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Abstract 11 

Angiogenesis, the formation of new blood vessels from pre-existing ones, is critical to luteal 12 

structure and function; In addition, it is a complex and tightly regulated process. Not only 13 

does rapid and extensive angiogenesis occur to provide the corpus luteum (CL) with an 14 

unusually high blood flow and support its high metabolic rate, but in the absence of 15 

pregnancy the luteal vasculature must rapidly regress to enable the next cycle of ovarian 16 

activity.  This review describes a number of the key endogenous stimulatory and inhibitory 17 

factors, which act in a delicate balance to regulate luteal angiogenesis and ultimately luteal 18 

function. In vitro luteal angiogenesis cultures have demonstrated critical roles for fibroblast 19 

growth factor 2 (FGF2) in endothelial cell proliferation and sprouting, whilst other factors 20 

such as vascular endothelial growth factor (VEGFA) and platelet derived growth factor 21 

(PDGF) were important modulators in the control of luteal angiogenesis. Post-transcriptional 22 

regulation by small non-coding micro-RNAs, is also likely to play a central role in the 23 

regulation of luteal angiogenesis. Appropriate luteal angiogenesis requires the coordinated 24 

activity of numerous factors expressed by several cell types at different times and this 25 

review will also describe the role of perivascular pericytes and the importance of vascular 26 

maturation and stability. It is hoped that a better understanding of the critical processes 27 

underlying the transition from follicle to CL, and subsequent luteal development will benefit 28 

the management of luteal function in the future.  29 

Key words:  ovary, corpus luteum; angiogenesis; vasculature; FGF2, VEGFA  30 
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1. The importance of luteal angiogenesis 31 

The corpus luteum (CL) is a transient endocrine structure that is critical for the 32 

establishment and maintenance of pregnancy in mammals. It is formed from the remnants 33 

of the ruptured follicle post-ovulation and undergoes remarkable growth, differentiation 34 

and remodelling. Often compared to fast growing tumours, the dramatic growth of the CL is 35 

reliant upon angiogenesis, or the formation of new blood vessels from pre-existing  vessels 36 

from the follicular theca layer [1].  37 

The crucial importance of angiogenesis to luteal structure and function has been 38 

demonstrated in a number of species, including domestic ruminants. For example, the 39 

experimental blockade of angiogenesis resulted in reduced CL number, limited luteal 40 

vasculature and marked inhibition of steroidogenesis in rats [2]. Similarly, intra-follicular or 41 

systemic administration of anti-angiogenic factors (e.g. VEGFA trap) to non-human primates 42 

altered ovulation, reduced endothelial cell proliferation in the CL and inhibited 43 

progesterone production [3, 4]. Furthermore, intra-luteal anti-angiogenic treatments 44 

reduced CL volume and plasma progesterone concentrations and disrupted normal luteal 45 

gene expression in the cow [5]. 46 

Transgenic mouse models which have targeted angiogenic signals have similarly resulted in 47 

both diminished ovarian vasculature and fertility [6]. In addition, poor vascularisation has 48 

been linked to inadequate luteal function, such as that observed following ovulation 49 

induction in women and livestock, and in the peripubertal and postpartum periods in 50 

domestic animals [7-9].   51 
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2. Establishment of the luteal vasculature 52 

Luteal angiogenesis originates from the developing follicle. Early follicles (primordial and 53 

primary) have no established vascular supply of their own. Rather, blood vessels develop as 54 

follicles undergo continued growth, with endothelial cell recruitment occurring from the 55 

ovarian stromal compartment.  Follicular vessels remain within the thecal layer and are 56 

excluded from the granulosa cell layer by the basement membrane which divides the two.  57 

