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Abstract

This thesis addresses the problem of airline reserve crew scheduling
under crew absence and journey time uncertainty. This work is primarily
concerned with the allocation of reserve crew to standby duty periods. The
times at which reserve crew are on duty, determine which possible crew
absence or delay disruptions they can be used to absorb. When schedul-
ing reserve crew, the goal is to minimise the expected levels of delay and
cancellation disruptions that occur on the day of operation. This work in-
troduces detailed probabilistic models of the occurrence of crew absence and
delay disruptions and how reserve crew are used to absorb such disruptions.
Firstly, separate probabilistic models are developed for crew absence and
delay disruptions. Then, an integrated probabilistic model of absence and
delay disruptions is introduced, which accounts for: delays from all causes;
delay propagation; cancellations resulting from excessive delays and crew
absence; the use of reserve crew to cover such disruptions given a reserve
policy; and the possibility of swap recovery actions as an alternative delay
recovery action. The model yields delay and cancellation predictions that
match those derived from simulation to a high level of accuracy and does so
in a fraction of the time required by simulation. The various probabilistic
models are used in various search methodologies to find disruption minimis-
ing reserve crew schedules. The results show that high quality reserve crew
schedules can be derived using a probabilistic model.

A scenario-based mixed integer programming approach to modelling
operational uncertainty and reserve crew use is also developed in this thesis
and applied to the problem of reserve crew scheduling. A scenario selection
heuristic is introduced which improves reserve crew schedule quality using
fewer input scenarios.

The secondary objective of this thesis is to investigate the effect of the
reserve policy used on the day of operation, that is, determining when and
which reserve crew should be utilised. The questions of how reserve policies
can be improved and how they should be taken into account when scheduling
reserve crew are addressed. It was found that the approaches developed for
reserve crew scheduling lend themselves well to an online application, that
is, using them to evaluate alternative reserve decisions to ensure reserve
crew are used as effectively as possible. In general it is shown that ‘day of
operation’ disruptions can be significantly reduced through both improved
reserve crew schedules and/or reserve policies. This thesis also points the
way towards future research based on the proposed approaches.



Acknowledgements

The research presented in this thesis originated from a previous collabora-
tion between Geert De Maere of the University of Nottingham and Marc
Paelinck of Air France-KLM, to them I owe thanks for this great opportu-
nity they have provided me with. This research was performed under the
supervision of Jason Atkin, Geert De Maere and Marc Paelinck. I offer
my sincerest gratitude to my supervisors for the time and effort they spent
providing feedback on the work I have done during this research project.
Without which my writing style would be much worse off. To Jason Atkin
and Geert De Maere, special thanks are owed for the hours of interesting
discussions and sometimes heated debates on various aspects of this project
and for providing continued support and guidance throughout this research
project.

I would also like to extend my gratitude to my brothers, Kevin for his
comments and questions when providing an audience when I was practising
for conference presentations and to my brother Anthony for always being
there for me. My parents are also owed a great debt of gratitude for their
unending support and encouragement and for their understanding over the
course of this research project.

Many thanks are owed to the staff at KLM’s crew planning and as-
signment department and Marc Paelinck in particular for providing data
and perspectives based on first hand experience. Thanks are also owed to
the ASAP research group for providing a comfortable and friendly working
environment. I am also grateful to the technical support group in the com-
puter science department and the administrative staff at ASAP. Finally I
would like to thank the EPSRC LANCS initiative (grant ref EP/F033214/1)
for the funding which has made this research possible.



Acronyms

CAM Crew Absence Model.

CDM Crew Delay Model.

ETA Estimated Time of Arrival.

FRQ Fleets Ranks and Qualifications.

GRP Generalised default Reserve Policy.

LUT Look Up Table policy.

MIPSSM Mixed Integer Programming Simulation Scenario Model.
SDPM Statistical delay propagation model.

STM Simulation reserve policy.

SPCAM Simplified Probabilistic Crew Absence Model.
abs only Absence Only policy.

de fault Default reserve policy.



Chapter 1

Introduction

This thesis presents the findings from a PhD project on the subject of airline
reserve crew scheduling under uncertainty. Airlines operate in an uncertain
environment due to the effects of weather, congestion (ground and air),
unexpected aircraft maintenance and crew unavailability. This project is
primarily concerned with disruptions caused by crew unavailability. These
occur in the form of absent crew, for example, due to illness and in the form
of delayed crew. Both absent crew and crew-related delay disruptions can
be absorbed by replacing the affected crew with reserve crew. Reserve crew
are spare crew who are on standby at specific locations to cover for delayed
or absent crew at short notice. As crew represent the second largest cost to
airlines (fuel is the leading cost), using crew efficiently is important to the
profitability of an airline. This encourages airlines to operate tight sched-
ules that are susceptible to the propagation of disruptions. Reserve crew
scheduling adds a layer of recoverability that is essential for the smooth run-
ning of an airline. Reserve crew are also used for operations left unassigned
till the last minute (known as open flights). These unassigned flights pro-
vide a layer of schedule flexibility which enables the use of unused reserve
crew as well as disrupted crew who may have been replaced with reserve
crew.

This project introduces models of crew absence and delay propagation
and the impact that reserve crew schedules have on absorbing such disrup-
tions. The resultant models are used to search the solution space of reserve
crew schedules (the times at which the reserve crew will be on standby
duty). The main overall contribution of this thesis is that it advances the
level of explicit detail included in the models of crew-related disruptions
and the modelling of the impact that a given reserve crew schedule has on
absorbing such disruptions (see Section 1.3). Three main approaches to
reserve crew scheduling are developed and investigated, including proba-
bilistic, scenario-based and heuristic approaches. Probabilistic approaches
use the probabilities of disruptions to calculate the probabilities of reserve
crew requirements and then use the probabilities of reserve crew availabil-
ity to work out the probabilities that crew-related disruptions still occur,
and continue in this fashion iteratively. Scenario-based models consider an
explicit set of possible disruption scenarios and try to find the reserve crew
schedule that absorbs the most disruptions over each of those scenarios si-
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multaneously. Heuristic approaches include rule of thumb based scheduling
approaches as opposed to optimisation based scheduling and often provide
a good initial benchmark performance level to compare the more advanced
approaches to.

As a secondary objective, this project also investigates reserve crew
use from an online perspective in the form of reserve policies. Reserve
policies determine whether reserve crew should be used for any given crew-
related disruption and which combination of individual reserve crew mem-
bers should be used. Online reserve policies need to be adaptive to the
current conditions. They also need to be able to make globally informed
decisions, even if this means not absorbing avoidable disruptions now, in or-
der to ensure that larger disruptions that may happen later can be covered.
Such a decision is referred to as reserve holding. In this project many of the
approaches to reserve crew scheduling can be adapted and used online as
reserve policies which ensure that reserve crew are used to absorb the most
important /largest disruptions.

The main contributions/findings are discussed in Section 1.3 and in-
clude the introduction of: reserve crew scheduling approaches based on
highly detailed probabilistic models of absence and delay disruptions and
reserve crew used to absorb them; and scenario-based approaches including
a scenario selection heuristic solution approach. Additionally, the reserve
policy investigations showed that reserve crew use can be improved using
adapted versions of the offline reserve crew scheduling approaches online,
and that certain rule of thumb policies also lead to good levels of disruption
absorption.

Chapter structure

Section 1.1 gives some background information for this research. Section 1.2
states the goals of this research. Section 1.3 summarises the main contri-
butions from this research. Section 1.4 lists the publications resulting from
this research. Section 1.5 explains the structure of this thesis. Section 1.6
discusses the flow of ideas throughout this research. Section 1.7 summarises
the main points from this chapter.

1.1 Background information

This project originated from a collaboration between the University of Not-
tingham and KLM (now Air France-KLM!), and was funded by the EPSRC
LANCS initiative (grant ref EP/F033214/1). The project was initiated with
a visit to KLM headquarters in Amstelveen, with a series of meetings with
key figures in the KLM crew planning and assignment department. Key
personnel at KLM have worked on the problem of reserve crew scheduling,
introducing fundamental changes to KLLM reserve crew scheduling practices.

'KLM and Air France still operate as two separate airlines but are owned by the Air
France-KLM group. In this thesis, the described practices refer to the specific case of
KLM



Much of the following tries to extend their work and address research ques-
tions which were discussed in that first meeting.

Overview of previous work

The vast majority of research on airline scheduling is based on the assump-
tion that everything goes to plan on the day of operation. A recent trend
in the literature is to acknowledge operational uncertainty in the schedul-
ing phase of operations, otherwise known as robust scheduling (see Section
2.2). Such work typically shows that optimising operational costs as op-
posed to planned costs is beneficial both in theory and practice. The reason
is that, due to disruptions, operational costs usually exceed planned costs,
especially in unrobust solutions.

Previous work on robust scheduling (see Section 2.2), when applied
to airline scheduling, typically aims to schedule resources in such a way
that the schedule has a minimal potential for developing infeasibilities or so
that schedule feasibility can easily be regained in the event of disruptions.
Reserve crew can augment the robustness of an airline schedule. Not all
disruptions can be addressed in the scheduling phase by modifying certain
properties of the schedule. Crew absence is an example of such a disruption.
Models for reserve crew scheduling and the use of reserve crew can be used
to address a schedule’s risk of infeasibility due to crew absence.

Before this project, much work on reserve crew scheduling (see Sec-
tion 2.3) was based on minimising the requirement for reserve crew by bet-
ter understanding the causes of disruptions that require reserve crew and
forecasting the requirement of reserve crew such that a balance is achieved
between the cost of reserve crew provision and the cost of uncovered disrup-
tions. In this thesis, reserve crew are scheduled with the aim of minimising
the expected levels of delays and cancellations that result from crew absence
and delay propagation after the application of recovery actions.

Planning stages

KLM’s approach to crew scheduling consists of four stages, manpower plan-
ning, pairing, assignment and tracking and control. Manpower planning is
the task of determining the total number of employees required over the mid
to long term future to carry out expected future operations. Crew pairing
determines sequences of flights that can feasibly be operated by individual
members of crew such that all tasks are included in separate crew pairings,
a task which is performed approximately a month before the day of opera-
tions. Assignment determines which crew operate each crew pairing. The
tracking and control group reacts to crew disruptions by rescheduling crew
to ensure the crew schedule remains feasible.

Reserve blocks

At KLM, cabin crew are required by contract to perform several reserve
blocks per year. Reserve blocks are crew assignments in which crew are
stationed at their domicile (home station/airport) and are on standby ready
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to replace disrupted crew at short notice. The structure of reserve blocks is
described in more detail in Section 3.4 of the problem description chapter.
One of the main goals of this research is to investigate approaches to the
scheduling of reserve blocks, i.e. specifying the numbers of reserve blocks
starting each day and the standby duty times associated with each of those
reserve blocks.

Current approach

KLM'’s current approach to reserve crew scheduling involves extrapolating
historical data on reserve crew requirements into the future, they have equal
numbers of starting reserve crew on each day and state that currently no
advanced approaches are used to schedule reserve crew duty start times.
The actual duty patterns are determined manually through trial an error,
experience and intuition.

1.2 Goals

The goals of this thesis are as follows:

e Develop methods of modelling the occurrence of crew-related disrup-
tions including how reserve crew are used in response to these.

e Use the resultant models of airline crew disruption uncertainty and
possible recovery actions to schedule reserve crew in a way that min-
imises:

— The chance that the crew schedule becomes infeasible.

— The expected number of cancellations and the expected level of
delay propagation

e Advise KLM on any insights and recommendations for best practices
for reserve crew scheduling.

e Investigate alternative reserve policies, the interaction between the
reserve crew schedule and the reserve policy and how best to take the
reserve policy into account during reserve crew scheduling.

1.3 Contributions

The contributions of this thesis include the following;:

e (Main overall contribution). The proposed approaches make use of
all of the available information in order to determine the reserve crew
schedule.

e Detailed probabilistic models of disruptions and reserve crew use are
developed (Chapters 5 to 8).

— Reserve demand modelled at a per flight resolution.
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— Probabilistic models were developed for reserve crew demand and
usage, with separate models for crew absence and delay disrup-
tions.

— Development of a statistical model of delay propagation which
models event time uncertainty as a function of the: airline’s
schedule; reserve crew schedule; recovery policy (including re-
serve crew and resource swap recovery actions) and journey time
uncertainty.

— Integration of probabilistic crew absence and delay propagation
models, which are capable of rapid and highly accurate delay and
cancellation predictions.

— The probabilistic models are used to derive high quality reserve
crew schedules.

— The probabilistic models are applied in an online context to eval-
uate alternative reserve decisions to make globally informed re-
covery decisions.

e Scenario-based models are developed (Chapter 9).

— A framework for disruption scenario generation is developed which
provides input scenarios for a mixed integer programming ap-
proach to reserve crew scheduling.

— A scenario selection heuristic is introduced which results in higher
quality reserve crew schedules with fewer input scenarios than the
standard formulation.

— Investigations are carried out into the most effective objective
functions and the effect of different types of input disruption
scenarios on the quality of the derived reserve crew schedules.

e Investigation of online reserve policies (parts of Chapters 6, 8 and 9).
— Development and investigation of reserve crew selection policies

and reserve crew holding policies.

— The encoding of reserve selection policies within reserve crew
scheduling models.

— The application of probabilistic models for reserve crew schedul-
ing in an online context to provide globally informed decision
support for reserve crew use.

e Comparison of all considered approaches to reserve crew scheduling
and reserve policies when applied to a range of realistic test instances
(Chapter 10) leading to profound insights into the effectiveness of the
different approaches when applied in a range of situations.

1.4 Publications

The publications resulting from this work are as follows.
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1.4.1 Journal papers

e Revised and resubmitted to Annals of Operations Research
C. Bayliss, G. De Maere, J.A.D. Atkin, M. Paelinck “A Simulation
Scenario Based Mixed Integer Programming Approach to Airline Re-
serve Crew Scheduling Under Uncertainty”

e Revised and resubmitted to the journal of Computers and Operations
Research
C. Bayliss, G. De Maere, J.A.D. Atkin, M. Paelinck “Extended Prob-
abilistic Crew Absence and Reserve Crew Recovery Model”

e Submitted to Transportation Research Part B: Methodological
C. Bayliss, G. De Maere, J.A.D. Atkin, M. Paelinck “A Statistical
Delay Propagation Model for Airline Reserve Crew Scheduling and
Decision Support”

1.4.2 Conference papers

e C. Bayliss, G. De Maere, J.A.D. Atkin, and M. Paelinck “Probabilistic
airline reserve crew scheduling” in Proceedings of the 12th Workshop
on Algorithmic Approaches for Transportation Modelling Optimiza-
tion, and Systems (ATMOS 2012), 2012,
doi: 10.4230/0ASIcs. ATMOS.2012.132

e C. Bayliss, G. De Maere, J.A.D. Atkin, M. Paelinck “Scheduling Air-
line Reserve crew to Minimise Crew Related Delay Using Simulated
Airline Recovery and a Probabilistic Optimisation Model” in Pro-
ceedings of the IEEE International Conference on Systems, Man and

Cybernetics, p1944-1950, 2013, doi: 10.1109/SMC.2013.334

e C. Bayliss, G. De Maere, J.A.D. Atkin, M. Paelinck “A Simulation
Scenario Based Mixed Integer Programming Approach to Airline Re-
serve Crew Scheduling Under Uncertainty” in Proceedings of the 10th

International Conference of the Practice and Theory of Automated
Timetabling , p62-81, 2014

1.4.3 Conference abstracts

e C. Bayliss, G. De Maere, J.A.D. Atkin, M. Paelinck “Probabilistic
Airline Reserve Crew Scheduling Model” 3rd Student Conference on
Operational Research, Nottingham, 2012

e C. Bayliss, G. De Maere, J.A.D. Atkin, M. Paelinck “A Graph Ap-
proach to Modelling the Uncertain Flow of Airline Resources Through
an Airline Network” 4th Student Conference on Operational Research,
Nottingham, 2014



1.5 Thesis structure

The remainder of this thesis is structured as follows.

Chapter 2 gives a review of the literature related to issues surrounding
the problem of airline reserve crew scheduling under uncertainty. The lit-
erature review covers previous work on airline scheduling problems, airline
operations, work in related fields, the modelling of uncertainty and search
methodologies.

Chapter 3 gives a formal definition for the problem of airline reserve crew
scheduling under uncertainty as well as a number of key definitions for con-
ventions used throughout this thesis.

Chapter 4 introduces the simulation developed in this project as a tool
for investigating the problem of airline reserve crew scheduling, which is
also used for validating reserve crew schedules and reserve policies. The
simulation is introduced early on as it is used in many of the subsequent
chapters for a number of different purposes.

Chapters 5 to 8 cover the probabilistic models of crew-related disruptions
and reserve crew used to absorb them.

Chapter 5 introduces a probabilistic model of crew absence and reserve
recovery in its simplest form, with simplifying assumptions covering all is-
sues considered to be mere details obscuring the underlying problem. In
particular, Chapter 5 introduces an iterative formulation for calculating
probabilities of cancellation due to crew absence for a given reserve crew
schedule. Search heuristics then use the model to search for the reserve
crew schedule that minimises the overall expected number of cancellations.
The work of Chapter 5 also resulted in a full conference paper [17].

Chapter 6 presents a reformulation of the simplified probabilistic crew ab-
sence model where most of the simplifying assumptions have been removed.
The extended formulation allows for the possibility of multiple crew being
absent simultaneously from crew pairings and the probabilities that feasible
combinations of reserve crew are simultaneously available to cover for such
disruptions. Chapter 6 also explicitly models the structure of crew pair-
ings, the logic regarding which combinations of reserve crew can possibly
be used for different disruptions as well as acknowledging the fact that the
total expected number of absent crew is best described using a probability
distribution. Delays which are caused by waiting for reserve crew to begin
standby duties are also taken into account in the expected cancellations
objective function, using a function which maps delays to a measure of can-
cellation. The extended probabilistic crew absence model is also applied to
the case where reserve crew have ranks and qualifications which limit the
roles they can perform and the fleet types they can operate on.
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Chapter 7 presents a probabilistic model of crew-related delay disruptions
and reserve crew recovery which is in many ways analogous to the simplified
probabilistic crew absence model of Chapter 5. Chapter 7 introduces the
matrix structure which is used to model delay propagation. Then, the sim-
ulation learning phase is described in which the delay propagation matrix
is populated. The procedure is also introduced for evaluating reserve crew
schedules in terms of their associated expected overall delay absorption,
which involves calculating the effect that the given reserve crew schedule
has on the probabilities of delay propagation in the matrix. The work of
Chapter 7 resulted in a full conference paper [15].

Chapter 8 introduces a statistical model of delay propagation in an air-
line network, which calculates departure and arrival time distributions for
all scheduled flights, whilst taking journey time uncertainty and the air-
line’s recovery policy (including the use of reserve crew and swap recovery
actions) into account. Chapter 8 introduces the required operations for
calculating how delay distributions propagate through an airline’s schedule
whilst allowing for the effects of airline recovery actions, scheduled slack
and journey time uncertainty. The statistical delay propagation model ac-
counts for both crew absence and journey time uncertainty. Crew absence
uncertainty is incorporated into the model using the input parameters de-
rived from the improved probabilistic crew absence model of Chapter 6.
The statistical delay propagation model is validated in terms of prediction
accuracy, in applications to reserve crew scheduling and when applied as a
reserve holding policy.

Chapter 9 introduces an alternative reserve crew scheduling approach to
that of the probabilistic models, in the form of a scenario-based mixed
integer programming approach. Chapter 9 describes how to derive the dis-
ruption scenarios which are the inputs for a mixed integer programming
formulation which is solved to find a reserve crew schedule that performs
well in a wide range of scenarios. Chapter 9 also investigates the effect of
the number and type of scenarios included in the formulation. Several sce-
nario selection algorithms are also given. The work of Chapter 9 resulted
in a full conference paper [16].

Chapter 10 compares all approaches to reserve crew scheduling and reserve
policies developed in the previous chapters when applied to the most de-
tailed problem instances considered in this project. These problem instances
allow for: reserve crew that come in a range of rank and qualification com-
binations; aircraft that come in a range of fleet types; the crew absence
uncertainty; the journey time uncertainty; individual fleet crewing require-
ments and the airline’s recovery policy including swap recovery actions as
well as reserve crew use.

Chapter 11 concludes this thesis with a summary of the main insights gained
from this work.
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Chapter 12 considers the future research directions.

1.6 Project flow diagram: flow of ideas

Figure 1.1 illustrates the flow of ideas during this project. The arrows in-
dicate how the different approaches considered in the project evolved over
time. Going from left to right corresponds, approximately, to a chronolog-
ical account of the ideas explored in the project. The top row of the flow
chart shows how the project started by considering a simplified version of
the problem. The bottom row draws together the work on the secondary
objective of the project, that of investigating online reserve policies. The
central band of the flow chart shows how the work on the main objective of
the project, that of investigating approaches to offline reserve crew schedul-
ing, developed over the course of the project.

Figure 1.1 shows that the main approaches to offline reserve crew
scheduling investigated were probabilistic approaches and scenario-based
approaches. Initially probabilistic models were developed separately (to be
combined later on) for each type of crew-related disruption (absence and
delay), the simplified probabilistic crew absence model was developed first.
Then there was an initial attempt at a statistical model of delay propaga-
tion, the structure of the initial attempt did not allow for the modelling
of swap recovery actions. As a result, the probabilistic crew delay model
was developed, which was a learning based approach rather than a theo-
retical model, and was in many ways analogous to the original simplified
probabilistic crew absence model. An alternative approach to modelling the
problem was also under consideration, that of scenario-based modelling, this
approach motivated the development of the single hub airline simulation
tool, which would later be used for solution validation and in simulation
based algorithms for offline reserve crew scheduling and as an online re-
serve policy. The mixed integer programming simulation scenario model
(or the MIPSSM) used the simulation to provide input disruption scenar-
ios, which were used to form the objective and constraint coefficients of a
MIP formulation, which was then solved to find a reserve crew schedule.
The MIPSSM was the first model to include both types of crew-related
disruptions for which reserve crew can be used to absorb. To do this, the
delay cancellation measure function was developed to capture the perceived
disruption of a delay of a given size relative to a flight cancellation. The
delay cancellation measure function meant that the M1 PSSM could be for-
mulated as a single objective problem, the issue of the trade-off between the
level of protection against delay and cancellation disruptions was captured
by a decision maker parameter in the delay cancellation measure function.
The MIPSSM also allowed for the possibility of multiple crew being si-
multaneously absent from a given crew team (see typical assumptions, top).

At around the same time the probabilistic crew absence model was
also extended to allow for the possibility of multiple crew absence per crew
pairing. Additionally, the delay cancellation measure function was used in
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the improved probabilistic crew absence model to include reserve-induced
delays in the cancellation based objective function. The improved proba-
bilistic crew absence model was an entirely theoretical model of crew absence
disruptions and reserve crew used to absorb them, this was not the case for
the probabilistic crew delay model. This motivated a fresh attempt at a sta-
tistical model of delay propagation, an extended three dimensional matrix
structure allowed for the explicit modelling of probabilistic swap recovery
actions. The statistical delay propagation model (SDPM) was a fully the-
oretical model of crew absence and delay disruptions in contrast to the sim-
ulation based MIPSSM. Both the MIPSSM and SDPM led naturally
to online reserve policy applications. The MIPSSM and SDPM were also
combined to produce reserve crew scheduling algorithms that exploited the
strengths of both approaches. The MIPSSM excels at generating reserve
crew schedules given a set of disruption scenarios, whilst the SDPM is a
fast and accurate evaluator of reserve crew schedules.

The initial justification for assuming a single aircraft fleet and a single
crew rank was that the problem is largely decomposable according to these
divisions in airline resources, and that after developing single fleet/rank
models the full problem could then be tackled without major modifications
to the models. If an airline uses pure fleet pairings (see Section 2.1.5) crew
scheduling decomposes according to fleet types (as in Romer and Mellouli
[84]). This was found to be largely the case and the MIPSSM and SDPM
approaches were extended, with only relatively minor modifications, to the
case where multiple aircraft fleets and multiple crew ranks and qualifications
were considered in the same problem. A consequence of the consideration
of multiple crew ranks and qualifications was that the default reserve policy
needed to be parameterised, as it generated many possible combinations
of reserve crew with different combinations of ranks and qualifications all
feasible for the same disruption. This parameterised policy was encoded
within the improved probabilistic crew absence model, and as a result, in
the SDPM as well.

1.7 Chapter summary

This chapter has set the scene for a thesis on the topic of reserve crew
scheduling under uncertainty. The goals of this thesis include the develop-
ment of models of the uncertainty of the occurrence of crew-related disrup-
tions and reserve crew used to absorb them, such models can be used for
reserve crew scheduling. The main contributions of this thesis were listed,
of those the development of several probabilistic models and a scenario-
based approach represent the main contributions. Several journal papers
have been submitted and a number of conference papers have been pub-
lished during this research. This chapter also outlined the flow of ideas
throughout this research using a flow diagram.

14



Chapter 2

Literature review

Airline reserve crew scheduling is a critical task that can, in a number of
ways, be viewed as a problem that is centrally located within the research
field of domestic aviation. Firstly, the crew schedule is the middle layer of an
airline’s schedule, surrounded by aircraft routings and passenger itineraries.
Secondly, although reserve crew scheduling is a scheduling task, how the
reserve crew are used on the day of operation is a task for the airline op-
erations recovery department (or desk). So the process of scheduling and
using reserve crew spans both airline scheduling and airline operations.

Research field/subfield Relevant issues

4 Airline scheduling \

e I
Crew scheduling Crew pairing structure?

Inherent risk of delay?

Assumed reserve policy?

\ —

Offline ( Reserve crew scheduling

..O..I.'..../ \.......................l
nine ‘ Reserve policies ] Hold or use?
Airline recovery Rule based vs optimised
- J/

Modelling operational

\_ Airline operations

uncertainty

Figure 2.1: Reserve crew scheduling centred view of airline scheduling and
operations

Figure 2.1 illustrates how reserve crew scheduling and reserve policies
are scheduling and operational tasks respectively and how the overarching
research areas of airline scheduling and airline operations relate to reserve
crew scheduling via respective levels of subfields of those research areas. The
comments/questions to the right hint at the relevant issues with respect to
the problem of airline reserve crew scheduling.

15



Crew schedules are also the most constrained aspect of the airlines
schedule, in the sense that human resources require long periods of rest in
comparison to the mechanical resources such as aircraft. So crew have to be
protected from fatigue for safety reasons and many rules and regulations ex-
ist for this purpose (see Banks et al. [9] for a survey of these). Reserve crew
provide a layer of slack which protects the feasibility of the crew schedule,
and since there are dependencies between the various layers of the airline
schedule, reserve crew also have the effect of increasing the robustness of
the overall airline schedule.

Chapter structure

As depicted in Figure 2.1 a study of reserve crew scheduling requires knowl-
edge of both airline scheduling (see Section 2.1) and airline operations (see
Section 2.4), with a particular emphasis on crew scheduling considerations
and airline disruption management. Section 2.1.5 is devoted to previous
work on airline crew scheduling. Since reserve crew scheduling is a method
of augmenting the robustness of a crew schedule, Section 2.2 considers ex-
isting work on robust airline scheduling. Section 2.3 covers previous work
on the problem of reserve crew scheduling. Section 2.4 describes the exist-
ing work on airline operations, including the crew recovery problem. An
important element of this project is the modelling of uncertainty and as
such Section 2.5 is devoted to this topic. Section 2.6 concerns solution
methodologies for deterministic problems. Section 2.7 concerns solution
methodologies for problems with uncertain input parameters. Section 2.8
considers general aspects of problem solving. Section 2.9 summarises this
chapter.

In addition to providing a review of the existing literature, this chapter also
discusses the existing literature in comparison to the approaches that are
proposed in the subsequent chapters of this thesis.

2.1 Airline scheduling

The airline scheduling problem is a very large complex problem and be-
cause of this the problem is usually tackled sequentially in several steps,
as described by Barnhart et al. [10]. The overall sequential structure is
summarised by Bazargan [18] as: the fleet assignment requires the schedule
design, maintenance/aircraft routing requires fleet assignment to generate
aircraft rotations, crew pairing requires aircraft routing (as its input) and
crew rostering requires (the result from) crew pairing. see Table 2.1 for the
definitions of these airline scheduling terms.

The crew scheduling problem is further broken down into crew pair-
ing and crew assignment [10, 12, 55, 58, 89, 98]|. Crew pairing is the task
of generating sequences of flight duties consisting of several days of work
that can be assigned to an individual member of crew. Crew pairings be-
gin and end at crew domiciles (home airports). Additionally, other aspects
of the sequential approach to the airline scheduling problem are also fur-
ther decomposed into smaller more manageable sub-problems. Note also
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Term Definition

Schedule design determines which flight legs should be flown,

schedule design can be seen as a marketing task
Flight leg a single journey from one station to another
Fleet assignment assigns aircraft types (fleets) to flight legs.

Maintenance routing | assigns specific aircraft to flight legs, such that all
aircraft receive sufficient maintenance

Crew duty a sequence of flights to be performed by a crew
member in one day

Domicile the home station of a crew member

Crew pairing generates sequences of crew duties that start and
end at crew domiciles

Crew assignment assigns specific crew to crew pairings

Table 2.1: Airline scheduling terminology

that there is usually a negotiation period in which requests for changes in
a higher level schedule can be made [75]. Many of the overview papers
spend time emphasising the value of putting time and effort into the airline
scheduling problem, Yen and Birge [106] call it the billion dollar problem,
others including Gopalan and Talluri [44] and Rushmeier et al. [89] state
that “the schedule is the primary product of an airline and is the single
determining factor affecting airline profitability”. Rushmeier et al. [89]
also state that the airline industry has the largest scheduling problems of
all industries. Another interesting way of summarising airline scheduling,
which was given by Ball et al. [7] is to consider the schedule as consisting
of 3 layers: aircraft, crew and passengers. A feasible schedule must satisfy
the flow constraints for each layer. Additionally, Ball et al. [7] provide a
detailed overview of the intricacies of the commercial air transportation net-
work from an air carrier’s, an airport’s and air traffic control perspectives.
The complexity of the air transportation network arises from the competing
interests of airlines with respect to finite airport and airspace capacity, and
the sensitivity to disruptions caused by the interaction between the different
schedule layers.

2.1.1 Schedule design

In schedule design, airlines determine the set of origins and destinations
and the corresponding departure and arrival times of the flights they will
operate. The airline tries to generate the most profitable flight legs possi-
ble. According to the thesis of De Maere [67] schedule design consists of
three subproblems, route development, frequency planning and timetable
development.

Airline network types

Different airlines use different types of networks. The two basic network
types are point-to-point and hub-and-spoke networks [66]. Airlines that
operate hub-and-spoke networks have one or multiple stations (hub airports)
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through which all traffic passes between spoke stations. For the case of
multiple hub-and-spoke networks there may also be high frequency flights
between the hub stations. The advantage of a hub-and-spoke network is that
the airline can offer passengers many origin-destination pairs with relatively
few flights, however such trips often involve a connection at one of the hub
stations. In contrast, airlines that operate a point-to-point network have no
hub station. Instead, they offer direct flights between a range of stations.
Point-to-point networks are often operated by “budget airlines” or “low
cost carriers” and offer flights on high demand routes. Due to the large
traffic volumes at hub stations they have the largest reserve crew scheduling
problems. The reserve crew scheduled at a hub station are the main focus
of this thesis.

Li et al. [62] give an analysis of a Japanese airline that operate a dual
hub network. They define a connection quality measure for the connections
the airline offers to its customers. The measure takes total flight time,
the number of connections and the existence of direct flights that may be
offered by competitor airlines into account. It was found that some of
the connections the Japanese airline operated were of low quality due to
other airlines offering direct flights for the same origin-destination pairs.
Their analysis led them to conclude that there was a case for increasing the
number of international flights from one of the airports of the airline’s dual
hub network.

The focus in this thesis is on a single hub network, the reserve crew
being scheduled are those based at the hub station. A multiple hub applica-
tion of the proposed approaches would involve solving a set of reserve crew
scheduling subproblems, one for each hub. However, the latter is beyond
the scope of this thesis, but is discussed as a possible direction for future
work in Chapter 12.

2.1.2 Fleet assignment

The goal of fleet assignment is to match aircraft capacity with demand
in order to avoid passenger spills (where demand exceeds the number of
seats) or under utilisation of capacity. Schedule design and fleet composition
are the input for fleet assignment. The fleet assignment problem is often
modelled as a network flow problem [44]. In such network flow models, nodes
represent connection possibilities at particular stations and arcs represent
flight legs and also overnight legs. The advantage of this approach is that
equipment balance constraints are then easy to enforce. A current issue
in fleet assignment (raised by Barnhart in [10]) relates to the ordering of
the sequential airline scheduling problem. The problem is that sequentially
solving the fleet assignment followed by the routing problem, can result in
maintenance requirement violations. Integrated fleeting and routing models
avoid this. Gopalan and Talluri [44] describe a periodic approach that
assumes the same schedule every day and the problem is to find aircraft
rotations such that maintenance requirements are satisfied. In [44] Gopalan
and Talluri also state that in the fleet assignment problem “throughs” are
highly profitable and the number of these is often maximised. A “through”
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corresponds to an aircraft stopping at the hub station as an intermediate
destination, allowing passengers to stay on the same aircraft in a trip from
one spoke station to another spoke station.

The relevance of fleet assignment from a reserve crew scheduling per-
spective is slightly indirect. The fleets assigned to each flight leg determine
the necessary qualifications of the crew that will be assigned to those flight
legs. Reserve crew also have qualifications which determine the fleets they
are qualified to operate on. Additionally, the fleet assigned to a flight leg
will influence the probability that flight is delayed, which is because dif-
ferent fleets have different airspeeds at which overall fuel consumption is
minimised [60]. Therefore fleet assignment influences reserve crew feasibil-
ity and the occurrence of delays for which reserve crew may be required to
replace delayed crew.

2.1.3 Maintenance routing

For completeness, the maintenance routing phase of airline scheduling is
described. For safety reasons aircraft must undergo regular maintenance
checks. The various types of maintenance checks include high frequency
visual checks and lower frequency more rigorous checks. Gopalan and Talluri
[44] give details of the types of maintenance checks required by Federal
Aviation Administration regulations. Checks are labelled A,B,C and D. A
checks are high frequency routine visual inspections. If A B,C or D checks
are not performed on time, the aircraft is prohibited from flying. The B, C
and D checks are less frequent and more rigorous, in these checks aircraft
can be taken out of service for a week or more and may be completely
dismantled. Maintenance carried out by airlines is usually more frequent
than those specified by civil aviation authorities. This adds a little flexibility
which means that missing a single maintenance check need not result in the
aircraft immediately being prohibited from flying. For an example of work
on maintenance routing see [60]. Lapp and Wilkenhauser [60] introduce a
tail assignment model which is designed to minimise the total amount of
fuel required to implement a schedule. They use aircraft efficiency ratings
and assign lines of flight to specific aircraft with the objective of minimising
fuel consumption. They also introduce a model where new lines of flight
can be generated, however they found that this leads to over utilisation of
efficient airframes and also has the knock-on effect of increasing crew costs
and increased delay propagation.

Planning rules: Equal utilisation of airframes

Airlines use planning rules that are known to incorporate beneficial features
into aircraft routings including the equal utilisation of airframes [89]. This
simplifies the task of maintenance routing because flying hours will be more
evenly balanced across the airframes within each fleet. Another planning
rule stated by Rushmeier et al. [89] which is used by US Airways is that
all aircraft must pass through an overnight station every three days so that
maintenance checks can be performed overnight.
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2.1.4 Integrated airline scheduling

Section 2.1 stated that airline scheduling is performed in a sequential man-
ner, it is common wisdom that sequential approaches to problems do of-
ten preclude truly optimal solutions. The reason for breaking the airline
scheduling problem into stages is its combinatorial nature, focussing on
a small part of the problem at a time makes the problem more manage-
able. Unfortunately this can also have the effect of removing regions of
the solution space, that are available in the following subproblem, possibly
including the optimal solution. A recent trend in the research literature
for airline scheduling is the integration of two or more subproblems of the
airline scheduling problem.

