress for all particles with any coordination number is approximately 

just 1 MPa, which is insignificant relative to the particle strengths. 

 
(a)      (b) 

 
(c)      (d) 

Figure 7. Progressive particle size distributions for the dense (a), medium (b) and loose (c) clump 

simulations, and the sphere simulation (d). 

 



At a stress of 10 MPa (approximately the stage at which major crushing commences), similarly there 

is no major variation in qave for particles with between 3ʹ10 contacts; particles outside of this range 

(with 2 or 11ʹ12 contacts) exhibit lower average stress. However, the corresponding data at an 

applied stress of 20 MPa is far more revealing; with a much more measurable variation in qave across 

the particles. For this case, particles with between 3ʹ8 contacts suffer from the highest average 

stress of approximately 22 MPa, thereafter qave decreases noticeably with increasing coordination 

number, showing clearly that particles with very high coordination numbers (which are necessarily 

large particles) have lower induced stresses. 

The maximum particle stress (qmax) and standard deviation (S.D.)Ͷalso given in Table 2 for each 

category of particleͶwill now be considered. At vertical stresses of 10 and 20 MPa, in both cases the 

particle experiencing the single largest shear stress has 3ʹ4 contacts. Thereafter, the maximum 

value of particle stress, qmax decreases with increasing coordination number. Likewise, the particles 

with the largest standard deviation in shear stress are those with 3ʹ4 contacts, which decreases with 

increasing coordination number. 

Comparing these values (qmax and S.D.) with the average particle shear stress qave offers a useful 

insight to the variation of internal particle stresses. For example, at ʍv = 20 MPa, although clumps 

with either 3ʹ4, 5ʹ6 or 7ʹ8 contacts are all subjected to a similar average ƐƚƌĞƐƐ ŽĨ у 22 MPa; the 

maximum stress experienced by a particle with 3ʹ4 contacts is у 217 MPa, significantly higher than 

that experienced by particles with 5ʹ6 or 7ʹϴ ĐŽŶƚĂĐƚƐ ;у 149 and 108 MPa respectively). Similarly, 

the standard deviation reduces from around 25 MPa for those particles with 3ʹ4 contacts, to 20 and 

15 MPa respectively for the particles with 5ʹ6 and 7ʹ8 contacts. So, even though all clumps with a 

coordination number between 3ʹ8 experience similar average stresses, those with fewer contacts 

have a much more irregular distribution of octahedral shear stress; as such, some of these particles 

are subjected to exceptionally high stresses. Although not displayed here, the same trends in particle 

stresses can be observed at all levels of vertical stress (following the onset of crushing), as well as for 

the other three simulations, including the spheres. 

 

Table 2. Breakdown of the average particle stress for the dense clump simulation; categorised according to 

the coordination number (not including stress-free particles/those with 0 contacts). 

 

Particles with a 

Coordination 

Number of: 

ʍv = 1 MPa ʍv = 10 MPa ʍv = 20 MPa 

No.: 

qave 

(MPa): 

qmax 

(MPa): 

S.D. 

(MPa): No: 

qave 

(MPa): 

qmax 

(MPa): 

S.D. 

(MPa): No: 

qave 

(MPa): 

qmax 

(MPa): 

S.D. 

(MPa): 

2 1 0.11 0.11 0.00 7 5.84 17.40 6.05 70 12.15 98.12 16.76 

3ʹ4 111 0.63 2.76 0.51 131 9.88 86.05 12.39 713 21.90 217.47 25.02 

5ʹ6 314 0.97 5.12 0.70 359 10.19 69.86 9.67 1150 23.88 148.73 20.02 

7ʹ8 113 1.04 3.94 0.66 260 10.41 52.08 6.86 699 21.53 108.40 15.41 

9ʹ10 10 1.31 2.61 0.81 92 9.98 23.05 4.61 314 18.11 53.34 10.13 

11ʹ15 1 1.06 1.06 0.00 11 8.18 15.70 3.10 249 14.48 56.32 7.58 

16ʹ25 0 --- --- --- 0 --- --- --- 33 13.68 23.77 4.59 

 

 



The data presented in Table 2 shows that the coordination number significantly reduces the average 

induced particle stressͶand therefore the probability of fractureͶif it is very high, in this case 

typically greater than 10. An increasing coordination number also clearly reduces the variability in 

particle stress. In these simulations, due to the initial mono-dispersity, such a disparity in 

coordination numbers is only possible once crushing has commenced, and the materials have 

developed a range of particle sizes. Although it is slightly surprising that the highest average particle 

stress is not associated with the smallest number of contacts (i.e. 2), the findings presented here 

agree with the principle behind fractal crushing, i.e. that the coordination number is the key to the 

emergence of a fractal PSDͶthe largest particles become surrounded by an increasing number of 

ƐŵĂůůĞƌ ƉĂƌƚŝĐůĞƐ͕ ǁŚŝĐŚ ͚ƉƌŽƚĞĐƚ͛ ƚŚĞ ůĂƌŐĞ ƉĂƌƚŝĐůĞs, increase the coordination number, and reduce 

both the average stress and its variability. Meanwhile, the smaller particles with 3ʹ4 contacts have 

practically the highest qave and the highest variation in shear stresses (hence the highest qmax)Ͷand 

therefore these are the particles that continue to break, filling the ever-shrinking voids and giving 

additional contacts to the largest particles. As demonstrated by comparing the values in Table 2 at 

stress of 10 and 20 MPa, this process appears continuous. 

4. Conclusions 

The normal compression of clumps with different relative densities have been compared to spheres; 

the onset of crushing appears to be a function of the average octahedral shear stress, qave in the 

particles, which in turn appears to be a unique function of the applied vertical stress, ʍv (at least up 

until yield). However, the ͚yield stress͛ obtained visually from the compression plot of voids ratio 

versus applied stress appears different for each sample, and occurs at a lower value of ʍv for the 

looser sample due to the larger voids being able to accommodate the fragments produced.  The 

dense sample by comparison requires more crushing before apparent yielding so that the smaller 

voids can accommodate the smaller fragments. On the normal compression line, the largest particles 

have many more contacts and although the average particle stress, qave for these large particles may 

be significant, the variation is small. For the smaller fragments, with 3-4 contacts, not only is the 

average shear stress higher but also the variability is high, and it is therefore these particles that 

continue to breakͶand this process continues across a range of decreasing scales as stress 

increases. This work therefore confirms both the dominance that the coordination number has on 

the likelihood of a particle breaking, and that it is key to the evolution of a fractal particle size 

distribution.  Moreover, the work presented here is a step towards improving the realism of DEM-

based soil models, incorporating both particle crushing and irregular shape. 
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