Following the luteinising hormone (LH) surge, the breakdown of the basement membrane 58 

enables blood vessels to invade the granulosa layer as cellular remodelling begins [10]. The 59 

continuation of development from ovulatory follicle to corpus luteum therefore also 60 

suggests that appropriate follicular development, including blood vessel formation, may be 61 

critical to the success of subsequent luteinisation [11].  Indeed, recent evidence showed 62 

that follicular vascularity is positively correlated with luteal blood flow and progesterone 63 

production [12]. Furthermore, the degree of follicular vascularisation has been associated 64 

positively with follicular dominance and negatively with atresia [13].  65 

The early events of luteinisation are accompanied by marked cell proliferation, with 66 

proliferation indices around 40% [14, 15]. Critically, the majority of mitotic cells are not 67 

steroidogenic luteal cells, but rather they are from the microvasculature [14, 15]. Indeed, 68 

endothelial cells are a prominent cell-type within the corpus luteum, occupying around 15% 69 

of luteal tissue volume, and representing around 50% of all cells at mid-cycle [16]. Such an 70 

extensive contribution to the mature luteal tissue ensures that nearly all steroidogenic cells 71 

are in immediate contact with at least one capillary [17]. 72 

  73 
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3. The response to LH 74 

Ovulation and early luteinisation are characterised by complex changes in gene expression, 75 

with perhaps hundreds of genes differentially expressed [18-20]. The molecular response to 76 

an ovulatory dose of LH is also rapid, with the first changes in gene expression occurring 77 

within 30 minutes. Genes associated with ovulation have been implicated in inflammation, 78 

steroid and prostanoid pathways, proteolytic disruption of the tissue matrix and protection 79 

against oxidative stress [18]. Others have demonstrated that luteinisation is accompanied by 80 

a switch from a molecular signature of proliferation and metabolism to one where cell 81 

migration and angiogenesis predominate [19].  82 

More recently, the potential importance of post-transcriptional regulation has come to the 83 

fore [21]. Small non-coding RNAs such as microRNAs (miRNAs) function primarily as 84 

negative regulators of gene expression and are now thought to be key regulators of ovarian 85 

function, including the follicular-luteal transition [22]. Mice deficient for the miRNA 86 

processing enzyme Dicer displayed luteal insufficiency that was associated with poor 87 

angiogenesis and reduced luteal vascular density [23]. In the sheep ovary, a total of 17 88 

miRNAs were identified whose abundance varied significantly between follicular and luteal 89 

phases and are potential important regulators of luteinisation [24]. This included decreased 90 

levels of miR-503 (a known angiogenesis inhibitor) during early luteinisation. Interestingly, 91 

the theca cell layer was the major site of miRNA expression, with vascular components of 92 

the thecal layer expected to be key targets of miRNA regulation, as has been shown in other 93 

tissues [25].  94 

  95 
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4. Control of luteal angiogenesis  96 

4.1. Stimulatory factors 97 

Follicular fluid accumulates angiogenic factors that are likely to provide an initial stimulus to 98 

post-ovulatory angiogenesis [26]. Corpora lutea subsequently produce pro-angiogenic 99 

factors throughout the luteal phase and into pregnancy [27, 28] and their actions can result 100 

in endothelial cell proliferation, migration and tubule formation in vitro and in vivo. A 101 

significant number of factors are mediators of angiogenesis [29], including vascularisation of 102 

the CL. Key amongst these are the heparin-binding factors, namely vascular endothelial 103 

growth factor A (VEGFA) and fibroblast growth factor 2 (FGF2).  104 

VEGFA is a potent endothelial mitogen, which exists as one of several isoforms [30] as a 105 

result of the alternative splicing of a single VEGFA gene. VEGFA165 is the predominant 106 