Weide [101] integrates fleet assignment and crew pairing in an algo-
rithm which iteratively increases the robustness of an input airline schedule.
The work of Weide is discussed in more depth in Section 2.2.3 in the context
of robust scheduling.

Pita et al. [78] integrate schedule design and fleet assignment under
airport congestion. Their mixed integer programming model takes airline
competition and cooperation into account using the frequency of competi-
tor’s flights to estimate the market share gained by attaining particular
airport gate slots to serve demand for different origin destination pairs.
They model demand for origin destination pairs according to early morn-
ing, late morning and early afternoon time periods. The authors validate
their approach using data from a real national air transportation network.

In [45] Grunert presents an approach for tackling an integrated net-
work design and fleet assignment as discussed in Section 2.1.2. The work of
Grunert [45] is discussed in the context of a hybridised solution approach
involving integer programming and a tabu search algorithm.

In [11] Barnhart et al. introduce a flight string model, in which flight
strings are defined as sequences of flights, that can feasibly by assigned to
an aircraft, which begin and end at maintenance stations. As a result, any
aircraft assigned to such a flight string is therefore maintenance feasible.
The flight string model of Barnhart et al. [11] allows fleet assignment and
maintenance routing to be solved in a single problem, thus integrating fleet
assignment and maintenance routing problems. The trend of integrating
airline scheduling sub-problems is mirrored in the airline recovery problem.
Peterson [76] addresses the full integrated airline recovery problem from
schedule recovery through to passenger re-routing. The work of Peterson is
discussed in more depth in Section 2.4.3 in the context of airline recovery.

2.1.5 Crew scheduling

As described in Section 2.1 the crew scheduling process is typically de-
composed into two sub-problems: crew pairing and crew assignment [12].
Additionally, crew pairing and crew assignment each have their own unique
types of constraints. The crew pairing problem considers work rules, whilst
the crew assignment problem considers individual crew needs. The work of
Rosenberger et al. [87] contains a detailed account of the different types of
crew constraints that have to be taken into account on the day of operation.
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Crew pairing

Crew pairing finds minimum cost generic (anonymous) strings of duties that
begin and end at crew bases. In this problem possible pairings are assessed
in terms of the costs of layovers (overnight stays at outstations), time away
from base and other incremental costs. Pairings are made of duty periods
which are essentially shifts or a day’s work. Duties must begin from where a
previous duty ended, unless dead-heading (crew transported as passengers)
is used. The crew pairing problem is important from a reserve crew schedul-
ing perspective because it determines how damaging uncovered crew-related
delays can be, both in terms of cancellations due to crew absence and how
uncovered delays will propagate through the schedule. Barnhart et al. [12]
present the crew pairing problem in the form of a set partitioning problem
which is given as follows:

Minimise : Z CoYp (2.1)
peEP
d yp=1VieF (2.2)
pHUEDP
y, € {0,1} Vpe P (2.3)

In this model P is a matrix of all feasible pairings, each column of
P (p) corresponds to a crew pairing. Each column states which flights are
contained in that pairing with a 1 in row ¢ to indicate inclusion of flight ¢
in that pairing and 0 otherwise. F' is the set of all flights to be covered.
The objective function (Equation 2.1) is to minimise the cost of a set of
pairings that cover all flights exactly once. Constraint 2.2 ensures that
all flights are covered by exactly one pairing. Constraint 2.3 asserts that
Yp is a binary decision variable. Barnhart et al. [12] acknowledge that
this approach requires all feasible pairings to be enumerated and therefore
is not a tractable approach for anything but the smallest of crew pairing
problems. Barnhart et al. [12] also demonstrate, with a numerical example,
how a small instance of a crew pairing problem can be solved with this
model. Typically, methods such as column generation are used to solve the
problem in which only a subset of feasible pairings are considered at any
one time.

Beasley and Cao [19] introduce a tree search algorithm for the generic
crew scheduling problem with N tasks and K crew with constraints for
duty length and the temporal and spatial feasibility of the overall schedule.
They use a branch and bound approach involving Lagrangian relaxation
and subgradient optimisation to provide lower bound estimates of the value
of solutions, which are used to guide the algorithm.

Ball and Roberts [8] introduce a graph partitioning approach to the
airline crew scheduling problem. In their model nodes correspond to flights
and paths visiting a sequence of nodes correspond to crew pairings. Their
algorithm proceeds by extending a set of pairings with an extra flight at each
iteration, followed by a pairing improvement phase and a feasibility check for
accepting the set of pairings that are considered in the next iteration. Their
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approach takes deadheading into account as well as multiple domiciles.

Klabjan et al. [56] tackle the problem of airline crew scheduling with
regularity. They define flight legs according to a measure of regularity,
which is defined as the number of days on which the same flight is repeated
in the pairing. Any given crew pairing belongs to a regularity group that
corresponds to the number of days the same set of flights is repeated. Their
objective is to minimise a weighted sum of the number of pairings that are
irregular and the total number of pairings generated to cover all flights.
Their computational results demonstrate that their approach outperforms
the methods used by most large airlines on the criteria of deadheads, flight
time credit (see Section 2.1.5 for a detailed definition of flight time credit)
and regularity:.

Anbil et al. [5] give an account of the success of a commercial airline
crew pairing optimiser known as TRIP (1991). They highlight the financial
importance of crew scheduling at what was Americas biggest airline, with
annual crew costs exceeding $1.3 billion, a cost second only to fuel costs. The
TRIP optimiser was the result of improvements in computer architecture
and interior point methods for solving integer programming problems.

Romer and Mellouli [84] consider a crew pairing problem where ex-
plicit consideration is given to the possibility of cabin crew of high rank
being assigned to roles for which lower ranked cabin crew are also feasible.
They state that crew pairing optimisation is usually decomposed according
to crew-roles/ranks and fleet types. They show that when crew can be as-
signed to roles which are below their rank, better results can be obtained
by solving an integrated crew pairing model of hierarchical crew. The work
of Romer and Mellouli tackles cabin crew scheduling, whilst this thesis is
primarily aimed at the scheduling of reserve cabin crew. The ranks and
qualifications of reserve crew determines which roles they can undertake
and which fleets they can operate on in the event of crew related disrup-
tions. This thesis considers the possibility of “flying below rank” (as well
as crew fleet qualifications) at the end of Chapters 6 and 9. Romer and
Mellouli do not consider fleet qualifications and instead focus on the case
where the problem decomposes according to fleet types. This is reasonable
from a crew scheduling perspective as crew pairings usually consist of flights
on a single fleet type (or pure fleet pairings). However, reserve crew can be
used to absorb crew related disruptions affecting any fleet they are qualified
for.

The typical constraints in the crew pairing problem are described by
Barnhart et al. [12] and include minimum and maximum connection times
and maximum flight time (per day, week, month and year). Banks et al.
[9] list the rule types relating to flight attendant fatigue, which includes
maximum flight time, minimum rest times and jet lag (circadian rhythms).
They also point out that very few rules exist concerning at what time the
rest stopwatch is started, e.g. is it when the duty finishes or when the crew
reach the rest facility. In general, airlines have bargaining agreements with
unions that govern the maximum flying time per month and the minimum
and maximum rest times used during in the planning phase. Collective
bargaining agreement rules are usually set well within the legal limits set
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by civil aviation authorities, which means that there is some rule flexibility
on the day of operation.

At KLM [57] each possible crew pairing has a corresponding required
minimum numbers of days off. For example, a long haul pairing from Am-
sterdam to Manilla requires 9 days off on its completion. Section 3.4 de-
scribes KLM crew scheduling constraints in more detail, including: fleet
crewing requirements; the rank structure for cabin crew; and how on the
day of operation some exceptional circumstances permit “flying minus one”
or “flying above rank”. In this thesis, fleet crew requirements are taken
into account in Chapters 6 and 9 when the probabilistic models and mixed
integer programming approaches to reserve crew scheduling are extended
from single fleet models to multiple fleet models.

In this thesis, the most important aspect of crew scheduling is the
structure of crew pairings. The structure of crew pairings, determines which
reserve crew will be feasible to cover disrupted crew affecting that crew
pairing and also determines which subsequent flights will be disrupted if a
crew-related disruption cannot be covered for. As a result of this a possible
area for future research is to integrate crew scheduling and reserve crew
scheduling, the crew schedule can be manipulated to make reserve crew
scheduling easier or the crew recovery problem easier. In Chapter 10 the
test instances are based on real aircraft routings and crew schedules which
are generated using a set partitioning formulation similar to that described
above.

Crew assignment

Crew assignment follows crew pairing. In crew assignment pairings are as-
signed to individual crew. Current literature [98, 89, 58] also suggests that
different airlines perform crew assignment in different ways, including bid-
line, preferential bidding and rostering. Rushmeier et al.[89] describe bidline
rostering as an approach where anonymous schedules are created which are
then bid for by crew. In the bidline approach, crew who are not assigned
to their preferred schedules are awarded points, which give them prioriti-
sation in the subsequent month’s schedule. Other airlines perform crew
assignment using an automated approach in which all crew schedules have
to satisfy quality of life constraints (such as regularity). This is the case
for rostering and preferential bidding, which generate personalised sched-
ules. Rostering takes vacation and training into account, whilst preferential
bidding meets the requirements of more senior crew first.

Kohl and Karish [58] address the crew rostering problem, giving de-
tails of all of the different types of constraints that occur in this problem.
The authors use an objective function in their crew rostering model which
includes cost and quality of life considerations. They use constraints that
ensure that each individual crew member does not violate duty time reg-
ulations, and that the qualification requirements for specific pairings are
satisfied by the assigned crew.
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Pay structures

The work of Rosenberger et al. [87] goes into the details of how the costs
(or flight time credit) of crew schedules are typically determined at airlines
based in the United States. The cost of duties within a particular crew
pairing are proportional to the maximum of three quantities. These include:
the fraction of the elapsed duty time; the minimum guaranteed time; and
the sum of block times. Pairing costs are proportional to the maximum
of three quantities: the time away from base; the minimum guaranteed
pay per duty multiplied by the number of duties in the pairing; and the
sum of the duty costs as determined from the duty cost structure. The
aforementioned pay structure does not apply to KLM [57] who have a fixed
salary pay structure, in which staff have target numbers of flying hours to be
worked each month. KLM in particular have staff with different percentage
contracts. Pay at KLM increases with rank.

2.2 Robust airline scheduling
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Figure 2.2: Delays can spread to multiple flights if “resources split” causing
a “switch delay” (dashed lines). This occurs when the the crew and aircraft
of a delayed arrival are assigned to different subsequent flights.

Reserve crew scheduling can be viewed as a method of increasing the ro-
bustness of an airline schedule. In the literature, there does not seem to be
a single definition of robustness, but most agree that robust schedules are
designed to be less sensitive to disruptions. Another common theme in the
literature is that robustness is usually something that can be increased in
the planning phase by considering what happens to a schedule when dis-
ruptions occur. An airline schedule can be made more robust by making it
delay resistant. Delay resistance can be achieved by: adding slack (extra
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time between consecutive flights) in to the schedule; strategically schedul-
ing resources to ensure that delays do not propagate to multiple flights by
avoiding resource splitting (see Figure 2.2); or by scheduling spare airline re-
sources (reserve crew or spare aircraft) that can by used to replace disrupted
airline resources. Bertsimas et al. [22] provides a general introduction to
robust optimisation and that of Gabreal et al. [41] for a general overview
of work on robust optimisation. The following gives a survey of some of the
existing approaches to robust airline scheduling.

2.2.1 Robust fleet assignment

Smith [96] tackles the robust fleet assignment problem using the concept of
station purity to maximise the number of possible aircraft swaps. Station
purity here refers to scheduling aircraft to limit the number of fleet types
at each station, so that aircraft of the same fleet type have common ground
time at each airport. The benefits from station purity are two fold. Firstly,
maximising the common ground time of aircraft from the same fleet, also
maximises the opportunity for crew swaps, because the crew will be qual-
ified for each other’s fleet. Secondly, the increased availability of possible
aircraft swaps brought about by station purity, increases the possibility that
aircraft can be swapped after the publication of the schedule to match air-
craft capacity with the latest demand figures, but only if the crew assigned
to these flights are swappable. Smith [96] extends the typical fleet assign-
ment model (FAM) to a station decomposition model (SDM). The approach
is aimed at hub-and-spoke networks where flights are either to or from a
hub station. Smith’s SDM involves iteratively solving a master problem for
the hub, and sub-problems for spoke groups. The aim is to maximise the
station purity of the spoke station groups. In this thesis, aircraft swap and
crew swap recovery actions are considered. In general it is assumed that
a crew swap recovery action is cheaper and therefore preferable to using a
team of reserve crew to replace delayed crew. So when more crew swaps
are available the expected demand for reserve crew at that time is reduced.
The general point here is that different approaches to increasing schedule
robustness can be complementary as opposed to conflicting.

Other research on robust fleet assignment includes that of Rosenberger
et al. [86] which introduces a flight string (see Section 2.1.4) based fleet as-
signment model which minimises the number of different stations in strings
assigned to fleets as to maximise the number of short cancellation cycles.
The purpose of this is to reduce the number of flights that have to be can-
celled (cancellation cycle), if one flight in the string is cancelled. In short
cancellation cycles, the flight string can be resumed after a smaller num-
ber of cancellations. Rosenberger et al. refer to this as minimising the
hub-connectivity of flight strings. In a single hub-and-spoke network hub
cancellation cycles typically involve two flights, the outward and return legs.
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2.2.2 Robust crew scheduling

Yen and Birge [106] describe an iterative approach to increasing crew sched-
ule robustness. In each iteration the traditional crew pairing model is solved,
followed by a recourse problem that allows or disallows crew connections
that may lead to delay in the next iteration. Their model aims to min-
imise “switch delays”. Switch delays (see Figure 2.2) are delays that spread
to 2 flights in a single connection, because the crew and aircraft connect
to and delay two separate flights. In the context of Yen and Birge’s work
[106], pairings that involve aircraft changes hold more potential for delay
and are eliminated and not branched upon in their “flight pair branching
algorithm”. The recourse problem which calculates “switch delays” does
so by considering a set of random scenarios and solving a set of decision
variables to compute how delay propagates through the schedule given the
most recent solution to the crew pairing problem. Their experimental re-
sults indicate that their approach leads to solutions with crew schedules
involving fewer aircraft changes and as a result reduces switch delays. This
increased robustness of the crew schedule comes at the cost of an increase
in the crew pairing cost compared to the initial cost optimal input solution
to the crew pairing problem.

Schaefer et al. [91] use a simulation package called SimAir to esti-
mate operational costs of crew pairings, which are then used when solving
the crew pairing problem. They make several simplifying assumptions in-
cluding: no flight cancellations; the only method of recovery is pushback
(delaying flights); and the operational costs of pairings can be accurately
estimated in isolation from the effects of other pairings. An alternative
approach is described called the penalty method. This approach does not
use simulation to derive operational pairing costs, instead the features of
pairings such as the rest periods between flights, the difference between
the planned pairing finish time and the legal limitations on maximum work
hours are used to penalise pairings which are likely to perform badly in
operations. They propose a local search method to identify the most rep-
resentative weights for penalising the various features of pairings. Their
experiment results indicate that crew schedules based on operational costs
perform better than those based on planned costs.

Shebalov and Klabjan [94] investigate the concept of move-up crews,
this is where crew pairing is performed in such a way that creates crew
swap opportunities by encouraging common ground time between swappable
crew. They found that increasing the number of move-up crews towards the
end of pairings is beneficial as this is when most delay disruptions occur.
The move-up crew formulation is solved using a column generation strategy.
Their experimental results show that their approach minimises operating
costs for days involving 1 or more disruptions due to the reduced recovery
cost caused by increasing the availability of crew swaps. But when no
disruptions occur operational costs are increased by their approach.
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Robust railway crew scheduling

Nielson [73] investigates the effect of planning rules on the (delay) absorp-
tion capacity of railway schedules, the planning rules investigated each have
analogies with airline crew scheduling. They include: slack between con-
secutive journeys; scheduling crew as teams (drivers and conductors stay
together); scheduling crew to stay on the same rolling stock for as many
consecutive journeys as possible; reserve crew; crew swap opportunities;
and scheduling crews to limited sets of lines (to limit the propagation of
crew related delays to different lines). A simulation is used to test the
schedules that are built using various degrees of the above mentioned plan-
ning rules. Disruption scenarios are generated and total delay propagation
is calculated for each simulation. In general their experiments show that
the planning rules do increase the absorption capacity of schedules but the
increase of schedule costs means that a trade-off exists.

Robust crew scheduling summary

Yen and Birge’s work [106] and that of Nielson [73] both evaluate the ro-
bustness of solutions by generating random disruptions scenarios. Chapter
9 introduces a scenario-based mixed integer programming approach to re-
serve crew scheduling. In contrast to the models of Yen and Birge [106]
and Nielson [73] which use disruption scenarios to evaluate previously gen-
erated solutions, the approach of Chapter 9 uses disruption scenarios to
find a robust solution specifically designed for a given set of input scenar-
ios. In summary, the literature suggests that robust crew schedules can be
achieved in the strategic planning phase by considering the effects of disrup-
tions from the points of view of crew scheduling, planned departure times,
recovery and planning rules. The robustness of a crew schedule can be in-
creased by minimising the dependencies between different crew pairings and
aircraft routings and by increasing the availability of swap recovery actions.
Both of these approaches reduce the demand for reserve crew, therefore the
existing robustness of a crew schedule should be taken into account during
reserve crew scheduling. In this thesis explicit consideration is given to the
structure of the airline’s schedule and the effect that this has on reserve
demand (see the seventh bullet point of Section 3.2).

2.2.3 Other approaches to increasing airline schedule
robustness

Sohoni [97] et al. introduce stochastic programming models for modifying
airline schedule departure times within allowable time windows, with the
aim of increasing on-time performance and minimising the probability of
passengers missing connections. Metrics for on-time performance and pas-
senger itinerary completion are introduced and are used in the objective
functions of their stochastic programs. The on-time performance metric is
defined as the probability that a particular departure is delayed by more
than 15 minutes. The passenger itinerary completion metric is defined as
the probability that a passenger on a flight will be able to connect to any
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of the flights in the connection set for the given flight. They model block
times (gate to gate times) with log Laplace distributions. Two stochastic
programs are introduced. The first maximises profit with constraints for
the minimum performance levels for on-time and passenger itinerary com-
pletion. The second model maximises the performance level with respect to
constraints on the maximum cost. The models also feature an explicit set of
passenger itineraries with associated demands which are used to calculate
the performance measures. Cost calculations are based on the effect that
the modified schedule has on crew and aircraft usage. In their model, the
use of block time distributions leads to non-linear terms in the model which
are incorporated into the stochastic programs using piecewise linear ap-
proximations. To solve the resultant models, cut generation (or constraint
generation) algorithms are developed. Their experimental results show that
increasing performance and service levels increases costs.

Weide et al. [102] introduce an iterative approach to solving the in-
tegrated crew pairing and aircraft routing problems with the objective of
minimising the overall cost and minimising what are termed restricted air-
craft changes. A connection is an arc between the arrival of one flight and
the departure of another, if crew and aircraft are assigned to the same con-
nection this implies that they stay together. Restricted connections have a
crew sit time which is greater than or equal to the minimum sit time but
less than the restricted time (for that connection). When crew change air-
craft restricted connections significantly increase the risk of switch delays
(see Figure 2.2). Weide et al. state that it is desirable to have crew and air-
craft stay together and to avoid crew changing aircraft as much as possible.
Firstly, the minimum sit time for crew is smallest when the crew stay on
the same aircraft, and secondly, aircraft changes give rise to the possibility
of switch delays. Therefore, minimising restricted aircraft changes has the
effect of increasing a schedule’s robustness. Weide et al. use the objective
of minimising the cost of the crew pairing solution plus penalties for assign-
ing crew to restricted connections that aircraft are not scheduled to, whilst
assuming the cost of the aircraft routing is fixed. The solution approach
employed by Weide et al. starts from the cost optimal crew pairing and
aircraft routing solutions. Then, the aircraft routing and the crew pairing
problems are solved alternately in an iterative algorithm. In each iteration
the aircraft routing problem is solved using the objective of minimising the
penalty due to crew assigned to restricted connections for which aircraft are
not assigned, this step encourages aircraft to follow crew. The crew pair-
ing problem is then solved to cost optimality given the most recent aircraft
routing, with a weighted term for a measure of non-robustness. In this fash-
ion Weide et al. start with a cost optimal solution and iteratively improve
the robustness of the crew and aircraft schedules. The experimental results
reported by Weide et al. [102] for the iterative airline scheduling algorithm
show that increasing schedule robustness increases the schedule’s cost.

The master thesis of Ageeva [2] introduces an approach to incorpo-
rating robustness in an airline schedule using the concept of overlaps. An
overlap is defined as an opportunity for two aircraft to swap schedules where
there is also an opportunity for the swap to be undone at a later time be-
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fore the next scheduled maintenance checks for each aircraft. Ageeva tries
to formulate the aircraft routing problem to include overlap maximisation
alongside cost minimisation, but encounters non-linearities that lead to an
alternative approach based on generating alternative solutions and then
externally evaluating the robustness of the solutions. The mathematical
framework used defines points as ground time intervals at a specified air-
port, strings consist of a sequence of points and overlaps exist if strings have
two common points which allow a swap to be performed and to be undone
later. Ageeva’s experimental results indicate that the proposed approach
increased aircraft routing robustness by as much as 35%.

The work of Dunbar et al. [35] proposes an integrated approach to
aircraft routing and crew pairing that minimises delay propagation. Their
approach estimates the expected delay for crew (aircraft) flight sequences
whilst taking into account the aircraft (crew) sequences that are assigned
to the same flights. Their experimental results show that their integrated
approach outperforms the sequential approach to solving aircraft routing
and then crew pairing.

The thesis of Lan [92] focusses on increasing the robustness of an
airline schedule by minimising the potential for delay propagation and pas-
senger disruptions. Lan formulates two models. The first is an aircraft
routing model which minimises delay propagation. The second allows small
adjustments to departure times with the goal of minimising passenger dis-
ruptions. The resultant models are solved with branch and price [14]. The
experimental results indicate that reduced delay propagation and passenger
disruptions can be achieved with the approach.

The thesis of De Maere [67] investigates multiple objective approaches
to robust airline scheduling. The author considers retiming flights within
allowable time windows and changes to the aircraft maintenance routing
and their effect on schedule robustness. A simulation study is carried out
to validate the trade-off solutions yielded from the proposed approaches.

Duck et al. [33] introduce an integrated approach to the crew pairing
and aircraft routing problems. Their objective includes cost terms from
the usual crew pairing and aircraft routing formulations plus an expected
propagated delay term. The problem of determining the delay propagation
associated with a solution being a function of the solution itself is circum-
vented by decomposing the problem into separate crew and aircraft routing
problems each with their own recourse problem. Delays for a given sched-
ule are calculated by considering a stochastically generated set of scenarios,
where each scenario specified realised departure and arrival event times. An
iterative approach (based on the iterative algorithm of Weide et al. [102]) is
used in which crew pairing and aircraft routing subproblems are solved in
each iteration. They use a branch and price approach where the solutions
of the recourse problems are used to guide the generation of new columns.
Their results show that expected reactionary delay can be reduced by up to
6.4% without increasing the crew cost.

In this section several different approaches to increasing the robustness
of airline schedules have been discussed. Sohoni et al. [97], Lan [92] and De
Maere [67] modified scheduled departure times to minimise the potential
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for delay propagation. Weide et al. [102], Dunbar et al. [35] and Duck
et al. [33] took the approach of performing crew pairing and aircraft rout-
ing in an integrated fashion, which helped to reduce disruptions resulting
from dependencies between the crew and the aircraft schedules. Ageeva’s
[2] approach was to increase the availability of swap recovery actions by
encouraging ground time overlaps. This is a similar approach to that used
by Smith [96] (see Section 2.2.1) for aircraft swap opportunities (station
purity) and Shebalov and Klabjan [94] (see Section 2.2.2) for crew swap
opportunities (move-up crews). In general increasing schedule robustness
increases the planned cost of a schedule, the point is that in the event of
disruptions the robust schedule has a lower recovery cost. This thesis takes
the approach of augmenting the robustness of an airline’s schedule through
the scheduling of reserve crew.

2.3 Reserve crew scheduling

Phase of plan- Reserve demand type
ning/
operations Absenteeism Delayed crew Open time
Manpower Boissy, 2006 Gaballa, 1979
planning
Reserve pairing J.E. Dillon and
generation S Kontogiorgis,
1999
Reserve crew Sohoni et al., 1999
scheduling Paelinck,2001
Bayliss, 2012, 2013, 2014
Online reserve Rosenberger
policies et al., 2002

Table 2.2: Classification of the existing literature on reserve crew scheduling

Most papers on crew scheduling are aimed directly at crew scheduling and
only a few concern reserve crew scheduling. There is a clear overlap between
both types of paper and each often contains information relevant to the
other. The existing work on reserve crew is summarised in Table 2.3, which
defines the phase of planning or operations and the type of reserve demand
considered in the specified works.

Sohoni et al. [98] minimise the requirement for reserve cockpit crew
(the most expensive crew type) by better predicting the requirement for
reserve crew. They report that for the schedule instances they consider, re-
serve crew utilisation is about 40%. They claim that if reoccurring training
is taken into account during crew scheduling the estimated requirement for
reserve crew will be more accurate because conflicts with reoccurring train-
ing is a leading cause for the requirement of reserve crew. Consequently
Sohoni et al. focus on predicting reserve crew demand due to reoccurring
training conflicts. They allocate reserve duties using information about
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training conflicts which give rise to open time (duties which have no crew
assigned to them) and also using information derived from an airline oper-
ations simulator (SimAir, see Section 2.5.3). Whereas Sohoni et al. focus
on reserve crew demand due to schedule conflicts, this thesis focusses on
reserve crew demands that occur on the day of operation as a result of
unexpected crew absence and delayed crew. In addition, as described in
Section 1.1, KLM leave open flights in their schedule which are covered by
scheduled reserve crew if they are not used to cover unexpected crew related
disruptions or if enough time remains in their reserve block after covering
a disruption.

In [74], Paelinck describes a practical approach which was imple-
mented at KLM to improve cabin crew reserve duties. The approach cal-
culates daily demands for reserve crew and the expected number of reserve
crew remaining each day, and uses a reserve block stacking approach which
aims to have reserve crew available on standby at all times. The work of
Paelinck [74] highlights some of the difficulties associated with the planning
and scheduling of reserve crew, including how many should be scheduled,
what reserve duty start times should be used, when and what is the best
way to use reserve crew in response to disruptions. The work of Paelinck
[74] provided the starting point for the research presented in this thesis.

Boissy [24] describes a forecast model for absenteeism and a model
for minimising the cost of reserve crew and missing crew. Boissy defines
tension as the number of disruptions divided by the number of reserves.
Using more reserve crew decreases tension but increases the planned crew
cost. Boissy’s model is used to find the optimal tension, which corresponds
to the minimum cost of missing crew plus reserve crew costs. The work of
Boissy tackles reserve crew scheduling from a manpower planning perspec-
tive. in contrast, the work in this thesis tackles reserve crew scheduling from
the point of view of allocating reserve duties to a set of available (already
planned manpower) reserve crew.

Gaballa [40] uses the probabilities of callouts as a guide to reserve
sizing. Gaballa assumes that reserve crew are used when flights are delayed
such that the scheduled crew would exceed their maximum duty length if
they start the delayed flight. The main focus is on overnight delays where
crew have to be replaced so that their minimum overnight rest constraints
are not violated. Gaballa defines a reserve policy as the number of reserve
crew scheduled and calculates for each policy the probability of overnight
delays and the expected cost of the policy. The author observed that the
reserve policy used by Quantas at the time meant that overnight delays due
to reserve crew unavailability had a 1 in every 166 years chance of occurring.
The approach was implemented and was estimated to save $600,000 (1979)
a year. The reserve crew scheduling problem tackled by Gaballa concerned
the determination of the number of reserve crew required to minimise the
probabilities of overnight delays and reserve crew costs. The allocation of
reserve crew duties was based on fixed duty start times, namely early and
late duty start times. In this thesis duty start times are the variables and
are discretised according to scheduled departure times. Additionally, the
work of Gaballa concerns the scheduling of call out reserve crew whereas
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this thesis is concerned with the scheduling of reserve crew stationed at
the hub station, although, callout crew can be modelled as reserve crew
stationed at the hub station who have a delayed response time.

Dillon and Kontogiorgis [32] present an approach for pilot reserve crew
scheduling that generates reserve pairings which are then allocated using
preferential bidding. They focus on quality of life considerations such as
regularity. This work helped in negotiations with pilot unions. The work of
Dillon and Kontogiorgis refers to the specific case of US airlines, who have
permanent reserve crew to fill open or disrupted pairings. Open pairings
are crew pairings that do not have crew assigned. Dillon and Kontogiorgis
generate call out day pairings for reserve crew and focus on generating sets
of reserve pairings of varying lengths which also exhibit regularity. Longer
call out pairings allow reserve crew to be used for more different types of
pairings including long haul pairings. Generating varying length pairings
allows for reserve crew who have different amounts of time off in a given
month. Dillon and Kontogiorgis also found that certain times of the year
require more reserve crew to be scheduled, for instance in December. In
this thesis reserve pairings are of fixed length and the reserve crew being
scheduled are not permanent reserve crew, which is because the problem
being tackled is based on KLM practices, see Section 3.4 for more details.

The work of Rosenberger et al. [87] on the SimAir simulation tool (see
Section 2.5.3) contains one section which concerns the use of reserve crew
in response to disruptions, in which they introduce a weighted sum reserve
policy for selecting reserve crew in the event of a crew related disruptions. In
this thesis, a similar weighted sum reserve policy is developed in Section 6.4,
which is incorporated into a (non-simulation) probabilistic model of crew
related disruptions and subsequent reserve crew use. The reserve policy of
Rosenberger et al. takes reserve-induced delay into account and deadhead
times. Whereas, in this thesis, the reserve policy accounts for: reserve-
induced delay; remaining reserve duty days; expected future demand and
the level of reluctance to using reserve crew in roles below their assigned
rank, but does not account for deadhead times. The reason for this is that
the types of disruptions considered in this thesis require fast reactionary
recovery actions and for these deadheading will not deliver reserve crew to
the source of the disruption in time to absorb the disruption. Which is due
to the typically low flight volume at spoke stations. Section 12.1.4 discusses
the possibility of deadhead modelling in more detail.

2.4 Airline operations

Airline scheduling and planning begins up to 6 years before the day of
operation and continues up to two weeks before the day of operation (KLM
[57]). So two weeks before the day of operation the schedule is passed
on to operations control. Operations control can make minor changes to
schedules in response to disruptions leading up to the day of operations.
Operations control also oversee the implementation of schedules on the day
of operation where recovery decisions such as cancellations, using reserve
crew, re-routing passengers and swapping crew and aircraft are made at

32



short notice.

Rabbani [82] develops an airline recovery module for the MEANS (dis-
cussed in Section 2.5.3) airline simulator. MEANS is a simulation of the
entire American national air traffic system. Rabbani describes operations
control as consisting of a range of operators (referred to as desks) each
with their own responsibilities, including: dispatchers; traffic management;
operations; meteorological. Dispatchers form the main conduit of informa-
tion flow between all operations control desks and the pilots air-side, they
also oversee the refuelling of aircraft, the enforcement of maximum take off
weight rules and general safety issues. The traffic management desk negoti-
ates with air traffic control over departure slots and ground delay programs
(ground delay programs restrict departures to airports with reduced capac-
ity, which is for safety and congestion reasons). The operations desk has
crew schedulers, fleet routers and passenger coordinators who implement
recovery actions. The meteorological desk is concerned with the prediction
of en route weather and can order cancellations if the safety of a flight may
be compromised.

Reserve crew are required to replace delayed or absent crew, opera-
tions control may also consider implementing crew swaps, by swapping de-
layed crew with those currently available. In this thesis, models of reserve
crew scheduling are developed which take the availability of other recovery
actions such as crew and/or aircraft swaps into account. The models of
Chapters 7 and 9 use simulation to estimate the availability of swap re-
covery actions before reserve crew are scheduled. Chapter 8 represents a
theoretical approach to the same problem which does not rely on simulation.

2.4.1 The crew recovery problem

Medard and Sawney [69], Chang [26], Lettovsky et al. [61] and Abdelghany
et al. [1] all address the crew recovery problem. In general, models for the
crew recovery problem reschedule crew to restore crew schedule feasibility
subject to cost minimisation and minimal changes from the original sched-
ule. These objectives are often conflicting because a better crew recovery
can be attained if more changes to the original schedule are allowed. Of
these papers the work of Lettovsky et al. [61] and Abdelghany et al. [1]
explicitly model the use of reserve crew. Medard and Sawney [69] give an
account of the airline crew scheduling problem from crew pairing through
to the recovery problem. Medard and Sawney [69] introduce an integer
programming formulation for the crew recovery problem which is described
as a crew pairing model with crew rostering constraints. The reason for
this is that disrupted crew pairings need to be repaired and crew have to be
assigned to the repaired pairings in a single model. The approach integrates
crew pairing and crew rostering for crew recovery problems of limited size.
Such an integration is intractable for the original crew pairing and crew
assignment scheduling problems.

Chang [26] focusses on the pilot recovery problem. A genetic algo-
rithm approach is presented which takes the original infeasible schedule as
input. Crew feasibility constraints in [26] require a maximum of 10 flying
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hours per day and 32 flying hours per week. The author introduces an ob-
ject oriented matrix chromosome structure. Each row of which corresponds
to a pilot and the flights assigned to that pilot. Rows consist of what are
termed CHROMOHEADS which correspond to specific pilots and CHRO-
MOCELLS which correspond to the flights assigned to the pilot. The author
selects a mutation rate for the genetic algorithm which is a sum of the vio-
lated hard constraints divided by the number of hard constraints multiplied
by the number of cells in a chromosome. The algorithm terminates after
30000 generations.

Lettovsky et al. [61] also address the airline crew recovery problem
and use an integer programming model to reassign crew and assign reserve
crew to minimise the costs of cancellations and deadheading. A number
of undisrupted crew pairings are selected for regeneration and reserve crew
are treated as crew with empty pairings. Feasible continuations of partially
flown pairings are then found using an integer programming formulation
with the objective of minimising the total costs of the newly generated
pairings, cancellations, deadhead legs and returning crew to their domiciles
if pairings end at different stations. Lettovsky et al. [61] introduce problem
specific column generation procedures and branching strategies for a branch
and bound algorithm. The authors consider 3 disruption scenarios and
shows that the solution quality as measured in terms of the number of
covered flights increases with the number of undisrupted pairings selected
for reassignment. So a trade-off exists between schedule recovery and the
deviation from the initial schedule. The model also assumes that crew
teams are unsplittable, meaning that new crew teams cannot be created
by combining individual crew from different already existing crew pairings.
The same assumption is made in this thesis (see assumption C10 of Section
4.2).

