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In this work the practical applicability of a 2D URANS approach adopting a block structured mesh and Menter’s SST k-ω
turbulence model in fluid-structure interaction (FSI) problems is studied using as a test case a ratio B/H = 4 rectangular
cylinder. The vortex-induced vibration (VIV) and torsional flutter phenomena are analyzed based on the computation of the
out-of-phase and in-phase components of the forced frequency component of lift and moment coefficients when the section is
forced to periodically oscillate both in heave and pitch degrees of freedom. Also the flutter derivatives are evaluated numer-
ically from the same forced oscillation simulations. A good general agreement has been found with both experimental and
numerical data reported in the literature. This highlights the benefits of this relatively simple and straightforward approach.
These methods, once their feasibility has been checked, are ready to use in parametric design of bridge deck sections and, at
a later stage, in the shape optimization of deck girders considering aeroelastic constraints.

Keywords: computational fluid dynamics; URANS; bluff body aerodynamics; vortex-induced vibration; torsional flutter;
flutter derivatives; B/H = 4 rectangular cylinder

1. Introduction

The rectangular cylinder is a classic example of a bluff
body and has been extensively studied for decades by the
scientific community. There are several reasons for this
interest: their aerodynamic response is governed by the
separation of the shear layers from the wind-ward edges
and the flow patterns are dramatically different depend-
ing on the B/H ratio (B is the cross-section width while
H is the section depth). Thus rectangular prisms are prone
to vortex-induced vibration (VIV), torsional flutter, gal-
loping and coupled flutter (Takeuchi & Matsumoto, 1992)
and they are also often found in the built environment, for
instance as the main structural members in arch bridges.
Besides this, rectangular cylinders can be regarded as sim-
plified geometry cases for studying the aerodynamic and
aeroelastic response of bridge decks and buildings, which
makes them particularly appealing as test cases for the
validation of new methods of analysis.

From an experimental perspective, the number of pub-
lished works on the aerodynamic and aeroelastic response
of rectangular prisms is enormous, and covers all the dif-
ferent aerodynamic phenomena. It is not possible to make a
comprehensive summary here, therefore just as a small and
nonsystematic sample, the following are mentioned: Nak-
aguchi, Hashimoto, and Muto (1968), Ogawa, Sakai, and
Sakai (1988), Norberg (1993), Matsumoto (1996) or Le,
Tamura, and Matsumoto (2011).

*Corresponding author. Email: felix.nieto@udc.es

Rectangular cylinders have also been extensively stud-
ied by means of numerical simulations. Due to the intrinsic
complexity of the CFD problem and the associated
computer power demand, the first applications were con-
fined to the analysis of the aerodynamics of static rectan-
gular cylinders. A detailed summary of the main contribu-
tions in the 1990s can be found in Shimada and Ishihara
(2002). Some more recent references on static rectan-
gular cylinders are Sohankar (2006), Kuroda, Tamura,
and Suzuki (2007) and Sohankar (2012), along with the
research carried out in the frame of the BARC (Bench-
mark on the Aerodynamics of a Rectangular 5:1 Cylinder)
initiative such as Mannini, Soda, and Schewe (2011) and
Bruno, Coste, and Fransos (2012). The current state of the
art, shows that 3D LES (Large Eddy Simulation) or DES
(Detached Eddy Simulation) are generally used in order
to study the complex three-dimensional flow around static
rectangular cross-sections both in isolation and in combi-
nation with other bluff bodies. It must be pointed out that
in these models, the spanwise length of the body influences
the length scales of turbulence in the spanwise direction.

However, the number of references in the literature
dealing with the numerical simulation of FSI (Fluid–
Structure Interaction) problems for rectangular cross-
section cylinders is more sparse, and in some cases the
research has been carried out as a preliminary study
prior to a further application in bridge deck aerodynamics

© 2015 The Author(s). Published by Taylor & Francis.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.
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problems. An early application is Murakami, Mochida,
and Sakamoto (1997), where the results of forced oscilla-
tions and wind-induced free oscillation of a square cylinder
using a 3D LES approach are reported. Piperno (1988),
obtained with reasonable accuracy the in-phase and out-
of-phase components of a ratio 4:1 rectangular cylinder
under forced oscillation without considering a turbulence
model. The works by Tamura and Itoh (1999); Tamura
(1999), Tamura and Ono (2003) on the oscillations of
rectangular cylinders and turbulence effects must also be
highlighted. Also, in Mendes and Branco (1999), the com-
puted values for the H ∗

1 and A∗
2 flutter derivatives of the

B/H = 4 rectangular cylinder are reported employing a
2D approach with no turbulence model. Braun and Awruch
(2003), computed the response of a B/H = 5 rectangu-
lar cylinder displaying wind-induced free oscillation in
heave and pitch degrees of freedom. A more recent applica-
tion can be found in Sarwar, Ishihara, Shimada, Yamasaki,
and Ikeda (2008), where the flutter derivatives of rect-
angular cylinders with aspect ratios 10:1 and 20:1 were
computed as part of a numerical study for obtaining the
flutter derivatives of a box girder deck. In Sun, Owen,
Wright, and Liaw (2008), the numerical results for the
A∗

2 flutter derivative of the B/H = 4 rectangular cylin-
der using a 3D LES approach are reported. Later, Sun and
co-workers (Sun, Owen, & Wright, 2009) published the
complete set of 18 flutter derivatives for the B/H = 4
rectangular cylinder employing a 2D URANS (Unsteady
Reynolds Averaged Navier-Stokes) modeling and a k-ω

turbulence model; also the effect of the incoming level
of turbulence was studied. Finally, in Shimada and Ishi-
hara (2012), the responses of 2:1 and 4:1 ratio rectangular
prisms subject to forced and free wind-induced oscillations
were computed and compared with experimental tests and
other numerical results available in the literature finding a
good agreement. The authors in the last reference adopted
a 2D URANS approach and a modified k-ε turbulence
model (Shimada & Ishihara, 2002) to study the aerody-
namic instabilities of interest avoiding the burdensome 3D
numerical simulations.

In this work a B/H = 4 rectangular cylinder has been
selected as a study case since it belongs to the category
of permanent reattached flow (Bruno, Salvetti, & Riccia-
rdelli, 2014) and therefore it can be considered as a basic
bridge deck geometry. Furthermore, rectangular cylinders,
as bridge decks, present fixed separation points instead
of moving ones, characteristic of circular cylinders (Wu
& Kareem, 2012). From the existing literature on CFD
applications, two references cited above dealing specifi-
cally with the FSI response of the B/H = 4 rectangular
cylinder must be highlighted. In Sun et al. (2009) the
flutter derivatives of the 4:1 rectangular prism were com-
puted. However, the VIV and torsional flutter problems
were not addressed and therefore, the reduced velocities
(UR = U/(fB)) considered were in the range (3, 6), out-
side the VIV zone close to UR = 1.7. On the other hand,

in Shimada and Ishihara (2012) the focus was put on the
VIV, galloping and torsional flutter of rectangular prisms.
The range of reduced velocities studied for the B/H =

4 case was ample (approximately between 0.75 and 7.5);
nevertheless no attempt was made to compute the flutter
derivatives. Consequently, to the authors’ knowledge the
fundamental FSI phenomena in bridges, VIV response and
computation of flutter derivatives required for the identi-
fication of the critical flutter wind speed, have not been
simultaneously addressed in the literature.