(human) protein isoform produced by a variety of cells and is so named due to its 165 amino 107 

acids, following cleavage of the signal sequence. Molecular species with 121, 189, and 206 108 

amino acids are also described, plus several rare species such as VEGFA145 and VEGFA183; in 109 

the cow, each isoform is one amino acid shorter [31].  All isoforms contain domains that 110 

enable receptor binding and all are biologically active. The various isoforms do exhibit 111 

different biochemical properties however, with some predominantly soluble species, such 112 

as VEGFA121 and VEGFA165 and others (VEGFA189 and VEGFA206) significantly cell or matrix-113 

bound until released following proteolysis  of the ECM [30].  114 

The presence of VEGFA mRNA and protein has been demonstrated in the ovary of many 115 

species [32-36]. In bovine antral follicles, VEGFA was localised to granulosa cells, and cells of 116 

the theca layer, and increased with follicular growth and development (Figure 1; [36]). In the 117 

bovine CL, VEGFA mRNA was detected throughout the luteal phase and during pregnancy, 118 
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but decreased in the late luteal phase [37], and luteal steroidogenic cells were the major 119 

cellular site of VEGFA protein expression (Figure 1; [37]).   120 

Members of the VEGF family interact with several receptors and co-receptors to exert their 121 

actions [30]. VEGFA binds to the related receptors VEGFR1 (Flt1) and VEGFR2 (KDR or Flk1), 122 

with the mitogenic and angiogenic responses to VEGFA largely mediated via VEGFR2. These 123 

tyrosine kinase receptors are expressed on the surface of endothelial cells, including those 124 

of the ovary [38]. Indeed, VEGFR1 and R2 were expressed by microvascular endothelial cells 125 

derived from the bovine CL [38]. Others have detected VEGFR2 in bovine luteal cells and 126 

smooth muscle cells, as well as endothelial cells by immunohistochemistry [39]. VEGFR1 127 

expression did not vary according to luteal stage, whilst VEGFR2 mRNA was most highly 128 

expressed in the early [37] to mid [39] CL.  129 

As eluded to earlier, neutralisation of VEGF by several routes and in several species 130 

including the cow, caused marked reductions in luteal vascularisation and progesterone 131 

production [4, 5, 40]. In addition to its ability to stimulate an angiogenic response, VEGFA 132 

infusion also stimulated progesterone production by micro-dialysed bovine CL in vitro [41]. 133 

VEGFA is therefore considered essential to luteal structure and function. 134 

Fibroblast growth factor 2 is also a prominent regulator of luteal angiogenesis. Often 135 

overlooked in importance relative to VEGFA, early work in the sheep and cow demonstrated 136 

the significant inhibition of endothelial mitogenic activity following immuno-neutralisation 137 

of FGF2 from luteal-conditioned media [28, 42]. In addition, the neutralisation of FGF2 in 138 

vivo resulted in luteal disruption, with CL volume, steroidogenic function and gene 139 

expression significantly diminished [5]. Indeed, in the cow, luteal FGF2 concentrations have 140 

been shown to be more dynamic around the follicular-luteal transition than VEGFA, 141 
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suggestive of a more critical role for FGF2 in early luteinisation [26]. FGF2 protein levels 142 

were significantly elevated in early bovine CL (day 1-2) and declined with subsequent luteal 143 

development [26].   144 

In order to further dissect the regulation of luteal angiogenesis in the cow, we established a 145 

novel, physiologically relevant in vitro culture system that mimics both luteal steroidogenic 146 

function and angiogenesis [43]. The use of luteal endothelial cells is critical, since 147 

endothelial cells and angiogenic responses are known to differ between tissues and 148 

microenvironments [44].  In the bovine luteal angiogenesis culture system early CL (days 1-149 

4) are dissected from the ovary, dissociated enzymatically and mixed luteal cells (including 150 

steroidogenic, endothelial (EC), fibroblast and perivascular cells) are then plated on 151 

fibronectin-coated wells. Luteal cells are grown in culture for up to 9 days, in the presence 152 

of endothelial-specific media, plus or minus angiogenic support (VEGFA and/or FGF2). 153 

During this time, steroidogenic cells produce progesterone in a LH-responsive manner [43]. 154 

In addition, endothelial cells can be stimulated to undergo characteristic tubule-like growth, 155 

resulting in the formation of complex and extensive highly-branched EC networks (Figure 2). 156 