Abdelghany et al. [1] introduce an approach for solving the hub-and-
spoke network crew recovery problem which considers crew swaps, reserve
crew and deadheading as possible recovery actions. Their model takes the
current crew schedule and disruptions as input. Their model is aimed at a
hub-and-spoke network. They reason that crew disruptions that occur at
spokes are often difficult to deal with as there are few connecting flights
to spokes as reserve crew tend to be stationed at the hub. They take the
approach of solving crew disruptions at spokes by solving them at the hub
before they occur. Their objective is to recover as many disrupted crew
pairings as possible, with the least incurred recovery cost. Their objective
function has cost contributions for crew swaps, reserve crew, deadheading
and cancellations. Their solution approach solves crew disruptions sequen-
tially in chronological order or earliest disruptions first. This means that
the recovery decisions for disruptions are determined as disruptions occur.
Such an approach is convenient for airlines who operate a rule-based ap-
proach to recovery as opposed to an optimisation based approach. This
thesis makes a similar assumption (Section 4.2) where airline disruptions
are solved in earliest scheduled departure time order first. Their model is
also able to anticipate future disruptions, due to minimum rest rules, up to
a day in advance and prevents these from occurring.
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The crew recovery models of Medard and Sawney [69], Chang [26],
Lettovsky et al. [61] and Abdelghany et al. [1] are capable of repairing crew
schedules in the event of disrupted crew pairings with cost minimisation as
the objective. In this thesis, disrupted crew pairings are modelled as being
recovered on a case by case basis as they occur, using swap recovery actions,
reserve crew, and cancellations. Whereas the work on the crew recovery
problem considers the longer term feasibility of the crew schedule, in this
thesis these disruptions are resolved using a rule based approach rather than
an optimisation based approach. The work on reserve policies in this thesis
could be used as an extension to the crew recovery models considered in
this section.

2.4.2 Aircraft re-routing

The crew recovery problem is usually solved using the assumption that air-
craft are not disrupted, however, if they are, aircraft re-routing may be
required. Furthermore, re-routing aircraft can make the crew schedule in-
feasible, hence invoking a crew recovery problem. Rosenberger et al. [85]
present a model for minimising the costs of re-routing and cancelling flights.
Aircraft re-routing is decomposed according to fleet type to avoid compli-
cating the knock-on effects for crew and passengers. In order to make their
formulation solvable in real time, they introduce a heuristic to select a subset
of aircraft that can be re-routed, the goal is to find a new aircraft routing
in which all flights are covered with maintenance feasible routings or are
cancelled. Their objective is to minimise the cost of re-routing aircraft and
cancelling flight legs. Their model allows for ferrying (transporting aircraft
to origin of the next flight), diverting (landing at a destination not initially
intended) and overflying (skipping an intermediate destination). Flights are
cancelled if they cannot be feasibly included in an aircraft routing or the
cancellation threshold of 180 minutes is exceeded. They also use a delay
threshold to identify delays for which aircraft re-routing may be desirable.
A revised version of their model is considered which accounts for the effect
the proposed re-routing has on delays and passenger connections.

The delay and cancellation threshold assumptions used by Rosen-
berger et al. are also used in this thesis. The delay threshold parameter
specifies the minimum delay for which recovery actions (crew swaps and/or
aircraft swaps and/or reserve crew use) are considered. Whilst after the
application of delay recovery actions, flights are cancelled if their delay still
exceeds the cancellation threshold.

2.4.3 Integrated airline recovery

When airline recovery is tackled sequentially, aircraft are re-routed first,
then the crew schedule is recovered and then passengers are re-routed. This
order is determined by relative cost of disruptions to the different layers of
an airlines schedule.

Peterson et al. [76] address the full airline recovery problem from
schedule recovery to passenger re-routing. They argue that sequential ap-
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proaches to the airline recovery problem naturally lead to sub optimal solu-
tions because of the conflicting objectives that exist between each problem.
On the other hand a fully integrated approach is intractable, intractability is
dealt with in [76] by considering a subset of the full airline recovery problem
at a time, i.e. a selection of the disrupted flights and the affected aircraft,
crew and passengers are rescheduled at a time. The schedule recovery part
of the model has to adhere to time window constraints due to airport gate
demand, the aircraft recovery part of the model has to minimise the num-
ber of changes to the original schedule (to protect maintenance routings).
The crew recovery part of the model reassigns crew at a minimum cost
whilst ensuring that non-reassigned crew are deadheaded back to their crew
base. The passenger re-routing part of the model ensures that overbooking
does not occur with respect to non-disrupted passengers. Their results in-
dicate that an integrated recovery approach costs less than a corresponding
sequential approach.

2.4.4 Disruption management

This section of the literature review focusses on decision support tools. The
following papers are approaches that aim to aid airline controllers rather
than replace them with an automated decision maker, as was the case in
Sections 2.4.1 to 2.4.3. Teodorovic and Stojkovic [99] describe an approach
to the operational daily airline scheduling problem. The purpose of the
approach is to provide airline dispatchers with a decision support tool to
aid their rules of thumb and enable them to make globally informed recovery
decisions. Their approach is to generate new airline schedules in response to
disruptions to provide the airline dispatcher with automatically generated
recovery decisions which can be manually overridden. The objective they
use is to minimise the number of cancelled flights. When two possible
solutions correspond to the same number of cancelled flights the one with
the smallest number of passenger delay minutes is chosen.

Kohl et al. [59] provides an overview of airline scheduling and opera-
tions. It also provides a good overview of the literature on airline disrup-
tion management and reports on the performance of a decision support tool
for multiple resource recovery called the Descartes project. The Descartes
project is an integrated decision support tool. It contains dedicated crew,
aircraft and passenger solvers which are integrated using the “umbrella”
system. The system was tested using disruption scenarios developed with
the cooperation of operations controllers. They propose two architectures
for integrated disruption management: integrated sequential recovery (ISR)
and tailored integrated recovery (TIRS). The difference between the two ap-
proaches is as follows. ISR treats the dedicated solvers as black boxes, so
solutions from one solver have to be checked for feasibility with respect to
the solutions of the other solvers. TIRS on the other hand uses a com-
mon database for each dedicated solver, so changes made to one layer of
the solution are immediately visible within the other solvers and the over-
all feasibility of a possible plan can be ascertained. The drawback of the
TIRS approach is the increase in complexity which drastically increases the

36



required solution times. Experimental results are given for the dedicated
solvers but not the proposed integrated approaches.

Mathaisel [68] promotes the idea of a common graphical user interface
for different departments of airline control (aircraft, crew and passenger de-
partments). The idea being to enable easier communication between the
different departments as well as a system which provides alternative airline
schedules in the event of disruptions. The system allows the user to con-
duct what-if scenarios to check the feasibility of potential recovery actions,
the system notifies the user if live events interfere with a what-if scenario.
Mathaisel argues that many contributions to airline scheduling and opera-
tions in the literature are not utilised because each comes with its own set
of input and output format requirements which make them cumbersome to
implement.

2.4.5 Airline operations control

Clarke [34] provides an overview of the structure of airline control centres
and the information flow within them. A review of decision support tools
for recovery decision making in real time is also given. Clarke [34] gives
the results of a survey on the causes of delays over 15 minutes in duration.
The leading causes of disruptions are weather and maintenance, ground
congestion is another important factor.

Kohl et al. [59] note that the roles of dispatchers tend to be slightly
different in North America and Europe. In North America dispatchers fol-
low the preparations of flights for take off and report possible problems,
whereas in Europe aircraft control perform this task. The crew controllers
of airline operations control are responsible for implementing reserve crew
recovery actions on the day of operations. Currently no automated systems
or advanced decision support tools or used to make these decisions [57]. In
this thesis reserve policies that could be used by crew controllers on the day
of operations are investigated. See Chapters 8 and 9.

2.5 Modelling uncertainty

The main reason why reserve crew scheduling has the potential to benefit
from in depth research is the high level of uncertainty about the level of
reserve crew demand on any given day. This section starts with a basic
introduction to probability theory, then considers the specific case of how
airline operation uncertainty can be modelled.

2.5.1 Introduction to probability theory

Probabilities are the natural tool for modelling events characterised by un-
certain outcomes. Higgins [48] provides a good introduction to probability
theory and stochastic modelling. The probability of an event is represented
by a number between 0 and 1, where 0 corresponds to an event never occur-
ring and 1 corresponds to an event always occurring. When exact theoretical
models of uncertain events are not available the probabilities of events are
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usually estimated from samples of events. The larger the sample the greater
the confidence is in the derived probability. P(z) denotes the probability x
is the outcome of a given event, therefore P(X) corresponds to the proba-
bility distribution of possible outcomes (X) for a given event. Probability
theory requires the definition ) _ P(x) = 1 which means that one of the
set of possible outcomes occurs every time the event is repeated. Events
come in two main varieties, those of dependent events and independent
events. Independent events are events whose probabilities are influenced
by previous events, whereas the probabilities of independent events are not
influenced by previous events. The classic example is that of a bag contain-
ing marbles of two different colours, in this example an event corresponds
to removing a marble from the bag at random and observing the colour.
The probability of choosing a marble of each colour is equal to the relative
proportions of the colours of the marbles remaining in the bag. If marbles
are replaced after each observation the probabilities of observing different
coloured marbles remains constant, therefore this provides an example of
an independent event. If the marbles are not replaced the probabilities of
observing marbles of different colours depends on previous events, which
provides an example of a dependent event. Scenario trees [48] are a useful
tool for modelling dependent events.

In all but the simplest of processes the outcomes of events depend on
prior events (this is particularly the case when considering flight delays),
in such cases a simulation model of a process may be used to estimate
probabilities of events occurring at different times, see Section 2.5.3 for a
review of approaches involving the use of simulation to model uncertainty
in transportation networks.

2.5.2 Delay propagation

Reserve crew can be used to replace delayed crew, however before taking
such an action it may be useful to evaluate the knock-on effects of recov-
ery actions in terms of downstream delays. The following reviews existing
approaches to the modelling of delay propagation.

The concept of delay propagation trees is introduced by AhmadBeygi
et al. [3, 4], in [3] they illustrate the basic concept of a delay propagation
tree in which each flight in a schedule is considered a root delay, and by
performing slack calculations they trace how far a root delay of given length
propagates. Delay propagation is then evaluated in terms of the number of
subsequent flights delayed and the cumulative sum total of delay minutes.
AhmadBeygi et al. [4] build on the ground work of delay propagation trees
by using them as part of the objective function for a model that reallocates
slack by re-timing departures such that the potential for delay propagation is
minimised. They compare single layer and multilayer models (the difference
being that in the single layer model delays are only ever considered as
propagating to the next flight only and multilayer models place no such
constraint on delay propagation). They found that the single layer model
provided results as good as those obtained for the multilayer model and
this was probably because of the slack that already existed in their real
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data flight schedules, which tended to absorb delay before the delay spread
past the first flight.

Berger et al. [21] introduce a stochastic delay propagation model for
calculating train departure and arrival time distributions. The calculation
of event time distributions also allows for: delay absorption through slack
in the schedule; the potential for trains to catch up by travelling faster; and
waiting time rules for passenger transfers. Berger applies the approach in an
online setting which receives messages about realised event times and recal-
culates the effect that they have on the uncertainty of future events. They
show in experiments how prediction accuracy increases when more events
become known as time progresses. Keyhani et al. [53] present a study of
the reliability of connections in a train timetable using a similar underlying
model to that in [21]. They derive connection reliability measures to advise
passengers on the robustness of their itinerary, in terms of the probabilities
of successful connections. The work of Berger et al. [21] and Keyhani [53] is
conceptually similar to the statistical delay propagation model of Chapter
8 in the use of discrete journey time distributions to compute distributions
for events depending on previous journeys.

Wong and Tsai [105] present a study of delay propagation in an airline
network, in which statistical models for arrival and departure delays are
developed. They develop hazard functions for arrivals and departures which
give the probabilities that delays are recovered at any given time after a
delay has started. They analysed real data to determine the effect that
different types of disruptions have on how long the resultant disruptions last.
In general they found that departure delays caused by crewing disruptions,
aircraft maintenance and baggage handling had the greatest reduction in the
probability of recovery for each unit increase in these types of disruption.
They also found that the arrival delays caused by weather or insufficient
block buffer time had the greatest reduction in the probability of recovery
for each unit increase in these types of disruption. They used their results to
advise airlines on what improvements to arrival and departure procedures
would yield the greatest reduction of delays. They also considered the
possibility of a recursive model, where their departure and arrival delay
functions are used to track delay hazard along aircraft lines of flight, with
the output of one model forming the input of the next. This is a similar
concept to that used in the statistical delay propagation model of Chapter 8.
However Wong and Tsai do not explicitly consider crew absence disruptions
or the availability of recovery actions for delay and crew absence disruptions.

2.5.3 Simulation
Domestic aviation network simulators

Rosenberger et al. [87] describe a stochastic model of airline operations,
it is basically a description and demonstration of a simulation tool called
SimAir. SimAir is used for testing the quality of recovery policies and
schedules in a stochastic environment that includes distributions derived
from real data concerning the likelihoods of disruptions such as unscheduled
maintenance, ground times and block times. The model can assess schedules
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and recovery policies in terms of operational crew cost, on time performance,
and passenger misconnections. They demonstrate how taking operational
costs into account in scheduling has the potential to produce schedules with
lower operational costs, compared to state of the art approaches based on
planned costs ([91] expands on this concept).

Clarke et al. [30] describe the aviation based simulation MEANS,
which is a model of the American air traffic system and deals with both air
and ground operations. The model has a modular structure (see Rabbani
[82]) which means that any of the independent modules can be programmed
to any degree accuracy without having to worry about the other modules.
The modules include airlines, airport, weather and air traffic control, as
a result MEANS can be used by almost any researchers involved in civil
aviation. Clarke et al. [30] also describe the different versions of the mod-
ules available including historical playback of past data and “human in the
loop” versions. The paper describes an investigation that demonstrates a
high correlation between simulated events and actual events for two days of
operations of the entire American air traffic system.

Simulations in general

The textbook of Rubino and Tuffin [88] addresses the study of rare events
in complex systems for which direct methods (analytical) and numerical
approximations result in intractable models. Rare events which may be
of concern include the catastrophic failure of an aircraft. They show that
Monte Carlo Simulation can be an inefficient approach to estimating the
probabilities of such events. Especially given that the system being sim-
ulated may be have a high complexity, which means that it may not be
possible to derive probabilities with a small enough confidence interval in a
reasonable amount of time. They introduce methods for overcoming such a
problem. One approach is known as Importance Sampling, this approach is
based on finding an alternative distribution for the input random variable
such that the target event becomes more probable. The task becomes that
of finding the alternative random input distribution and how the actual
probability of the target event relates to the biased probability estimate of
the target event. Another approach for estimating rare event probabilities
using Monte Carlo Simulation is known as the splitting technique, the idea
is to make copies of simulations that get closer to the target event and use
these as the start point of future simulation runs. Simulations that get fur-
ther away from the target event are deleted. The probability of the target
event is then estimated from the estimated number of paths that lead to
the target event relative to the total number of paths. In relation to re-
serve crew scheduling, cancellations due to delays might be considered rare
events, but their cost is low in comparison to catastrophic failures, which
are the primary focus of rare event simulation methods. However, a split-
ting technique could be useful when estimating the consequences of crew
absence, this is because there is a large number of alternative paths from
any start point in an airline network in terms of future disruptions. A split-
ting technique could be used to identify the worst case outcome associated
with different recovery decisions.
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The technical report of Frick [39] describes a data driven approach to
the study of transportation networks consisting of local area distribution
centres and hubs. The main point of interest for mentioning this piece of
literature is the idea of data driven modelling, this refers to automating
the building of the model of the underlying transportation network. This
process saves a lot of time manually changing a hard wired model of a
transportation network.

When developing a simulation, such as that presented in Chapter 4,
simulation flow charts are a useful tool for representing the logic of the
the flow of decisions during any given situation. Waters’ [100] textbook on
management science defines the conventional elements of flow charts.

A closely related subject to simulation is that of system dynamics mod-
elling [31]. System dynamics modelling is concerned with the optimisation
of complex systems by manipulating the “pressure points” or parameters
which control the process. In system dynamics “influence diagrams” (simi-
lar to a flow diagram) are used for the qualitative analysis of the behaviour
of a complex system and simulations are used for quantitative analysis.

See Chapter 4 for the single hub airline simulation tool developed
during this research.

2.5.4 Statistical distributions

This section reviews the various ways in which distributional uncertainty
can be modelled. In this thesis numerical distributions for crew absence and
journey time uncertainty are derived from real data.

Continuous distributions

It is often found that real world data (such as activity durations and the
sizes of manufactured components) are well described by continuous math-
ematical distributions such as the normal distribution. Fitting real data to
traditional theoretical statistical distributions often has the reward that the
resultant models have properties (such as convexity) that can be exploited
in the solution phase. The conference slides of Clarke [29] describe the use
of arrival time distributions in a model for minimising the amount of delay
propagation from the point of view of the maintenance routing problem. It
is suggested that arrival times have a good statistical fit with a log-normal
distribution.

Sohoni et al. [97] model block times with a log-laplace distribution,
which provide a good fit with block times. This allowed them to simplify
complicating chance constraints (functions of the decision variables) that
appear in their model for improving the passenger service level of an exist-
ing schedule by retiming scheduled departure times within allowable time
windows.

Intervals

Interval programming is mathematical programming where real valued co-
efficients are replaced with intervals. Intervals are used to model the un-
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certainty of parameters where the only information available are the lower
and upper bound values of those parameters. The assumption is that the
value of a parameter defined by an interval is uniformly distributed between
the lower and upper bound values. The goal of interval programming is to
find solutions to problems which have an optimal value with a narrow inter-
val. The narrow interval indicates that the solution is stable with respect
to the inherent uncertainties of the problem. Hossny et al. [50] tackle a
machine scheduling problem in an algorithm where all arithmetic opera-
tions are replaced with interval arithmetic operations. The paper provides
tables defining interval arithmetic operations and logical relations for in-
tervals. They perform experiments to show that using interval arithmetic
within the scheduling algorithm leads to a better trade-off solution (qual-
ity /stability) compared to the alternative approaches where solutions are
calculated from crisp parameter values. When the crisp parameter values
are the lower bounds of the parameter intervals, the expected completion
time is minimised but also results in a high probability of delay. When the
crisp values are the upper bounds the expected completion time is high and
the probability of delay is low.

Fuzzy sets

Fuzzy sets are a method of expressing the imprecision of linguistic variables,
in this way they are truth distributions. Fuzzy logic was first formulated
by Zadeh in 1965, the goal was to make computers think more like humans
(vague arithmetic). The book of Sakawa [90] covers fuzzy stochastic multi-
objective programming, which shows that many real world problems have
fuzzy objectives (and soft constraints). Such problems can be tackled using
the objective of maximising the minimum membership over a set of fuzzy
set constraints.

In this thesis fuzzy logic is not applied because there are quantita-
tive variables for most aspects of the problem under consideration. How-
ever, there is one instance in which a function is defined for the subjec-
tive/perceived equivalence between delays of different lengths and a flight
cancellation (Section 3.5.1). Such a function defines the membership of a
delay of a given length to a cancellation.

2.6 Solution methodologies for deterministic
problems

2.6.1 Exact methods: Linear and Integer program-
ming

When people discuss exact methods, the first thing that springs to mind is
linear programming. Linear programming is concerned with the modelling
and solution of problems which can be formulated as mathematical prob-
lems with objectives and constraints which have linear terms only. Such
problems can be solved with the simplex algorithm (described in [65]). The
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simplex algorithm exploits the linear structure of problems to traverse the
vertices of the solution space, on which an optimal solution must lie. The
book of Kallrath and Wilson [52] provides a detailed guide to mathemati-
cal programming, which includes linear programming, integer programming
and mixed integer linear programming. The authors also explain an alterna-
tive to the simplex algorithm, that of interior point methods. Interior point
methods, unlike the simplex algorithm, stay away from the boundaries of the
feasible region (using penalties), and approach the optimal solution using a
more direct route.

There is a vast amount of literature on integer programming applied to
the airline scheduling problem [44, 55, 89, 12, 58, 13, 64, 29, 96, 94], in most
of this work integer programming models are solved using methods such as
branch and price (or column generation). Many refer to a process referred
to as Lagrangian relaxation in which the integer requirement is dropped and
the remaining problem is solved as a linear program. The solution times
are very fast when the integer requirement is dropped, the final solutions
are rounded up or down to the nearest integer values, the downside is that
sometimes the solutions become either infeasible or non-optimal, however it
is usually possible to derive a feasible solution from a non-feasible solution.

The branch and bound algorithm is often used to solve integer pro-
grams, in this algorithm a tree search takes place where nodes correspond to
partially integer solutions and branches correspond to forcing an additional
variable to an integer value above and below their decimal values in the root
node’s solution. Each branch is resolved to obtain a new node. To speed up
the search, branch nodes are bounded if it is deduced that such a root node
cannot correspond to an optimal solution. For minimisation (maximisa-
tion) objectives the objective value of each node solution is a lower (upper)
bound on the objective value of the best solution that can emerge from that
node, the upper bound (lower) is the objective value of the best full integer
solution found. So if the lower (upper) bound of a partially integer solution
exceeds (is less than) the upper (lower) bound, that node can be bounded
and no longer branched on. The optimal solution is found when only one
unbounded node remains in the tree.

For certain types of problems, specialised integer programming al-
gorithms exist. A prime example is that of crew pairing, which can be
formulated as a set partitioning problem. The crew pairing problem when
formulated as a set partitioning problem requires that all possible crew pair-
ings are columns in the input coefficient matrix, which for realistic sized
problem instances results in an intractable problem size. The branch and
price [14] algorithm circumvents this problem by only considering a subset
of all possible crew pairings at a time. The algorithm iteratively alternates
between a master problem and a pricing problem. The master problem is
the set partitioning formulation and the pricing problem determines which
columns/crew pairings should be included (column generation) the next
time the master problem is solved. For an account of the application of
column generation used to solve very large integer programs see the work
of Barnhart et al. [14].

In Chapter 9 mixed integer linear programs are formulated and solved,

43



CPLEX is used as the solver.

2.6.2 Meta-heuristics

Many problems can be formulated as integer linear programming problems,
however the resultant models can be intractable. In which case one option
is to try to develop a more efficient solution algorithm. If on the other
hand the problem formulation does not satisfy the linearity or convexity re-
quirements of linear programming solvers, meta-heuristics can still be used
to search for good solutions. Meta-heuristics are solution paradigms often
based on naturally occurring phenomena (such as evolution or ant colonies)
which are emulated as algorithms to find good solutions to a given problem.
Meta-heuristics include: local search; tabu search; variable neighbourhood
search; genetic algorithms; particle swarm optimisation and ant colony opti-
misation. [83] contains a series of articles outlining the basics of many meta
heuristics and guidelines for parameter selection for their implementation.
The advantage of meta-heuristics is that there is no restriction on the com-
plexity of the model of the problem being solved, all that is required is a
means of evaluating the objective value of a given solution to the problem.
In this thesis, the probabilistic models of Chapters 5 to 8 provide such a
means of solution evaluation for the reserve crew scheduling problem.

Meta-heuristics can be divided according to local search and popu-
lation based approaches. Local search approaches usually involve a single
incumbent solution whose neighbourhood is explored to determine the most
promising trajectory across the solution space to the best solution that is
within reach. Population based approaches are used when a diverse set of
possible solutions can be exploited in some way. In multi-objective prob-
lems population based approaches can be used to find a Pareto optimal set
of trade-off solutions.

Population based approaches

The textbook of Burke and Kendall [25] describes (among other approaches)
swarm intelligence methods such as ant colony algorithms, these approaches
work on the basis that the collective behaviour of large numbers of simple
individuals can appear to act in an intelligent fashion. The analogy for
ant colony methods applied to shortest path problems is the most intuitive.
Ants explore for food and once they find food return to the nest, ants being
blind lay pheromone trails that they can use to retrace the steps back to the
nest. The logic is that over time the shortest path to and from the food will
end up with a stronger pheromone trail, because ants will make the highest
number of trips backwards and forwards over this path compared to any
other path over the same amount of time leading to more ants following the
shortest path to the food.

In this thesis an ant colony optimisation approach is applied in Chap-
ter 5 to schedule reserve crew, in which reserve crew are scheduled to begin
standby duties at departure times visited by ants. Pheromone distribu-
tions are used to stochastically generate the ant paths, in each iteration the
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pheromone distributions are updated according an evaporation rate and the
quality of reserve crew schedules generated by the ants.

Genetic algorithms (described by Burke and Kendall [25], Michalewics
and Fogel [70] and Goldberg [43]) are based on the analogy of evolution and
DNA, solutions are coded as strings (genetic code). Genes with desirable
characteristics are selected and crossed over (analogy of sexual reproduc-
tion), the result is that the offspring (solutions) will have the desirable
characteristics of its parents. Continuing in this fashion will lead to conver-
gence towards a good solution. Premature convergence can be prevented
with mutation and parameters that control the rate at which operators such
as cross-over and mutation are applied to the population of solutions. Hart
et al. [46] describe memetic algorithms and contains in depth information
on practical applications. Memetic algorithms can be viewed as a hybrid
technique of genetic algorithms and local search, in each generation of a
genetic algorithm, local search is performed starting from each incumbent
solution. Hart et al. [46] describe two different approaches to the imple-
mentation of memetic algorithms, one is Lamarkianism in which the result
of the local search is directly used in the next generation of the genetic al-
gorithm. The other approach is based on the Baldwinian effect in which the
objective value achieved from the local search is used to determine which of
the original solutions are placed in the next generation, but the local search
solutions do not replace the original members of the population. The name
memetic comes from meme which can be viewed as the intellectual equiva-
lent of a gene or an idea, ideas can change in a life time, whereas genes are
relatively fixed. The two approaches reflect possible types of interactions
between memes and genes.

In this thesis a genetic algorithm is applied in Chapter 5, one of the
issues faced was that cross-over often leads to infeasible solutions, this was
circumvented by using a greedy correction heuristic to maintain a feasible
population of solutions. In Chapter 10 a genetic algorithm is used in which
the mutation operation is replaced with single iterations of a simulated
annealing algorithm, making it similar to a memetic algorithm.

Local search based approaches

Other popular meta-heuristics with many reported successes include tabu
search and simulated annealing. Tabu search, introduced by Glover [42]
is a local search based algorithm which uses a short term memory of the
solution space already searched to guide the search into new regions. The
memory feature of the tabu search algorithm is used to encourage search
diversification, the memory can also be used to store promising areas of the
solution space which could be searched in greater detail, this corresponds
to an intensification mechanism.

Simulated annealing, developed by Kirkpatrick et al. [54] is based on
considering the relationship between combinatorial optimisation problems
and statistical mechanics. Simulated annealing is often explained using
the analogy of cooling molten substances (random initial solutions) slowly
to create substances (solutions) with desirable properties such as large or-
derly crystals (optimised objective values). The tabu search and simulated
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annealing techniques can be applied to scheduling problems due to their
versatility. The draw back of the wide ranging applicability of tabu search
and simulated annealing (and genetic algorithms) is that representations of
the solution space and parameter choices have to be worked out before the
methods become effective, even then the solution obtained are not guaran-
teed to be optimal or even close to optimal.

Tabu search and simulated annealing are both applied in Chapter 5
and simulated annealing in Chapter 10.

2.6.3 Hybrid approaches

Grunert [45] tackles a direct flight network design problem based on that
faced by a postal service. The problem consists of assigning flights between
different depots to ensure that all letters reach their destination’s local air-
port overnight. They present an integer programming formulation of the
problem with capacity and flow constraints. They propose a hybrid tabu
search and branch and bound solution approach. They start by finding an
initial feasible solution using a greedy algorithm. In each iteration of the
hybrid algorithm, a subset of integer variables are fixed and the remainder
are solved in a branch and bound phase. Then a tabu search is performed
on the variables that were fixed in the branch and bound phase in order to
explore possible feasible changes to the fixed variables ready for the next
iteration. The authors used a stopping criteria of a maximum of a thou-
sand iterations. In computational experiments they investigate the effect of
changing the parameters of the tabu search part of the algorithm in terms
of solution time and the deviation from the best available (known) solution.
In particular they found it beneficial to use a tabu tenure greater than 5.

2.7 Solution methodologies for stochastic prob-
lems

This section considers the existing research on solution methodologies for
problems with uncertain input parameters. The main methods are stochas-
tic programming and robust optimisation. Some variant models for ro-
bust optimisation are discussed as these, in part, inspired the work on the
scenario-based approach to reserve crew scheduling in Chapter 9.

2.7.1 Stochastic programming

In Shapiro et. al [93] stochastic programming is described as being a very
broad subject area that lacks a characteristic standard problem formulation,
but instead is a framework of conditions and techniques under which the
more tradition approaches to mathematical programming can be applied to
problems with uncertain parameters. In particular they state that stochas-
tic programming requires that the feasible solution space is convex (just
as in linear, quadratic and convex optimisation). However they state that
convexity requires the assumption that the probabilities of future events (in
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multi-stage problems) do not depend on previous (stage) decisions. This is
an assumption which is not justifiable for many real world problems. An
example where this independence assumption is invalid occurs in reserve
crew scheduling. The probability of reserve crew demand depends on the
recovery decisions made previously, which may directly or indirectly influ-
ence the current demand for reserve crew. For example, a crew absence may
have been covered previously, meaning such a disruption does not still need
to covered. Or a crew-related delay covered previously by reserve crew will
not propagate and require reserve crew at a later time. In general the prob-
abilities of disruptions in the future do depend on the recovery decisions
made in the past.

Kall [51] explains that solving problems with uncertainty using the
expected values of uncertain parameters can lead to solutions that are not
suitable in any of the possible outcomes of that problem. They give the
example of a development project with two possible outcomes in terms of
profit, either very high or very low. Basing the optimisation problem on the
average profit will not reflect either possible outcome. So stochastic pro-
gramming differs from normal mathematical programming problems in that
it fully acknowledges the effect that decisions have in each of a set of differ-
ent possible outcomes. Where typically, the different possible outcomes have
associated probabilities of occurring. In general a stochastic programming
solution will give a solution which performs well over a range of possible out-
comes, as opposed to a solution that is optimal in the expected outcome.
In this thesis the probabilistic models are based on expected outcomes. In
Section 6.1.7 this leads to a problem which is solved by extending the model
to account for a range of expected outcomes. In stochastic programming
problems, uncertainty can be modelled in several ways. Chance constraints
(Shapiro et al. [93], Kall [51] and Birge and Louveaux [23]) can be used
when a constraint which depends on uncertain parameters has to be satis-
fied with some specified probability (this approach is used by Sohoni et al.
[97]).

Uncertainty in stochastic programming problems can also be captured
with error terms for the uncertain parameters of the model. The error terms
usually take the form of statistical distributions. Solution techniques appli-
cable to stochastic programming problems often derive discrete approxima-
tions of the error term distributions so that a range of possible outcomes
can be explicitly included in the constraints of the stochastic program.

Stochastic programs can be defined by the number of stages involved
in solving the model. Single stage models (Birge and Louveaux [23]) solve
the entire the problem in a single stage so that the decisions and recourse
(recovery) actions are determined at the same time. In two-stage stochastic
programming, the decision variables are solved first and the second stage
solves the recourse action variables after some information on the outcomes
becomes available.

The mixed integer programming simulation scenario model of Chapter
9 is influenced by approaches to stochastic programming (as well as others),
in its explicit modelling of the effect that a reserve crew schedule has on the
(post recovery) expected level of disruption in each of a set of disruption
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scenarios.

2.7.2 Robust optimisation

Bertsimas et al. [22] define robust optimisation as a general approach to
formulating and solving optimisation problems with uncertain parameters,
in which uncertainty is captured in the form of independent sets of (simulta-
neous) realisations of those parameters. These sets of uncertain parameters
are referred to as the uncertainty set. A single element of the uncertainty
set corresponds to a deterministic equivalent of the problem being solved.
The solutions to such formulations must be feasible with respect to the
uncertainty set.

Robust optimisation differs from stochastic programming in several
ways.

e Stochastic programming models parameter uncertainty using proba-
bility distributions, whereas robust optimisation uses varied sets of
well defined parameters, where each set corresponds to a determinis-
tic equivalent of the problem being solved.

e Stochastic programming is motivated by theoretical developments,
whereas robust optimisation is motivated by tractability/solvability.
Robust optimisation is a pragmatic approach to solving optimisation
problems with uncertain parameters.

e Stochastic programming allows some constraints to be satisfied with
a threshold minimum probability, whilst robust optimisation requires
feasibility over the entire uncertainty set.

Robust optimisation is often criticised for its inflexibility with respect
to the requirement that solutions have to be feasible over an entire uncer-
tainty set. Section 2.7.3 reviews work on several variants of robust optimi-
sation where the strict feasibility requirements have been relaxed in some
way, the examples given apply to the research area of train scheduling, a
domain with many parallels to airline scheduling.

2.7.3 Variants of robust optimisation
Light robustness

Fischetti and Monaci [38] introduce the concept of light robustness as an
alternative to robust scheduling and stochastic programming approaches.
The advantage of their approach is that the strict requirement that solu-
tions are feasible over the entire uncertainty set is relaxed, meaning the
resultant solutions are not over conservative. The example they use is a lin-
ear program with a coefficient matrix whose values take on uncertain values.
In light robustness a maximum deterioration limit of the objective value is
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set, slack variables capture the violation of constraints and hence the ro-
bustness of the solution. The auxiliary objective function is to minimise
the slack such that the resultant solution is as robust as possible with an
objective function value that is acceptable. The light robustness approach is
similar to stochastic programming in that the slack variables play a similar
role to the secondary recourse variables in stochastic programming. As in
recoverable robustness (see Section 2.7.3) there is a set maximum number
of parameters that can simultaneously take on their worse case values.

Recoverable robustness

Liebchen et al. [63] Introduce the concept of recoverable robustness, they
describe the concept as the integration of scheduling and delay manage-
ment. They state that recoverable robustness differs from strict robustness
because the solutions from recovery robust optimisation only have to be
within a recoverable distance from a fully feasible solution given a recov-
ery algorithm. Whereas, strictly robust solutions have to be feasible in all
scenarios before the consideration of recovery, and as a result leads very ex-
pensive solutions. The specific example used by Liebchen et al. is based on
the deterministic timetabling problem, which can be represented as a graph
with nodes corresponding to events (trains arriving and departing from sta-
tions) and vertices representing activities (driving between stations, picking
up and dropping off passengers at stations). The variables in such a model
are the times corresponding to event nodes. The objective is to minimise
the sum of the product of activity lengths (arc lengths) and the number
of passengers expected on the corresponding arcs, as to minimise overall
passenger waiting time. The recovery algorithm for their train timetabling
example permits modifications of the scheduled times of departures within
certain allowable limits. They define a recovery robust optimisation prob-
lem mathematically as consisting of three sets, the original optimisation
problem, a set of (disruption) scenarios and a set of recovery algorithms. A
feasible solution is defined as a solution that is feasible in all scenarios in
the scenario set given the set of recovery algorithms. The disruption scenar-
ios considered each contain a maximum of a single disruption. Cicerone et
al. [28] generalise the concept of recoverable robustness to the case where
disruption scenarios contain any number of disruptions, as they find the
solution given by Liebchen et al. [63] unsatisfying. In other work Cicerone
et al. [27] apply the approach developed by Liebchen et al. [63] to the
railway shunting problem in which railway cars are assembled according to
their final destination, the problem is that the arrival times of trains at the
shunting yard is uncertain, which can lead to inefficient shunting operations
that lead to more delays. Cicerone et al. [27] highlight the fact that for each
application of recoverable robustness in different domains the challenge is
that of formulating the applicable recovery algorithms.

Recoverable robustness is not a directly applicable approach for solv-
ing the reserve crew scheduling problem, because in recoverable robustness
the recovery actions are fixed like a policy, whereas in reserve crew schedul-
ing the recovery action (reserve crew) is what is being scheduled. However,
recoverable robustness could be applied to the crew scheduling problem,
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with reserve crew forming the fixed recovery algorithm. It follows that it
could be beneficial to integrate crew scheduling and reserve crew schedul-
ing, perhaps using an iterative approach as used by Weide (Section 2.2.3)
to gradually increase the overall schedule robustness.