Furthermore, in Sun et al. (2009) it is stated that the
most feasible turbulence model depends on the type of
aeroelastic phenomena being modeled. Since both flutter
and VIV are narrow band processes, it is argued that the
same basic requirement holds for the two phenomena. That
is the correct simulation of the average shear layer aero-
dynamics induced by the deck motion. The motivation of
the current piece of research is to explore the applicabil-
ity of a 2D URANS approach in combination with a low
Reynolds strategy in the proximity of the bluff body, in
order to obtain the VIV, the torsional flutter response and
the flutter derivatives for the 4:1 rectangular cylinder. A
key point, which is discussed in the next section, is the
selection of a turbulence model which must be suitable for
modeling the aforementioned aeroelastic phenomena.

Furthermore, in this investigation a block structured
mesh has been employed since it is particularly suited to
the automatic grid generation in the context of paramet-
ric and optimum design problems. In addition, the time
required for solving unstructured meshes in CFD problems
is often higher than for the structured ones (Zhang, Jia,
Wang, & Altinakar, 2013). The solver of choice has been
OpenFOAM, which is a free, open source CFD software
package based on the finite volume method.

The success of the described strategy would allow the
application of this methodology in the parametric design
of bridge box decks. Its implementation in the frame of the
numerical shape optimization of bridge deck sections con-
sidering aeroelastic responses has already been proposed
by some of the authors of this work (Hernández, Nieto,
Jurado, & Pérez, 2012).

In the first part of the paper the available numerical
approaches and turbulence models are discussed and the
choice of the SST k-ω is explained. Then the basic numer-
ical formulation is introduced and the formulation for
computing the in-phase and out-of-phase components of
lift and moment coefficients for bluff bodies under forced
oscillation is briefly described, along with the extraction of
the flutter derivatives. In the next section the flow model-
ing and computational approach adopted in the B/H = 4
rectangular cylinder case study is explained and the results
of the verification analyses and validation for the static 0°
angle of incidence case are described. Concerning the FSI
problems, the results for the VIV and torsional flutter simu-
lations are presented and compared with experimental and
numerical data in the literature. Furthermore, the flutter
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derivatives are extracted and also the current results are
compared with computer simulations and wind tunnel test
data. Finally, the main conclusions from this piece of
research are summarized.

2. The choice of turbulence model

It is well known that turbulence is a time-dependent
three-dimensional process whose simulation by means of
computational techniques is particularly challenging. Sev-
eral turbulence models, comprising modified versions have
been proposed, which differ on their physical foundations,
their degree of complexity and computer power demands.

A lot of effort has been devoted to the development
of reliable general-use turbulence models for solving the
closure problem in the Reynolds-averaged Navier-Stokes
(RANS) and Large Eddy Simulation (LES) approaches.
In the following some of the available models are men-
tioned and their expected behavior on the type of problems
considered in the present piece of research is commented.

Amongst the one-equation models, the Spalart-
Allmaras turbulence model (Spalart & Allmaras, 1992)
must be highlighted. This model applies the Boussinesq
approximation and it is based on the proposal of a trans-
port equation for the eddy viscosity (Wilcox, 2006). This
turbulence model has proved to be effective in airfoil and
wing applications, as well as free shear flows. However,
the model does not provide good results for massively sep-
arated flows (Mannini, Soda, & Schewe, 2010a) but it is of
interest in the frame of Dettached Eddy Simulation (SA-
DES). Focusing on its performance in the aerodynamics of
2D rectangular cylinders, Mannini and co-workers found
that for a static B/H = 5 rectangular cylinder at 0° angle of
attack and ReH = 2 × 104, the model predicted an almost
steady solution, which is in disagreement with experi-
mental evidence. In the same manner, the recirculation
region at the leeward side of the prism was overestimated
and the mean values of the pressure coefficient were not
particularly accurate.

Perhaps the most commonly used turbulence models
in RANS applications are the two-equation type based on
the Boussinesq assumption. They are the k-ε and the k-ω

models with their different versions. The k-ε turbulence
model has enjoyed great popularity, particularly in indus-
trial applications. However, according to Wilcox (2006),
it has proved to be inaccurate for separated flows, it is
extremely difficult to integrate through the viscous sub-
layer and very often requires a certain degree of tuning
to suit each particular application. Consequently, the k-ω

turbulence model has gained popularity since it appears to
be more accurate for modelling 2D boundary layers with
both adverse and favorable pressure gradients and it can be
integrated through the viscous sublayer without any spe-
cial viscous correction. In this respect, some of the authors
of this work (Nieto, Kusano, Hernández, & Jurado, 2010)
have found poor performance of the k-ε model simulating

the vortex shedding from a twin box deck. In contrast,
the k-ω model provided better results for the same prob-
lem. Menter (2009) remarked on the sensitivity of the k-ω

model with the free stream turbulent characteristics. As an
alternative that avoids this problem, the SST version of
the k-ω turbulence model was proposed by Menter (1994),
and a number of modifications and improvements have
been later published by Menter and co-workers. Follow-
ing Menter (2009), the basic idea consists in using the
k-ω model in the near wall regions and the k-ε model in
the remaining flow domain, introducing blending functions
that join the two models in a single formulation along with
the JK model. The eddy viscosity is limited to improve the
model’s behavior for adverse pressure gradients and in the
wake region. Also, a limiter is introduced in the production
term of the kinetic energy (Blazek, 2005; Mannini et al.,
2010a).

A more sophisticated approach consists in providing
alternatives to the Boussinesq eddy-viscosity assumption,
introducing the anisotropy tensor for modeling the compo-
nents of the Reynolds stress tensor. These models, known
as Explicit Algebraic Reynolds Stress Models are a sub-
class of the algebraic stress models (Wilcox, 2006). Man-
nini and co-workers (Mannini et al., 2010a; Mannini, Soda,
Voß, & Schewe, 2010b) have applied the linearized explicit
algebraic version of the model, coupled with Wilcox’s
standard k-ω model. This model has shown accurate results
in 2D simulations of a static B/H = 5 rectangular cylin-
der, as well as qualitatively capturing the Reynolds number
dependency of the response for a 4° angle of attack. These
kinds of models are particular useful for flows over curved
surfaces, since the Boussinesq eddy-viscosity approxima-
tion generally fails. The potential of the model for bluff
bodies with curved edges has been exploited in Mannini
et al. (2010b) studying the effect of corner sharpness of the
cross-section of a bridge deck.