Using this system, the degree of bovine EC network formation was stimulated by both 157 

VEGFA and FGF2 [43, 45]. FGFR1 inhibition, via treatment with SU5402 throughout the 158 

culture period, dramatically reduced the total area of EC networks by 94% versus controls, 159 

as a result of reductions in the number of individual EC networks and a tendency to reduce 160 

the size of each network [45]. In contrast, the inhibition of VEGFR2 signalling was more 161 

modest, reducing EC area by around 60% [45].  Strikingly, the response to FGFR1 inhibition 162 

was observed despite the presence of VEGFA treatments, further supporting the critical role 163 

of FGF2 in luteal endothelial network formation [45, 46]. 164 
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FGFR1 inhibition was further utilised to elucidate which stage(s) of luteal angiogenesis are 165 

most dependent upon FGF2 stimulation [46]. In particular, the earliest stages of 166 

angiogenesis were most sensitive to FGFR1 inhibition in vitro, as evidenced by a 64% 167 

reduction in total EC networks following SU5402 treatment on days 0-3 and by around 81%   168 

following treatment on days 3-6 versus controls. Days 3-6 in culture is a period of intense 169 

reorganisation, when EC begin to sprout from EC islands and form tubule-like structures 170 

(Figure 2). Further analysis revealed that FGFR1 inhibition on days 3-6 resulted in a marked 171 

reduction in EC network branch points. This suggested a critical role for FGF2 in endothelial 172 

sprouting, as well as endothelial cell proliferation [46]. Indeed, FGF2 has been shown to 173 

promote vascular branching in several systems: FGF2 increased the density and branching of 174 

the microvessels of the chorioallantoic membrane [47] and transgenic mice with disrupted 175 

FGFR1 signalling displayed retinal phenotypes with reduced capillary density and branching 176 

[48]. Furthermore, FGF2 dose-dependently increased the degree of EC branching in a bovine 177 

luteinising follicular culture system [49]. 178 

Endothelial cell sprouting is a complex process, involving coordinated cell migration and 179 

phenotypic specialization in response to directional cues [50]. Early in the process, certain 180 

endothelial cells emerge as tip cells, characterised by numerous cellular extensions or 181 

filopodia which sense the surrounding environment, whilst others remain at the stalks of 182 

the vascular sprouts.  Recent data suggesting that FGFR1 participates in tip cell function and 183 

filopodia formation via interactions with the cytoskeletal protein Nostrin, which is involved 184 

in membrane dynamics, further supports a role for FGF2 in EC sprouting [51]. 185 

Hypoxia is potent stimulator of angiogenesis in numerous situations. There is evidence that 186 

hypoxic conditions found in the early CL might upregulate FGF2 expression and hence 187 
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stimulate luteal angiogenesis [52]. Protein levels of the hypoxia-induced transcription factor, 188 

HIF1A were greatest in the early bovine CL and decreased thereafter [53] in a pattern similar 189 

to FGF2 [54]. Furthermore, in human umbilical vein endothelial cells in response to hypoxia, 190 

upregulation of HIF1A resulted in branching morphogenesis via induction of FGF2 [55]. 191 

Positive feedback between HIF1A and FGF2 has also been reported [52]. 192 

The role of FGF2 in regulating both luteal angiogenesis and the production of the maternal 193 

recognition signal, interferon tau, in ruminants [56] has made it a valid candidate gene in 194 

the search for genetic markers associated with reproductive efficiency. The association 195 

between FGF2 gene variants (single nucleotide polymorphisms; SNP) and a range of fertility-196 

related traits has been investigated in several studies.  In Holstein cows, embryo survival in 197 

vitro was significantly associated with the genotype of the intronic SNP11646 (rs110937773; 198 