2.7.4 Methods for multi-stage decision making

As stated in Chapter 1 one of the goals of this project is to investigate
online reserve use policies in terms of their effect on the expected levels of
day of operation disruptions. The online reserve crew use problem can be
cast as a multi-stage decision problem, where stages correspond to possibly
disrupted flights. When a flight is disrupted a recovery decision is required
which should take into account the remaining available reserve crew and the
potential for future disruptions for which those reserve crew may be better
utilised. Should reserve crew be used to absorb an immediate disruption
or alternatively should the reserve crew be held in anticipation of possibly
larger disruptions that may occur later? In this section a review of the
family of techniques applicable to multi-stage decision making problems is
given.

Bellman’s dynamic programming [20] provides the basis for most ap-
proaches for multi-stage decision making problems. Dynamic programming
works well for problems with the correct properties, provided that the num-
ber of states and available actions at each state are small enough to avoid
computational intractability. For dynamic programming to be a suitable
solution technique, a problem is typically required to have the property
that the optimal decision at each stage depends only on the current state of
the system and not on the history of how that state was reached. Dynamic
programming is viewed as an efficient enumeration algorithm. Dynamic pro-
gramming can be implemented in forwards and backwards varieties. Back-
wards dynamic programming starts from the final stage and works back to
the first stage. Backwards dynamic programming can be used for problems
for which the desired state in the final stage is known. In each stage of
backwards dynamic programming, the values of states are updated accord-
ing to the best state they can reach in the next stage (considered previously)
plus the (transition) cost of reaching that state. Proceeding in this fash-
ion all the way back to the initial stage will reveal the optimal sequence of
decisions required to reach the desired final state. Depending on the con-
text of the problem that is being solved, forwards dynamic programming
is also possible. Dijkstra’s algorithm is a special case of forwards dynamic
programming.

The textbook of Powell [79] gives the Bellman equation as follows.

Vi(Sy) = H;%X(Ct(sta 2t) + Vir1(Se+1)) (2.4)

Equation 2.4 states that the value (V;) of being in state (.S;) is equal to the
value of the decision (z;) that leads to the greatest sum of immediate profit
(Cy) (cost of the decision) and the value of the state you end up in (V;41)
having enacted that decision. For some problems finding the value function
(V) is the biggest problem, especially when external uncertainty exists in
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the transition from the current state to the new state, given an implemented
decision. When external uncertainties are present, the Vi 1(S;11) term is
replaced with the expectation term E{V;,1(S;11)|S;}, which makes finding
the optimal value function even more difficult.

Markov decision processes (described by Powell [79]) are multi-stage
decision making problems that are characterised by: states which obey the
Markov property; states which have discrete sets of possible actions; known
models of uncertainty for state transitions given a current state and decision;
and a known reward for each outcome. The Markov property states that
the value of a state in a system is the same regardless of the history that
led to that state. The aim when solving Markov decision problems is to
find a policy which returns an action for each state such that the objective
contribution accumulated over the time horizon of the problem is optimised.
If the time horizon is infinite or the rewards for decisions made now have
a delay, a discount factor is used to assess the current value of rewards
with respect to an interest rate. This approach ensures that the yielded
policy finds the optimal decision based on the current value of a decision.
Several different approaches to solving Markov decision making problems
exist. Powell [79] describes policy iteration which starts with a policy, then
determines the value of the policy, then uses this information to update
the policy. This process continues until some convergence criteria on the
value of the policy is reached. Alternatively, value iteration uses a value
function which stores the value of all possible decisions in all states. Value
iteration iteratively determines the value function until it converges, the
optimal policy can then be extracted from the value function by selecting
the highest value decision for each state.

When multi-stage decision problems do not have known models for
the transition function, or have too many states and actions, the techniques
of approximate dynamic programming (Nascimento and Powell [72], Pow-
ell et al. [81], Powell [80] and Balakrishnan [6]) can provide a solution.
Approximate dynamic programming is an umbrella term for a wide range
of techniques. In general approximate dynamic programming can be used
whenever any of the above described approaches cannot be applied because
one or more of the aspects of the given problem leads to computational
intractability. For example, the expectation term in Bellman’s equation
for solving dynamic programs, with environmental uncertainties, can be-
come intractable and as a result requires a Monte-Carlo simulation based
approximate dynamic programming approach to approximate it.

Nascimento and Powell [72] apply approximate dynamic programming
to the energy dispatch problem. The problem is to allocate stored energy
and energy from external sources to different energy pathways. They show
that this problem suffers from the curses of dimensionality and apply a
Monte-Carlo based approximate dynamic programming approach. In the
simplified model the state is defined as the total amount of stored energy,
the contribution function sums the costs of under supply, over supply, dis-
carding, buying and selling energy. The value function is piecewise linear
and they use linear programming to determine value function slopes.

Powell et al. [81] consider a vehicle routing application of approximate
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dynamic programming in which orders become known in real time. Drivers
have to be kept close to where orders are most likely to occur. Powell [80]
provides a manual for practitioners considering using approximate dynamic
programming, it warns that there are three main communities that use
approximate dynamic programming (control theory, computer science and
operational research) and each has there own set of standard notation and
terminology. Powell [80] also gives guidance for step size schemes used to
update the value function. 1/n is described as theoretically sound, and is
equivalent to averaging the observed values obtained from the given state
over n runs. Powell [80] also gives guidelines for a successful application of
approximate dynamic programming, stating that all aspects of a problem’s
structure must be exploited.

Balakrishnan [6] describes an application of approximate dynamic pro-
gramming to the problem of airport taxi time prediction, a diffusion wavelet
value function is experimented with and compared to other value function
structures. The following variants of approximate dynamic programming
represent different ways to learn value functions. Reinforcement learning
(Si et al. [95] book chapter 2) is a strand of approximate dynamic program-
ming and can be used for multi-stage decision problems for which explicit
transition functions and reward functions are not available, but a simulator
of the process of concern is available. Reinforcement learning learns how to
make decisions based on trial and error. Q-learning [79, 95| is a technique
of approximate dynamic programming which uses a state/decision value
function. This approach is most applicable when the number of decisions
possible in each state is small. The entries in the state/decision pair value
function are referred to as Q-values and store the value of making the given
decision in the given state.

In this thesis, probabilistic models are developed (Chapters 5 to 8)
which evaluate potential reserve crew schedules in terms of their effect on the
expected level of delay and cancellation disruptions that occur on the day of
operation. When these models are applied in an online context (Chapters 8
and 10) to evaluate alternative reserve use decisions, they perform the same
role as that of a value function (see above). In Chapter 4 a look-up table
value function is derived from simulation which is applied in Chapter 10 as
a reserve policy.

2.8 Aspects of problem solving

This section considers aspects of problem solving in general.

2.8.1 Modelling

Mathematical modelling is the process of taking a real world problem and
converting it into a mathematical problem. The book of Edwards and Ham-
son [37] gives a guide to mathematical modelling. Through numerous ex-
ample problems they outline the stages that are often followed in a mathe-
matical modelling cycle. The process will start with some sort of problem
description. The problem is then usually abstracted by making a number of
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assumptions to identify the important variables. A solution is formulated
and tested to identify any problems. This process continues iteratively until
the model gives the required solution or the model matches the reality. This
process is mirrored in this thesis.

2.8.2 Solution space

Michalewics and Fogel [70] discuss the importance of knowing the structure
of the solution space, this allows for the development of enumeration algo-
rithms and is also a prerequisite for developing solution representations that
are required to apply modern heuristic methods such as simulated anneal-
ing, tabu search and genetic algorithms. For a typical scheduling problem
the solution space consists of all possible allocations of resources to tasks
which do not violate any of the constraints. When resources are identical
the solution space consists of all combinations of tasks assigned to a given
number of identical resources, when resources are distinct, for example all
personnel have different skill sets, the allocation of resources to tasks has
a solution space consisting of all permutations of resources assigned to the
given tasks. Pinedo [77] states that machine scheduling problems can also
have the property that the order in which tasks are completed effects the
time taken to complete each tasks. This means that the scheduling problem
has two interacting layers (task allocation and task ordering) which makes
the solution space even larger than a typical permutation sized problem.

2.8.3 Analogies with other problem domains

There are a host of other problem domains which have analogous problem
structures to those of the problem of reserve crew scheduling under un-
certainty. In scheduling tools and algorithms (by Pinedo [77]) an analogy
is drawn between machine scheduling and airport operations, namely that
gates can be treated as machines and scheduled aircraft departure times
treated as job completion times.

The topic of inventory control provides another possible source of
analogies, see the book called factory physics [49] for more information
on inventory control and related subjects. A reorder policy approach would
be most applicable to the problem of callout reserve crew, who are sta-
tioned at home and can be called to the airport when the number of reserve
crew available at the airport drops below a certain threshold (the reorder
point). Winston [104] also covers inventory control, presenting the tradi-
tional economic order quantity (EOQ) models. Winston points out that
these models are often based on the unrealistic assumption of constant de-
mand. var(demand)/ demand® < 0.2 is given as the condition under which
such an assumption is reasonable. An EOQ approach would therefore be
appropriate for manpower planning, i.e. determining numbers of reserve
crew required each day. But when considering the allocation of standby
duty start times at a per flight level the per flight demand may be too
irregular for a direct application of an EOQ model.
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2.9 Chapter summary

This chapter has provided the necessary background information required to
undertake research on the problem of reserve crew scheduling under uncer-
tainty: A wide knowledge of airline scheduling and airline operations helps
to understand the wider ecosystem of which airline reserve crew are part; A
detailed knowledge of the current literature on reserve crew scheduling helps
to identify the niche that this research is trying to fill, and; A survey of the
current approaches to modelling uncertainty and solution methodologies for
such problems provide food for thought on how to proceed.
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Chapter 3

Problem description and
definitions

In this chapter Section 3.1 gives a general formulation for the problem of
airline reserve crew scheduling under uncertainty. The problem has two
main elements, those of offline reserve crew scheduling and online reserve
policies, these aspects of the overall problem are described in more detail in
Sections 3.2 and 3.3 respectively.

Chapter structure

Section 3.1 gives a general problem formulation for airline reserve crew
scheduling under uncertainty. Section 3.2 lists the factors that should be
considered when trying to schedule reserve crew in a good or optimal way.
Section 3.3 lists the research questions relating to the secondary objective
of this research, that of online reserve policies. Section 3.4 discusses the
details of the real world case study that is considered in this thesis, which is
based on the operations of KLM. Section 3.5 defines a number of concepts
and conventions that are common to the remaining chapters of this thesis.
Section 3.6 summarises the main points from this chapter.

3.1 General problem formulation

The combined problem of the offline scheduling and the online utilisation
of reserve crew with the objective of minimising schedule disruptions under
operation uncertainties can be formulated as in Equations 3.1 and 3.2. The
explanation of these equations and the definitions of the variables (z and
y) and the inputs (S, U and P) are given in Table 3.1.

pin  E(f(z,y,5U,P) (3.1)
re€X|Y wy;=R,VieT (3.2)
j=1

The main overall objective (Equation 3.1) of this thesis is to find a combi-
nation of a reserve crew schedule (x) and a corresponding reserve policy (y)
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Decision variables

T : Reserve crew schedule, z; ; specifies the number of reserve crew of type i assigned to standby
reserve duties that start daily at time index j.
Yy ;A reserve policy y specifies if reserve crew are to be used to replace delayed or absent crew

in any given situation, and if so, which reserve crew of those available are to be used. The
reserve policy space is denoted y and includes rule of thumb policies as well as optimisation
based policies.

Inputs
S :  The airline’s schedule S takes the form of a list of scheduled flights, listed in earliest scheduled
departure time order. For each scheduled departure the schedule specifies the scheduled
departure time, the destination, and the crew and aircraft who are assigned to that flight.

U : Uncertainty U in this case takes the form of unexpected crew absence and unknown journey
times. For each of these statistical distributions are derived from real data.
P :  The airline’s recovery policy P specifies how the airline will respond to any given disruption.

For example, if a departure is delayed due to the delayed arrival of a previous flight then
the airline will consider swapping the resources assigned to the delayed flight in order to
mitigate the delay. The reserve policy y defined above is an element of the airline’s overall
recovery policy, because their are alternative recovery actions that the airline may like to
consider before using reserve crew.

n  :  The number of hub departures in the airline’s schedule during the time horizon over which
the available reserve crew are being scheduled.
T . The set of reserve crew rank-qualification combinations

Table 3.1: Problem description notation

that minimises the expected (E) level of delay and cancellation disruptions
that occur when an airline schedule (S) is implemented. The schedule is
implemented in an environment which is subject to uncertainty (U), namely
crew absence uncertainty and journey time uncertainty, both of which per-
turb the scheduled events with respect to those planned.

The airline implements a recovery policy (P) to recover from schedule
disruptions. Besides using reserve crew, the airline may have alternative
recovery actions such as swapping crew and aircraft or cancelling flights.
The reserve policy is an element of the the airline’s overall recovery policy.

In Objective 3.1, X is the set of feasible reserve crew schedules. A
reserve crew schedule is feasible if no more than the available set of reserve
crew are scheduled. This can be expressed by Constraint 3.2, in which T
is the set of types of reserve crew and R; is the number of reserve crew of
type ¢ which are available for scheduling. A reserve crew type is defined by
a combination of a rank (which defines the roles they can undertake), and
a qualification (which defines the fleets they can operate on).

A reserve policy y determines whether or not reserve crew should be
used to cover a given crew related disruption, and if so, which reserve crew
of those available should be used. A reserve policy y can be a simple rule of
thumb such as using reserve crew as demand occurs, in earliest start time
order (the default policy, see Section 3.5.2). It could also be a function
of the given reserve crew schedule x and the current state of the airline’s
operations as well as the expected future demand for reserve crew at the
given time (see Section 8.2.5).

The main difficulty in the problem defined by Objective 3.1 and Con-
straint 3.2 is in how to accurately and efficiently compute the expected level
of disruption associated with a given combination of a reserve crew schedule
x and a reserve policy y. The difficulty is caused by the presence of opera-
tional uncertainty (U) when implementing a schedule S. In particular, crew
absence and journey time uncertainty means that there are a multitude of
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ways in which a day’s operations can unfold, which makes computing the
expectation term of Objective 3.1 challenging. This problem is made more
difficult by the non-trivial interaction that exists between the airline’s re-
covery policy and the outcomes of uncertain events on the day of operation.
This is because small changes in the outcome of an event can change which
recovery action is applied, which in turn changes the recovery actions which
will be available later on. Furthermore, there is the potential for an interac-
tion between the reserve schedule x and the reserve policy y. For example,
changing the reserve policy can change what the optimal reserve crew sched-
ule is, and changing the reserve crew schedule can change what the optimal
reserve policy is. This last point is the main justification for making online
reserve policies a secondary research objective in this thesis.

The reserve crew scheduling problem can be formulated as a two-stage
stochastic integer programming problem, where the first stage variables de-
fine the reserve crew schedule. The second stage variables determine how
those scheduled reserve crew are used given any realisation of a disrup-
tion scenario. The variables in both stages are integer decision variables.
Dyer and Stougie [36] provide a proof for the #P-hard complexity of two-
stage stochastic integer programming problems with discretely distributed
parameters.

3.2 Offline reserve crew scheduling

When trying to schedule reserve crew in a good or optimal way the following
issues need to be considered. For each issue a forwards reference is provided
to the section of the thesis that address that issue.

e Reserve crew demand is influenced by journey time uncer-
tainty. The time between an aircraft leaving the gate at the origin
station and arriving at the gate of the destination station is known as
the block time. Block time (see Figure 3.1) includes the time spent

Block time
Origin | | Destination
station Taxi out Flight time Taxi in station
time time
Leave Take off Landing Arrive
at the at the
stands stands

Figure 3.1: Block times and their constituent parts

travelling between the gate and the runway at the origin and desti-
nation stations (known as taxi time), and also the time spent in the
air in transit to the destination. In this thesis taxi times times are in-
cluded as part of the journey time and so journey times correspond to
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block times. Journey times are influenced by congestion and weather
conditions, giving rise to journey time uncertainty. Reserve crew can
be used to replace delayed crew, and therefore reserve crew demand
is influenced by journey time uncertainty.

In this thesis, Chapter 7 introduces a probabilistic model of reserve
crew demand as a result of journey time uncertainty. Chapter 8 in-
troduces a statistical delay propagation model. Chapter 9 introduces
a scenario-based approach to modelling reserve crew demand due to
crew-related delays as well as crew absence.

Reserve crew demand is influenced by crew absence uncer-
tainty. Crew can, for various reasons, be absent at short notice, this
may be because of illness or other extenuating circumstances. When
crew are absent a flight may be prohibited from flying, unless reserve
crew are used to replace them.

In this thesis Chapter 5 introduces a probabilistic model for the al-
location of reserve crew used to cover for absent crew. Chapter 6
improves upon this initial model, by addressing the simplifying as-
sumptions made in Chapter 5. Chapter 9 introduces a scenario-based
approach for scheduling reserve crew in anticipation of both crew ab-
sence and delay disruptions.

Other recovery actions may reduce reserve crew demand. In
the event of delays which can be mitigated by replacing the delayed
crew with reserve crew, other recovery actions may also be available.
Swap recovery actions can be used to absorb delays, which may reduce
the need for reserve crew at such times. When scheduling reserve crew
an appreciation of the airline’s recovery policy could help to avoid
scheduling reserve crew when they are not needed.

In this thesis, the probabilistic model of Chapter 7 uses a simulation,
which implements swap recovery actions, to learn how crew-related
delays propagate through an airline’s schedule. This information is
then used to schedule reserve crew in a way that minimises the total
expected crew related delay whilst also taking the availability of swap
recovery action into account. The scenario-based approach of Chapter
9 also uses simulation to provide a means of allowing for the availabil-
ity of swap recovery actions when scheduling reserve crew. Chapter 8
introduces a statistical delay propagation model, which does not rely
on simulation, that is able to calculate departure time distributions
for all flights in a schedule as a function of an airlines recovery pol-
icy, including swap recovery actions. Section 8.1.4 shows how this is
possible.

The times at which reserve crew are scheduled influences the
potential for reserve crew induced delay. When reserve crew
are used to cover for absent crew it may be the case that the affected
flight has to be delayed until the reserve crew begin their standby
duty. Scheduling reserve crew at different times will on average induce
different levels of reserve-induced delay.
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In this thesis, Section 6.1.3 shows how the improved probabilistic crew
absence model allows for reserve-induced delay. Only Chapters 5 and
7 do not explicitly allow for reserve-induced delay. Instead, these
models use the simplifying assumption that reserve crew can only be
used for disruptions which occur whilst they are on standby duty and
not before.

The airline’s reserve policy influences the effectiveness of any
given reserve crew schedule. In the event of disruptions which can
be mitigated by using reserve crew, the airline may have a policy for
selecting which of the available reserve crew to use or whether to use
reserve crew at all. Knowledge of an airline’s recovery policy can be
used to find an associated reserve crew schedule that works best with
that policy.

In this thesis reserve policies are a reoccurring theme, Figure 1.1 and
Section 3.3 give more details.

Reserve crew have ranks and qualifications that limit which
roles and fleet types they are feasible for. Airlines often have
a range of fleets (aircraft types). Reserve crew must be qualified to
operate on the fleet type associated with a given disruption. Further-
more, reserve crew have ranks which specify which roles on flight legs
they can fulfil. So an approach to optimising a reserve crew sched-
ule should also take into account the ranks and qualifications of the
reserve crew being scheduled.

Sections 6.3 and 9.8 are concerned with modifying the probabilistic
and scenario-based models, for the case of multiple fleet types, crew
ranks and qualifications.

The structure of the airline’s schedule dictates how disrup-
tions may propagate through the schedule. The structure of
an airline’s schedule in terms of the scheduled departure and arrival
times influence how likely it is that a delay from one flight will spread
to the next flight. If a short turnaround time is scheduled between
the arrival of one flight and the departure of the next, the probability
of delay propagation is increased. Knowledge of the airline’s schedule
can be used to identify flights which have a high risk of delay propa-
gation. Reserve crew can then be scheduled to minimise the potential
for delays affecting those flights.

Exploiting the structure of an airline’s schedule is precisely the aim of
the probabilistic crew delay model of Chapter 7. Chapter 8 improves
upon this initial probabilistic crew delay model by modelling delays
in general using a fully theoretical model which does not rely on a
simulation learning phase.

The structure of crew pairings determine the maximum num-
ber of cancellations in the event of uncovered crew absence.
When crew absence occurs which cannot be covered by using reserve
crew, flights may need to be cancelled. In a hub and spoke network, a
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cancellation at the hub also requires the cancellation of the subsequent
return journey from the spoke back to the hub. Cancellations continue
until absent crew can be replaced with reserve crew. So the maximum
number of cancellations for any given crew pairing is the number of
flights in that crew pairing. Ideally reserve crew would be scheduled
to prevent all cancellations. However, this is not always possible, in-
stead reserve crew can be scheduled in a way that minimises the total
potential for flight cancellations due to crew absence.

Section 6.1.1 shows how the improved probabilistic crew absence model
takes the structure of crew pairings into account when scheduling re-
serve crew. The scenario-based approach of Chapter 9 also allows for
the effects of the structure of crew pairings, see Section 9.2.2.

3.3 Online reserve policy

A reserve policy determines whether a crew related disruption should be
covered by using reserve crew, and if so, which of the feasible reserve crew
should be used. The investigation of online reserve policies is closely related
to the primary objective of investigating approaches for offline reserve crew
scheduling. When scheduling reserve crew, the knowledge of an assumed
reserve policy can help to improve the quality of the reserve crew schedule.
So the question is, what is the best reserve policy?

In this thesis the investigation of online reserve policies considers the fol-
lowing questions.

e Given a crew related disruption and a limited availability of
reserve crew, is reserve crew use or reserve crew holding the
most appropriate action? On a given day the demand for reserve
crew may be low or high, the best reserve policy should adapt to the
conditions on the day of operation as events unfold. For example,
whether or not reserve crew are used to cover a small delay should
depend on whether doing so significantly increases the risk of being
unable to recover from larger disruptions later on, such as crew absence
or large delays. It may also be the case that a swap recovery action
is available to mitigate the same disruption, which may be a cheaper
recovery action and therefore a more favourable option to the airline.
A reserve holding policy needs to be able to make globally informed
decisions that may not necessarily be immediately beneficial. Sections
3.5.2,4.7.2,4.7.3 and 8.2.5 consider a range of possible reserve holding
policies, which are all compared with one another in Section 10.5.

e Given that reserve crew come in a range of rank and qual-
ification combinations and there exist numerous combina-
tions of reserve crew which would be feasible to cover for
a given crew related disruption, which combination should
be utilised? The demand for reserve crew with particular ranks
and qualifications can vary on a day to day basis. On some days some
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reserve divisions (groups of reserve crew with the same rank and qual-
ification) may be in high demand. On such days an adaptive reserve
policy should consider using the combination of reserve crew with the
lowest expected future demand. In other situations it may be bene-
ficial to consider the possibility of using reserve crew in roles below
their assigned rank. What is required is a policy which can provide a
recommended decision based on the merits of using different combina-
tions of crew in terms of the immediate benefit, long term benefit and
the expected future demand for reserve crew. Section 6.4 introduces
a parameterised policy for selecting reserve crew combinations taking
the above described considerations into account.

e How can reserve policies be modelled during offline reserve
crew scheduling? Once a reserve policy is found that performs well
in operations, the problem then becomes that of how this reserve pol-
icy can be taken into account when scheduling reserve crew. Section
5.2.1 introduces the basic modelling principle which enables the mod-
elling of a reserve policy in a probabilistic reserve crew scheduling
model.

3.4 KLM specific problem

As described in Section 1.1, this research project arose from a collaboration
between the University of Nottingham and KLM. As a result the problem
tackled in this thesis is based on KLM practices.

KLM operate a single hub and spoke network, with Schipol as the
hub station. Almost all flights involve Schipol as the origin or destination
(a minority involve other intermediate stops). As a result of this network
structure, smooth operations at the hub are of vital importance. This thesis
is focussed on the scheduling of reserve crew who will be on standby duty at
the hub station and will be used to cover for disruptions that occur there.

At KLM reserve crew are regular crew who are contractually obliged
to undertake a number of reserve blocks per year. Reserve blocks are two
weeks in length. The purpose of reserve blocks is to give the crew schedule
a level of recoverability from crew-related disruptions. In the first five days
of a reserve block, reserve crew can be used to adopt any crew disrupted
pairing. If they are not used in this period they get two days off, in the
second week they can only be assigned to open pairings (short sequences of
flights left unassigned exactly for this purpose). If reserve crew are used to
cover crew disrupted pairings in the first week, the reserve crew can only be
used to cover open pairings in the remainder of their reserve block provided
that their minimum rest requirements are satisfied. The two week length
of a reserve block allows reserve crew to be used for any disrupted pairings
(long or short haul) in the first week of the reserve block whilst ensuring that
the pairings assigned to the reserve crew after their reserve blocks (follow
on pairings) suffer no knock-on effects.

In this thesis, reserve crew are scheduled in ways that reflect the ex-
pected demand for reserve crew due to day of operation crew absence and
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delay disruptions. The use of reserve crew to cover for open pairings is
not explicitly considered in this thesis. This is because the primary role of
reserve crew is for use covering unexpected crew-related disruptions. The
use of reserve crew to cover open pairings is only considered after they
have been used to cover for crew-related disruptions. The open pairings are
used to fill the remainder of reserve blocks provided that the minimum rest
requirements of reserve are satisfied.

Due to KLM’s reserve block structure, reserve crew are on standby for
5 days unless they are used to cover a disrupted crew pairing. As a result,
the only constraints for feasible reserve crew use are: 1) a reserve must be
on a standby duty day when a crew related disruption occurs; and 2) the
expected finish time of the initial disrupted crew duty must be within the
standby duty length of the reserve crew member(s).

Crew at KLM come in a variety of rank and qualification combinations
known as divisions. Qualifications determine the set of fleets crew can
operate on, typically crew are qualified for between 1 and 3 different fleet
types. Ranks, determine which roles crew can undertake on a flight. At
KLM there are 3 main ranks: pursers; 2 band; and 1 band. In general all
flights require at least one purser. At KLM “flying above rank” is permitted
on the day of operations (but cannot be planned in scheduling), but only
for the cases of pursers flying as senior pursers and 1 band (lowest rank)
flying as 2 band (second rank). The cost is that they have to be paid at
the higher rank rate. On the other hand, “flying below rank”, is allowed
provided that separate qualified crew are allocated to each role, the cost is
that the crew still have to be paid according to their designated rank. In
this thesis reserve “flying above rank” is not considered, because a more
detailed model would be required to model the exceptional circumstances
in which this is permitted. “Flying below rank” is explicitly modelled in
this thesis (see Sections 6.3 and 9.8).

Each fleet type has a minimum required number of qualified crew of
each rank. In general, the crew requirements per fleet are proportional to
the passenger capacity of the aircraft of that fleet type. If the number of
passengers is below a certain threshold, the minimum crew requirements
can sometimes be relaxed on the day of operation and “flying minus one”
is allowed. In Chapter 10 the test instances are based on the case where
there are 3 fleet types and 2 crew ranks. Crew are each qualified for a
separate combination of 2 fleet types. Each fleet type has distinct crewing
requirements, in terms of the required number of crew of each rank.

At KLM, a fixed number of new reserve blocks are available for schedul-
ing per day. This thesis considers the case where a fixed number of reserve
crew are available for scheduling within a specified time horizon. Addition-
ally, KLM have fixed salaried staff this means that reserve crew costs are
not a variable, thus costs do not form any part of the objectives considered
in this thesis. So, in this thesis the main objectives are always related to
disruption minimisation with respect to fixed reserve crew availability.
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3.5 Definitions

This section introduces a number of definitions that recur across the re-
maining chapters of this thesis.

3.5.1 Cancellation measure of a delay

Crew related disruptions include absent crew and crew delayed on connect-
ing flights. When crew are absent and no reserve crew are available it
may be necessary to cancel a flight. In the event of a crew-related delay
the consequences of not absorbing the delay may not be as extreme, as it
may be feasible to simply operate a delayed schedule. In terms of minimis-
ing disruptions there are two separate objectives to consider, cancellation
minimisation and delay minimisation. In order to keep the simplicity of a
single objective optimisation problem, Equation 3.3 is used to map delays
to a measure of cancellation.

delay

(3.3)

delay exponent
cancellation threshold)

cancellation measure = (

The overall objective is then to minimise the sum of the expected cancel-
lations and the cancellation measures of the expected delays. Equation
3.3 is designed to capture the subjective equality between a cancellation
and delays of different sizes. The delay exponent is a parameter controlled
by the decision maker. The value of the delay exponent will typically be
greater than 1 to capture the perception that a cancellation is worse than
any number of delays whose delays sum to the cancellation threshold,
and that small delays are much less important than long delays. The
cancellation threshold is the assumed maximum delay before a flight is can-
celled, a value of 3 hours is assumed in this thesis (see Section 2.4.2). Equa-
tion 3.3 is used when the probabilistic crew absence model takes reserve-
induced delay into account (Chapter 6), in the statistical delay propagation
model (Chapter 8) and in the mixed integer programming simulation sce-
nario model (Chapter 9) to penalise delays in general.

Figure 3.2 shows the effect of varying the delay exponent on the
cancellation and delay performance of reserve crew schedules derived us-
ing the delay cancellation measure function as part of the objective func-
tion (the other part being the expected cancellation due to crew absence).
Small values of the delay exponent lead to low delays at the expense of
increased cancellations (due to uncovered crew absence) and high values of
the delay exponent lead to higher delays and reduced cancellations (due
to uncovered crew absence). The value of the delay exponent is therefore
a decision maker parameter for selecting one reserve crew schedule from a
set of trade-off solutions. Hereafter, a delay exponent of 2 is assumed. A
delay exponent of 2 corresponds to giving sub-linear weight to delays below
the cancellation threshold, but giving them increasing importance as they
approach the cancellation threshold. The proposed methods in this thesis
still work for any value of the delay exponent.
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The effect of varying the value of the delay exponent (n)

on the quality of reserve crew schedules derived from a greedy algorithm
x 102 in terms of cancellation rate and average delay

5 T T T T T 25

— © — Cancellation rate

—*— Average delay

Cancellation rate
Average delay/mins

delay exponent (n)

Figure 3.2: The effect of the delay exponent (used to penalise delay) on
average delay and cancellation rate

3.5.2 Rule of thumb reserve policies
Default reserve policy

As described in Section 3.3 reserve policies are treated as the secondary
objective in this thesis. This section defines the default reserve policy. The
default reserve policy is the assumed policy for reserve use when no other
reserve policy is defined.

The default reserve policy is a rule of thumb reserve policy, in which
reserve crew are used as demand occurs, using reserve crew in earliest start
time order first. The default policy never holds reserve crew in the event
that their use is immediately beneficial. The default reserve policy is used
in Chapters 5 and 7 when the probabilistic models are first introduced,
where the main focus is on reserve crew scheduling. Chapters 4, 6, 8 and 9
consider improved reserve policies.

Absence only policy

Another rule of thumb policy used in subsequent chapters is called the abs
only policy. In the abs only policy the default policy is used whenever crew
are absent, but when crew related delays occur, reserve crew are never used
to replaced the delayed crew.
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3.5.3 Heuristic reserve crew scheduling approaches

Heuristic or “rule of thumb” reserve crew scheduling approaches provide ini-
tial benchmark solutions when developing new more advanced approaches,
the more advanced approaches must at the very least result in reserve crew
schedules of higher quality schedules than the rule of thumb approaches.
The only exception to this is when a rule of thumb approach is known to
result in an optimal solution.

Zeros

The Zeros rule of thumb approach to reserve crew scheduling consists of
scheduling all available reserve crew to begin their standby duties at the
start of the first day of the considered scheduling time horizon.

Uniform start rate

The uniform start rate (or USR) rule of thumb approach to reserve crew
scheduling schedules the reserve crew of each type to begin standby duties
at equal time intervals over the considered time horizon.

No reserves

The no reserves (or No Res) rule of thumb approach to reserve crew schedul-
ing schedules no reserve crew at all. This approach is useful when assessing
the total impact that scheduling any reserve crew at all has on the expected
level of disruption in an airline schedule.

3.5.4 Frequently used solution methodologies

This section describes the search methodologies that are used frequently
in this thesis. Subsequent chapters will refer back to these explanations.
The probabilistic models of Chapters 5 to 8 provide a means of evaluating
possible reserve crew schedules in terms of their associated delay and can-
cellation minimisation effects. The probabilistic models can be used as the
evaluation function in a variety of heuristic solution methodologies. These
include the following.

Greedy algorithm

A greedy algorithm, when applied to the problem of reserve crew scheduling,
adds one reserve crew to the schedule at a time, at the time that results in
the largest decrease in the objective value.

Local search

Local search (steepest ascent) proceeds by evaluating all solutions neigh-
bouring the incumbent solution and moving to the solution that decreases
the objective value the most. This process continues until no improving
moves are available in the local neighbourhood, i.e. a local optimum has
been found.
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Tabu search

Tabu search [42] is a local search based approach which avoids becoming
trapped in local optima by allowing moves to non-improving neighbouring
solutions. To avoid cycling between local optima, an adaptive memory is
used to store solutions which have been visited recently. Once a move to a
neighbouring solution is made, the new solution is added to a list of “tabu”
moves which cannot be visited for a specified number of iterations. The
number of iterations a solution remains in the tabu list is sometimes known
as “tabu tenure”. After solutions have served their tenure, they are removed
from the tabu list and can be visited again. However, the intention is that
the search will have moved to a different region possibly containing the
global optimum. See Section 2.6.2 for more details.

Simulated annealing

Simulated annealing [54] (also see Section 2.6.2) is an approach to searching
for solutions to optimisation problems which is based on the analogy of
cooling molten substances to achieve orderly final states. The simulated
annealing algorithm for optimisation problems requires the specification of
an initial temperature (1), a cooling scheme (7'(n)) and the total number of
iterations (maxN) before the algorithm terminates, where n is the current
iteration number. The algorithm starts from a given initial solution, each
iteration randomly selects a neighbouring solution, which is accepted if it
is an improving move. A non-improving move is accepted with probability
e~9/T() § is the increase in the objective value associated with the non-
improving move, T'(n) is the current temperature. In this thesis, a cut
and insert neighbourhood is used, this corresponds to taking a reserve crew
member and changing their start time. Also, the cooling scheme (value of
T at any given iteration) is based on an exponential decay, starting from a
specified initial temperature (7p) and reaching a final temperature (T,,qzn)
after max N iterations or a maximum time limit.

For the problem of reserve scheduling, the maximum change in the
objective value (mazd) that can occur by moving to a neighbouring solution,
is approximately equal to the maximum number of hub departures in a crew
pairing. l.e. the maximum number of cancellations that may result from
making reserve crew unavailable for that pairing. When maz is used as the
initial temperature, it can be referred to as the boiling point. This approach
has the effect of only accepting the worst possible move to a neighbouring
solution at the beginning of the algorithm.

Genetic algorithm

Section 2.6.2 and [43] explain the basic principles behind genetic algorithms.
In this thesis genetic algorithms are applied In Chapters 5, 6 and 10. In
Chapter 5 when a genetic algorithm is used to search for cancellation min-
imising reserve crew schedule the crossover operation which is used leads to
infeasible solutions which are corrected using heuristics. In Chapters 6 and
10 a different solution representation is used with which this problem does
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not occur.

In Chapters 6 and 10 the mutation operator is replaced with a single
iteration of a simulated annealing algorithm, the cooling scheme of which
therefore controls the mutation rate over the course of the algorithm. The
use of simulated annealing as the mutation operation makes the algorithm
similar to a memetic algorithm (described in Section 2.6.2).