When unsteady RANS models are applied consider-
ing a three-dimensional flow domain, they typically pro-
duce single-mode large-scale unsteady structures without
resolving any of the details of the turbulence (Menter,
2009) and the integral results are practically identical to
those obtained from two-dimensional simulations (Sun
et al., 2009). On the other hand, the application of Reynolds
Stress models in three-dimensional flow domains allows
for the capture of three-dimensional features in the flow.
In the application reported in Mannini et al. (2010a) it was
found that for the static 5:1 rectangular cylinder studied,
the three-dimensionality of the flow was weak. There were
no remarkable differences from the two-dimensional simu-
lation, apart from a 50% increment in the standard devia-
tion of the drag coefficient. In fact, the authors elaborate on
the difficulties in setting an adequate span-wise dimension
of the domain and in triggering the three-dimensionality of
the flow.

Nowadays the most accurate, but also the most
computationally burdensome, model is the Large Eddy
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Simulation (LES) approach applied in a 3D domain. In
fact, the high cost of LES in wall boundary layers has
restricted its application in industrial applications (Menter,
2009). A less computationally onerous alternative is the so-
called Dettached Eddy Simulation (DES), where different
versions of RANS models, such as Spalart-Allmaras, are
applied in boundary layers. Focusing on LES, the basic
idea consists in computing the large eddies in the flow,
while the smallest eddies are modeled. These small scales
of the turbulence are solved by means of the subgrid-scale
model, which simulates the energy transfer between the
large eddies and the subgrid scales. General references
describing this model are, for instance, Blazek (2005) or
Sagaut (2001) who focuses on incompressible flows. Con-
cerning the high computer cost associated with the method,
some computer times are provided in Bruno et al. (2012)
for a static 5:1 rectangular cylinder when different space
discretization is considered in the span-wise direction.

Taking into account that the primary goal of this
piece of research is the CFD-based computation of vortex-
induced response and flutter derivatives of a ratio B/H =

4 rectangular cylinder by means of forced oscillations, 3D
simulations have been discarded. Since several reduced
velocities must be considered for two different degrees of
freedom and the simulations must be extended for tens
of nondimensional time steps, the computer cost linked
with DES or LES approaches could not be afforded by
the authors. In fact, Shimada and Ishihara (2012) make
a similar reflection in order to justify their k-ε approach.
Furthermore, the application of URANS models, or even
the Explicit Algebraic Reynolds Stress model, in three-
dimensional flows, while being computationally expen-
sive, does not provide significantly better results than a 2D
simulation, as it has been noted above.

Focusing on 2D URANS, the drawbacks of the Spalart-
Allmaras model for massively separated flows have
already been noted. Reynolds Stress models, while provid-
ing good results for 2D simulations of rectangular cylin-
ders, offer better results in problems dealing with bluff
bodies with curved surfaces. Since the case considered
herein has sharp edges, it is was not clear a priori that the
more sophisticated Reynolds Stress model would provide
better results while being robust in the forced oscillation
simulations to be conducted. Amongst the remaining alter-
natives, the general SST version of the k-ω model seemed
to offer the right balance between computer cost, robust-
ness and expected accuracy. Therefore, it has been chosen
by the authors for this study.

3. Numerical formulation

The time averaging of the equations for conservation of
mass and momentum gives the Reynolds averaged equa-
tions of motion in conservation form (Wilcox, 2006).

∂Ui

∂xi

= 0 (1.a)

ρ
∂Ui

∂t
+ ρUj

∂Ui

∂xj

= −
∂P

∂xi

+
∂

∂xj

(2µSij − ρu
,
iu

,
j ) (1.b)

where Ui is the mean velocity vector, xi is the position vec-
tor, t is the time, ρ is the fluid density, u′

i is the fluctuating
velocity vector and the over-bar represents the time aver-
age, P is the mean pressure, µ is the fluid viscosity, Sij is
the mean strain-rate tensor. From Equation 1b, the specific
Reynolds stress tensor is defined as:

τij = −u
,
iu

,
j (2)

which is an additional unknown to be modeled based
on the Boussinesq assumption for one and two equation
turbulence models (Wilcox, 2006).

τij = 2νTSij −
2

3
kδij (3)

where vT is the kinematic eddy viscosity and k is the kinetic
energy per unit mass of the turbulent fluctuations.

In this work the closure problem is solved applying
Menter’s k-ω SST model for incompressible flows (Menter
& Esch, 2001).

For the simulations where oscillations of the bluff body
have been imposed, the Arbitrary Lagrangian Eulerian
(ALE) formulation has been applied. The conservation
of mass and momentum equations are written as follows
(Bai, Sun, & Lin, 2010; Sarkic, Fisch, Hoffer, & Bletzinger,
2012):

∂(Ui − Ugi)

∂xi

= 0 (4.a)

ρ
∂Ui

∂t
+ ρUj

∂(Ui − Ugi)

∂xj

= −
∂P

∂xi

+
∂

∂xj

(2µSij − ρu
,
iu

,
j )

(4.b)

where Ugi is the grid velocity in the i-th direction.
The forced displacement is imposed at the bluff-body

boundary and the mesh control is achieved computing the
motion of the grid points solving the Laplace equation
with variable diffusivity using a quadratic distance-based
method.

4. Forced vibration

Forced oscillation of a bluff body allows its vortex-induced
response to be analyzed as well as torsional flutter. Next,
a brief summary of the fundamental formulation is going
to be presented. More comprehensive explanations can be
found in Washizu, Ohya, Otsuki, and Fujii (1978), or more
recently, in Shimada and Ishihara (2012).

Forced displacement is imposed on a bluff body, in
a single degree of freedom, according to the following
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expression for heave:

h(t) = h0 sin(ωmt) (5)

where h(t), positive upwards, represents the forced oscilla-
tion in heave, h0 is the displacement amplitude, ωm is the
forced vibration angular frequency and t is the time.

For the pitch oscillation, the equivalent expression for
the forced motion is:

α(t) = α0 sin(ωmt) (6)

with α(t) being the pitch rotation, positive in the clock-wise
direction, and α0 is the amplitude of the forced vibration.

The main components of the unsteady wind force act-
ing on the oscillating bluff-body are the vortex-shedding
frequency component and the forced frequency compo-
nent. In the results that are going to be presented below,
the initial transient region in the simulations has been
excluded and the data analyses have been conducted for
time histories that can be considered steady and station-
ary. In Figure 1 the simulated time history of the lift
coefficient is presented along with its frequency decom-
position for a reduced velocity UR = U/(fB) = 4.0 for

the 4:1 rectangular cylinder (where f = ωm/2π the fre-
quency of oscillation in Hz). The first peak, at 2.5 Hz,
corresponds to the frequency of oscillation while the sec-
ond one, at 5.7 Hz, identifies the vortex shedding fre-
quency. The component of the unsteady lift force (or
moment) at the frequency of the forced oscillation can be
written as:

Lm(t) = L0 sin(ωmt + β) (7)

Where L0 is the amplitude of the unsteady lift at the
excitation frequency, and β is the phase shift with respect
to the forced oscillation.