FGF2 intron 1) [57]. However, no significant associations were observed between this or 199 

another polymorphism (SNP23; rs208883803) and a range of fertility traits, including those 200 

potentially influenced by luteal function or cyclicity such as number of inseminations per 201 

conception, calving to conception interval or conception rate [58] and Woad et al, 202 

unpublished.  203 

The delta-Notch signalling pathway has been implicated in the determination of cell fate 204 

and patterning associated with endothelial cell sprouting and vascular development [59, 205 

60]. Endothelial cells express Notch receptors and their ligands (Delta-like ligand 1, 4 and 206 

Jagged1), and the balance of signalling determines tip versus stalk cell fate, with tip cells 207 

preferentially expressing Dll4, whilst stalk cells express predominantly Jagged1. Notch 208 

receptors and ligands have been localised to the follicular and luteal vasculature [61-63], 209 

including in the bovine CL (Robinson et al., unpublished). In the marmoset, inhibition of Dll4 210 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

11 

 

in the periovulatory period, led to increased angiogenesis in the early luteal phase. 211 

However, the vasculature that was formed was dysregulated and non-functional, resulting 212 

in decreased progesterone production [64].  In the bovine luteal angiogenesis culture 213 

system, the addition of γ-secretase inhibitors to block Notch signalling reduced EC network 214 

formation (Robinson et al., unpublished). 215 

4.2. Inhibitory factors 216 

The control of angiogenesis requires the appropriate balance of both positive and negative 217 

signals. In the follicle, angiogenesis is thought to be actively restrained until after ovulation, 218 

thus preventing premature vascularisation.  Pigment epithelium derived factor (PEDF) is a 219 

recently described, physiological inhibitor of angiogenesis, with ovarian influence [65].  PEDF 220 

is secreted by mouse and human granulosa cells and this secretion was sharply decreased 221 

by progesterone treatment. It is inhibitory in angiogenesis assays, and the loss of PEDF led 222 

to accelerated angiogenesis in vitro.  223 

Thrombospondins (THBS1 and 2) are anti-angiogenic factors with many mechanisms of 224 

inhibition. THBS1 can bind FGF2 and this sequestration [66] then inhibits its pro-angiogenic 225 

actions. The modulation of angiogenesis by thrombospondins may be particularly important 226 

for luteal regression. For example, in the sheep CL, THBS1 expression was upregulated 227 

during luteolysis [67]. Furthermore, prostaglandin PGF2α-induced  increased expression of 228 

THBS1 and 2, and their receptor CD36 in the bovine CL in a stage dependant manner, with 229 

the PG-refractory CL showing no upregulation [68]. Critically, luteal angiogenesis was 230 

inhibited in response to these factors even in the presence of pro-angiogenic FGF2, and 231 

inhibition was also observed in the absence of FGF2 [68]. 232 
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Alterations in angiogenic support (VEGFA and FGF2), increased angiogenic inhibition 233 

(thrombospondins, pentraxin 3 and transforming growth factor B1) and changes in luteal 234 

blood flow (endothelin-1 and nitric oxide) can all occur in response to luteolytic-PG and will 235 

contribute to the eventual disruption of the microvasculature and subsequent luteal 236 

regression [68-71]. 237 

The VEGFA system has anti-angiogenic components, several of which have been implicated 238 

in ovarian function. The complex splicing of the VEGFA mRNA, leads to the production of an 239 

alternative family of VEGFAxxxb isoforms (where xxx refers to the number of amino acids), 240 

which are generated by distal splice site utilisation in exon 8 [72]. In the porcine CL, 241 

VEGFA164b was detected at low levels throughout the luteal phase [73]. In the marmoset 242 

monkey, VEGFA165b comprised around 65% of total VEGFA in CL-bearing ovaries [6]. 243 

Overexpression of VEGFA165b in mice reduced follicular development, leading to lower CL 244 

number, reduced luteal size and decreased microvascular density and stability [6]. In 245 

contrast, VEGFA164b mRNA was not detected in the CL at any stage in the cow [74]. 246 