3.6 Chapter summary

This chapter has given a general formulation for the problem of reserve crew
scheduling and reserve policy selection under operational uncertainty. The
main elements to consider when addressing this problem, from both offline
scheduling and online policy perspectives, were discussed. Specific details
were also given for the structure of the real world case study which is to
be considered in this thesis. The chapter finished with a section defining
recurring concepts that do no belong to any one of the subsequent chapters.
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Chapter 4

Simulation model and
methodologies

This chapter introduces a simulation framework for a single hub airline.
The simulation allows the study of possible reserve crew scheduling solu-
tions in the full range of possible disruption scenarios. In a single hub and
spoke network there are many sources of uncertainty influencing the way
in which an airline schedule unfolds on the day of operation. Crew can
be absent, flights can arrive late at the hub station (which may also delay
subsequent flights), airport congestion can cause delays and aircraft may
require unscheduled maintenance. Additionally, there are many possible
ways in which a disrupted schedule can be recovered, for instance, flights
may be cancelled, airline resources may be swapped to mitigate delays and
reserve crew may be used to cover for absent or delayed crew. In short, a
combinatorial explosion arises due to the many sources of uncertainty in an
aviation network and the way that recovery decisions influence the possible
future outcomes of scheduled events.

The continuous interaction between operational uncertainty and air-
line recovery makes it difficult to theoretically derive statistical distributions
for the outcomes of scheduled events (although Chapter 8 attempts this).
This task is simplified by considering a single realisation of a sequence of
events at a time and repeating this process to derive the required distri-
butions. A simulation is the ideal tool for this purpose. Section 2.5.3 de-
scribed several existing airline simulators which were used to address airline
scheduling problems under uncertainty.

The development of this simulation tool was initially motivated by
the desire to develop a scenario-based approach (see Chapter 9) to reserve
crew scheduling, as an alternative to the probabilistic model approaches
(Chapters 5 to 8), where the simulation’s purpose was to generate the re-
quired input scenarios. The simulation tool introduced in this chapter has
also proven to be an invaluable research tool in its own right and is used in
many of the subsequent chapters of this thesis.
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Chapter structure

In this chapter, Section 4.1 describes the goals of the simulation. Section 4.2
introduces the assumptions and assertions which underpin the simulation.
Section 4.3 illustrates a high level view of a single run of the simulation.
Section 4.4 describes the modelling of airline recovery. Sections 4.5 and
4.6 describe the simulation inputs and outputs. Section 4.7 describes the
reserve crew scheduling and reserve policy methodologies that are based on
this simulation.

4.1 Goals

The goals of the simulation include:

e To help to develop intuition of the problem. It can be quite
difficult to gain intuition about a problem characterised by the con-
tinuous interaction of uncertainty and decision making. A simulation
tool can be used to form a research cycle of testing, feedback and
refinement. Simulation provides immediate feedback on the perfor-
mance of new approaches. Simulation visualisation also provides an
additional method of testing (debugging) the implementation of ex-
perimental approaches.

e To derive input parameters for solution methodologies. Sim-
ulation can be used to derive input data for various solution method-
ologies. In Chapter 7 simulation is used to derive probabilities of delay
propagation. In Section 9.2 simulation is used to generate disruption
scenarios for scenario-based approaches to reserve crew scheduling. In
Section 4.7 a simulation based reserve crew scheduling approach is
described which learns when demand for reserve crew occurs and then
schedules reserve crew to meet those demands.

e To compare and validate alternative approaches to reserve
scheduling and online decision making. The simulation is also
a valuable tool for comparing alternative approaches to reserve crew
scheduling and online decision making and for determining what the
strengths and weaknesses of the various approaches are.

4.2 Simulation assumptions and assertions

The simulation consists of a number of distinct components including: the
airline’s resources (crew and aircraft); the assignments of those resources
(lines of flight); the airline’s recovery policy; the possible recovery actions;
journey time uncertainty; crew absence uncertainty; the flow of information;
and the airline’s schedule. For each of these elements of the simulation a
number of assertions and assumptions are made. The assumptions fall into
the categories of: Simplifying (S); True (T) (or intrinsic to the problem);
or KLM specific (K). Intuitive names are also given for the simplifying
assumptions (S) in italics.
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Crew
The assumptions made regarding airline flight crew are as follows:
e C1: (T) Each flight leg requires a team of crew.

e C2: (T) A team of crew consists of a number of crew with a range
of ranks. The required number of crew of each rank is determined by
the fleet type (see assumption A2).

C3: (T) Crew have qualifications that determine the fleet types they
can operate on.

C4: (S) Crew homogeneity assumption. The crew in a team with the
same rank and qualifications are treated as homogeneous.

C5: (S) Binary crew absence assumption. Absent crew are unavailable
for an entire crew pairing. In reality, if the crew become available after
the beginning of their assigned pairing they are used for other open
assignments (see Section 2.3).

C6: (T) Crew have specified duty start times for each day of their
assigned crew pairing.

CT7: (S) Fized duty length assumption. Crew are limited to a fixed
maximum daily duty length (typically 12 hours).

C8: (T) Crew have minimum rest periods between consecutive flights.
If a crew stays on the same aircraft for consecutive flights, the mini-
mum rest time, takes on the value of the scheduled ground time, that
is, if the scheduled ground time is less than the minimum rest time.

e C9: Crew are swappable if:

— C9a: (S) the crew teams are assigned to duties involving the
same fleet type. Fleet purity of crew pairings assumption.

— C9b: (T) the crew teams can complete each others duties within
their respective maximum duty lengths.

— C9c: (T) the crew teams are assigned to crew pairings (crew
lines of flight) that are swappable (see lines of flight below).

e C10: (S) Indivisible crew teams assumption. Crew teams stay to-

gether throughout the crew pairings that they are assigned to.

Aircraft
The assumptions made regarding the airlines airframes are as follows.
e Al: (T) Aircraft come in a range of fleets.

e A2: (T) The fleet type determines the number of qualified crew of
each rank required for the legal operation of a flight involving the
given fleet.
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e A3: (T) Aircraft have minimum turn times between consecutive
flights.

o Ad4: (S) Fleet homogeneity assumption. Aircraft are swappable if the
two aircraft are of the same fleet type.

Lines of flight (crew pairings or aircraft routings)

The assumptions made regarding (crew or aircraft) lines of flight are as
follows.

e L1: (T) Flight duties are sequences of flight legs that can legally
be performed in a single day or shift by an airline resource (crew or
aircraft). Lines of flight consist of a sequence of flight duties which
can be assigned to a single airline resource (crew or aircraft).

e L2: (T) Lines of flight have an associated fleet, which in the case
of aircraft routings, determines the fleet type required to operate the
line of flight, and in the case of a crew pairing determines the required
number of qualified crew of each rank.

e L3: (K) Lines of flight are fleet pure. Le. all flights on a line of flight
involve the same fleet type.

e L4: Lines of flight are swappable if:

— L4a: (S) they are associated with the same fleet type. Same
fleet swaps only assumption.

— L4b: (S) they share the same overnight station where the swap
can be reversed. Same overnight station swap assumption.

— L4c: (S) the next scheduled flight on the replacement resource’s
line of flight is later than the scheduled departure time of the
delayed line of flight for which recovery is sought. Otherwise the
swap can only increase overall delay, because a delayed resource
will delay an earlier flight even more (This assumption covers
the vast majority of beneficial resource swaps, See Section 8.1.4
and theorem 1 in Appendix C). Later flights are delayed less by
delayed resources assumption.

— L4d: (S) the replacement resource for the delayed line of flight
is not delayed for its own next scheduled flight. Otherwise the
swap just redistributes the total delay without reducing it. The
replacement resources must not be delayed for their own next
scheduled flight assumption.

Airline recovery policy

The assumptions made regarding the airline recovery policy are as follows.
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e RP1: (S) Sequential recovery assumption. Airline recovery actions
are made at the scheduled departure time of a flight, at that time
it is assumed that sufficiently accurate arrival time estimates will be
available for the flights which may provide swap opportunities (see
assumption I1 below).

e RP2: (S) Delay threshold assumption. Departures delayed by more
than 15 minutes are considered delayed. Recovery actions are consid-
ered for such delayed departures.

e RP3: (S) Cancellation threshold assumption. Departures delayed by
more than 180 minutes (the cancellation threshold) after the applica-
tion of recovery actions, are cancelled.

e RP4: (S) Crew absence cancellation assumption. Flights are cancelled
if absent crew from the assigned crew team cannot be replaced with
reserve crew. The exception to this is when “flying minus one” is
allowed, but this depends on passenger numbers being below a certain

threshold level.

e RP5: (S) Reserve policy assumption. The reserve policy determines
which reserve crew should be used to cover a given absence or crew-
related delay. The reserve policy also has the final say on whether or
not reserve crew should be used then or held for later use. A reserve
policy is a useful concept for thinking about how reserve crew are
used.

e RP6: (S) Deadheading not viable for solving short notice delays and
unexpected crew absence disruptions assumption. Disruptions that oc-
cur at spoke stations are solved at those spoke stations. Namely that
crew absence that effects crew stationed at spoke stations are covered
using reserve crew stationed at that spoke station, which makes for a
trivial reserve crew scheduling problem due to low flight volume. The
exception to this assumption is when reserve crew are deadheaded to
a spoke, but this is rarely useful for the types of disruptions which are
the focus of this work.

e RPT7: (S) Low spoke station flight volume assumption. Swap recovery
actions are not available at spoke stations due to low flight volume,
and therefore any delays simply propagate back to the hub station via
the return leg.

Recovery actions

The assumptions made regarding airline recovery actions are as follows.
e RA1: (T) Delays can be absorbed by swapping crew and/or aircraft.

e RA2: (S) Delay reducing swaps only assumption. Delay reducing
swap recovery actions must not cause an increased delay of another
flight. See Theorem 1, Appendix C
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RAS3: (T) If no delay reducing recovery actions are available but the
flight is still feasible, operate a delayed schedule (i.e. do nothing, and
accept the delay).

RA4: (T) Reserve crew can be used to cover for absent or delayed
crew.

RA5: (T) Flights that are still infeasible after the after the consid-
eration of recovery actions are cancelled. For a single hub network it
is usually only a single out and back cycle that is cancelled (a can-
cellation cycle, see Section 2.2.1), the line of flight resumes (if then
feasible) at the next scheduled hub departure.

RAG6: (S) Swap recovery selection assumption. After the considera-
tion of delay recovery actions, select the recovery action which min-
imises the delay of the disrupted flight. Ties are broken by selecting
the recovery action involving the least number of changes from the
original schedule. Where the degree of schedule changes is quantified
according to the product of the number of individual crew or aircraft
swaps and the number of other lines of flight directly affected by the
swap recovery action. After this, remaining ties are then broken by
selecting the swap with the largest amount of common ground time
in which the swap recovery action can be undone.

Reserve crew

The assumptions made regarding reserve crew are as follows.

RC1: (T) Reserve crew come in a variety of rank and qualification
combinations, which must be respected when using reserve crew.

RC2: (S) Fly below rank assumption. Reserve crew can fly below
rank, but not above (flying above rank, although possible, is not con-
sidered because it is much less common).

RC3: (S) Reserve block regularity assumption. Reserve crew standby
duties are regular, in the sense that they begin at the same time each
day, within a reserve block.

RC4: (T) The earliest start time of a grouping of reserve crew is the
maximum of the start times of those reserve crew. The maximum
duty finish time of a grouping of reserve crew is the minimum of the
duty finish times of those reserve crew.

RC5: (S) Reserve crew use assumption. Reserve crew can be used to
replace delayed or absent crew provided that this does not result in a
departure delay exceeding the cancellation threshold.

RCG6: (S) Reserve duty time feasibility assumption. Reserve crew can
be used if the adopted line of flight is scheduled to finish on or before
the reserve crew’s maximum duty finish time.
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e RCT: (S) Reserve crew domicile assumption. Reserve crew are sta-
tioned at the hub station.

e RCS8: (S) Reserve crew response time assumption. Reserve crew have
a zero response time.

e RC9: (S) Once only reserve crew use assumption. Once reserve crew
have been used once to replace absent or delayed crew they adopt the
disrupted crew pairing, and do not return to being standby reserve
crew.

Journey time uncertainty

e J1: (S) Journey time uncertainty assumption. For each origin-destination
pair there is a statistical distribution which captures journey time un-
certainty. Although not considered in this thesis, the natural extension
of this is that different distributions apply at different times of the day
(due to congestion) and also in different weather conditions.

Crew absence uncertainty

e CA1: (S) Crew absence independence assumption. Each individual
crew member has an independent probability of being absent. For each
crew team the simulation requires a cumulative probability distribu-
tion of different numbers of crew of each rank being simultaneously
absent. Note that the probabilities of crew absence may be affected
by factors such as seasonal trends in contagious diseases. Although
this is not explicitly considered in this thesis, different distributions
could be used to reflect such trends.

Information flow

e I1: (S) Perfect ET A knowledge assumption. The uncertain arrival
time of a flight is known with perfect accuracy at all times after the
departure of the flight. The justification for this assumption is that
the knowledge of arrival times will typically only be required at times
close to the scheduled arrival time of those flights, so it is reasonable to
assume that very accurate estimates of arrival times will exist at those
times. Although not considered in this thesis, the alternative is to
model arrival time distributions shrinking in width towards randomly
generated journey times whilst journeys are in progress.

Schedule

e S1: (T) All flight legs are planned with specific origins, destinations,
departure times, arrival times, assigned crew and aircraft.
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Figure 4.1: Simulation flow chart

4.3 Simulation flow chart

Figure 4.1 shows a flow chart corresponding to a single run of the simu-
lation. The simulation considers each departure in departure time order.
If the given departure corresponds to the start of a new crew pairing, the
number of absent crew affecting that crew pairing is stochastically gener-
ated from the corresponding statistical distribution. If crew are absent, and
reserve crew are available, they are used to replace the absent crew, oth-
erwise the flight has to be cancelled. The simulation then computes the
earliest departure time based on the previous arrival times of the scheduled
resources. If the departure is not delayed beyond the delay threshold the
flight goes ahead and a journey time is generated from the relevant jour-
ney time distribution. If the flight is delayed beyond the delay threshold,
recovery actions are considered. If, after the implementation of recovery
actions, the delay exceeds the cancellation threshold, the flight is cancelled.
Otherwise the flight goes ahead with a journey time generated from the
relevant distribution. Swaps are undone at the end of each day (not shown
in the flowchart). The simulation continues in this fashion until the whole
schedule has been implemented.
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4.4 Airline recovery

This section concerns delay recovery and absence recovery (see Figure 4.1).
In the event of a delay exceeding the delay threshold, the simulation consid-
ers all combinations of single crew and aircraft swaps. Additionally, teams
of reserve crew are considered in conjunction with aircraft swaps, the de-
lay recovery action that minimises the delay without increasing the delay
of another flight is preferred (assumption RAG6, the swap recovery selection
assumption). The assumed airline recovery policy is defined by the assump-
tions of Section 4.2. Assumptions C9 (crew swap assumptions) and A4
(fleet homogeneity assumption) define which crew and aircraft are swap-
pable. Assumption L4 (swappable line of flight assumptions) defines the
condition under which lines of flight are swappable. Assumptions RP1-4
specify when recovery actions are required and the order in which disrupted
flights are recovered. Assumptions RA1-6 define what the available recov-
ery actions are. Assumptions RC1-6 define the feasibility of reserve crew
in the event of crew-related disruptions.

4.4.1 Delay recovery

As stated by Assumption RP2 (delay threshold assumption), delay recov-
ery is considered if a departure h is delayed beyond the delay threshold,
in which case all combinations of single crew and single aircraft swaps are
considered. As in Assumption RA2 (delay reducing swaps only assump-
tion), a swap recovery action must reduce the delay of departure h, without
invoking additional delay on the departures directly affected by the swap.
In Appendix C this is shown to be a necessary condition for a beneficial re-
source swap for the case of a single resource swap and a sufficient condition
for simultaneous crew and aircraft swaps.

The earliest departure time of a flight is a function of the earliest
crew and aircraft ready times, therefore the effect of a crew swap cannot be
appreciated in isolation from the effects of aircraft swaps. As a result, all
combinations of single crew and single aircraft swaps have to be enumerated
and evaluated in terms of their associated delays. To avoid enumerating
all combinations of single crew and aircraft swaps, assumptions C9 (crew
swap assumptions), A4 (fleet homogeneity assumption) and L4 (swappable
lines of flight assumptions) reduce this to considering only the swappable
resources if they are assigned to swappable lines of flight. This leaves a set
of feasible crew assigned to swappable crew pairings and feasible aircraft
assigned to swappable aircraft routings. Furthermore, individual resources
can be ruled out if their ET'As—from previous flights—are greater than the
ETA of the delayed resource assigned to departure h, or greater than the
cancellation threshold (CT') of departure h. If a single resource satisfies
all of these requirements, a feasible swap time window is calculated for the
resource (denoted CTW and ATW for crew and aircraft respectively). If
the time window has non-negative width, the resource is added to the list
of feasible resources (F'C' and F'A for crew and aircraft respectively) to be
considered as possible combinations of single crew and single aircraft swaps.
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The feasible time window for crew k is as follows.

CTW} = max{Dy, cetay, + MS} (4.1)
CTW?E = min{cetac, + MS, D, + CT} (4.2)

MS denotes the minimum (sit) rest time for crew between consecutive
flights, T'T" the minimum turn time for aircraft between consecutive flights,
Dy, the departure time of flight h, C}, the crew assigned to flight A, and cetay,
the ET A of the k*" swap feasible crew. Equivalent expressions exist for fea-
sible aircraft swap time windows. After this, all combinations of single crew
and single aircraft swaps are considered. Feasible combinations have crew
and aircraft feasible swap time windows that overlap. They will also have
the property that the replaced resources will not increase the delay of the
next departures on the lines of flight they adopt. Assumption RA6 (swap
recovery selection assumption) defines the preference order for selecting a
recovery action.

Algorithm 1 Pseudocode finding a delay minimising swap recovery action
1: for VIl € FC do
2: for Ym € FA do

3: if an overlap exists between the feasible swap time windows CTW ¢! and
ATWFAm and the swap does not increase the delay of other affected flights
then

4: if max{CTWlfcl, ATWlfAm} < best alternative departure time then

o: Update best swap recovery action

6: Update best alternative departure time

T else

8: if max{CTW,, o, ATW) AmY = hest alternative departure time then

9: if this swap is easier to implement and undo later than the current

best swap recovery action then
10: Update best swap recovery action
11: Update best alternative departure time
12: end if
13: end if
14: end if
15: end if
16: end for
17: end for

Algorithm 1 shows how the delay minimising swap recovery action is
calculated from the list of feasible crew and aircraft and their associated
feasible swap time windows.

4.4.2 Reserve teams constructed and used to replace
delayed connecting crew

After the consideration of all feasible combinations of single crew and single
aircraft swaps, departure h may still be delayed. If the flight is delayed due
to a delayed crew, delay can be absorbed by constructing a replacement
team of crew out of individual reserve crew, provided that the generated
reserve team is feasible and reduces the delay (assumptions RC1-6).
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If the reserve policy permits the use of a reserve team for this purpose,
the replaced delayed crew can potentially be used for swaps later on. A swap

with a reserve team is modelled as the delayed crew adopting an empty line
of flight.

4.4.3 Absence recovery

In the event that some crew are absent from a team of crew, flights on
the affected crew pairing are delayed or even cancelled until reserve crew
become available to replace the absent crew. Reserve crew use is the only
recovery action that can avoid flight cancellation. In this thesis a number of
reserve policies allow for the possibility of holding back reserve crew in the
event of crew absence. The potential benefits of reserve holding include:
the possibility that a more damaging instance of crew absence could be
covered instead; the possibility that a given instance of crew absence uses
too many reserve crew which could have been used to cover other disruptions
for greater overall reward; and also that using reserve crew may induce a
large amount of delay which may have a high probability of propagating.

4.5 Simulation input

The simulation requires an input schedule and statistical distributions cor-
responding to the uncertain elements of the simulation.

4.5.1 Input schedules

The required schedule inputs for the simulation are the set of flight legs
complete with scheduled departure times, arrival times, origins, destina-
tions and the crew and aircraft assigned to each flight. The schedules used
with this simulation are mostly based on real data (Chapter 5 is the only
exception). The real schedule data is based on KLM'’s operations in August
2012. To avoid creating methods that are specialised for one particular
example schedule, a random schedule generator has been created. The
schedule generator has parameters that control different aspects of sched-
ules to make them more or less challenging in terms of maintaining crew
feasibility. The tightness of generated schedules can be controlled using a
parameter which controls the probability that journeys can be completed
within their allocated time windows. The occurrence of crew-related delays
can be controlled by varying the rate at which crew change aircraft during
duties. Such schedules are used in Chapters 6 to 9 during the development
of several of the approaches to reserve crew scheduling.

When considering the case of multiple fleets, crew ranks and qualifi-
cations (Sections 6.3, 9.8 and Chapter 10) real aircraft lines of flight were
derived from the August 2012 data, and crew pairings were generated using
a set partitioning model with CPLEX as the solver. Chapter 10 uses three
real schedules of varying sizes to compare all approaches to reserve crew
scheduling and online reserve decision making considered in this thesis. In
addition, versions of each of these schedules are generated which have a
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heightened delay risk and minimum scheduled ground times. The purpose
of these schedules is to highlight the potential of the models which aim to
minimise delay propagation in instances where this is a significant issue.
The schedules based on real data have minimal risk of delay propagation,
since they include scheduled slack.

4.5.2 Stochastic elements of the simulation

The simulation requires input probability distributions for journey times
and crew absence. The schedule data for KLM in August 2012 provides
scheduled and actual departure and arrival times. This allowed the deriva-
tion of journey time distributions for each origin-destination pair. The sim-
ulation does not explicitly model ground delays due to airport congestion,
as these are included as part of the journey time. Additionally, KLM also
provided block time (gate to gate) distributions that they had used in one of
their own simulation studies. This data was used in the schedule generator
described above. KLM also provided historical data on crew absence for a
7 year period. From this, probabilities that any given crew member will be
absent were approximated (see the crew absence uncertainty assumptions
of Section 4.2).

4.6 Simulation output

Simulation is used to provide quick feedback about possible changes to a
system without actually implementing the changes in reality. The output
from this simulation includes the following.

e Schedule visualisation.

e Average performance measures for delays, cancellations, reserve crew
demand and utilisation.

e Graphs regarding the types of recovery actions used for different dis-
rupted flights.

e Animation of the paths of airline resources through the airline net-
work.

Figure 4.2 shows the schedule visualisation output of the simulation.
This is useful when checking that the input schedules are consistent and
are free of errors. Green lines represent flights from the hub station to
spoke stations. Yellow lines indicate flights from spoke stations to the hub
station. Whilst line lengths indicate the planned duration of flight legs.
Horizontal sequences of flight legs correspond to aircraft routings, whilst
blue lines indicate crew pairings. l.e. non-horizontal blue lines show crew
changing aircraft between consecutive flights. If an input schedule contains
errors these may be apparent in the schedule visualisation as, for example,
aircraft routings whose arrival time from one flight overlaps the departure
time of the next flight or multiple crew teams connecting to the same flight
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Figure 4.2: Airline schedule visualisation, the flight legs to the hub (yellow)
or to a spoke (green) which are assigned to aircraft (rows) and crew (blue
lines)

leg. The simulation visualisation gives clues as to what the source of the
error may be.

The output performance measures from the simulation include: can-
cellation rate (overall and per fleet); reserve utilisation (overall, per reserve
type and disruption type); delay (average total delay per flight, average crew
delay per flight, average delay size, probability of delay (and probability of
delay>30 minutes); crew swap rate; aircraft swap rate; cancellation measure
(average and maximum). These performance measures are calculated from
the average performance over a large number of repeat simulation runs. As
well as average performance measures, an optional output is a list of the
total accumulated cancellation measures from each individual run of the
simulation, this information can be used to analyse the variance of the per-
formance of a given reserve crew schedule and reserve policy combination
(see Figure 9.6 for an example of this).

Figure 4.3 shows an example of the recovery action output from the
simulation, for a 2 day schedule example. The graph shows how often
various recovery actions were applied at each departure over a number of
repeat simulation runs. The bars for each recovery action at each departure
are stacked on top of each other. The use of reserve crew to cover for absent
crew is uniform, due to the assumption that all crew have an equal chance
of being absent. Delays typically become more common over the course of
a day’s operations, as subsequent flights may experience delays propagated
from previous flights. As a result, delay recovery actions such as crew swaps
and aircraft swaps occur more frequently at these times. Towards the end
of the day large red spikes usually correspond to reserve crew being grouped
into teams and used to replace delayed connecting crew. This happens at
the end of the first day in the example given.

80



| 2| stacked recovery actions bar chart EI@

cuncellutions

frequency Crew swap

aircraft swap

straight swap

Depastitve Nisiber

Figure 4.3: Example recovery actions graph

A visual simulation output such as that of Figure 4.3 can be used
to provide immediate feedback on whether or not a proposed approach to
reserve crew scheduling is effective or if there are any obvious weaknesses
in a proposed solution.

4.7 Simulation based methodologies

One of the goals of this simulation is to provide data which can be used for
reserve crew scheduling and reserve policy methodologies. In this section a
simulation based reserve crew scheduling heuristic is introduced called the
area under the graph approach. Then two simulation based reserve policies
are described.

4.7.1 The area under the graph approach to reserve
crew scheduling

The area under the graph approach to reserve crew scheduling is based on
running a simulation without reserve crew as an available recovery action
and keeping a record of the times at which reserve crew were in demand.
After a large number of repeat simulations, the accumulated data can be
used to schedule reserve crew at equal intervals of accumulated demand.
The name area under the graph comes from an intuitive visualisation of
this approach, in which the demand for reserve crew over time can be rep-
resented as a time series graph, and the process of scheduling reserve crew
to satisfy demand evenly, can be visualised as scheduling reserve crew at
equal intervals of area under the demand graph.
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Visualisation of the area under the graph
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Figure 4.4: Reserve demand graph and equal total demand intervals

Figure 4.4 shows an example graph of the cumulative reserve demand
derived from 20000 repeat simulation runs. The particular example shows
the demand for reserve crew of low rank with qualification type 2, of which 5
reserve crew are available for scheduling. The black vertical lines mark equal
intervals of total demand. These correspond to the times at which reserve
crew are scheduled in this approach. More reserve crew will be allocated
at times of the day when demand is high. The jump in the cumulative
demand for reserve crew at around the 150" hub departure of the day can
be attributed to an increased rate of delayed connecting crew after the first
round of flights of the day, as reserve crew can be used to replace delayed
connecting crew.

In Chapters 5, 7, 9 and 10 the area under the graph approach is
compared to various other approaches to reserve crew scheduling which
were developed during this research.

4.7.2 Simulation reserve policy: SIM

The first simulation based reserve policy, referred to as SIM hereafter, runs
a number of repeat simulations to evaluate and compare alternative reserve
use decisions, such as holding reserve crew or using them to cover a given
disruption. When this policy is implemented during a simulation which is
being used to evaluate a given reserve crew schedule, a branch-off simulation
is used to evaluate alternative reserve crew decisions in terms of the associ-
ated overall expected cancellation measure. The branch-off simulations that
are used to evaluate reserve decisions require a rule based reserve policy,
otherwise extra branch-off simulations will be recursively created, leading
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to computational intractability. The SIM policy is a realistic proposition
in a real time setting, however when using the STM policy in the valida-
tion simulation itself, the number of repeat simulations used to evaluate
each alternative reserve decision has to be limited to control the amount
of time taken to obtain results from the validation simulation. The cost of
limiting the number of repeat simulations used to evaluate each alternative
reserve decision is an increased risk that the limited sample of simulations
is not representative of the true value of a given reserve decision. This is
because confidence intervals are wider when they are derived from smaller
samples. The SIM policy is used as a method of comparison in Chapter
10. In Appendix Section D.3 several variants of the SIM policy are also
compared with a policy based on a probabilistic model and several rule of
thumb heuristic policies.

4.7.3 Look up table policy: LUT

This section describes a look up table policy, where the table stores the
expected values of states in terms of the total expected future cancellation
measure (see Section 3.5.1) that will be accumulated thereafter if the given
state is reached. The simulation is used to populate the look up table (LUT)
with the values of states. A state is defined by the total number of reserve
crew of each rank and qualification combination that remain available and
the time/departure number at which those reserve crew are available. Such
a look up table can be used to determine whether or not using reserve crew
to cover a given disruption represents a globally optimal decision and if so
which combination of reserve crew should be used. When a crew-related
disruption occurs for which reserve crew use is at least an immediately ben-
eficial action, the LUT can be used to determine the value of each of the
available decisions in terms of the overall benefit. To evaluate a given deci-
sion (reserve use or holding reserve crew); firstly, find the state that decision
leads to (i.e. the number of reserve crew of each type that will be remaining
come the next scheduled departure), and secondly, obtain the value of that
state from the LUT and then finally, add a value contribution correspond-
ing to the immediate cost of implementing that decision (delay cancellation
measure or cancellations directly caused by the decision). After evaluating
all available actions, choose and implement that with the best value (i.e.
that which minimises the total expected future cancellation measure).

Let Z denote the set of available reserve crew decisions, including
reserve holding, let S(¢) denote the state at departure t. Let T'(z) denote
the vector containing the number of reserve crew of each type which are used
if decision z is implemented, and let C'M (z) denote the cancellation measure
experienced by departure ¢ if decision z is implemented. Let V' (S,t) denote
the value of being in state S at departure ¢ (the values stored in the LUT).
Then the optimal reserve crew decision can be expressed by Objective 4.3:

max V(S(t)—T(2),t+ 1)+ CM(2) (4.3)
Objective 4.3 determines the solution with the lowest total expected future
cancellation measure, i.e the optimal decision, given no knowledge of future
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outcomes.

The underlying assumption of a LUT policy is that the values of states
(V(s,t)) correspond to an optimal policy being followed thereafter. This
means that the LUT has to be populated with values for all states corre-
sponding to an optimal reserve policy. So, to determine an optimal policy,
knowledge of the optimal policy is required in the first place (see Section
2.7.4), which makes this a challenging problem.

Instead, the LUT policy proposed in this section learns the values of
states during a simulation learning phase in which the absence only policy
(see Section 3.5.2) is used as the reserve policy. It is claimed here that
the absence only policy approximates the behaviour of an optimal reserve
policy. This claim is justified by the results of Section 10.5 and appendix
Section D.3, which show that the best reserve policies nearly always cover
crew absence disruptions but rarely cover crew-related delay disruptions.
This approach to learning the value of states make this LUT policy an
opportunistic reserve policy which can be used to find the exceptional situ-
ations in which the absence only policy should be overruled. In future work
(see Chapter 12) the aim is to use approximate dynamic programming to
learn a truly optimal policy from a simulation such as the simulation which
is presented in this chapter. In Chapter 10 the LUT policy is compared to
a variety of other reserve policies developed during this project in a number
of realistic problem instances.

4.8 Chapter summary

This chapter has introduced the simulation tool that will be used for a
variety of different purposes in this thesis, from parameter generation to
the validation and comparison of the approaches proposed herein. The as-
sumptions and assertions of the simulation were introduced. Details of the
simulation implementation were given, especially regarding the modelling of
airline swap recovery actions, which is a recovery action that has the poten-
tial for reducing reserve crew demand. The simulation’s input requirements
and it’s outputs were discussed. Finally, several simulation based method-
ologies for reserve crew scheduling and reserve policies were introduced.
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Chapter 5

Probabilistic crew absence
model

The aim of this chapter is to model, in the simplest way possible, the prob-
lem of crew related disruptions and reserve crew used to cover for them,
including only those features which characterise the underlying problem,
whilst ignoring the features that are considered to be non-complicating de-
tails. This chapter introduces a model for crew absence disruptions and
reserve crew used to cover for them. Crew absence disruptions are mod-
elled as having probabilities of occurring and reserve crew are modelled as
having probabilities of remaining available. The model is able to calcu-
late the effect a given reserve crew schedule has on the probabilities that
crew absence disruptions go uncovered, given the initial probabilities that
they occur. The purpose of the model is for use as an evaluator of reserve
crew schedules, which can be used in a range of methodologies to search for
reserve crew schedules which offer the greatest level of protection against
operational infeasibility. The search methodologies in which the proposed
simplified probabilistic crew absence model (SPCAM) is used as an evalu-
ator include: constructive/greedy algorithms; a variety of meta-heuristics;
and a number of dynamic programming based heuristics. These search
methodologies are compared to the optimal solutions for a number of small
test instances.

The model presented in this chapter was inspired by the work of
Paelinck, which was described in Section 2.3. In this chapter, reserve crew
demand is modelled (in more detail) at a per flight level and the demand
per flight need not be constant. The model also features a reserve use or-
der policy that is modelled by the fundamental equations which are used
for evaluating the effect that any given reserve crew schedule has on the
probabilities that crew-related disruptions still go uncovered.

The SPCAM introduced in this chapter underpins all of the subse-
quent probabilistic models presented in this thesis (see Chapters 6 to 8).

This chapter presents the first probabilistic approach to reserve crew
scheduling considered in this project and corresponds to the first full con-
ference paper [17] published during this research.

85



Chapter structure

The structure of this chapter is as follows. Section 5.1 describes the sim-
plified problem. Section 5.2 introduces the SPCAM. Section 5.3 considers
possible objective functions for the model. Section 5.4 investigates alter-
native solution methodologies to full enumeration. Section 5.5 outlines the
areas for improvement for the SPC AM. Section 5.6 summarises the main
findings from this chapter.

5.1 The simplified problem

The SPCAM is aimed at early planning, just after the flight legs have been
determined, when very little is known about crew disruptions on the day
of operations. In its simplest form the crew unavailability problem can be
modelled as a stream of departures from a single station (the hub). Each
departure has a number of scheduled crew and each scheduled crew has
some probability of absence. The end goal is to use the predictive model
(SPCAM) that is developed in this chapter to schedule a fixed number
of reserve crew, before any information is available about crew absence, to
cover as much crew absence as possible. Whenever a crew absence occurs,
it is assumed (in this simplified problem) that, reserves are used in earliest
start time order (assumed to be the same as earliest finishing time order).
Reserve crew have fixed standby duty start times and duty lengths, which
determine which departures they can feasibly cover in the event of crew
absence. The simplified problem requires the following assumptions. Some
of these assumptions are themselves simplifications of the assumptions of
Section 4.2, and are referred to below.

5.1.1 Assumptions

1. The reserve crew scheduling problem consists of a set of departures
from a crew base where each departure has probabilities of crew ab-
sence and therefore the possible need for reserve crew. This assump-
tion represents a simplification of assumptions L1 (definition of flight
duty) and S1 (definition of an airline’s schedule).

2. The maximum demand for crew per departure is 1, or this can be in-
terpreted as a single team of reserve crew. This assumption represents
a simplification of assumption C2 (crew teams consist of a number of
crew of a variety of ranks).

3. The chance of crew absence is captured accurately by unique prob-
abilities for each departure. That is, the probability that a flight is
affected by crew absence does not depend on the probabilities that
other flights are affected by crew absence. This approach reflects the
case where different crew are assigned to all flights. This assumption
corresponds to assumption CA1 (crew absence independence assump-
tion), but has been reworded to fit the simplified problem that is
considered in this chapter.
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4. Reserve crew cover for the first crew absence that occurs within their
fixed length duty period, if more than one reserve crew member is
available then the crew member who started their duty period first is
used. See assumption RP5, the reserve policy assumption.

5. Reserve crew can undertake a maximum of a single duty within any
one duty period. This can be justified by the fact that, when reserve
crew are used, they typically adopt the remainder of the pairing (string
of flight duties) of the absent crew member they are covering for. See
assumptions RC1-6 (assumptions regarding reserve crew).

6. Reserve crew duties begin at times corresponding to scheduled depar-
tures. See assumption RC3 (reserve block reqularity assumption).