Applying the Fourier decomposition of the unsteady lift
force per unit of span length, L0 and β can be obtained:

[am, bm] =
1

T

T

∫
−T

L(t)[cos ωmt, sin ωmt]dt (8.a)

L0 =

√

a2
m + b2

m (8.b)

β = tan−1(bm/am) (8.c)

(a)

(b)

Figure 1. Ratio 4:1 rectangular cylinder (a) time history and (b) spectral content of the lift coefficient at forced oscillation in the heave
degree of freedom.
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And the forced frequency component of the unsteady
lift force acting on the bluff-body is:

Lm(t) = L0 cos β sin(ωmt) + L0 sin β cos(ωm t) (9)

Where LmR = L0 cos β is the in-phase component and
LmI = L0 sin β is the out-of-phase component of the forced
frequency term of the unsteady lift force. The out-of-phase
component is of great importance since it plays the role of
the aerodynamic damping, while the in-phase component
plays the role of the aerodynamic stiffness. When the out-
of-phase component is positive, it acts as negative aerody-
namic damping indicating that self-excited oscillation may
take place (see Shimada and Ishihara (2012) and Sarwar
and Ishihara (2010), for a more detailed explanation).

The in-phase and out-of-phase components of the
forced frequency component of the unsteady lift force can
be expressed as nondimensional coefficients:

CLR =
LmR

1
2ρU2B

(10.a)

CLI =
LmI

1
2ρU2B

(10.b)

The same principles can be applied to the forced fre-
quency component of the unsteady moment for the pitch
degree of freedom. In this case, the nondimensional coeffi-
cients are written as follows:

CMR =
MmR

1
2ρU2B2

(11.a)

CMI =
MmI

1
2ρU2B2

(11.b)

where M mR is the in-phase component and M mI is the out-
of-phase terms of the forced frequency component of the
unsteady moment.

5. Flutter derivatives computation by means of

forced oscillation simulations

Flutter derivatives are nonanalytical parameters which
relate motion-induced forces and the velocities and move-
ments of the structure. As a consequence, these parameters
have been traditionally identified using wind tunnel tests,
and more recently from numerical-based simulations.

According to Sarkar, Caracoglia, Haan, Sato, and
Murakoshi (2009) and Simiu and Scanlan (1996), the
aeroelastic forces on a bridge deck, considering two
degrees of freedom (heave and pitch) can be written as

follows, using Scanlan’s formulation: [

LS
ae(t) =

1

2
ρU2B

[

KH ∗
1

ḣ(t)

U
+ KH ∗

2
Bα̇(t)

U
+ K2H ∗

3 α(t)

+K2H ∗
4

h(t)

B

]

(12.a)

M S
ae(t) =

1

2
ρU2B2

[

KA∗
1

ḣ(t)

U
+ KA∗

2
Bα̇(t)

U
+ K2A∗

3α(t)+

K2A∗
4

h(t)

B

]

(12.b)

Where LS
ae(t) is the aeroelastic lift force per unit of span

length, M S
ae(t) is the aeroelastic moment per unit of span

length,K = (Bω)/U is the reduced frequency, h(t) is the
heave oscillation and ḣ(t) is its time derivative, α(t) in
the torsional rotation and α̇(t) its time derivative, H∗

i and
A∗

i (i = 1, . . . , 4) are the flutter derivatives.
Assuming prescribed harmonic forced oscillations h =

h0 sin(ωht) and α = α0 sin(ωαt), where h0 and α0 are
the amplitudes of the oscillations, and also that motion-
induced forces are linear functions of the movement; after
some manipulation, the following expressions are obtained
for the identification of the flutter derivatives:

H ∗
1 =

−L0 sin φL

qK2h0
(13.a)

H ∗
2 =

−L0 sin φL

qBK2α0
(13.b)

H ∗
3 =

L0 cos φL

qBK2α0
(13.c)

H ∗
4 =

L0 cos φL

qK2h0
(13.d)

A∗
1 =

−M0 sin φM

qBK2h0
(13.e)

A∗
2 =

−M0 sin φM

qB2K2α0
(13.f)

A∗
3 =

M0 cos φM

qB2K2α0
(13.g)

A∗
4 =

M0 cos φM

qBK2h0
(13.h)

Where L0 and M0 are the amplitudes of the fluctuating lift
and moment acting on the bluff-body, φL and φM are the
phase lags of the aeroelastic lift or moment with respect to
the prescribed oscillation and q is the dynamic pressure.

The adopted sign criterion has been the one reported in
Sarkar et al. (2009) that is aeroelastic lift force and heave
displacement positive downwards, moment and pitch rota-
tion positive in the clock-wise direction, for a flow coming
from the left side.

The aerodynamic force representation employed by
Washizu and co-workers (Washizu, Ohya, Otsuki, & Fujii,
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1978; 1980) is equivalent to the flutter derivatives formu-
lation proposed by Scanlan. In this respect, in Sarkar et al.
(2009), the expressions relating the out-of-phase and in-
phase components of the lift and moment coefficients with
the direct flutter derivatives H ∗

1 , H ∗
4 , A∗

2 and A∗
3 are derived.

6. Geometry and computer modeling

As it has been previously noted, a rectangular section
with a width to depth ratio B/H = 4 and sharp edges has
been chosen as the case study for computing its forced
oscillation response.

In the FSI simulations the rectangular cylinder, which
is considered as rigid, is forced to oscillate at a prescribed
frequency in heave or pitch degrees of freedom. In the
adopted approach no structural solver is involved and the
mesh movement is handled by the solver using the ALE
method.

6.1. Boundary conditions

The flow domain size adopted in all the simulation reported
herein is 41B by 30.25B, similar to the size employed in
successful simulations by other researchers (Bruno, Fran-
sos, Coste, & Bosco, 2010; Fransos & Bruno, 2010) and
bigger than flow domains in Sun et al. (2008), Sarwar
and Ishihara (2010) or Arslan, Pettersen, and Andersson
(2011). The flow domain size has been chosen in order to
guarantee that flow conditions near the bluff body are not
influenced by the distance to the boundaries.