VEGFA activity can be further modified by soluble receptor isoforms, sVEGFR1 and sVEGFR2, 247 

which act as VEGF binding proteins. In the bovine CL, soluble receptors were found 248 

throughout the luteal phase. Indeed, sVEGFR1 was more than 100 times as abundant as the 249 

membrane bound receptor [74].  The functional significance of this observation remains to 250 

be elucidated.   251 

Vasohibin1 (VASH1) is a further factor with negative regulatory potential [75].  In the bovine 252 

CL, It is expressed primarily in the luteal endothelial cells, is induced by VEGFA and then 253 

inhibits VEGFA actions in a classical negative feedback mechanism. It was suggested that 254 
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VASH1 might act to fine tune pro-angiogenic signals and prevent inappropriate 255 

vascularisation [75]; however its exact role remains to be demonstrated. 256 

5. Stabilising the vasculature 257 

In addition to extensive and rapid vascularisation, the corpus luteum also requires newly 258 

formed vessels to undergo maturation and stabilisation in order to be fully functional. The 259 

angiopoietins (ANGPT1 and ANGPT2) have particular importance in vessel stability [29]. 260 

They are considered important partners for VEGFA and act primarily through the Tie2 261 

receptor. ANGPT2 is an endogenous Tie2 antagonist [76], that results in vessel 262 

destabilisation and the ratio of ANGPT1/ANGPT2 is therefore considered of critical 263 

importance to vessel fate. During the follicular-luteal transition, the destabilising effect of 264 

ANGPT2 is thought to maintain vascular plasticity, hence modifying responsiveness to pro-265 

angiogenic signals such as VEGFA [76].  266 

Pericytes (perivascular mural cells) are important constituents of microvessels, with key 267 

roles in vascular development and function, including the stabilisation and maturation of 268 

vessels [77, 78]. The recruitment of pericytes to the blood vessel wall and their subsequent 269 

interactions with endothelial cells are critically regulated by platelet derived growth factor 270 

(PDGF) signalling via the PDGF receptor B (PDGFRB). The inhibition of pericyte-recruitment 271 

around ovulation reduced the number of luteal structures formed in rodents [79, 80] and 272 

induced widespread luteal haemorrhage, suggestive of an obligatory requirement for 273 

pericyte involvement in appropriate luteal angiogenesis. Furthermore, inhibition of PDGF 274 

signalling in vitro reduced endothelial cell network formation in our bovine luteal 275 

angiogenesis culture system and the networks were most sensitive to receptor blockade 276 

during the early stages of angiogenesis [45]. Smooth muscle actin-positive mural cells 277 
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(putative pericytes) were found closely associated with endothelial cells in vitro (Figure 3; 278 

[49]). Mural cells were localised both as integral components of EC islands and on the 279 

borders of the islands. During the follicular-luteal transition in the cow, pericytes appeared 280 

to migrate ahead of EC from the theca layer into the luteinising granulosa cells. This was 281 

potentially to guide sprouting processes and/or lay down ECM such as fibronectin [10, 54]. 282 

Similarly, in culture, mural cells were found at the tips of endothelial sprouts (Figure 3; [49]). 283 

This might indicate that pericytes play an active role at all stages of luteal angiogenesis. 284 

6. Conclusion 285 

Angiogenesis is critical to the structure and function of the corpus luteum. It is a complex 286 

process that is under exquisite control, requiring the interaction of numerous factors and 287 

several cell types during a period of remarkable dynamism. Whilst there is good evidence 288 

for several critical regulators with both pro- and anti-angiogenic functions, further 289 

investigation of the mechanisms of luteal angiogenesis is essential for improving our 290 

understanding of luteal function 291 

 292 
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Figure 1: The localisation of VEGFA in (A) a dominant follicle and (B) the corpus luteum (CL) in the 506 

cow. There was intense staining of VEGFA in the granulosa (G) layer (brown staining, arrowhead). 507 