Assumptions 1 and 3 mean that the base problem can be represented as
a vector of probabilities (()) where ¢; represents the probability that the
crew scheduled for departure ¢ will be absent. Assumption 2 means that the
problem can be represented as a vector as opposed to a matrix for specifying
the probabilities of different numbers of crew being absent at each departure
(see Chapter 6 for the relaxation of assumption 2). Assumptions 4 and 5
state the way that reserve crew are to be used: reserve crew cover for the
first disruption that occurs within their duty period, they can only cover
one flight and therefore once they undertake a cover duty they cannot cover
for any of the remaining departures that occur within their duty period.
Assumptions 4 and 5 also define the precedence ordering for the use of
reserve crew in the event that more than one reserve crew is available for
a given crew absence disruption, which is to use the feasible reserve crew
member who has been on duty the longest. Assumption 6 tries to minimise
wasting reserve crew duty time by not scheduling them before the first time
at which they may be required to cover crew absence. A consequence of
assumptions 2 and 6 is that an optimal solution to the problem will involve
no more than one reserve crew scheduled to each possible start time. This
can be used to reduce the number of feasible solutions searched when trying
to find a good or optimal solution to the problem.

Simplifying assumptions 1, 2 and 4 are removed in subsequent chapters.
Table 5.1 defines the notation used in the model.

Inputs
Q Vector of probabilities. The probabilities that the originally assigned (regular) crew for each
flight are absent. g4 is the probability that the crew assigned to flight d are absent.
L Length of a reserve duty period.
R Number of reserve crew available for scheduling.
n Total number of departures in the airline’s schedule during the reserve crew scheduling
horizon.
Decision variable
X Vector of start time indices for standby duty reserve crew duties. xj states the standby
duty start time index of reserve crew member k.
Output
P :  Vector of probabilities. The probabilities that neither the originally assigned crew or reserve

crew are unavailable for each flight. pg is the probability that the originally assigned crew
are absent and reserve crew are not available to replace those absent crew.

Table 5.1: Notation
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5.1.2 Fundamental equations

The SPCAM is based on the idea that the probability that a crew related
disruption goes uncovered depends on the probability that the disruption
occurs in the first place and the probability that reserve crew are available to
cover the disruption. The SPCAM (namely Algorithm 2) that is presented
in this chapter outlines how to calculate the probabilities that all flights
in a schedule are cancelled due to crew unavailability (i.e. P) after taking
into account the effect that a reserve crew schedule (X) has on reducing the
probabilities of cancellations due to crew absence. In short, the SPCAM is
a function of the initial probabilities of crew absence () and a reserve crew
schedule X, which returns P. I.e. P = f(Q, X). The end goal is to use this
function as the basis for a surrogate objective function (Section 5.3) that will
be used to find an optimal (disruption minimising) reserve crew schedule.
The advantage of this approach is that the proposed model is much faster
than using repeat simulations to evaluate the quality of different potential
reserve crew schedules. An iterative scheme is employed to calculate P for
any reserve crew schedule X starting from any (). The iterative scheme
is based on the following assignment equations which are applied for each
reserve crew (k) in turn and for each crew absence disruption (d) each
reserve crew could feasibly be used for.

= 74 (1— pa) (5.1)

pa = pa(l—7f) (5.2)
In Equations 5.1 and 5.2 d denotes the departure number and r{ the prob-
ability that reserve crew member k is available at departure d. py gives
the probability that crew are unavailable for departure d, after taking re-
serve crew availability into account. Equation 5.1 shows how to update the
probability that the reserve crew member remains available for subsequent
disruptions, given that they might be used to cover the given disruption.
Equation 5.2 shows how to calculate the probability that a crew related
disruption still occurs given that a reserve crew member is available with
some probability. These equations provide the basic modelling principle on
which Chapters 5 to 8 are based. The following example is used to illustrate
the basic idea for the example of a single flight, with a 0.1 chance of crew
absence, and a single reserve crew is scheduled to begin their standby duty
at the departure time of that flight. This example corresponds to the first
iteration of Algorithm 2.

d+1
Ty

If, py = 0.1, i.e. there is a 0.1 chance of crew absence
and, r; = 1, i.e. reserve 1’s duty has just begun
—  ?=1x(1-0.1)=0.9
because the reserve has a 0.1 chance of being used
= pr=01x(1-1)=0

because the reserve will definitely be available

These equations are applied iteratively to each departure, considering the
effect of each scheduled reserve crew member, the procedure for doing this
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is outlined in Algorithm 2, in Section 5.2.1.

5.2 The model

The problem inputs can be represented as a vector of probabilities (), where
each element denotes the probability of crew absence for a particular depar-
ture. A reserve schedule X can be represented as a list of reserve duty start
times, or equivalently departure numbers (because possible reserve duty
start times are discretised according to the scheduled departure times). For
example, r;, = 5 means that reserve k starts their standby duty at the sched-

uled departure time of flight 5, i.e. lower case is used to refer to elements
of vectors P, () and X.

3)
4)

For a given set of departures with associated probabilities of crew absence
and a reserve schedule, we can determine the effect the given reserve sched-
ule has on the probabilities of crew unavailability. The vector of probabilities
of crew unavailability is denoted P and is a function of the reserve sched-
ule and the probabilities of crew absence of the originally scheduled crew,
P = f(Q,X). The procedure for finding P for a given reserve schedule in
Algorithm 2 reflects the assumptions given in Section 5.1.1.

Q = {Ch 42 43 g4 }

(5.
X = {xy 292324 ...} (5.

5.2.1 Calculating the effects of a reserve crew sched-
ule on the probabilities of crew unavailability

Algorithm 2 Scheme for calculating crew unavailability probabilities given
a reserve crew schedule

1. P=Q

2: for k=1 to R do

3 k=

4:  for j =z to min(n,zxy + L — 1) do
5 == p)

6: p; =pi(1 =)

7. end for

8: end for

The first line of Algorithm 2 sets P equal to Q. Q represents the initial
problem and P will finally represent the probabilities of crew unavailability
after the reserve crew schedule has been taken into account. The role of
Algorithm 2 is to calculate P. Algorithm 2 states that, for each reserve crew
that begins a duty (lines 2 to 7), initialise the probability of that reserve
crew’s availability to 1 (line 3). For each departure that occurs (lines 4 to 7)
in a reserve crew’s duty, update the probabilities that they remain available
for subsequent disruptions (line 5) and update the probability that no crew
are available for that departure (line 6).
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Here it is assumed that departures take place at equal time intervals,
as a result, reserve crew duty lengths are defined in terms of a constant
number of departures (L) that occur within their duties. In subsequent
chapters departure times are based on real schedule data and the feasibility
of reserve crew also depends on the expected durations of the disrupted
crew duties.

In Algorithm 2 reserve crew are considered in earliest start time order,
because X is sorted in an ascending order. In this way Algorithm 2 reflects
the policy that reserve crew are used in earliest start time order (also referred
to as the default policy, see Section 3.5.2). Changing the order in which
reserve crew are considered allows other (order based) reserve policies to be
modelled.

5.3 Surrogate objective function investiga-
tion

The main motivation for developing this probabilistic model is to provide a
surrogate objective function for evaluating potential reserve crew schedules,
where the probabilistic model is to be used to replace evaluation by simu-
lation. Evaluation by simulation is computationally expensive and is not a
viable option for the evaluation intensive search methodologies that are to
be used to search for a good reserve crew schedule.

In order to use this model to search for a good quality reserve schedule,
the reserve schedule that minimises the vector P must be determined. A
single valued measure of P is required, this will enable simple comparison
of the relative quality of alternative reserve crew schedules. A number of
single valued measure of P are possible, Table 5.2 lists the possibilities.

Symbol | Objective function Equation

A Sum of P > i1 B

B Max P Maz ;- n(Pj)

C Standard deviation s

D Coefficient of variation 5

E Product of mean and standard deviation | s

F Weighted sum of mean and max P aP + bmax;—; ,(P;)
G Mean absolute deviation m

H D with mean absolute deviation z

1 E with mean absolute deviation mP

Table 5.2: Objective functions

In order to find the best form of the surrogate objective function based
on the SPC'AM , a simulation framework is used to derive performance mea-
sures corresponding to the optimal reserve schedules according to each of
the surrogate objective functions given in Table 5.2. Reserve utilisation
and flight cancellation will be the performance measures used to determine
the most effective form for the surrogate objective function. The simulation
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Objective function | Reserve utilisation (rank) | Cancellation rate (rank)
A 0.9455 (1) 0.1848 (1)
B 0.9303 (7) 0.1904 (7)
C 0.9439 (4) 0.1864 (5)
D 0.8747 (9) 0.2475 (9)
E 0.9442 (3) 0.1859 (3)
F 0.9410 (6) 0.1871 (6)
G 0.9435 (5) 0.1860 (4)
H 0.8916 (8) 0.2378 (8)
I 0.9444 (2) 0.1856 (2)

Table 5.3: Reserve utilisation and cancellation rates in 2000 simulations

(50000 flights)

experiments are based on 20 randomly generated problem instances consist-
ing of 25 departures, each with uniformly random generated probabilities of
crew absence for each departure and 9 reserve crew available for scheduling.
The number of possible reserve schedules—or combinations of start times
for reserve crew—for the simplified crew absence problem is as follows:

Reserve schedules = ( ]7; ) = Wim! (5.5)
The structure of the solution space is such that the natural definition of
neighbouring solutions is that of moving a reserve crew’s start time to an
alternative start time which currently has no reserve crew assigned. This
neighbourhood structure is used in the local search based approaches de-
scribed in Section 5.4.1. For the case when n = 25 and R = 9 the number
of possible reserve crew schedules is approximately 2 million. This excludes
reserve schedules involving more than one reserve beginning duties at the
same time, which for this particular formulation of the problem are guar-
anteed to be suboptimal. This problem size is small enough to allow the
enumeration of the optimal reserve crew schedules corresponding to each
surrogate objective function. For each of the 20 problem instances, 100 re-
peat simulations were performed, making 2000 simulations in total. Table
5.3 contains a summary of the results obtained. It shows that the ‘sum of
P’ objective function (A) ranked first on both criteria. It was found that
the ‘coefficient of variation’ objective function (D) gave the lowest reserve
utilisation and highest cancellation rates. There also appears to be a cor-
relation between the rankings on both criteria, the only difference in the
results is that objective functions C and G swaps ranks.

5.4 Solution methodology investigation

Based on the performance of the sum of P surrogate objective function in
terms of simulation derived reserve utilisation and cancellation rates, this
objective function now forms the basis of an investigation of search/solution
methodologies. Enumeration becomes less viable as the problem size grows
so more intelligent solution methods are required. A variety of solution
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methods are tested using the reserve utilisation and cancellation rate crite-
ria. The same experimental design as in Section 5.3 is used. The additional
feature of the proposed SPCAM is that expected reserve utilisation and
cancellation rates can be derived from the sum of P objective values, using
the following equations:

(Z?:l i) — (Z?ﬂ pi)

- (5.6)

Expected reserve utilisation rate =

Intuitively, Equation 5.6 means that the average probability of each reserve
crew member being used is the expected reduction in the number of uncov-
ered crew absences as a result of the given reserve crew schedule divided by
the number of reserve crew. In words, the expected reserve utilisation is the
expected number of cancellations when no reserve crew are available minus
the expected number of cancellation when reserve crew are available divided
by the number of reserve crew. That is, the average number of cancellation
prevented per reserve crew.

Ezxpected cancellation rate = 21 Pi (5.7)
n
The expected cancellation rate is simply the expected number of flights

without crew divided by the number of flights.

5.4.1 Description of solution methods

Having established a fundamental modelling principle and an appropriate
objective function for the problem of reserve crew scheduling, the SPCAM
is now used as the method of evaluating potential solutions in a variety of
search methodologies. It will be obvious from Equation 5.5 that enumera-
tion (ENUM) becomes intractable for realistic sized problem instances. So
alternative methods are considered and described below.

Pruned dynamic programming algorithm

The method referred to as a pruned dynamic programming algorithm (DP)
is based on dynamic programming. It uses the idea of states (number of re-
serve crew assigned) and stages (departure number) to implicitly enumerate
the solution space. It is also a branch and bound algorithm because entire
branches (partial solutions) can be eliminated early during the search using
lower and upper bound estimates of the objective values of partial solutions.
The algorithm constructs and searches a binary tree in a breadth first man-
ner where each level of branching represents a departure time and each path
from the root of the tree to a leaf represents a partial solution. Each it-
eration of the algorithm considers the next departure and adds a layer of
depth to the tree. The algorithm branches on each leaf remaining from the
end of the previous iteration by either scheduling a reserve crew member or
not scheduling a reserve crew member (hence a binary tree), until all of the
departures have been considered. The lower bounds and upper bounds that
are used to eliminate partial solutions as early as possible are heuristically
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estimated. The heuristics complete the partial solutions and the objective
values of these completed solutions are used as the bound values for pruning.
The lower bound heuristic is such that it always gives a solution of better
quality (where better quality here means lower objective value) than the
upper bound heuristic with both starting from the same partial solution.
Partial solutions are then eliminated if their lower bound is greater than the
minimum upper bound of partial solutions in an equal or higher state. The
use of upper and lower bound heuristics for pruning partial solutions makes
this method a heuristic, but a heuristic with a high probability of obtaining
optimal solutions. The choice of upper and lower bound heuristics influence
how ruthless the pruning strategy is, and therefore the probability that the
partial solution corresponding to the optimal solution is pruned. The algo-
rithm can be made faster or more cautious by using (respectively) lower or
higher quality upper bound heuristics. The lower bound heuristic should
always outperform the lower bound heuristic (by definition) and should be
of the highest quality available, whilst considering that it should ideally be
fast.

Variant dynamic programming heuristic

An alternative approach to the application of dynamic programming to this
reserve crew scheduling problem is to alternate the definitions of states and
stages which were used for the DP method described in Section 5.4.1. In
the variant dynamic programming (VDP) approach, stages correspond to
the total number of reserve crew scheduled and states to the latest depar-
ture number at which a reserve crew is scheduled, in a given reserve crew
schedule. In this heuristic approach to dynamic programming, only the best
partial reserve crew schedule is retained in each state in each state, and no
partial solution completion heuristics are used. The objective values used,
are those of the partial solutions. In each stage, each remaining partial
solution is branched on by adding one reserve crew at later times than the
latest scheduled reserve crew in that schedule. At each stage, the number
of reserve crew in each partial solution is equal to the stage number. After
the final stage, the reserve crew schedule with the lowest sum of P is taken
as the solution.

Population based heuristics

The implementation of a Genetic Algorithm (GA) uses a binary vector rep-
resentation of candidate reserve crew schedules, 2 competitor tournament
selection, single point crossover and a mutation rate of 0.001 applied to every
chromosome. The population size is 100 and 100 generations are performed
before the algorithm terminates. The constraint on using a fixed number of
reserve crew means that crossover can lead to infeasible solutions with either
more or less than the required number of reserve crew. This issue was dealt
with by applying greedy heuristics (backwards and forwards heuristics, see
5.4.1) to obtain feasible candidate reserve crew schedules with the required
number of reserve crew. This is similar to the approach used in memetic
algorithms (see Section 2.6.2 for more details), however in this application
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the heuristics are only used to correct infeasible members of the population
in each generation.

In the Ant Colony (AC) approach each of the 100 ants visits R of N posi-
tions. For each move made by an ant, a cumulative distribution correspond-
ing to the ant’s next possible moves is created from the pheromone vector.
A random input is compared with the cumulative distribution to determine
where the ant will move to. The sum of P is computed for each ant’s tour,
and an evaporation factor of 0.95 is applied to the pheromone vector in each
of 200 iterations. The ant with the smallest objective value is used to lay
pheromone in such a way that replenishes the amount evaporated (so that
the cumulative probability of each ant move distribution remains 1). For
more details about ant colony optimisation, see Section 2.6.2.

Constructive heuristics

The Backwards Heuristic (BH) starts with the (optimal but) infeasible so-
lution of reserve crew assigned to each period. Reserve crew are removed
one at a time choosing the one that increases the objective value the least.
The Forwards Heuristic (FH) starts with no reserve crew assigned and adds
one at a time choosing the one that decreases the objective value the most.
The Basic Greedy (BG) approach positions reserve crew corresponding to
the R highest probabilities in the original probability of crew absence vector
Q.

The Even Distribution (ED) heuristic allocates reserve crews evenly across
departures so that the reserve crew are spread evenly over the set of depar-
tures.

Local search based methods

Hill Climbing (HC) searches the local neighbourhood and takes the best
move only if its better than the current best, using the same neighbourhood
structure as the tabu search and simulated annealing implementations.
The Simulated Annealing implementation (SA) [54] is based on: a tempera-
ture reduction applied every 4 iterations (epoch=4); an initial temperature
of 3; a final temperature of 0.001; a geometric temperature reduction factor
of 0.999; the same neighbourhood structure as used in tabu Search.

The Tabu Search (TS) [42] implementation uses the neighbourhood struc-
ture described after equation 5.5. A recency tabu list is retained in which
the swapping of reserve crew between two positions in the schedule is pre-
vented for a tenure of 50 iterations after a swap is made, this means the
tabu list refers to elements of the search neighbourhood rather than the so-
lutions themselves. This approach prevents moves from immediately being
undone (i.e. cycling) whilst encouraging the exploration of new regions of
the solution space. The method uses 200 iterations always accepting the
best non-tabu move.

The Variable Neighbourhood Search method (VNS) [71] uses 5 neighbour-
hoods (in order): single swap; cut and swap; single point crossover; sideways
shift and randomly generated neighbourhoods. If a neighbourhood contains
a better solution the solution is accepted as the current solution and a new
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iteration begins starting from neighbourhood one. If a better solution is not
found the next neighbourhood is tested, if no improving solution is found
after cycling through all neighbourhoods the procedure is terminated.

The VDP+HC method is the HC method starting from the VDP solution.

5.4.2 Solution method results

Each of the solution methodologies described in Section 5.4.1 were applied
to the 20 problem instances introduced in Section 5.3, and the solutions
from each were tested in 10000 repeat simulations! of the corresponding
problem instances (200000 simulations in total for each approach). Table
5.4 compares the simulation results with the expected results derived theo-
retically from the surrogate objective values for the criteria of reserve crew
utilisation and cancellation rates. The objective function in each case is the
sum of P as this was found to be the most effective surrogate objective func-
tion in Section 5.3. Table 5.4 also gives the solution times? for each method.
The first row contains the results found from enumeration in Section 5.3 and
corresponds to the optimal solution, this gives a benchmark for judging the
effectiveness of the various search and optimisation techniques. Table 5.4

Solution Obje- Reserve Expected | Cancel- | Expected | Solution
method ctive crew reserve lation cancel- time
value | utilisation | crew rate lation (s)
utilisation rate
ENUM 4.5315 | 0.9439 0.9433 0.1818 | 0.1813 1296
ED 5.1054 | 0.8784 0.8795 0.2035 | 0.2042 0.016
BG 4.8258 | 0.9236 0.9106 0.1930 | 0.1930 0.047
FH 4.6125 | 0.9383 0.9343 0.1853 | 0.1845 0.125
BH 4.5655 | 0.9425 0.9395 0.1830 | 0.1826 0.141
HC 4.5322 | 0.9445 0.9432 0.1818 | 0.1813 1.654
SA 4.5320 | 0.9438 0.9432 0.1818 | 0.1813 35.072
TS 4.5315 | 0.9439 0.9433 0.1818 | 0.1813 32.639
VNS 4.5320 | 0.9436 0.9432 0.1819 | 0.1813 34.804
GA 4.5315 | 0.9439 0.9433 0.1818 | 0.1813 9.278
AC 4.7416 | 0.9388 0.9199 0.1903 | 0.1897 24.546
DP 4.5315 | 0.9445 0.9433 0.1818 | 0.1813 38.957
VDP 4.5450 | 0.9427 0.9418 0.1823 | 0.1818 0.422
VDP+HC | 4.5316 | 0.9438 0.9433 0.1818 | 0.1813 0.437

Table 5.4: Objective values, simulation coverage levels and solution times
for a variety of solution methods

shows that, apart from full enumeration, the TS, GA and DP approaches
were able to find the theoretical optimal solutions to all problem instances.
The GA approach required the least time to do this. The cancellation rate
achieved in repeat simulations was minimised by the ENUM, HC, SA, TS,

!The average cancellation rate RMSE for 10-fold cross validation drops to 0.0005 for
a sample size of 10000 simulations
2Matlab, dual core 1.86ghz, 2gb, windows vista
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Frequency distributions of cancellation rates of Dynamic programming,
Even Distribution heuristic and without reserves from repeat simulations
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Figure 5.1: Range of cancellation rates provided by the dynamic program-
ming solution, the even distribution heuristic and with no reserves allocated

GA, DP and the VDP+HC approaches. The VDP+HC approach also has
a very low solution time. The main conclusion here is that meta-heuristics
provide a suitable alternative to enumeration.

The results of Table 5.4 also show that the expected reserve utilisations
and the expected cancellation rates, which were derived theoretically using
Equations 5.6 and 5.7, are accurate predictions for the reserve utilisation
rates and the cancellation rates which were attained in simulation testing.
In conclusion, average reserve crew schedule performance can be predicted
using equations 5.6 and 5.7, but simulation is still required to determine the
variability of the performance of reserve schedules in various crew absence
scenarios. The performance variability of the optimal solution compared to
the even distribution heuristic and when no reserves are assigned is demon-
strated in Figure 5.1. Figure 5.1 gives an idea of the worst case performance,
best case performance and expected performance in terms of cancellation
rate for the dynamic programming solution, the solution derived from the
even distribution heuristic and when no reserves are allocated. The rea-
son for focussing on these methods is that the even distribution heuristic
represents how reserves are scheduled when probabilities of crew absence
are not considered in decision making (i.e. the reserve crew are allocated
at equal time intervals), the results therefore illustrate the effectiveness of
the probabilistic approach, when solved using the dynamic programming
approach. The results for the dynamic programming approach are skewed
towards a lower cancellation rate compared to the even distribution heuris-
tic. The result is a lower average cancellation rate (see vertical lines). When
no reserves are allocated, the average cancellation rate is approximately 0.5,
as expected, due to the problem instances being generated using uniform
random numbers. The asymmetric shape of the cancellation frequency dis-
tribution when no reserve crew are scheduled corresponds to the fact that
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20 different problem instances were used to test each method. The reason
why the symmetry is restored when reserve crew are scheduled is because
the variance of the cancellation rate is reduced by the presence of reserve
crew, this means that reserve crew have a stabilising effect on the expected
level of cancellations.

5.5 Possible model improvements

The assumptions of Section 5.1.1 can be modified to accommodate real
world airline operations. The assumption that each departure requires one
member of crew (which was justified as representing a team of crew) can be
replaced with each departure requiring any specified number of crew. The
multiple crew absence version of this model requires that for each departure
there is a probability distribution for the number of crew that will be absent.
The following chapter extends the model in this direction, in which the
vector P becomes a matrix. Evaluating the effect of reserve schedules on
the probabilities of cancellations due to crew absence requires significant
modifications compared to Algorithm 2.

An underlying assumption made in this simplified model is that all
crew can be treated as identically functional units, the reality is that crew
come in a variety of ranks and qualifications. The next chapter also presents
an extended formulation of the model where these considerations are in-
cluded. The extended formulation takes the structure of crew pairings into
account, which was ignored in this simplified model.

The current model deals with crew absence disruptions only. In Chap-
ter 7 an analogous model is developed where crew-related delay disruptions
are considered whilst crew absence disruptions are ignored.

Another assumption made in this model was that reserve crew can
only be used to cover for disruptions whose departure time falls within
their duty period. A relaxation of this is considered in the following chapter
where reserve crew can be used for departures occurring before the start of
their duties. This means that departures might be delayed whilst waiting
for reserve crew to begin their duties.

Reserve crew and flight cancellation are the only recovery actions used
in this model, however preprocessing of the input probabilities can be per-
formed to reflect the probable availabilities of other more preferable recov-
ery actions such as crew swaps, this is especially the case for crew-related
delay disruptions. Chapters 7 and 8 represent two different probabilistic ap-
proaches (based on this chapter) that account for crew-related delays and
also the availability of swap recovery actions.

5.6 Chapter summary

This chapter has introduced a probabilistic model of crew absence uncer-
tainty and the process of replacing absent crew with reserve crew. The
model outlines the fundamental modelling principles to follow when tackling
the problem of reserve crew scheduling under uncertainty. An investigation
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of the possible surrogate objective functions based on the SPCAM was
carried out. Then, a variety of heuristic solution methodologies were inves-
tigated. It was found that optimal solution could be found, besides a full
enumeration, using dynamic programming, genetic algorithm, tabu search.
The results of this chapter underpin the models developed in subsequent
chapters.
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Chapter 6

Improved probabilistic crew
absence model

The probabilistic crew absence model of Chapter 5 provides a fundamental
modelling principle for modelling the uncertainty of crew related disrup-
tions and the use of reserve crew to recover from such disruptions. However,
Chapter 5 made several simplifying assumptions. In this chapter the Simpli-
fied Probabilistic Crew Absence Model (SPCAM) of Chapter 5 is extended
and improved in several ways, resulting in an improved probabilistic crew
absence model (CAM). The weaknesses of the SPCAM of Chapter 5 that
are addressed in this chapter are as follows.

1) Crew absence was modelled with a single probability per
departure. This simplification did not allow for the possibility that more
than one of the crew assigned to a flight can be absent simultaneously. In
this improved model the single probability of crew absence for each flight
is replaced with a probability distribution containing the probabilities that
different numbers of crew are simultaneously absent. As a result of consider-
ing the possibility of multiple crew from a crew team being simultaneously
absent, reserve crew feasibility depends on the combined feasibility of a
group of individual reserve crew. Furthermore, flight cancellation due to
crew unavailability can only be avoided if and only if all absent crew are
replaced, one for one, with reserve crew.

2) The probabilities of crew absence affecting flights in a
schedule were independent. This simplification ignored the structure
of an airline’s schedule, that is, crew teams are often assigned to multiple
flights, and therefore the probabilities of crew absence affecting those flights
are dependent upon one another. In this chapter, the binary crew absence
assumption (see assumption C5 of Section 4.2) is made that crew, if absent,
are unavailable for all flights in their assigned crew pairing. The C'AM takes
the structure of the crew schedule into account.

3) Reserve crew were feasible to cover for crew absence dis-
ruptions affecting a fixed number of departures after the beginning
of their standby duty. The SPCAM ignored the details of the airline’s
schedule, such as departure times and arrival times. In this chapter, such
details are not ignored, so that now, reserve crew feasibility is based on
assumptions RC1-6 of Section 4.2.
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4) Reserve crew were not feasible to cover crew absence dis-
ruptions affecting flights whose scheduled departure time was be-
fore the start of their standby duty. This simplification did not allow
for the possibility that, a flight which was affected by crew absence, can
wait for reserve crew to begin their standby duties. The relaxation of this
simplification introduces the possibility that using reserve crew to avoid
flight cancellation can introduce a delay. In this chapter, these reserve use
induced delays are incorporated into the expected cancellations objective
function using a function which maps delays to measures of cancellation.
The delay cancellation measure function was introduced in Section 3.5.1.

An additional weakness of the investigations of the previous chap-
ter were that they considered very small problem instances. The CAM
is applied to a larger and more realistic sized problem instance than the
SPCAM was. Section 6.1.7 shows that as a result of considering a larger
problem instance and the possibility of multiple absent crew per crew pair-
ing, the C AM is found to underestimate cancellation rates. An explanation
is found, which relates to the variance that exists in the total number of
crew that can be absent, which is not modelled in the CAM. A model
refinement is given which ensures this variance is accounted for.

Chapter structure

In this chapter, Table 6.1 defines the notation for the CAM, Section 6.1
presents the CAM. The model refinement described above is also pre-
sented in this section. Section 6.2 validates the CAM in computational
experiments. Section 6.3 shows how the CAM can be modified and applied
to the case where aircraft come in a variety of fleet types and crew come in
a variety of ranks and qualifications. Section 6.4 introduces a generalised
version of the default online reserve policy which can be encoded within
the CAM. Section 6.5 concludes with a chapter summary. Section 6.6 dis-
cusses how the CAM is used as a building block in subsequent approaches
to reserve crew scheduling considered in this thesis.

6.1 New probabilistic crew absence model
formulation

The SPCAM of Chapter 5 is now extended to the case where crew teams
consist of a number of individual crew each with independent probabilities
of being absent. The single probability of crew absence for each departure
used in the SPCAM is replaced with a discrete probability distribution that
describes the probability that different numbers of crew are simultaneously
absent for each departure. Let P now be a matrix containing the set of all
such distributions. So that p;. corresponds to the probability that e crew
are simultaneously absent for a departure d.

In the CAM, the fundamental equations (Equations 5.1 and 5.2) of
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ad,e : Probability that e reserve crew are available to cover e absent crew affecting depar-

ture d

Ag : Scheduled arrival time of departure d

b : Delay exponent used in the delay cancellation measure function

Cim . departure number of the mt" hub departure in crew pairing [

CMy : Cancellation measure of reserve crew use induced delay at departure d correspond-
ing to a given reserve schedule X

CcT : Cancellation threshold (maximum delay before a flight is cancelled)

Dy : Scheduled departure time of departure d

DL : Maximum duration of a reserve standby duty period

DT : Delay threshold (minimum delay for which delay recovery actions are considered)

EDTy : Expected departure time for departure d

Fy : Crew pairing assigned to hub departure d

Feas; q : Feasibility of a reserve crew member with start time index ¢ covering crew absence
affecting departure d (binary matrix)

Ly g :  departure number of the last flight of the day of crew pairing [ on the day of
departure d

leaf Nodes : The number of leaf nodes currently in the reserve crew combination tree

Leaves : The set of leaf nodes in the reserve crew combination tree at any given time

M : The set of reserve crew feasible for a given departure to cover crew absence

maxC A : Maximum number of crew that can be absent from a pairing. Equals the number
of scheduled crew in each crew team

n : Number of hub departures in the airline schedule

N ;&M reserve crew node

Ngen : Number of reserve crew in the reserve crew combination corresponding to node &
in the reserve combination tree

nPer : Parent node of node § in the reserve crew combination tree

Nges : Reserve number of the reserve crew member corresponding to node § in the reserve
crew combination tree

nodeProb : Probability that a given combination of reserve crew are simultaneously available
for covering crew absence

Dd,e : Probability that e crew are unavailable for departure d

dd,e :  Initial probability of e absent crew at departure d before the affects of a reserve
crew schedule are taken into account

Td,k : Probability that reserve crew member k is available to cover crew absence affecting
departure d

R : Number of reserve crew in a reserve crew schedule

ResCom : Vector containing the combination of reserve crew corresponding to a given node
in the reserve crew combination tree

Ud, & : Probability that reserve crew member k is used to cover crew absence affecting
departure d

X : Reserve crew schedule

X . start time index of the k*” reserve scheduled to begin a reserve pairing

I3 : Number of nodes currently in the reserve crew combination tree

Table 6.1: Notation

Chapter 5 are replaced with the analogous Equations 6.1 and 6.2.

Pae = DPae(l—aqc) (6.1)
d+1 . _
Ty

= Tg — U,k (6.2
Where aq4 . is the probability that e reserve crew are simultaneously available
at departure d. Equation 6.1 states that the probability that e crew are
unavailable for departure d depends on the probability that e crew are absent
in the first place and the probability that e reserve crew are not available
(simultaneously) to cover the absence affecting departure d. Equation 6.2
gives the probability that reserve k remains available for subsequent use
given that they have a probability of u, of being used to cover absence at
departure d. Equations 6.1 and 6.2 are applied: for each scheduled reserve
crew in earliest start time order, to reflect the assumed reserve policy; and
for each scheduled departure in earliest departure time order, to reflect
the assumed priority order for airline recovery actions (see RP1 of Section
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4.2 the sequential recovery assumption). In this case the preference order
reserve policy is to use reserve crew in earliest start time order, which is
referred to as the default policy (see Section 3.5.2). The calculation of a4,
requires the enumeration of all combinations of e reserve crew which are
feasible for departure d. In section 6.1.5, the algorithm for enumerating all
feasible combinations of e reserves is introduced.

Before this an explanation is given of how the C'AM takes the detailed
structure of crew pairings into account. The importance of doing this was
highlighted in the last bullet point of Section 3.2 (the structure of crew
pairings determines the maximum number of cancellations in the event of
uncovered crew absence).

6.1.1 Crew pairings

Crew schedules have a hierarchical structure, single flights are called flight
legs, a set of flight legs comprising a days work or shift is called a duty, a
string of duties spanning a number of days that begin and end at the crew’s
home base is called a crew pairing.

The SPCAM assumed that each flight’s crew had an independent
probability of being absent. This simplifying assumption does not hold
when we consider that numerous departures from an airport can correspond
to the same team of crew (i.e. the same crew pairing). To allow for the
structure of crew pairings, the replacement assumption is as follows.

Assumption 1: The probabilities of crew absence of flights operated
by the same team of crew are equal. This assumption is the probabilistic
equivalent of the binary crew absence assumption (C5) of Section 4.2.

As a result of assumption 1, the CAM requires an additional assumption.

Assumption 2: Accurate estimates are available or can be derived
for the probabilities that different numbers of crew will be absent from each
crew team and as a result are unavailable for their entire assigned crew
pairing.

These assumptions imply that crew absence becomes known on or
before the beginning of the crew’s assigned pairing, and that, if absent,
they will not become available for the pairing at a later time. The effect
of assumptions 1 and 2 on probabilistic reserve crew schedule evaluation
is that the initial probability of crew unavailability for a flight, before the
consideration of reserve crew, is initially equal to that of the previous flight
on the same crew pairing after taking the effects of reserve crew into account.
L.e. the probability that reserve crew are required to cover absence depends
on the probability the crew absence was not covered at a previous flight on
the same crew pairing. This means the CAM allows for the possibility that
crew absence, if not covered, might still be covered at later flights along the
same Crew pairing.

6.1.2 Reserve crew feasibility

This section defines the feasibility of reserve crew scheduled at different
times for covering flights which may be affected by crew absence. In contrast
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to the SPC AM, reserve feasibility in the CAM depends on the structure
of crew pairings and the duration of the cancellation threshold (CT).

1 D;<D;+CT and D; + DL > A,
FGCLSt,d = (8 = LFd,d) (63)
0 otherwise

Noting that possible reserve duty start times are discretised according to
scheduled departure times, Equation 6.3 states that reserve crew with start
time index ¢ are feasible for a disrupted departure d, if: 1) they begin their
standby duty before the cancellation threshold of the disrupted departure,
and 2) their duty finishes (D; + DL) at or after the final arrival time of the
disrupted pairing (As). In the event that e crew are absent, a combination
of e reserve crew is feasible if and only if each of the individual reserve
crew are feasible. The feasibility of reserve crew with start time index ¢ for
covering a crew absence disrupted departure d can be pre-calculated and
stored in the form of a binary matrix (Feas).

6.1.3 Reserve use induced delay

Since reserve crew can be used any time between the scheduled departure
time of a crew disrupted flight and the cancellation threshold of the flight,
it is possible that some combinations of reserve crew, although preventing
a cancellation, may introduce a delay to the crew disrupted flight. Such
a delay is caused by waiting for the reserve crew to begin their standby
duties before they can be utilised. To penalise reserve-induced delay in the
evaluation of a given reserve crew schedule, the delay cancellation measure
function is used (Equation 3.3 of Section 3.5.1 which is repeated here).

delay b
CcT

Cancellation measure = ( (6.4)
Equation 6.4 gives the cancellation measure of a delay as the ratio of the
delay relative to the cancellation threshold (CT'), raised to the power b
(delay exponent).

delay = max (Dy — Dy, EDT}) (6.5)

keResCom

Equation 6.5 gives the size of the reserve-induced delay associated with
using a given combination of reserve crew (ResCom) to cover crew absence
affecting departure d. The delay depends on the reserve crew (k) who has
the latest duty start time. FE DT, is the expected delay of departure d
before the effects of reserve crew are considered, and can be estimated from
a simulation (Chapter 4), in which there are no reserve crew scheduled.
E DTy is the expected delay associated with the aircraft which is assigned

to departure d.
delay) b

cT

Equation 6.6 gives the objective value contribution (penalty) associated
with reserve-induced delay due to a combination of reserve crew who have

CMy=CMy+g < (66)
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a probability of g of being used to cover for absent crew affecting departure
d. CMy, denotes the total cancellation measure of reserve-induced delays
affecting departure d. The calculation of g is addressed in section 6.1.5.