As boundary conditions, a constant velocity inlet has
been set at the left side (see Figure 2) while a pressure out-
let at atmospheric pressure has been imposed at the right
side. The upper and lower boundaries have been defined as
slip walls, that is, neglecting viscous effects caused by the
wall surface. Taking into account that in the region close to
these boundaries the flow is practically undisturbed, given
the distance of the upper and lower boundaries from the

Figure 2. Flow domain definition and boundary conditions
(rectangular cylinder out of scale).

bluff body, this is similar to imposing the uniform value
of the inlet velocity along these boundaries as in Fransos
and Bruno (2010) or Sarwar and Ishihara (2010). The walls
of the rectangular cylinder surface are modeled as no-slip,
taking into account that in the forced oscillation simula-
tions the kinematic requirement that no flow can cross the
wall is enforced (Donea, Huerta, Ponthot, & Rodríguez-
Ferrán, 2004). In the solver, the resultant velocity field
around the rectangular cylinder wall is corrected, impos-
ing that the velocity at the boundary is equal to the mesh
velocity and therefore no flux across the wall takes place.

A turbulence intensity of 1% has been chosen along
with a 0.1B turbulent length scale for the incoming flow,
as in Ribeiro (2011). This has the same order of magnitude
as the 3% turbulence intensity and 0.082B turbulent length
scale values in Sarkic et al. (2012).

A 2D block structured regular mesh has been gener-
ated taking special care in the definition of the refined
grid around the deck cross-section in order to obtain tar-
get values for the nondimensional first grid height (y+ =

(δ1u∗)/ν, where δ1 is the height of the first prismatic grid
layer around the deck and u∗ is the friction velocity) close
to 1. In this manner, no wall functions are required.

The forced oscillation simulations have been conducted
using a transient solver for incompressible flow of Newto-
nian fluids on a moving mesh by means of the PIMPLE
(merged PISO-SIMPLE) algorithm distributed with Open-
FOAM (2014a). The interpolation of values from the cell
centers to face centers is done using a linear scheme and
the gradient terms are discretized using the cell limited
version of the Gauss discretization scheme. In the same
manner, the divergence terms are discretized by means of
the Gauss schemes. For the Laplacian terms, the Gauss
scheme with a linear interpolation scheme for the diffusion
coefficient and a limited surface normal gradient scheme
has been chosen. The first-order time derivative is dis-
cretized using the Euler implicit scheme. Concerning the
temporal discretization, the PISO scheme discretizes the
momentum equations in an implicit manner, while the pres-
sure gradient is explicit (OpenFOAM, 2014b, 2014c). The
segregated operator splitting in PISO results in a solu-
tion that is highly sensitive to Courant number, although
certain aspects of the discretization are implicit. Thus,
Courant numbers below 1 are generally required to main-
tain stability.

6.2. Mesh control

The computer implementation of the ALE formulation
requires a mesh-update method that assigns mesh-node
velocities or displacements at each calculation time step
(Donea et al., 2004). The computational grid must be kept
as regular as possible, avoiding distortions and the squeez-
ing of mesh elements, and therefore decreasing numerical
errors.
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164 F. Nieto et al.

In the fluid structure interaction simulations conducted
in this piece of research the boundary motion is defined by
the prescribed forced oscillations of the rectangular cylin-
der, which follows a sinusoidal law with given frequency
and amplitude. On the other hand, the exterior boundaries
of the fluid domain are fixed along the simulations.

Amongst the available mesh movement algorithms a
Laplacian smoothing technique for each component of
the node-mesh position has been chosen (Oliver, 2009).
According to Jasak and Rusche (2009), the Laplace
equation can be expressed as:

∇ · k∇u = 0 (14)

where u is the node-mesh displacement vector and k is the
diffusion coefficient.

In this work the diffusivity of the field is computed
based on the quadratic inverse distance from the oscillat-
ing boundary. This prevents the distortion of the smallest
elements around the rectangular cylinder (Löhner, 2008).

6.3. Verification studies

A grid independence study has been conducted for three
different grids, namely Coarse, Medium and Fine grids,
for the static rectangular cylinder with 0° angle of inci-
dence. The thickness of the high-density layer attached to
the rectangular cylinder is B/8. The mesh comprises 80
rows of elements in this zone and the height of the first
element around the cross-section is the same for the three
meshes considered in the verification study, and is defined
as δ1/B = 2.44 × 10−4. Besides this, the expansion fac-
tor (ratio between the dimension of the furthest and the
closest elements to the wall) is 20. As a consequence, the
mean value of y+ around the rectangular cylinder is about
0.9–0.95 and a maximum value, limited to the windward
corners, is approximately 5.25, well below the maximum
value of 8 reported in Sarkic et al. (2012) for a streamlined
deck cross-section (see Figure 3 for images of the Medium
grid). The Reynolds number of the simulations reported
herein is Re = (UB)/ν = 1.06 × 105 In Table 1 the data

(a) (b)

(c)

Figure 3. Block-structured grid: (a) close-up of the rectangular cylinder; (b) a larger region around the cylinder and (c) detail around the
corner.

Table 1. Properties and results of the grid-refinement study.

Grid Total cells Cells around body St CD C′
D C′

L C′
M

Coarse 104000 560 0.145 0.31 0.009 0.27 0.046
Medium 147600 680 0.145 0.31 0.012 0.28 0.046
Fine 235200 880 0.145 0.31 0.011 0.29 0.045
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Table 2. Results of the time-refinement study.

Max. Co.
numb. s St CD C′

D C′
L C′

M

1 3.e-4 0.145 0.31 0.012 0.28 0.046
0.5 1.5e-4 0.143 0.31 0.013 0.28 0.047

of these three grids, along with the Strouhal number and
the mean values and standard deviations of the force coeffi-
cients are reported. All the computations have been carried
out imposing a maximum Courant number of 1.

The definition of the force coefficients in this work is
the following:

CD =
D

1
2ρU2B

CL =
L

1
2ρU2B

CM =
M

1
2ρU2B2

(15)

In the former expressions, D is the drag force per span
length, positive windward, L is the lift force per span
length, positive upwards, and M is the twist moment per
unit of span length, positive in the clock-wise direction.
The reference dimension for the three coefficients is B.
The standard deviation of the force coefficients is identified
with the prime symbol in the following.

Table 1 shows very similar results for the three grids
considered, which highlights the level of independence
of the solution from the mesh density. For the simula-
tions hereafter the Medium grid has been retained since it
offers similar accuracy to the Fine mesh with lower com-
putational cost and its extra spatial resolution with respect
to the Coarse mesh offers additional guaranties for the
more demanding fluid-structure interaction simulations to
be addressed in the present research.

Two different maximum Courant numbers have been
considered for studying the stability of the numerical sim-
ulation depending on the time step discretization: 1 and
0.5. The corresponding mean nondimensional time-steps,
have been: s = (tU)/B ≈ 3.0 × 10−4 and 1.5 × 10−4.
In Table 2 the results obtained for the Medium mesh are
reported. It has been found that both maximum Courant
numbers offer very similar results, thus the higher has been
retained hereafter.

Table 3. B/H = 4 rectangular cylinder: results and valida-
tion.

St CD C′
D C′

L C′
M

Present simulation 0.145 0.31 0.012 0.28 0.046
Sun et al. (2009) -

2D URANS
0.15 0.33 0.024 0.351 0.053

Vairo (2003) - 2D
URANS

0.149 0.356 0.065 0.25 0.071

Okajima (1982);
Nakaguchi et al.
(1968) - EXP.