VEGFA was also present, albeit at much lower levels in the theca (T) layer. (B) shows the intense 508 

staining of VEGFA in the steroidogenic cells (arrowhead) of the day 5 CL. There was some variation in 509 

the stain intensity between different steroidogenic cells across the whole section. The scale bar 510 

represents 200µm. Robinson et al., unpublished observations. 511 

Figure 2: Time course of bovine luteal angiogenesis in vitro, showing a bovine ovary bearing (A) an 512 

early corpus luteum (arrow) selected for culture, and subsequent endothelial cell growth between 513 

12 h and 9 days. Endothelial cells were immuno-localised by von Willebrand factor staining (brown) 514 

after (B) 12 and (C) 18 h (day 1) and then every 24 h; day 2 (D and E), day 3 (F), day 4 (G), day 5 (H), 515 

day 6 (I), day 7 (J), day 8 (K) and day 9 (L). Bar represents 100 µm. Adapted from [46]. 516 

Figure 3: The temporal-spatial interactions between endothelial cells and perivascular mural cell in 517 

the bovine luteal-endothelial co-culture system, on (A) day 6 or (B) day 9 of culture. The endothelial 518 

cells (EC) were immuno-stained with von Willebrand (green) while the mural cells were identified by 519 

smooth muscle actin immunohistochemistry (red). The nucleus was counterstained with DAPI (blue). 520 

On day 6, the EC were present in large islands of cells containing several hundred cells. Inter-521 

dispersed within these EC islands and around the edge were mural cells. On day 9, the EC had a 522 

much more network-like appearance with multiple sprouts projecting away from the centre of the 523 

EC island. Again, mural cells were often closely associated with the EC networks. On both days 6 and 524 

9, mural cells were often present at the tips of sprouting EC (arrowhead). The scale bar represents 525 

200µm. Robinson, Woad et al., unpublished observations. 526 
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Figure 1: The localisation of VEGFA in (A) a dominant follicle and (B) the corpus luteum (CL) in the 17 

cow. There was intense staining of VEGFA in the granulosa (G) layer (brown staining, arrowhead). 18 

VEGFA was also present, albeit at much lower levels in the theca (T) layer. (B) shows the intense 19 

staining of VEGFA in the steroidogenic cells (arrowhead) of the day 5 CL. There was some variation in 20 

the stain intensity between different steroidogenic cells across the whole section. The scale bar 21 

represents 200µm. Robinson et al., unpublished observations. 22 

Figure 2: Time course of bovine luteal angiogenesis in vitro, showing a bovine ovary bearing (A) an 23 

early corpus luteum (arrow) selected for culture, and subsequent endothelial cell growth between 24 

12 h and 9 days. Endothelial cells were immuno-localised by von Willebrand factor staining (brown) 25 

after (B) 12 and (C) 18 h (day 1) and then every 24 h; day 2 (D and E), day 3 (F), day 4 (G), day 5 (H), 26 

day 6 (I), day 7 (J), day 8 (K) and day 9 (L). Bar represents 100 µm. Adapted from [46]. 27 

Figure 3: The temporal-spatial interactions between endothelial cells and perivascular mural cell in 28 

the bovine luteal-endothelial co-culture system, on (A) day 6 or (B) day 9 of culture. The endothelial 29 

cells (EC) were immuno-stained with von Willebrand (green) while the mural cells were identified by 30 

smooth muscle actin immunohistochemistry (red). The nucleus was counterstained with DAPI (blue). 31 

On day 6, the EC were present in large islands of cells containing several hundred cells. Inter-32 

dispersed within these EC islands and around the edge were mural cells. On day 9, the EC had a 33 

much more network-like appearance with multiple sprouts projecting away from the centre of the 34 

EC island. Again, mural cells were often closely associated with the EC networks. On both days 6 and 35 

9, mural cells were often present at the tips of sprouting EC (arrowhead). The scale bar represents 36 

200µm. Robinson, Woad et al., unpublished observations. 37 
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