In Section 6.2 the CAM is tested with and without penalties for
reserve-induced delay. To distinguish between the two models, the model is
called the Static Delay Model (SDM) when it includes the penalty term for
reserve-induced delays. Note that the word static hints at the model which
is introduced in Chapter 8 which in contrast, is dynamic and responsive to
the given reserve crew schedule that is being evaluated, as will be explained
in that chapter.

6.1.4 Evaluating expected cancellations associated with
a given reserve crew schedule

Algorithm 3 Outline of reserve crew schedule evaluation procedure
1: Inputs: airline schedule, the assumed reserve policy, crew absence prob-
abilities (@), expected delays before reserve recovery
2: Outputs: For all flights: cancellation probabilities, reserve use induced
delay cancellation measure contributions
P=qQ
=1, Vk € {1..R}
for d=1ton do
Reset a and u
M ={Feasible reserves for departure d in earliest start time order}
For all feasible reserves in M generate all reserve combinations con-
taining between 1 to |p,| reserve crew
9:  Determine the probability that each combination is used, given that
reserves are used in earliest start time order
10:  Determine (a) the total probability of different numbers of reserve
crew being simultaneously available
11:  Determine (u) the probability that each individual reserve is used to
cover crew absence in departure d
12:  Update probabilities of cancellation due to different numbers of crew
absence and reserve availability for subsequent crew absence
13: DPae = Pae (1 —aae), Ve € {1...|p4|}
14:  Pye = Pae, Yw € {subsequent departures assigned to crew pairing
Fd}, Ve € {1|pd|}
15: TZH_I =7l —ugp, VK€M
16: end for

Algorithm 3 outlines the procedure followed by the CAM when eval-
uating the expected number of cancellations due to crew absence associated
with a given reserve crew schedule (X). In general, Algorithm 3 considers
each scheduled departure in order. For each, it enumerates feasible combina-
tions of reserve crew and their associated probabilities of being considered
for use. The probabilities that different numbers of reserve crew are si-
multaneously available are used to update the probabilities that flights are
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cancelled due to crew unavailability. The probabilities that reserve crew re-
main available for subsequent disruptions depends on the probabilities that
they were used for crew absence affecting the given departure.

In more detail, the algorithm firstly initialises (line 3) the probabilities
that different numbers of crew are unavailable for each departure (P) to the
probabilities that different numbers of crew are absent for each departure
(Q). Then (line 4) the reserve crew availability probabilities are initialised
to 1. The algorithm then considers each scheduled departure (line 5) in
earliest departure time order. For each departure, all combinations of the
reserve crew which are feasible to cover absent crew affecting that depar-
ture are generated (line 8) and their probabilities of being considered for
use, given that more preferable combinations are not available, are calcu-
lated (line 9). The probabilities that different numbers of reserve crew are
simultaneously available (line 10) are used to calculate the probabilities that
crew absence disruptions affecting the given crew pairing still go uncovered
(lines 13 and 14). The probabilities that each individual reserve crew is
used to cover absence at the given departure (line 11) are used to update
the probabilities that each reserve crew remains available for subsequent
crew absence disruptions (line 15).

The details of how the feasible combinations of reserve crew are actu-
ally generated (line 8) and their corresponding probabilities calculated (line
9) are the subject of Section 6.1.5.

6.1.5 Enumerating feasible combinations of reserve
crew and associated probabilities

Lines 8 to 11 of Algorithm 3 involve enumerating feasible combinations of
reserve crew of different sizes and calculating their probabilities of actually
being utilised. These probabilities depend on the probabilities that different
numbers of crew are not available and the probabilities that more preferable
combinations of reserve crew are available for the same disruptions. Reserve
combination preference is defined by the reserve use order policy, which in
this case is assumed to be the earliest start time order, as to minimise
reserve-induced delay. Note that any other order based policy can be used
instead.

Algorithm 4 enumerates the feasible combinations of reserve crew for
each possible crew absence disruption. It turns out that simply enumerating
all combinations of reserve crew of different sizes also yields combinations
that in reality would never occur, given the reserve use policy. Such combi-
nations include:

1. Combinations that have been generated for a previous flight in the
same crew pairing, as crew absence is covered at the earliest opportu-
nity as it makes no sense to hold reserve crew when they can be used to
cover crew absence to prevent flight cancellation. Such combinations
are filtered out by line 15 of Algorithm 4.

2. Combinations involving non-consecutive reserve crew numbers with
identical duty start times or identical flight feasibility. This is because
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Figure 6.1: A growing reserve crew combination tree

reserve crew are used in order (which is the order specified by the
given reserve policy) and an ordering is applied to reserve crew with
the same start time, to eliminate ambiguity. Such combinations are
not generated by Algorithm 4, lines 26 to 28 ensure this.

Another aspect of reserve combination generation that requires careful con-
sideration is the derivation of the probabilities that given combinations are
considered for use, given that they pass reserve combination filters 1 and 2
(above). For example, suppose reserve crew 1, 2, 3 and 4 are feasible recov-
ery actions when 2 crew are absent from a given crew team. Then, a feasible
reserve combination such as (1,4) (which implies 2 and 3 have different start
times/flight feasibility to 1 and 4, see reserve combination filter 2) has an
associated probability of (1 (1 — r3) (1 — r3) r4) of being considered for use
to cover the disruption. However, the (1 — r3) term can be removed if the
reserve crew combination (1,2) was a feasible combination for a previous
flight on the same crew pairing, because had this been the case, the reserve
crew combination (1,2) would be have been used to cover the two absent
crew at that time. In this case, the use of reserve 4 does not depend on
reserve 2 not being available, in fact their usage is mutually exclusive to
each other. The same reasoning applies to the (1 — r3) term. This concept
is referred to as reserve non-dependency later on, and is asserted in lines 17
to 21 of Algorithm 4.

Algorithm 4 outlines the procedure for generating feasible combina-
tions of reserve crew and calculating their associated probabilities of being
used. The algorithm is based on building a tree of nodes, where nodes cor-
respond to particular feasible reserve crew, and paths from the root to a
leaf correspond to combinations of reserve crew.

Figure 6.1 illustrates how starting from a root node (top) the reserve
crew combination tree is generated in stages, in each stage the next preferred
reserve crew is added to the tree. The node probabilities for the new reserve
combinations generated in each iteration are stated below the newly
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Algorithm 4 Generation of reserve combinations and associated probabil-
ities at departure d

1:
2:
3:

10:
11:
12:
13:
14:

15:

16:
17:

18:

19:

20:
21:
22:

23:

24:

25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

Inputs: d, r, F', Feas, P and EDT
Outputs: ay, ug and C' My
Create root node N; corresponding to the empty reserve crew combina-

tion, with no parent node of its own, path length 0 and node probability
1, N7 = null, N?*" = null, Nl*» =0, NV =1

¢ =1 (nodes used)
Leaves < N;
leaf Nodes = |Leaves| (nodes to be branched on)
for each £k € M do
for 0 =1 to leaf Nodes do
if Nl < mazCA then
Branch on N with reserve k
increment &
Nges — k?, Ngar _ N&; Néen — gen + 1, Ng — Ng’ X T
Leaves < N¢
ResCom =The combination of reserve crew corresponding to the
path from N¢ to the root node
if ResCom was not feasible for any previous flight on crew pair-
ing F,; then
nodeProb = N{
for each feasible reserve crew s which is not in ResC'om, with
start time< Dy, do
if replacing reserve k with reserve s in ResC'om results in a
combination of reserve crew that was feasible for any previ-
ous flight on crew pairing F; then
ResCom probability does not depend on reserve s not
being available, therefore node Prob = %
end if
end for
(g Nien = g Nien + nProb
Ugy = Ugy+9, V{7 € ResCom}, where g = (nP’rob X pdwéen)
CM, = CM, + g (maX’YEReSCDm (CD;W—Dd, EDTd) ) ’
end if
if Nj° has identical feasibility to reserve k then
Remove Ns from Leaves
decrement 0
else
NP = NP x (1 —ry)
end if
end if
end for
leafNodes = |Leaves|
end for
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generated nodes. The new reserve crew combinations generated at each
stage are listed at the bottom of the diagram.

In Algorithm 4 Leaves denotes the set of leaf nodes and LeafNodes
the number of leaf nodes in the reserve combination tree at any given stage
of the algorithm. Née” corresponds to the number of reserves in the combi-
nation of reserves beginning at the root node and ending at node §. N/ is
the parent node of node ¢ in the tree. N gives the reserve number corre-
sponding to node &. Line 3 defines the root node as node 1, corresponding
to a reserve combination of 0 reserves, without it’s own parent node and a
node probability of 1. Lines 5 and 6 add the root node to the set of nodes
(Leaves) that are to be branched on with nodes corresponding to the first
feasible reserve crew in the first iteration of the algorithm.

The reserve combination tree is then grown by branching on each leaf
node with nodes for each feasible reserve crew in turn, in earliest start time
order (lines 7 and 8). This means that each path from the root node to a leaf
node defines a combination of reserve crew listed in earliest start time order,
with no repeat reserve crew. Additionally, no leaf nodes are more than ‘the
maximum number of absent crew’ away from the root node (line 9), as such
reserve crew combinations are never required. ¢ is the number of nodes
in the reserve crew combination tree at any given time. So node & always
corresponds to the newest reserve crew combination (ResCom) generated
by the tree. The probability that the reserve combination (ResCom) corre-
sponding to node N¢ is used depends on the probability that more preferable
reserve crew are not available (asserted on line 30) or whether or not the re-
serve combination is subject to the reserve non-dependency described above
(asserted on lines 17 to 21). Every time a node is branched on by a new
reserve node, the node which was branched on remains a leaf node, but the
node probability is updated so that it corresponds to the newest reserve
not being available (line 30). The branch node then corresponds to combi-
nations which that reserve is a member of. The branch node is added to
the set Leaves, to be branched on by subsequent reserve crew. Given the
probability (nodeProb) that the reserve crew combination ResCom is con-
sidered for use: line 22 updates the probability that a total of Née" reserve
crew are available (a) to cover Née” absent crew affecting departure d; line
23 updates the probabilities that the individual reserve crew in ResCom
are used (u) to cover crew absence affecting the given departure (d); and
line 24 updates the delay cancellation measure contribution for departure
d, corresponding to ResCom (see Equations 6.5 and 6.6). Lines 26 to 31
ensure that reserve combinations are not generated that fall into the cate-
gory of reserve combination filter 2 (see above). Line 34 sets the number of
nodes that are to be branched on when nodes corresponding to the reserve
with the next highest start time are added to the reserve crew combination
tree.

The solution space of this reserve crew scheduling problem is considered in
the next section.
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6.1.6 Solution space

The number of possible reserve schedules is as follows.

i n!
Z my@a R) (6.7)
j:ceil(%)
Equation 6.7 gives the number of ways R reserve crew can be assigned to
the n different possible reserve standby duty start time indices (scheduled
departure times), where no more the MarCA (maximum number of crew
absent from each crew pairing) reserve crew are assigned to any individual
start time index. Where y (j, R) is the number of combinations of j integers
(1 <'integers < MaxCA) that sum to R. For the case where no restriction
is placed on the number of reserve crew that can begin duties at the same
time the y (j, R) values are in the ‘Bell number’ sequence. In Equation
6.7 the summation accounts for each of the numbers of partitions that R
reserve crew can be divided into, where each partition contains no more
than MaxC'A reserve crew. The factorial term accounts for the number of
ways such a number of partitions can be allocated across n possible start
times. The y (j, R) term accounts for number of ways R reserve crew can be
divided into j partitions. Understanding Equation 6.7 can be useful when
considering possible neighbourhood structures for local search heuristics.
The reserve crew schedule X specifies the start time index in start
time order of each reserve crew scheduled. Where a start time index X,
corresponds to the beginning of a standby reserve pairing, where standby
duties begin at time Dy, daily. A feasible solution must contain the correct
total number of reserves (R) and have no more than marCA scheduled
to begin their duty at the departure time d (as no more than this will be
required for covering crew absence at departure d).
The objective of the SDM is to minimise cancellations due to crew absence
plus the cancellation measure contributions due to reserve-induced delay.
For the CAM there is no cancellation measure term.

n ‘Pd| n
ObjVal = “pae+ > CMy (6.8)
d=1 e=1 d=1

In Chapter 8 the form of the objective function is the same as for the SDM,
however the cancellation measure term is calculated using a statistical model
of delay propagation, which allows for delays from all causes, their propaga-
tion, swap recovery actions as well as reserve crew used to replace delayed
crew.

6.1.7 Improved model

In this section a pitfall of the CAM as presented so far is demonstrated
and a model improvement is proposed. The example is based on the airline
schedule described at the start of Section 6.2, with a reserve crew sched-
ule, consisting of 12 individuals, derived from a greedy heuristic algorithm.
Figure 6.2 shows the predicted cancellation probabilities derived from the
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C' AM before (purple) and after the model refinement (green), compared to
predictions derived from repeat simulations (blue). The predictions from
the SPCAM are also given (cyan). Figure 6.2 shows the problem with the
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Figure 6.2: Cancellation predictions from evaluations of the SPCAM,
CAM and refined probabilistic crew absence model (CAMx*) compared to
those derived from repeat simulations

CAM, which is, that it underestimates the probabilities of cancellations
compared with predictions derived from simulation. The explanation for
this is that the CAM implicitly assumes that the total number of absent
crew is always exactly the expected value. However, in the simulation the
total number of crew that are absent in any given run of the simulation
varies a great deal, and on bad days, once reserve crew have been used,
cancellations spike. In fact, when all crew have equal probabilities of ab-
sence (as assumed in this chapter) the total number of absent crew follows a
binomial distribution. Let pl be the probability that a single crew member
is absent and there are (MaxC'A X n) crew in total, the probability that z
crew are absent in total is given by z!((%aafgjjrg)iz)!plz(l —pl)(MazCAxn)=z)
The factorial term is the binomial coefficient, i.e. the number of ways that
exactly z crew can absent out of (MaxrCA x n) crew. The second part
(p1#(1 — p1)((MazCAxn)=2)) i5 the probability with which each of those in-

stances (of exactly z crew being absent) occurs.

To remedy the cancellation underestimation problem, a refined prob-
abilistic crew absence model (CAMx) uses the distribution of the total
number of absent crew (i.e. the binomial distribution) to evaluate reserve
crew schedules simultaneously over a distribution of P matrices, denoted
O, where matrix O, corresponds to a P matrix where the total expected
number of absent crew is z. The Matrix O, is therefore the P matrix corre-
sponding to the case where the probability that any crew member is absent
is equal to pl = 5;—5-—. The weight of O, in the objective function of the
CAM is taken from the binomial distribution, i.e. the probability that z
absences occur in n X MaxC A opportunities (binomP (z,n x MaxC A, pl)).
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In summary, the variance of the total crew that can be absent is cap-
tured by modelling the variance of the probability that a single member of
crew is absent. So the CAM is evaluated over a set of P matrices, each of
which is constructed from a different probability that each single member
of crew is absent. The new approach also captures the variance that exists
in the probabilities that each reserve crew member remains available to re-
place disrupted crew affecting each of the scheduled flights in the airline’s
schedule.

Algorithm 5 Procedure for incorporating the variance of the total number

of crew that can be absent into reserve crew schedule evaluations using the
CAM
objVal =0
: for z=1ton do

pl = 3757, probability a given crew member is absent

objVal = objVal+binomP (z,n x MaxCA,pl) x evaluation (O, X)
end for

w7

Algorithm 5 shows that the C'AM % evaluation procedure is identical to
the C AM except that the procedure is repeated (line 2) over a distribution
of P matrices (O). For high values of z (total number absent) the associated
binomial distribution probabilities become very small and can be ignored.
One possibility for doing this is to limit evaluation to the total number of
absent crew corresponding to a cumulative probability of 0.95 or 0.99, in
the following 0.999 is used.

Figure 6.2 demonstrates that the C'AMx* gives cancellation predictions of
greater accuracy compared to the CAM, where the simulation predictions
are treated as the target values.

6.2 Experimental results

The SPCAM, CAM and SDM are now validated through experimenta-
tion. Two more models are also tested: CAM=x and SDM=x*, which cor-
respond to CAM and SDM respectively, with the addition of the model
refinement of Section 6.1.7. The SPCAM implementation uses the prob-
ability of at least one crew absence affecting each departure as the single
input probability for each departure. Apart from this the SPCAM is the
same as the CAM.

6.2.1 Test instance

The experiments are based on real airline schedule data. The schedule is
2 days in length, with 283 departures from the hub station. There are 209
teams of crew and 74 aircraft covering a total of 566 flights. 140 of the
crew teams begin their pairings at the hub station, these crew teams are
subject to crew absence uncertainty. Each member of crew has a 1% chance
of being absent, this value was approximated from actual crew absence
data. The proposed approach will still work even if there is sufficient data
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to derive individual crew absence probabilities for all crew, the matrix P
would then have to be constructed from these. Each team of crew consists of
4 members. There are 12 reserve crew available for scheduling. The aircraft
routings are taken directly from real airline schedule data, the scheduled
departure and arrival times are adjusted so that the scheduled block times
are equal to the average actual block times and because of this, the average
delay risk in the schedule is 50%. The journey time distributions for each
origin-destination pair are derived from real flight data. The aircraft turn
times and crew sit times are set to the minimum values. The input crew
schedules were generated using a set partitioning model (described in [12])
solved in CPLEX. The average rate of mid duty crew aircraft changes is
0.44. The following experiments were implemented on a laptop with a
2.4GHz dual core Intel Core i7-5500U CPU, with 8 Gb of RAM. All models,
algorithms and the simulation were implemented in Java as single threaded
applications. The validation simulation is that described in Chapter 4.

6.2.2 Experiment design

The SPCAM, CAM, CAMx*, SDM and SDM x are now all used in a vari-
ety of heuristics to derive reserve crew schedules. The heuristics considered
are as follows:

GH: The greedy heuristic adds reserve crew one at a time to a reserve
crew schedule, each time selecting the start time that reduces the objective
function the most, continuing in this fashion until all of the reserve crew
are scheduled.

LS: Local search starts from a randomly generated initial solution
(randomly generated start time indices). In each iteration all solutions
neighbouring the incumbent solution are evaluated, the solution which re-
duces the objective value the most is accepted. If no improving solution
is available the algorithm terminates. Local search uses the cut-and-insert
neighbourhood structure, that is, all solutions that have one reserve start
time different to that of the incumbent solution.

GH-+LS: LS starting from the GH solution.

SA: The simulated annealing [54] implementation uses the cut-and-
insert neighbourhood. Each iteration randomly selects a neighbouring so-
lution, which is accepted if it is an improving move. A non-improving move
is accepted with probability e=2/7. A is the increase in the objective value
associated with the non-improving move, 7" is the current temperature. The
cooling scheme (value of T" at any given iteration) is based on an exponential
decay starting from 7Ty equal to the maximum number of hub departures
in a crew pairing and reaching a final temperature of 0.000001 after 20000
iterations. The cooling scheme is a function of the number of evaluations
that have been performed so far.

GA1: The first genetic algorithm [43] implementation uses a popula-
tion size of 50, uses four competitor tournament selection, a mutation rate
of 0.001, single point cross-over which is applied with probability 1 and all
parent chromosomes are replaced with children chromosomes in each gen-
eration. The genetic algorithm returns the best solution found after 20000
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function evaluations.

GA2: The second genetic algorithm implementation is the same as
GA1, except that the mutation operator is replaced with a single iteration
of the SA algorithm (only one random neighbouring solution is considered),
which is applied to each member of the population, in each generation. The
SA-based mutation operator uses the same temperature scheme as the SA
algorithm. GAZ2 is limited to a total of 20000 evaluations, which means
that GA2 uses half as many generations as GA1, the other half are used
evaluating SA generated mutations. GA2 is similar to a memetic algorithm
[46], because of the addition of a local search based approach, to the algo-
rithm. Only similar because, one iteration of simulated annealing is closer
to a mutation operator than an application of local search.

All heuristics except for the GH are limited to 20000 function evalu-
ations. The GH only requires around 3000 function evaluations to derive
a reserve crew schedule for the given problem. 20000 function evaluations
take around 10 minutes on the above described hardware software com-
bination. This approach enables a fair test of the different heuristics in a
situation where solutions are required within a set time limit. Each heuristic
is repeated 10 times using each probabilistic reserve crew schedule evaluator
(SPCAM, CAM, CAMx, SDM and SDMx). Each derived reserve crew
schedule is then tested in 20000 repeat simulations to derive cancellation
and delay based performance measures. Each repeat simulation uses differ-
ent stochastic inputs to instantiate numbers of absent crew for each crew
pairing. Firstly though, the results of this experiment are used to assess the
cancellation prediction accuracy of the probabilistic crew absence models
(SPCAM, CAM and CAMx) over a larger sample, compared to the single
instance considered in Figure 6.2.

6.2.3 Cancellation prediction accuracy

This section compares the predicted average cancellations due to crew ab-
sence from the SPCAM, CAM and C'AM=x with the average cancellation
rates observed in repeat simulations. These experiments were repeated for
each reserve crew schedule derived from the experiment described above in
Section 6.2.2. Note that the cancellation rate predictions of the SDM and
S DM+ match those of the CAM and C'AM* respectively. Figure 6.3 con-
firms that the CAM (and the SPCAM) underestimates cancellations due
to crew absence, and that the CAMx successfully alleviates this problem.
The C'AM % does however systematically overestimate cancellations due to
crew absence, each time in a manner similar to that demonstrated in Fig-
ure 6.2. Possible reasons for this include: 20000 repeat simulations are not
enough to capture a representative sample of the worst case scenarios in
which cancellation spikes occur; cumulative rounding errors; the probabil-
ities of reserve combinations calculated based on filters 1 and 2 of Section
6.1.5 have additional factors/intricacies which have not yet been uncovered.
Despite this, the CAMx consistently gives the most accurate cancellation
predictions, which is supported by the linear trend equation, which has a
gradient close to one, an intercept close to zero and a high correlation coef-
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Figure 6.3: Cancellation predictions from evaluations of the SPCAM,
CAM and CAM =+ compared to those derived from repeat simulations

ficient compared to those of the SPCAM and the CAM. On the plus side,
overestimations of cancellations due to crew absence are not as potentially
damaging as underestimations, because cancellations are the most severe
outcome from crew absences. A systematic overestimation of cancellations
due to crew absence could be beneficial, as this corresponds to a more risk
averse approach to reserve crew scheduling.

6.2.4 Reserve crew scheduling application

The results of the experiment described in Section 6.2.2 are now used to
show the effects that the probabilistic models and the search heuristics which
were used to schedule reserve crew have on the quality of the resultant re-
serve crew schedules. The average cancellation measures (cancellations plus
cancellation measures of delay) derived for each reserve crew schedule tested
in 20000 repeat simulations are used as the measures of reserve crew sched-
ule quality. Figure 6.4 shows the average cancellation measure of the best
reserve crew schedules from 10 repeats of each heuristic used in conjunction
with each evaluator. The results show that as the evaluator complexity
increases (SPCAM to SDM=x) the average cancellation measure decreases.
The CAMx* and S D Mx* evaluators typically lead to respectively higher qual-
ity reserve crew schedules than the CAM and SDM evaluators. This result
is supported by the results given in Table 6.2, which validates the model re-
finement of Section 6.1.7. The variance of the average cancellation measures
for reserve crew schedules derived from the SPCAM, CAM and C' AM %
evaluators can be explained by them not allowing for reserve-induced delay.
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simulation derived average cancellation measure

This is confirmed by the results of Table 6.2. The low variance of the results
for the SDM and SD M evaluators can be explained by the fact that each
heuristic is capable of deriving a good quality solution, provided that the
evaluator used includes all of the aspects on which solution quality is judged.
For the SPCAM, CAM and C'AM % evaluators, GA2 always gave the best
reserve crew schedule. For the SDM evaluator, GA1 gave the best solution.
For the SDM=x, SA gave the best (overall) reserve crew schedule. The LS
approach did not attain any of the best reserve crew schedules found. An
explanation for this is that the cut-and-insert neighbourhood structure had
a size of 3396 neighbouring solutions at any given iteration, which all had to
be evaluated before accepting the best neighbouring solution. This meant
that the LS approach never reached a local optimum, because only 5 full
iterations could be performed within the 20000 evaluations limit. For this
reason a Tabu Search was not implemented, as it would not have had the
chance to exploit a tabu list. Figure 6.4 also shows that the accuracy of the
evaluator is, in general, more important than the complexity of the search
algorithm used to derive a reserve crew schedule.

6.2.5 Extra performance measures and alternative ap-
proaches

In this section additional performance measures are given for the best re-
serve crew schedules derived using each variant of the probabilistic crew
absence model. They are also compared with several alternative approaches
to reserve crew scheduling. The alternatives are as follows:

USR: The uniform start rate heuristic schedules the available reserve
crew at times corresponding to equal intervals of hub departures. E.g. if
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Method Method Cancellation measure Average cancellations | Delays > delay threshold | Reserve Maximum
measure type | name Average St dev due to | due to Average | probability utilisation | cancellation
(best repeat) | (10 repeats) | absence | delay (minutes) rate measure
- no res 10.1668 0 10.0991 | 0 6.802 0.0818 0 37.02
Probabilistic | SPCAM | 1.3119 0.2115 0.0906 | 0.01350 17.307 0.1067 0.4627 18.75
CAM 0.9027 0.3615 0.0679 | 0.01260 14.098 0.1041 0.4632 17.18
C AM 0.7275 0.3848 0.0532 | 0.00555 12.557 0.0987 0.4630 16.18
SDM 0.3136 0.0519 0.0620 | 0.00420 8.684 0.0926 0.4623 13.53
SD M x 0.2739 0.0024 0.0903 | 0.00200 8.065 0.0930 0.4583 15.60
Heuristic USR 1.3963 0 0.2967 | 0.00785 16.535 0.1020 0.4543 19.17
Simulation ARFEA 0.9823 0 0.3366 | 0.00610 12.44 0.0983 0.4378 14.48

Table 6.2: Comparison of approaches to reserve crew scheduling using more performance measures




there are 25 hub departures and 5 reserve crew, X = {1,6,11,16,21}.

ARFA: See Section 4.7.1.

The results in Table 6.2 correspond to the best of 10 repeats of the two
alternative approaches described above. These are compared with the best
reserve crew schedules derived using each of the probabilistic evaluators
considered in this chapter. Note that when the best single repeats are
replaced with the average of the 10 repeats of each method, the ordering
of the methods, in terms of average cancellation measure, is the same. The
average cancellation measure for the best repeats of each method are given
to indicate the potential of each approach. The standard deviation from
the 10 repeats indicates the reliability of each method.

In Table 6.2 the average cancellation measures show that the SD M x
results in the lowest average cancellation measure and this true for all 10 re-
peats as indicated by the associated low standard deviation. Table 6.2 gives
the average expected number of cancellations due to crew absence and due
to delays exceeding the cancellation threshold, for each method. When no
reserve crew are scheduled, there are an average of 10 cancellations, all of
which are due to absence. This means that all of the observed cancellations
due to delay, in Table 6.2, are caused by reserve-induced delays which have
been propagated and have caused delays above the cancellation threshold
later on. Cancellations due to delay are highest for the SPCAM, which is
because this approach does not penalise reserve-induced delays. The SDM
and SDM=x reduce cancellations due to delay, because they do penalised
reserve-induced delay. The SDM=x also lead to the lowest rate of cancel-
lations due to delay. The C'AM % achieved the lowest cancellations due to
absence, which can be attributed to it overestimating cancellations due to
absence, resulting in reserve crew schedules which are highly risk averse in
terms of this type of disruption. The delay based performance measures
show that the lowest results for delays above the delay threshold and their
probabilities of occurring were achieved by the approaches which penalise
reserve-induced delay, i.e. SDM and SDM=. The reserve utilisation rate
results show that reserve utilisation rate is not an indicator of the quality
of a reserve crew schedule, because the maximum reserve utilisation rate
corresponding to the CAM also attained a relatively high average cancel-
lation measure. It is therefore possible to use reserve crew badly, especially
if they are scheduled badly. It is interesting to note that the SDMx at-
tains the lowest average cancellation measure by finding a balanced trade-
off between cancellations due to absence and reserve-induced delays. IL.e. it
trades cancellations due to absence for reduced delays and cancellations due
to delays. The maximum cancellation measure performance attribute (last
column) gives the worst case total cancellation measure from the 20000 re-
peat simulations. When no reserve crew were scheduled a total cancellation
measure of 37 was accumulated in the worst case. The SDM has the lowest
maximum cancellation measure.
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6.2.6 Results summary

The results of this section have validated the improvements to the SPCAM
presented in this chapter. Allowing for the possibility of: simultaneous crew
absence; the structure of crew pairings; the possibility of reserve-induced
delay; and the variance present in the total number of crew that can be
absent on any given day has resulted in a model which yields accurate
cancellation predictions and reserve crew schedules which find a balanced
trade-off between delay and cancellation minimisation.

Chapter 10 gives results for the CAM (and the SDM) when modified
for the case of multiple fleet types, crew ranks and qualifications (see Section
6.3) and applied to the problem of reserve crew scheduling. Chapter 10
compares all approaches to reserve crew scheduling considered in this thesis
in the same test instances.

6.3 Extended formulation: Including aircraft
fleet types and crew ranks and qualifica-
tions

This section explains how the C'AM can be extended to allow for multiple
fleet types and the ranks and qualifications of crew. Note that extensions of
the C'AM introduced in the following sections apply equally to the C' AM x,
the SDM and the SDM=x, but C AM is notationally more convenient.

Up until this point the focus has been limited to the simplified case of a
single fleet, this meant that all aircraft had the same crew requirements and
all reserve crew were qualified to operate on all aircraft. This simplification
was justified by the assumption that the reserve crew scheduling problem
decomposes into a separate problem for each fleet, in which reserve crew
qualified for each fleet are scheduled independently. However, this is not
entirely the case because reserve crew can be qualified to operate on a
number of an airline’s fleets. This means that a decomposition approach
would have to restrict reserve crew to one of the fleets they are qualified for.
However such an approach would preclude finding an optimal reserve crew
schedule, because it will not exploit the extra flexibility provided by reserve
crew being qualified for a number of different fleet types. In summary, the
consideration of multiple fleets requires that reserve crew qualifications are
also taken into account. In the following, a three fleet and three qualification
example is considered. Table 6.3 shows that each qualification group is
qualified to operate on a different subset of two fleets out of the three fleets.

Airline fleets are characterised by sets of aircraft of the same type.
Aircraft fleets are defined by the model number (B737 for example), different
fleets have different passenger capacities and distance ranges and as a result
have different cabin crew requirements. The notation FCRy qni (from
Fleet Crew Requirements) is used to denote the number of crew of rank
rank required for fleet type fl. In the following, a three fleet and two crew
rank example is used where the fleet crew requirements are those given in
Table 6.4. Typically the greater the passenger capacity the greater the total
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(fl # qual) Fleet

Qualification | 1 | 2 | 3
1 vV
2 v’ v’
3 v v

Table 6.3: Reserve crew qualification groups and the fleets they are qualified
for

Fleet

Rank |1[2]3
0(ow) [3]4]5
1 (high) [1[1]2

Table 6.4: Fleet crew requirements (F'C'R)

cabin crew requirement. Additionally for long haul flights cabin crew may
require rest periods mid-flight, therefore increasing the total cabin crew
requirement. In summary, the consideration of fleets requires that each
fleet’s crew requirements are taken into account.

Cabin crew come in a range of ranks depending upon their level of
experience and training. The highest cabin crew rank is purser, all flights
require at least one purser amongst the crew complement, and sometimes
more for larger capacity fleet types. In this section, the CAM is also ex-
tended to the case where crew come in two ranks, referred to as low and high
rank, where each fleet type requires a specified number of crew of each rank.
The inclusion of cabin crew ranks means that the CAM has to allow for the
possibility of different numbers of crew of each rank being simultaneously
absent from a crew team. Additionally, cabin crew can fly below rank (see
assumption RC2 of Section 4.2, the fly below rank assumption), this means
that reserve crew of high rank can be used to cover low rank crew absences
if required. The following section describes what aspects of the single fleet,
crew rank and qualification formulation of the CAM have to be modified
to allow for the case of multiple fleets, crew ranks and qualifications.

6.3.1 Required modifications
Different numbers of absent crew of each crew rank

To allow for the possibility of different numbers of absent crew of each crew
rank, the crew unavailability matrix P gains an extra dimension. Whereas
before P; . denoted the probability that e crew are unavailable for departure
d, we now have P;. ¢ to denote the probability that e low rank cabin crew
and f high rank cabin crew are unavailable simultaneously for departure d.

The possibility of different numbers of absent crew of each crew rank
requires that the len characteristic of reserve nodes used in reserve crew
combination generation (Algorithm 4) becomes a vector of length 2 with
leny denoting the number of low rank reserve crew and len; denoting the
number of high rank reserve crew in the combination of reserve crew ending
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on the given reserve node.

Flying below rank

The feature that cabin crew can “fly below rank” means that a given com-
bination of low and high rank absent crew can be covered by reserve crew
in several different ways. Ranging from, covering all absent crew using high
rank reserve crew, to covering all low rank absent crew using low rank re-
serve crew and all high rank absent crew using high rank reserve crew. In
the CAM this feature can be taken into account by considering all of the
combinations of low and high rank absent crew that a given combination of
reserve crew can be used to cover exactly. Given a fleet type fl, a number
of low rank reserve crew (Ir) and a number of high rank reserve crew (hr),
the notation combos i, », denotes the set of combinations of numbers of low
and high rank absent crew that can be covered exactly using Ir low rank re-
serve crew and hr high rank reserve crew. Furthermore, combos ¢ iy hr.en.o 15
the number of low rank (rank = 0) absent crew and combos s iy hr.en,1 1S the
number of high rank (rank = 1) absent crew that are covered by the cn'®
combination. Each time a feasible reserve crew combination is generated in
Algorithm 4 (see Section 6.1.5) all of the ways that such a combination can
used (as stored in combos) have to be taken into account (see Section 6.3.1).
The numerous combinations of low and high rank absent crew that a given
reserve crew combination can be used to cover arise from the possibility of
flying below rank.

Reserve crew combination generation

In Section 6.1.5 reserve crew combinations for a given crew disrupted flight
were generated by constructing a tree of reserve nodes where each path
from a node back to the root node defined a reserve crew combination.
The inclusion of crew ranks and the possibility of using reserve crew to
fly below rank requires a modification of Algorithm 4. The problem with
Algorithm 4 is that high rank crew absence can only be covered using high
rank reserve crew, so reserve crew combinations containing low rank reserve
crew cannot, according to combos, be used to cover absence involving only
high rank absence crew. If low rank reserve crew are added to the tree first
it is possible that no combinations will be generated involving high rank
reserve crew only. One possible solution is to add all of the high rank reserve
crew to the tree first, however this would interfere with the preference order
reserve policy that is encoded within the CAM, as this would model a
reserve order policy where high rank reserve crew are always used for roles
below their assigned rank whenever this is possible. As a result, the reserve
combination tree has to be generated twice, firstly using only high rank
reserve crew whilst only considering their effect on the probabilities of crew
absence involving only high rank absent crew. Then a second time where
high and low rank reserve crew are included in the reserve crew combination
tree, whilst only considering the effects of reserve crew combinations on crew
absences involving at least one low rank crew. The reason why high rank
only crew absences have to be treated separately is that the probabilities
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that high rank reserve crew are used to cover such absences do not depend
on the probabilities that low rank reserve crew are available or not, which
is because low rank reserve crew cannot be used to cover high rank crew
absence. Excluding low rank reserve crew from reserve crew combination
generation gives the correct node probabilities that high rank reserve crew
are available to cover high rank only crew absences.