0.135 0.30

Vairo (2003) - EXP.
by CSTB

0.159 0.348 0.081 0.289 0.054

In the simulations which are going to be presented next,
the nondimensional time steps are roughly between 3.0 ×

10−4 and 2.5 × 10−4.
The FSI problems have been solved in a High Perfor-

mance Computer Cluster which mainly comprises nodes
with 2 AMD 8 cores processors. The forced oscillations
in pitch simulations have been computed in parallel using
8 cores for each simulation. The heave-related problems,
which demanded lower computational power, were solved
using 4 cores in parallel. The execution time per time step
has been about 4.5 seconds, depending obviously on the
specific node load during the simulation.

7. Results and discussion

7.1. Flow simulation around the static rectangular

cylinder

In Figure 4 the time history of the force coefficients for the
static ratio 4:1 rectangular cylinder can be seen.

As a first step in the validation of the computa-
tional results reported in this work, the main aerodynamic
integral parameters are presented and compared with avail-
able experimental and numerical results in the literature.
The Strouhal number is computed from the dominant fre-
quency in the spectrum of the lift coefficient. In Table 3
the aforementioned results are summarized along with the
standard deviation of the force coefficients and compared

Figure 4. Time history of force coefficients for the B/H = 4 static rectangular cylinder.
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166 F. Nieto et al.

with numerical and experimental results reported in the
literature.

It has been found that both mean drag force coeffi-
cient and the Strouhal number predicted in this study fall
inside the range of the experimental data available in the
literature. Also the results are similar to other numerical
simulations carried out using a 2D URANS approach (Sun
et al., 2009; Vairo, 2003). Some differences have been
found in the standard deviation of the force coefficients
with respect to both experimental and numerical publica-
tions; in fact, Bruno and co-workers, have pointed out the
existing scattering in the literature for standard deviation
of the lift coefficient for rectangular cylinders with high
aspect ratios (Bruno et al., 2010). It has been found that the
results obtained in this work for the standard deviation of
the lift and moment coefficients are very close to the exper-
imental values reported in Vairo (2003), while the standard
deviation of the drag coefficient is lower, although all the
available results collected agree in pointing towards a low
value for the standard deviation of the drag coefficient, well
below 0.1.

7.2. One degree of freedom heave forced oscillation

With the aim of exploring the feasibility of the 2D URANS
approach using Menter’s SST k-ω turbulence model in
fluid-structure interaction problems, the forced oscillation
response of the B/H = 4 rectangular cylinder has been
computed. The amplitude of the oscillation is h0/D = 0.02
as in the experimental tests conducted by Washizu et al.
(1978). These forced oscillation simulations with constant
flow speed and at different frequencies allow the identifica-
tion of the reduced velocity regions where vortex-induced
vibration can take place (Sarwar & Ishihara, 2010). The
change in the out-of-phase component of the unsteady
lift force from negative to positive values indicates that
vortex-induced vibrations will occur due to the negative
aerodynamic damping introduced in the system for positive
values of CLI .

The current numerical results are compared with the
experimental ones in the former reference by Washizu and
co-workers, along with the computational results reported
in Sarwar and Ishihara (2010) and Shimada and Ishi-
hara (2012). In the first reference concerning CFD, a
3D approach with a LES turbulence model is employed;
while in the latter one, the authors successfully applied
a 2D URANS approach using a two-layer k-ε turbulence
model modified in the production term. In Figures 5(a)
and 5(b) the out-of-phase and in-phase components of the
lift coefficient are reported. Also, in Figures 6(a) and 6(b)
the amplitude of the unsteady lift coefficient at the fre-
quency of oscillation and the phase difference between the
forced displacement in the heave degree of freedom and the
forced oscillation component of the lift force are shown.
It must be noted that in Sarwar and Ishihara (2010) and
Shimada and Ishihara (2012) the values of CLR and CL0 are

(a)

(b)

Figure 5. B/H = 4 rectangular cylinder lift coefficient (a)
Out-of-phase component; (b) In-phase component.

not reported, however they have been computed for this
study from the available CLI and β data in order to pro-
vide the complete picture in Figures 5(b) and 6(a). From
a qualitative perspective, the CFD results obtained in the
frame of the current study agree well with the experimental
data reported by Washizu et al. (1978): a region show-
ing positive values of the out-of-phase component (CLI )
has been identified and the phase difference between the
forced displacement and the forced oscillation component
of the lift coefficient, for different reduced velocities, has
also been obtained. However, a closer look at these results
allows a further understanding of the turbulence model
performance. As it has already been mentioned, the out-of-
phase component of the lift coefficient is of utmost impor-
tance since it allows the identification of reduced velocity
regions prone to VIV. From Figure 5(a), the V-shaped
branch in the range of reduced velocities (1.0, 1.7) has
been captured as well as the inverted V-shaped branch
between reduced velocities (1.7, 2.5). In the same manner,
a curved branch in the interval (2.5, 4.0) and the nearly hor-
izontal branch in the range (4.0, 8.0) have been correctly
identified. Nevertheless, differences between the numerical
values in the CFD simulations and the experimental tests
are apparent. In fact the numerical simulations reported
herein overestimate the magnitude of the peak of the
V-shaped branch at UR = 1.6. Also the peak in the inverted
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(a)

(b)

Figure 6. B/H = 4 rectangular cylinder lift coefficient (a)
Amplitude of the forced frequency component of the lift coef-
ficient; (b) Phase angle.

V-shaped branch for UR = 1.9 is significantly higher
than the experimental value in Washizu et al. (1978) (see
Table 4).

These discrepancies can be explained as follows: The
simulations have been obtained by means of 2D URANS
simulations, therefore the predicted force coefficients show
unrealistic smooth and periodic oscillations (Mannini et al.,
2010b) since complex turbulence phenomena are not
resolved. Furthermore, in Brusiani, de Miranda, Patruno,

Ubertini, and Vaona (2013) it is noted that for RANS mod-
els based on the Boussinesq hypothesis, 2D simulations are
equivalent to 3D simulations showing perfect correlation
in the span-wise direction. As a consequence, the aerody-
namic forces are generally overestimated. Consequently,
in this simulation, the forced frequency component of the
lift force is expected to be higher than in the physical
experiments. At reduced velocities equal to 1.6 and 1.9
the frequency of vortex shedding is locked-in with the
frequency of oscillation, therefore the out-of-phase com-
ponent of the lift coefficient is strongly over-predicted. The
same phenomenon takes place at reduced velocities of 1.75
and 2.0, which are the peaks in the in-phase component
of the lift coefficient chart (see Figure 5(b). In the same
manner, Figure 6(a) shows high values for the amplitude
of the forced frequency component of the lift coefficient
in the range of reduced velocities (1.5, 2.0), and these val-
ues are higher than in the other CFD-based references used
for comparison.

Also a region of reduced velocities between 2.2 and
3.0 can be indentified which corresponds to the range
of frequencies of oscillation below the frequency of vor-
tex shedding and therefore this is the region where the
lock-in must be surpassed. It has been found that the
SST k-ω model has not been able to properly simulate
this complex FSI region. This problem manifests itself
in the underestimation of the in-phase component of the
lift coefficient in that range of reduced frequencies, and
the extension of the range of reduced velocities showing
positive values for the out-of-phase component. Simi-
lar behavior can be identified in the amplitude CL0 (see
Figure 6a).

Furthermore, the phase difference between the forced
oscillation lift force component and the heave forced dis-
placements has not been correctly obtained for UR = 2.2
and UR = 2.5 (see Figure 6b) which corresponds to phase
angles close to 180° according to Washizu et al. (1978).

On the other hand, the turbulence model has offered
results very close to the experimental ones in the range
of reduced velocities (4.0, 8.0), which corresponds to the
region where the complex VIV aerodynamic response has

Table 4. Discrepancies in the definition of the out-of-phase component of the forced frequency component of the lift coefficient using
different turbulence models.

EXP. (Washizu et al.,
1978)

k-ε (Shimada &
Ishihara, 2012)

LES (Sarwar &
Ishihara, 2010) SST k-ω

Cmax
LI 0.06 0.22 0.2 0.3183

Cmin
LI − 0.18 − 0.33 − 0.33 − 0.4274

Rangepositive CLI 1.765, 2.05 1.75, 2.25 2, 2.5 1.75, 2.5
U+

R 0.285 0.5 0.5 0.75

e(Cmax
LI ) 2.67 2.33 4.30

e(Cmin
LI ) 0.83 0.83 1.37

e(U+
R ) 0.75 0.75 1.63
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168 F. Nieto et al.

been overcome. Similar issues can be identified, with lower
severity, in Shimada and Ishihara (2012) and Sarwar and
Ishihara (2010).

With the purpose of assessing the level of accuracy
offered by the SST k-ω turbulence model and the k-ε and
LES models, the main features in the definition of the out-
line of the CLI component are compared with the wind
tunnel data in Table 4. The following magnitudes have
been considered: the maximum and minimum values of
the out-of-phase component of the forced frequency term
of the lift coefficient Cmax

LI and Cmin
LI ; the range of reduced

velocities with positive values of CLI and the length of
the corresponding interval U+

R . The discrepancies are
estimated as:

e =
|exp .value − num.value|

|exp .value|
(16)

It must be borne in mind that the number of reduced
frequencies considered in the numerical simulations and
the experimental tests are different, as they are also differ-
ent the concrete values of the reduced velocities adopted
in each work. Therefore the values reported in Table 4
must be considered as an approximation for the purpose
of assessing the accuracy of the different models.

According to the data reported in Table 4, it can be
concluded that in spite of the qualitative agreement of the
SST k-ω turbulence model with the experimental data, its
accuracy is lower than the k-ε and LES models, since it
predicts higher peaks in the CLI and the range of reduced
frequencies showing positive values in CLI is also overesti-
mated (for practical applications this is in the safe side). It
is remarkable the performance of the 2D k-ε model which
at least matches the 3D LES results. In this respect, the
lower overestimation of the peak values when compared
with the SST k-ω model can be related with the behavior
of the modified k-ε model, since in Shimada and Ishihara
(2002) it is noted that the fluctuations in the lift force were
considerably underestimated in some cases, as the 4:1 ratio
rectangular cylinder.

In the above discussion the range of reduced velocities
(4.0, 8.0) has not been considered since it is outside the
VIV prone region, no significant discrepancies have been
observed and that range will be specifically considered in
the latter discussion on the flutter derivatives estimation.

7.3. One degree of freedom pitch forced oscillation

The engineering interest in analyzing the response of
a bluff-body undergoing harmonic torsional oscillation
under wind flow lies in identifying the possibility of tor-
sional flutter taking place at a certain range of reduced
velocities, when the out-of-phase component of the
moment coefficient changes from negative to positive
values.

For the B/H = 4 rectangular cylinder, the amplitude
of the pitch oscillation in the current simulations has been

α0 = 3.82◦, as in the experiments reported in Washizu et al.
(1980) and the numerical simulation in Shimada and Ishi-
hara (2012). In Figure 7.a and 7.b the out-of-phase and
in-phase components of the unsteady moment (CMI and
CMR) are reported along with equivalent experimental and
numerical results for validation.

The plot of the out-of-phase component of the moment
coefficient as a function of the reduced velocity is
qualitatively similar to the experimental values. The
positive values of the out-of-phase component allow iden-
tifying the range of reduced velocities for which the cross-
section is prone to torsional flutter. In the CFD simulation
the reduced velocity for which CMI is null is lower than in
the wind tunnel tests, which is in the safe side for design
applications. When the current simulation is compared
with the one reported by Shimada and Ishihara, it can be
concluded that the overall behavior is similar: both of them
are shifted upwards in the vertical axis from UR = 3.0, but
without great differences with respect to the wind tunnel
experiments.

For the sake of completeness, the amplitude of the
forced frequency component of the moment coefficient and
the phase angle with the forced oscillation in pitch degree

(a)

(b)

Figure 7. B/H = 4 rectangular cylinder moment coefficient (a)
Out-of-phase component; (b) In-phase component.
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of freedom are reported in Figures 8(a) and 8(b). The data
labeled as Shimada and Ishihara (CFD, k-eps.) have been
computed from the CMR and CMI data reported in Shimada
and Ishihara (2012).

In this case, since the changes in the out-of-phase
component of the forced frequency moment coefficient
CMI with the reduced velocity are smooth, an order
two polynomial can be approximated (see Figure 7a) for
the experimental values as well as the numerical values
reported in the present work and in Shimada and Ishihara
(2012). This allows the level of accuracy in the 2D URANS
simulations to be judged when compared with the wind
tunnel data. In order to provide a global assessment for the
range of reduced velocities studied, the error is estimated

(a)

(b)

Figure 8. B/H = 4 rectangular cylinder moment coefficient (a)
Amplitude of the forced frequency component of the moment
coefficient; (b) Phase angle.

Table 5. Discrepancies in the definition of the out-of-phase
and in-phase components of the forced frequency component
of the moment coefficient using different turbulence models.

k-ε (Shimada &
Ishihara, 2012) SST k-ω

e(CMI ) 0.51 0.59
e(CMR) 0.27 0.33

from the following expression:

e =
∫

U
f
R

U0
R

|exp . aprox. − num.aprox.|dUR

∫
U

f
R

U0
R

|exp . aprox|dUR

(17)

Where exp. aprox. and num. aprox. are the order
two polynomial approximations for the experimental and
numerical data; and U0

R and U
f
R are the bounds of the

considered interval.
In Table 5 the reported results for the out-of-phase

component correspond to the interval of reduced velocities
(1.75, 8.0), which is the one for which the results are avail-
able for the experimental test and the CFD simulations. It
can be concluded that the SST k-ω offers slightly poorer
accuracy when compared with the modified k-ε model in
Shimada and Ishihara (2012).

Furthermore, the results for the in-phase component
CMR show a similar trend as in Shimada and Ishihara’s
paper, with overestimated values at UR < 3.5, but particu-
larly for reduced velocities in the interval (1.0, 2.0). In the
former reference it is argued that this phenomenon, which
was found also for rectangular cylinders of ratio 2:1 and
5:1, could be linked with the lack of turbulence diffusion
in 2D models.

On the other hand, for reduced velocities above 3.5,
both turbulence models offer results very close to the
experimental ones. In this case a polynomial of order 4 has
been approximated for the experimental data since it offers
a very close match with the available points. The accuracy
of the different numerical approaches is assessed using the
expression in Equation (17) and the results are also pre-
sented in Table 5. The range of reduced velocities has been
U0

R = 1.75 and U
f
R = 8.0. In this case also, the modified ε

turbulence model has provided slightly better results than
the SST k-ω model.

7.4. Flutter derivatives computation

The flutter derivatives of the B/H = 4 rectangular cylin-
der have been computed from the same forced oscillation
simulations in heave and pitch degrees of freedom that
have been employed to obtain the VIV and torsional
flutter response presented in previous sections. In this
way, always costly simulations have been avoided, which
enhances the feasibility and industrial applicability of the
computational-based approach proposed.

A VIV prone region around UR = 2 was identified in
section 6.2. Therefore for the heave-related flutter deriva-
tives H ∗

1 , H ∗
4 , A∗

1 and A∗
4 the range of reduced velocities

considered is (2.5, 8.0), while for the pitch-related H ∗
2 , H ∗

3 ,
A∗

2 and A∗
3 flutter derivatives the range of reduced velocities

is (2.0, 8.0).
In Figure 9 the numerical results are presented along

with the experimental data in Matsumoto, Yagi, Tamaki,
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Figure 9. Flutter derivatives of the B/H = 4 rectangular cylinder: numerical results and comparison with experimental and numerical
data.
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Table 6. Discrepancies in the flutter derivatives for
the 4:1 rectangular cylinder computed from the stan-
dard and the SST versions of the k-ω model.

Standard k-ω (Sun et al., 2009) SST k-ω

e(H∗
1 ) 0.54 0.28

e(H∗
2 ) 1.74 1.07

e(H∗
3 ) 1.20 0.14

e(H∗
4 ) 1.19 1.09

e(A∗
1) 1.34 0.34

ε(A∗
2) 0.55 0.57

ε(A∗
3) 0.58 0.07

ε(A∗
4) 1.38 0.30

and Tsubota (2008) and the computational ones reported
in Sun et al. (2009). Second-order polynomial approxima-
tions are also included, which allow judging the general
agreement between numerical simulations and wind tun-
nel tests, and assessing the accuracy of the numerical
approach.

The comparison of the reported results with the wind
tunnel test data show, in general terms, that they are very
similar. In fact the only remarkable differences take place
for the H ∗

2 and H ∗
4 flutter derivatives at reduced velocities

above 4. On the other hand flutter derivatives H ∗
3 or A∗

3 are
extremely close to the experimental data.

A better general agreement for the current computa-
tions has been found than the numerical simulations in
smooth flow in Sun et al. (2009). This is arguably due to
the higher size of the flow domain which prevents blockage
effects and the higher mesh density adopted in the current
work. Also the block structured mesh must play a role in
the improved results since unstructured meshes are more
diffusive, as it has been noted in Mannini et al. (2010a).
Furthermore, Menter’s SST k-ω turbulence model seems
to offer better performance than the standard k-ω employed
by Sun and co-workers.

In Table 6 the accuracy of the numerical simulations
with respect to the experimental data in Matsumoto et al.
(2008) is assessed base on the second-order polynomial
approximations. The error is estimated (Equation 17) in
the range of reduced velocities (0, 8.0), except for the flut-
ter derivatives H ∗

2 and H ∗
4 , where the reduced velocities

considered are between 0 and 6.0 since the discrepan-
cies are important above the latest value, and the max-
imum reduced velocity considered in Matsumoto et al.
(2008) is 5.30. It can be remarked that in this case the
SST k-ω model offers a remarkable agreement with the
experimental data. In fact it has offered a better approx-
imation for all the flutter derivatives considered in this
work, with the exception of A∗

2, when compared with
the standard k-ω turbulence model employed by Sun and
co-workers.

8. Concluding remarks

In this work a 2D URANS approach using a block-
structured mesh and Menter’s SST k-ω turbulence model
has been applied to the study of the fluid-structure interac-
tion of a B/H = 4 rectangular cylinder. The aeroelastic
phenomena of interest have been VIV, torsional flutter
and the computation of flutter derivatives. A single set of
heave and pitch forced oscillations has been considered for
computing the responses of interest.

A study considering different mesh densities and time
steps has been carried out, which has allowed guarantee-
ing the stability of the solution in terms of grid and time
step refinement as well as identifying the most convenient
mesh and time step in terms of better accuracy at lower
computational cost. The results obtained for the fixed rect-
angular cylinder have been similar to the experimental
ones available in the literature.

The SST k-ω turbulence model has been capable of
identifying the region with positive values of the out-of-
phase term of the forced frequency component of the lift
coefficient as well as the phase difference between the
forced heave displacement and the force frequency com-
ponent of the lift force. As a consequence, the possibilities
of the current approach, in the frame of industrial appli-
cations where the preliminary identification of VIV prone
regions is the main goal, have been demonstrated. When
the obtained results are compared with the ones com-
puted by Shimada and Ishihara by means of a modified
k-ε model, it is found that the SST k-ω models offers
lower accuracy in the evaluation of the magnitude of the
peak values or the extend of the region with positive
values of CLI .

In a similar fashion, the SST k-ω model has correctly
predicted the torsional flutter prone region for the 4:1
rectangular cylinder. However, when the results are com-
pared with the modified k-ε model in Shimada and Ishihara
(2012), again the SST k-ω model has offered slightly lower
accuracy.

Where the SST k-ω model offers a better performance is
in the computation of the flutter derivatives. The agreement
with the wind tunnel tests reported in Matsumoto et al.
(2008) is remarkable. In this respect, the SST version offers
higher accuracy than the standard k-ω turbulence model.

The current approach has proved its feasibility for
identifying fluid-structure interaction responses, avoiding
burdensome 3D LES simulations or the development of
in-house sophisticated software. Therefore it is ready for
being applied in the frame of parametric studies of bridge
deck sections and, in the future, in the shape optimization
of bridge deck considering aeroelastic constraints.
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