The second time the reserve crew combination tree is generated both
low and high rank reserve crew are included, allowing for the possibility
that high rank reserve crew are used as low rank reserve crew. This time
the tree is used to update the probabilities that crew absence involving at
least one low rank crew absence can be covered using reserve crew. As the
use of high rank reserve crew in this case does depend on the probabilities
that low rank reserve crew are available or not. As a result combos is only
required for the second reserve combination tree generation. So combos
does not include using just high rank reserve crew to cover just high rank
crew absence, as these will already have been taken into account in the first
reserve crew combination tree.

Probabilities that different combinations of absent crew can be
replaced with reserve crew

Before the inclusion of fleets, ranks and qualifications, the notation a4
denoted the probability that [ reserve crew were simultaneously available
at departure d to cover [ absent crew. To account for the possibility of
different numbers of absent crew of each rank, the extended notation aq,,
is used to denote the probability that reserve crew are available to cover [
low rank crew and m high rank crew that may be simultaneously absent at
departure d. For the case of multiple fleets, ranks and qualifications, Line
22 of Algorithm 4 is replaced by Algorithm 6.

Algorithm 6 Algorithm for updating the probabilities that reserve crew
are available to cover different numbers of absent crew of different ranks

1. for cn =1 to ]combosﬂ’NémoﬂNéenJ do

FLNE™O N en 0 (
by combination)
3:  hac = combos

2:  lac = combos number of low rank absentees covered

FLNEO N oy (number of high rank absentees covered

¢
by combination)
4 Qdjachac = Odlac,hac + NEPTOb
5: end for

Algorithm 6 updates the probabilities (a) that the different combina-
tions (line 1) of numbers of simultanecously absent crew of each rank that
can be covered for using the reserve crew combination defined by the path
from reserve node N¢ back to the root node. Néeno gives the number of low
rank reserve crew and Néem the number of high rank reserve crew in the
reserve crew combination corresponding to reserve node Ng, which are tem-
porarily stored as lac and rac on lines 2 and 3 (for notational convenience
in line 4).
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Because high rank reserve crew can be used to cover low or high rank
absent crew, the reserve crew combination generation algorithm (Algorithm
4) needs to allow the generation of reserve crew combinations involving more
high rank reserve crew than there can be high rank absent crew from a given
flight. For this purpose Constraint 6.9 replaces that of line 9 of Algorithm

4.
IF

rank =1
N
((FCRfLo + FCRfu) > (leno + lenl))

U (6.9)

rank =0
N
((FCRfl’O -+ FCRfl,l) > (l@no + lenl)) N
(FCRfl’o > leno)

Constraint 6.9 allows high rank reserve crew branch nodes on leaf nodes that
correspond to reserve combinations where the total number of reserve crew
is below the maximum total number of crew that can be absent for a flight
involving fleet fl. Constraint 6.9 allows low rank reserve crew branch nodes
on leaf nodes that correspond to reserve combinations where the number of
low rank reserve crew is less than the maximum total number of low rank
absent crew provided that the total number of reserve crew is less than the
total number of crew that can be absent for a flight involving fleet fI.

Expanded solution representation

For the case of multiple fleets, crew ranks and qualifications the solution
representation has to capture for each reserve crew scheduled: a reserve
duty start time; a rank and a qualification. This leads to the following
solution representation (Equation 6.10). Where sti;, denotes the start time
index of reserve crew k, rank; denotes the rank of reserve crew k and qualy,
denotes the qualification of reserve crew k.

Stil StiR
X = rank; s rankg (6.10)
qualy qualp

6.4 Generalised reserve policy

As a result of extending the CAM to the case of multiple fleet types, crew
ranks and qualifications (FRQs), the assumed reserve order policy of the
CAM requires a modification. The problem is that when considering the
case of FRQs different combinations of reserve crew with different rank and
qualification compositions can have the same associated duty start times.
The earliest start time order reserve policy considered so far cannot distin-
guish between such combinations.
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This section introduces a generalised reserve policy which allows re-
serve crew to be considered in orders that are defined by a number of criteria,
not just their start times. For example, if using reserve crew to fly below
rank is considered undesirable, high rank reserve crew can be considered
last so the low rank disrupted crew are replaced with low rank reserve crew
if possible. Another possible order in which reserve crew can be considered
for use is the time of day (modulo 24 hours) start time order (regardless of
start date) as opposed to absolute start time order (time and date order).
It is also possible that the reserve crew preference order can be based on
which reserve crew have the estimated lowest future demand, so as to leave
the largest possible remaining amount of reserve crew capacity for future
disruptions. Such an approach would be adaptive to the numbers of reserve
crew of each rank-qualification variety remaining at the given time.

The order based reserve policy can be generalised using a weighted
sum of each of the above stated considerations. Rosenberger et al. [87] also
used a weighted sum approach for reserve crew selection, this was described
in Section 2.3. For each reserve crew available for a given disruption, a
relative score can be calculated for each reserve order criterion. Then, the
weighted sum is calculated by multiplying the order scores with the corre-
sponding weights and taking the sum. Such an approach can be encoded
within the CAM, as the resultant order can be used as the order in which
reserve crew are added to the reserve crew combination tree in Algorithm
4. The generalised reserve policy can also be used in the simulation when
testing both reserve crew schedules and reserve holding policies to select
which combination of the available reserve crew should be used in any given
situation.

6.4.1 Generalised reserve policy parameters

The generalised reserve policy (GRP) uses four parameterised criteria to
determine the preference order of reserve crew use for a given departure.
The criteria are: start time; absolute start time; rank (as in the desirability
of flying below rank) and expected future demand. This section introduces
the notation for the GRP and how relative scores are calculated for each
criterion. Table 6.5 gives the notation for the relative reserve order scores,

ATSy : Reserve k absolute relative reserve crew start time score
STSy, : Reserve k relative start time score

DSy, : Reserve k relative demand score

RSy, : Reserve k relative fly below rank score

ATW : Absolute start time policy weight

STW : Start time score policy weight

DwW : Reserve demand policy weight

RW : Reserve rank policy weight

OSyg : Total weighted relative order score of reserve k

resDy, : Estimated future demand for reserve k

mazxzD : Maximum estimated future demand for reserve crew

Plrank,a : Probability of one crew absence of rank rank effecting departure d
ord; : The [;;, reserve crew to consider for use for a given disruption
FLg : The fleet type assigned to departure d

Table 6.5: Generalised reserve policy notation
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policy weights as well as notation used for estimating relative future demand
scores for reserve crew. The relative order scores are calculated as follows.

ATS, = & (6.11)

FE R .

Equation 6.11 states that the relative absolute start time score for a reserve
is simply the reserve number divided by the total number of reserve crew, as
reserve crew are ordered in absolute start time order initially. The relative
absolute start time score is an ordinal type criterion, whereas the relative
start time order score is a ratio type criterion.

STS), = maX(Dsg’}_Dd’ ) if reserve k is feasible (6.12)
M (large number) if reserve k is infeasible

Equation 6.12 states that the relative start time order score (ST'Sy) for a
reserve crew member (k) is proportional to the delay they cause if they are
used for departure d divided by the cancellation threshold. The relative start
time order score for infeasible reserve crew is set to a very large number,
as this ensures they end up last in the order in which reserve crew are
considered for use (note that if they are infeasible they will not be considered
anyway).

DSy = resDi (6.13)

resDy = Zje{{d—i—l ton}|Feassi;, j=true, qualy#F L;} (#ICRJ X pl"fmklmj) (614)
FCRpy.

ploj = Yo b (6.15)
FCRpy,

phij = Yo Dien (6.16)

TFRJ = Zme{{l to R}|Feasstiy,,j=true, qualm#FL;} (Tk> (617)

mazxD = maxy, (resDy,) (6.18)

Equation 6.13 gives the relative future demand score (DSj) for a reserve
crew member (k), which is the estimated future demand (resDjy) for the
reserve crew divided by the maximum estimated future demand (mazD)
for a reserve crew member (Equation 6.18). The estimates of resDy, are
calculated, using Equation 6.14 by summing for each future flight the rela-
tive availability of reserve k (if feasible) compared to the total availability
of feasible reserve crew (T'F'R;, Equation 6.17) multiplied by approximate
demand for reserve crew, which is taken as the probability of 1 crew absence
of the same rank as reserve k (pl,qnk,, ;). Equations 6.15 and 6.16 show how
P is used to calculate the probabilities of 1 crew absence of each rank. Us-
ing P and r to determine reserve orders during an evaluation of the CAM
means that GRP is responsive to the particular reserve crew schedule being
evaluated in the CAM.

RS}, = ranky, (6.19)

Equation 6.19 states that the relative fly below rank score (RSy) of a reserve
crew is simply their rank, 0 if low rank and 1 if high rank. So if the fly
below rank policy weight (RW) is non-zero, this will have the affect of
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moving reserve crew of higher rank towards the end of the order in which
reserve crew will be considered for a disruption.

0SS, = (ATW X ATSk) + (STW X STSk)
+ (DW x DSk) + (RW x RSy)

ord = Reserve crew numbers in lowest to highest order of OS  (6.21)

(6.20)

Equation 6.20 shows how to calculate the total weighted reserve crew order
scores (OSy). Equation 6.21 gives the order in which reserve crew are to be
considered for use for the given disruption.

6.4.2 Generalised reserve policy parameter space

In this section the parameter space of the generalised reserve policy is de-
fined which is then investigated in Sections 6.4.3 and 6.4.4. The parameter
space of the generalised reserve policy is the set of all possible values of the
tuple {ATW, STW, DW, RW}. For the following investigation the parame-
ter space is constrained as follows.

ATW + ASW + DW + RW =
0 <ATW <
0<STW <

0<DW <L
0< RW <

(6.22)

—_ = = =

Constraint set 6.22 states that the sum of policy weights must equal 1
and each individual policy weight must be between 0 and 1 inclusive. The
investigation of the GRP parameter space will test a sample of possible
{ATW,STW, DW, RW} tuples from a reserve crew scheduling perspective
(used in the SDMx to schedule reserve crew) and a day of operation reserve
policy perspective (used as the policy in the validation simulation) and also
look at the interaction between both perspectives. The aim is to find which
policy parameters work best from a scheduling perspective and which work
best from an online perspective. Note that in the validation simulation P,
which is required for Equations 6.15 and 6.16, is updated as realisations of

crew absence become known. l.e. the appropriate elements of P are set to
1.

6.4.3 Experimental design

To explore the effect of different sets of policy parameters used for reserve
scheduling in the SDM=x* and used online as the reserve order policy in the
validation simulation, the following systematic sample of parameter sets
(Equation 6.23) will each be used to generate a reserve crew schedule using
the SDMx as the evaluator in a simulated annealing algorithm (Section
6.2.2). Then each reserve crew schedule will be tested in simulation used
in conjunction with each of the parameter sets used as the weights for the
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online (validation simulation) application of the GRP.

. {1 0 o0 o0 }
2. { 0o 1 0 o0 }
3. { o 0o 1 0 }
4. { 0 0 0 1 }
5. { 05 05 0 0 }
6. { 05 0 05 0 }
7. { 05 0 0 05 }
8. { 0 05 05 0 } (6.23)
9. { 0 05 0 05 }
0. { 0 0 05 05 }
11. { 033 033 033 0 }
12. { 033 033 0 033 }
13. { 033 0 033 033 }
14. { 0 033 033 033 }
15. { 025 0.25 0.25 025 }

The experiment will be repeated for six different input airline schedules
derived from real airline schedule data. The six test instances are those
that will be used in Chapter 10 to compare all reserve crew scheduling and
policy approaches considered in this thesis. The schedules are of length 1,
3 and 7 days respectively. The properties of the six test airline schedules
are given in Table 10.1.

6.4.4 GRP parameter experiment results

15 reserve crew schedules were derived from using the SDMx (using a sim-
ulated annealing algorithm, see Section 3.5.4), one reserve crew schedule for
each set of policy parameters in Equation 6.23. Each reserve crew schedule
was then tested in a simulation 15 times, one for each set of policy param-
eters in Equation 6.23 used as the online reserve policy. For each of the
225 simulation tests, 20000 repeat simulation runs were used to derive av-
erage cancellation measure performance measures. The result is 225 data
points, where each data point consists of the sets of policy parameters used
to schedule reserve crew and those used online in simulation testing and a
resultant (response) average cancellation measure derived from the repeat
simulations.

The best policy parameter combinations for each of the six schedules
are shown in Table 6.6. Table 6.6 shows that the lowest average cancella-
tion measures were achieved using different policy parameter combinations
for each schedule. For schedule 1 the best policy parameter combination
gave full weight to the absolute start time consideration both in the schedul-
ing phase and in online testing of the resultant reserve crew schedule, this
corresponds to assuming the default policy when scheduling reserve crew
and using the default policy on the day of operations. In contrast the
best policy parameter combination for schedule 2 involved creating reserve
crew schedules whilst assuming that reserve crew being used to fly below
rank is avoided if possible, the corresponding online policy parameters gave
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Schedule Policy parameter
Offline Online

ATW | STW | RW | DW | ATW | STW | RW | DW
1 1 0 0 0 1 0 0 0
2 0 0 1 0 025 [0.25 |0.25]0.25
3 0 0 05 105 025 |025 |0.25]0.25
4 0 0.5 0.5 |0 0.25 [0.25 |0.25]0.25
5 025 1025 [0.25]025(0.25 |0.25 |0.25]0.25
6 033 |0 03310331033 |033 [033]0

Table 6.6: The GRP policy parameter combinations that minimises average
cancellation measure

equal weight to each aspect of the policy. The best online policy parameter
combinations for schedules 2 to 5 all involved giving equal weights to each
aspect of the policy, and, as will be shown in Figures 6.5 and 6.6, the equal
weights online policy is amongst the best policy parameter combinations
for schedules 1 and 6 as well. This can be taken as evidence that in general
a good choice of online policy parameters involves giving equal weight to
each aspect of the policy. Table 6.6 contains the policy parameters that
will be used in Chapter 10 to compare all of the approaches to reserve crew
scheduling and reserve policies considered in this thesis.

Figures 6.5 and 6.6 show more details for the GRP experiment results
for schedules 1 and 6.

Sensitivity of average cancellation measure to the

—— [0.330.33 0.33 0.00]
—— [0.00 0.50 0.00 0.50]
| 10.000.00 0.00 1.00]

0.35 0.4 0.45 0.5 0.55 0.6 0.65
Average cancellation measure

[0.00 0.00 1.00 0.00]t
[0.00 0.00 0.00 1.00]f
[ATW STW RW DW]

online policy parameter set for each parameter set used in Scheduling policy
reserve crew scheduling (1 day schedule) parameters in lowest
[0.25 0.25 0.25 0.25]f - average cancellation
[0.00 0.33 0.33 0.33] ~ measure order first
[0.33 0.33 0.33 0.00]F \\ ——[1.00 0.00 0.00 0.00]
[0.330.00 0.33 0.33]r ) [0.00 1.00 0.00 0.00]
§ [0.50 0.00 0.50 0.00]} [0.50 0.50 0.00 0.00]
& [0.000.50 0.50 0.00] [0.00 0.00 1.00 0.00]
£ 000000050 050]) 16200:00.0.20 0.00]
E [1.000.000.00 0.00]: best parameters [0.00 0.50 0.50 0.00]
2 [0.00 1.00 0.00 0.00] S:[1000] [0.25 0.25 0.25 0.25]
8 [0.50 050 0.00 0.00]r of1000] [0.00 0.00 0.50 0.50]
2 [0.330.330.000.33]f [0.33 0.33 0.00 0.33]
S [0.00 0.50 0.00 0.50] —<—[0.330.00 0.33 0.33]
[0.50 0.00 0.00 0.50]F ~—+[0.000.330.330.33]
]
]

Figure 6.5: Average cancellation measures corresponding to each of the
reserve crew schedules generated using each parameter combination tested
using each of the test parameter combinations online for schedule 1

Figure 6.5 shows the average cancellation measures from each of the
225 simulation experiments. In Figure 6.5 each data series corresponds to a
reserve crew schedule derived whilst assuming one of the policy parameter
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sets tested in conjunction with each policy parameter combination used
online. The data series corresponding to each scheduling policy parameter
set have been colour coded in a rainbow order where red corresponds to
the lowest average cancellation measure and purple the highest. The y-axis
gives the online parameter sets corresponding to the data points in each
row. The online policy parameters have also been ordered on the y-axis
according to lowest to highest average cancellation measure order first, so
that the best policies on average online and offline are listed first on the
y-axis and in the key respectively. Note that the best on average does
not necessarily correspond to the best single combination of scheduling and
online policy parameter sets (see annotation). Figure 6.5 shows that for
schedule 1 the average cancellation measure is significantly influenced by
both the parameters used offline and those used online. This can be seen
as variance in the average cancellation measure for each data series (offline
policies) and each online policy on the y-axis. Figure 6.5 also shows that
the worst policy both online and offline is to give full weight to the expected
future demand element of the policy. This can be taken as evidence that
in general the benefit of using reserve crew to cover a disruption that has
actually occurred outweighs the benefit of saving reserve crew for disruptions
that might occur in the future. Additionally, reserve crew with low future
demand will typically be those scheduled later, when these reserve crew
used in place of reserve crew scheduled at earlier times will typically cause
more reserve-induced delay.

Sensitivity of average cancellation measure to the
online policy parameter set for each parameter set used in
reserve crew scheduling (constructed 7 day schedule)

Scheduling policy
parameters in lowest

[0.33 0.33 0.33 0.00]f . average cancellation
[0.25 0.25 0.25 0.25]} \ N measure order first
[0.00 0.50 0.50 0.00]f g best parameters
[0.00 0.33 0.33 0.33]f N » g:%ggg g gfg gsa ~—*[0.330.000.330.33]
. | DAEesBSs [0.00 0.50 0.50 0.00]
% [0.50 0.50 0.00 0.00] L
] ‘ [0.50 0.00 0.50 0.00]
5 [0.50 0.00 0.50 0.00] }‘ [0.00 0.00 1.00 0.00]
£ [0.00 0.00 1.00 0.00] d [0.50 0.50 0.00 0.00]
g [0.330.330.000.33]f { [0.330.330.33 0.00]
3 [0.00 0.50 0.00 0.50]¢ N [1.00 0.00 0.00 0.00]
S [0.00 1.00 0.00 0.00} N [0.00 0.00 0.50 0.50]
2 1 000,00 0.00 0.001. N [0.00 0.330.33 0.33]
£ [1.000.000.000.00] i [0.25 0.25 0.25 0.25]
S [0.330.000.330.33] < ——+— [0.50 0.00 0.00 0.50]
[0.50 0.00 0.00 0.50] ) —=— [0.00 1.00 0.00 0.00]
[0.00 0.00 0.50 0.50]f < —*[0.000.50 0.00 0.50]
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Figure 6.6: Average cancellation measures corresponding to each of the
reserve crew schedules generated using each parameter combination tested
using each of the test parameter combinations online for schedule 6

Figure 6.6 shows the average cancellation measures corresponding to
each combination of offline and online parameter sets for the case of schedule
6. Figure 6.6 shows that for schedule 6 (the constructed 7 day schedule) the
average cancellation measure becomes much more sensitive to the online
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policy parameters compared to that demonstrated in Figure 6.5 for the
real 1 day schedule. This indicates that when there are both more reserve
crew and more disruptions for which those reserve crew can be utilised,
the decisions regarding which reserve crew are used for each crew related
disruption, become more important. In general, the online policy becomes
more important when the number of ways in which reserve crew can be
used increases. Figure 6.6 also shows that the worst reserve crew schedules
occur when the fly below rank parameter is given a low weight, i.e. when
the assumed reserve policy during reserve crew scheduling is to never try to
avoid using reserve crew below their assigned rank. The reason this has a
negative impact on the reserve crew schedule is that this encourages reserve
crew schedules where high rank reserve crew are rarely available at times
when they are likely to be used to fly below rank (because this is wasteful
given their limited availability). This has the knock-on effect of reducing
the efficiency with which high rank crew related disruptions can be covered.
This was not the case for schedule 1 because it is a much shorter schedule
and such dilemmas occur less frequently.

Appendix B contains the graphs for schedules 2 to 5 equivalent to
those of Figures 6.5 and 6.6.

6.5 Chapter summary

In this chapter, the SPCAM of Chapter 5 has been improved by allowing
for: the possibility of multiple crew being absent simultaneously from each
crew team; the structure of the crew schedule with respect to the total
potential disruption caused by each instance of crew absence; the possibility
of reserve-induced delay; and the variance that exists in the total number
of crew that may be absent on any given day of operation. Experimental
results validated the proposed improvements.

The CAM was then extended to allow for the case where there are
multiple fleet types and reserve crew are each qualified for a specified subset
of all fleet types. The extended model also allows for crew ranks and the
possibility that high rank reserve crew can be used in roles below their
assigned rank. A result of this extension was that the assumed earliest start
time reserve order policy had to be able to distinguish between combinations
of reserve crew with equivalent start times but different rank-qualification
compositions. A weighted sum of start time, rank and expected future
reserve demand (GRP) was introduced for this purpose. An investigation
into the effects of the weights for the weighted sum was carried out to select
good sets of weights.

6.6 The CAM used in subsequent chapters

In essence, the CAM is a model of crew absence uncertainty and reserve
crew recovery. The model can be used to evaluate reserve crew schedules
in search algorithms for the purpose of reserve crew scheduling, or used to
evaluate alternative reserve use decisions online as a reserve policy.
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In subsequent chapters, the C'AM is also used as a building block.
Chapter 8 utilises the CAM to provide probabilities that crew absence is
covered and teams of reserve crew are available to replace delayed crew at
different times.
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Chapter 7

Probabilistic crew delay model

This chapter describes a probabilistic model of the occurrence of crew-
related delays, and how such delays propagate through an airline’s schedule.
The model evaluates the effect that any given reserve crew schedule will
have on reducing crew-related delays and their knock-on effects. The model
is used to search for a delay minimising reserve crew schedule. The work
presented in this chapter corresponds to a conference paper [15] published
during this research. The approach is analogous to the probabilistic crew
absence models of Chapters 5 and 6. The probabilistic crew delay model
(CDM) of this chapter ignores crew absence disruptions. The justification
for this is that crew absence and delay disruptions are largely independent
of one another, because crew are either absent or delayed, never both. The
aim was to then combine/integrate the probabilistic crew absence and delay
models to give a single model that could be used to schedule reserve crew
with the objective of minimising the expected levels of delay and uncovered
crew absence disruptions. This (integration) goal is reached in Chapter
8 with development of the statistical delay propagation model which uses
the C AM of Chapter 6 to provide probabilities of reserve crew availability.
This chapter represents an initial probabilistic model devoted to scheduling
reserve crew in anticipation of crew related delays, i.e. delays which oc-
cur when an aircraft has to wait for crew who are delayed on an incoming
flight, which could be avoided by replacing the delayed crew with reserve
crew. Chapter 8 presents a vastly improved model to that presented in this
chapter.

The C'DM uses a learning phase to derive: the probabilities of crew-
related delays; the probabilities that those delays are propagated; and the
expected durations of those delays. The simulation used in the learning
phase includes swap recovery actions from delays, and this provides the
mechanism through which the C DM (indirectly) models the effects of swap
recovery actions. The simulation which is used was introduced in Chapter 4,
although this chapter is based on that simulation when it was at an earlier
stage of its development (reserve crew teams were modelled as indivisible
teams as opposed to being constructed from individual reserve crew at times
when reserve crew teams are required). One of the outputs of the learning
phase is a probability matrix containing the probabilities that crew-related
delays propagate from one flight to another. This probability matrix (P)
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is analogous to the crew absence probabilities of Chapters 5 and 6. An
evaluation procedure is developed for the effect that a reserve crew schedule
has on the probabilities of propagating crew-related delays and therefore
the overall expected level of delay propagation. This is again analogous to
the evaluation procedures of Chapters 5 and 6.

7.1 Motivation for a probabilistic model of
crew-related delay

Airline schedules can become infeasible due to the disruptive effects of uncer-
tainty in an airline’s operating environment. Moreover, delays (including
crew delays) can propagate through the schedule due to the presence of
resource connections, so dependencies exist between different aircraft rota-
tions and crew pairings (allocations to aircraft) in the schedule. Even when
resource connections are not present, a crew’s pairing can become infeasible
if the crew is delayed enough so that their maximum flying time would be
exceeded. If crews are absent or delayed, reserve crew can be used to restore
the schedule’s feasibility. Most airlines therefore also schedule reserve crew
in addition to their regular crew.

Previous work on modelling delay propagation was discussed in Sec-
tion 2.5.2, AhmadBeygi et al. [3] introduced the concept of delay propa-
gation trees to track how delays propagate through an airline’s schedule.
In contrast, this work uses a probability matrix to model the propagation
of crew-related delay through an airline’s schedule, the probability matrix
is then used to evaluate the quality of candidate reserve crew schedules in
terms of delay minimisation.

7.2 Model overview

The model introduced here is concerned with crew-related delay propaga-
tion in a single hub and spoke network. The aim of the model is to assign
the standby duty start times for a fixed number of reserve crew duties such
that the total expected crew-related delay propagation is minimised.

The proposed method involves a simulation parameter generation phase
used to derive probabilities of crew-related delay and their associated ex-
pected delay durations. The parameter generating simulation simulates
recovery from delays by searching for crew and aircraft swaps that absorb
delays. The probabilities of crew-related delay are therefore independent of
the effects of reserve crew and dependent on resource swaps. Assuming that
swaps are a cheaper recovery action and are preferred over the use of reserve
crew, further reductions in delays can then be achieved by optimising the
reserve crew schedule. The parameters generated in the simulation phase
are stored in matrices which record the causal relationship of propagating
crew-related delays. The parameter matrices are then used as the inputs
for the probabilistic evaluation procedure which evaluates the effect that a
given reserve crew schedule has on the expected level of crew-related delay.
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The evaluation procedure is then used to search for a reserve crew sched-
ule that minimises the total expected crew-related delay. The experimental
results indicate that the proposed model minimises crew-related delay in
comparison to a variety of alternative methods of reserve crew scheduling
for the problem instances considered later on in this chapter.

Chapter structure

The outline of this chapter is as follows. Table 7.1 defines all of the notation
used in the model. The C'DM is formulated in Section 7.3. Section 7.4 sets
out an experiment to test the methods put forward and gives the experi-
mental results with interpretations. Section 7.5 concludes with a summary
of the main findings of this chapter.

P : Matrix of probabilities of crew-related delay

Di,;j : Element 4, j of the matrix P. The probability that departure i is delayed by
crew-related delay propagating from flight j

pi = Z;V:Dl pi,; : The total probability that departure 4 is delayed due to crew

Hard copy of P after phase 1 (crew-related delay probabilities independent of
the effects of a reserve crew schedule)

L : Matrix of mean crew-related delays

lij : Element ,j of the matrix L. The mean crew-related delay of departure ¢
propagated from flight j

Dj . List of departures with a non-zero probability of crew delay originating in flight
J

E; . List of departures with a non-zero probability of crew delay propagating to
flight 4

NS : Number of simulations used for input parameter derivation

ND : Number of departures

cT : Cancellation threshold

DT : Delay threshold

DL : Crew duty length

MS : Minimum sit period (rest time) for crew between consecutive flights

T ;' Minimum aircraft turn time between consecutive flights

R : Number of reserve crew

X ¢ Reserve crew schedule vector. Decision variable

Th : Element k of the reserve crew schedule vector X. Duty start time of reserve k

Dep; : Scheduled departure time of flight 4

Arr; : Scheduled arrival time of flight 4

A; : Aircraft scheduled to flight 4

C; : Crew scheduled on flight ¢

cetan : Estimated time of arrival of crew n

LDN, : Last flight assigned to crew n

aeta, :  Estimated time of arrival of aircraft r

a; : Relative importance of flight ¢ in objective function evaluation

cd; : Crew-related delay experienced by flight ¢

ledp 1 Crew-related delay experienced by the previous flight that crew n operated

'r,ic : Probability of reserve k being available to cover crew-related delay affecting
flight ¢

Table 7.1: Notation

7.3 The probabilistic crew delay model

This approach for reserve crew scheduling consists of three sequential steps:
(1) input generation through simulation, (2) probabilistic crew delay opti-
misation, and (3) validation. Phase 1 estimates the delay probabilities and
expected durations for each individual flight in the schedule using simulation
and assumes that no reserves are available for recovery. This information is
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then used as input for the CDM (Phase 2), which generates a reserve sched-
ule that minimises crew delay for the given inputs. The resulting reserve
schedule is validated through simulation in phase 3, during which reserves
can be used for recovery. The individual components of the approach are
described in more detail in Sections 7.3.1, 7.3.2, and 7.3.3, respectively.

7.3.1 Phase 1: Input Generation

Simulation is used to generate two matrices P and L that contain, respec-
tively, the delay probabilities and the expected delay durations for each
individual flight in the schedule. The two-dimensional structure of matrices
is used to model the correlations that exist between the crew-related delays
that are experienced by each flight. An element p; ; of the matrix P stores
the probability that flight ¢ experiences a crew-related delay that was prop-
agated from an earlier flight j. Similarly [;; stores the average duration
of the crew-related delay that was propagated from flight 5. Typically the
matrices P and L will have a lower triangular structure, which is because
flights are usually listed in scheduled departure time order and delay typi-
cally propagates from earlier scheduled flights to later ones. In this chapter,
the matrices P and L are derived during a simulation learning phase. After
this, P and L are used as input data for a model that evaluates the effect
that any given reserve crew schedule has on reducing the expected level of
crew-related delay in an airline’s schedule. The matrix structure of P and L
is used to evaluate the effect that any given reserve crew schedule will have
reducing the probabilities that crew-related delays will occur, as well as any
knock-on effects that may result from such delays. In summary, the matrix
structure allows the modelling of the propagation of crew-related delays.
The evaluation model is then used within a number of search heuristics
that are used to find crew-related delay minimising reserve crew schedules.

The simulation model that is used to learn P and L uses delay dis-
tributions which were derived from historic data and applies aircraft swaps
and crew swaps (but no reserves) to recover from disruptions. Crew-related
delay can be divided into two categories: root delays where the cause cannot
be traced back to preceding flight(s) and propagated delays which can be
traced back to preceding flights. In the simulation, each flight ¢ in the sched-
ule has two variables, cd;, which is the crew-related delay affecting flight ¢
and lede,, which is the crew-related delay experienced by the previous flight
flown by the crew assigned to flight ¢ (crew C;). So for flight i, ledc, repre-
sents the root crew-related delay and cd; represents the crew-related delay
that propagated and affected flight 7. For any two flight legs j followed by
i which are operated by the same crew, lede, = cd; (i.e. these are the two
ways of referring to the same crew-related delay from different perspectives,
crew perspective and flight number perspective respectively). If ed; > 0
(flight 7 is delayed by crew) and lcde, > 0 (the assigned crew C; caused a
delay on their previous flight), then at least some of the crew-related delay
is propagated delay. The exact value of cd; is defined by Equation 7.1, and
is equal to the delay that can be attributed to connecting crew discounting
any delay due to the connecting aircraft and not including delays which are
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less than the delay threshold. The value of cd; is equal to the delay that
could be avoided/absorbed if a reserve crew were available for flight i. To
reiterate, during phase 1 all other recovery actions except for reserve crew
are considered and that the calculation of cd; is performed after all other re-
covery actions have been considered and applied. This ensures that further
reduction in delay is likely to be only achieved through the consideration of
reserve crew use.

cd; = max (0, cetac, + MS — max (aetas, + TT,dep; + DT)) (7.1)

If cd; exceeds zero during the simulation learning phase, it means that a
crew-related delay has occurred and the matrices P and L are updated to
reflect this. Whenever a crew-related delay occurs (cd; > 0), the corre-
sponding entries in P and L are updated using Algorithm 7. The proba-
bility weighting of each update to P and L is a, where a = 1/NS (NS =
the number of repeat simulations used in the learning phase). Algorithm
7 determines whether or not, and if so how much of the crew-related delay
can be attributed to crew-related delay that was propagated from an earlier
flight. If a crew-related delay cannot be attributed to crew-related delay
that was propagated from an earlier flight, then the crew-related delay is a
root delay. Root delays are modelled by the diagonal elements of P and L
(i.e., p;; and [;;). Conversely, if the crew-related delay (or a portion of it)
was propagated from an earlier flight then such delays are modelled by the
off-diagonal elements of P and L (i.e. p;; and [;; with i # j). p; ; gives the
probability that flight ¢ suffers crew-related delay propagated from flight j,
whilst L, ; gives the expected duration of the crew-related delay propagated
from flight j to flight :.

Algorithm 7 Procedure for populating P during simulation
if cd; > 0 then
if (ed; — lede,) > 0 then
cd; —lede,
Pii = Pii T @ <—Cdi *
pij =Dpijt+a (l(jzc)
else
Pij =Dij T a
end if
end if

Algorithm 7 states that when a crew-related delay occurs at flight 4,
flight ¢ can only be identified as a root cause of crew-related delay if the
crew-related delay of flight ¢ exceeds that of the crew-related delay of flight
J (lede,). Otherwise all of the crew-related delay is propagated crew-related
delay. For example, if p;; is equal to 0.01 (i # j), flight ¢ has 1% chance
of suffering crew-related delay propagation caused by a crew-related delay
that propagated from flight j. This implies that flight j itself also suffered
from a crew-related delay (i.e. cd; # 0 and p;; # 0). Finally, if ledge < cd;,
not all of the crew-related delay of flight ¢ can be can be traced ‘back to

135



the crew delay of flight j (¢d;). In summary, Algorithm 7 attributes crew-
related delay probabilities according to the relative amounts of root and
propagated delay crew-related delay minutes.

7.3.2 Phase 2: Probabilistic Crew Delay Optimisation

The C'DM is used as an evaluator in search algorithms to generate a re-
serve crew schedule that minimises the probabilistic crew delay for the delay
probabilities and expected delay durations in P and L. The following as-
sumptions are mostly simplifications of those stated in Section 4.2, and are
given in curly braces below. It is assumed that: (a) reserves are based at the
hub station only, { RP7}; (b) reserves have a zero response time,{ RC8}; (c)
each reserve crew can cover exactly one disrupted crew per duty, { RC9};
and (d) each flight requires exactly one team of crew, {C2}. Furthermore,
it is assumed that, if a disruption occurs, reserves are allocated in earliest
start time order, { RP5}. This maximises the remaining reserve crew duty
time. Reserve crew are assumed to be used as demand occurs in earliest
start time order (default policy) and never held in anticipation of larger
crew-related delays. Holding policies are considered in Chapters 8, 9 and
10.

Objective Function

The objective function used in the C'DM quantifies the effects that a reserve
crew schedule has on a disruption by iteratively calculating the probability
that a reserve crew is still available (i.e., that they have not been used to
handle previous disruptions) and can be used to cover a given crew disrup-
tion. Let p; denote the probability that departure i (i = x+m in Algorithm
8) is delayed (sum of row i), and 7, denote the probability that reserve k is
available to cover a crew-related delay. The probability that the reserve is
still available to cover the next flight is then given by Equation 7.2.

A N )] (7.2)
pi = pi(l—r})

Equations 7.2 and 7.3 underpin Algorithm 8, which calculates the objec-
tive value of a reserve schedule (the expected total weighted crew-related
delay propagation for flights when the reserve schedule is enacted) for the
delay probabilities and delay durations given by P and L. Notice also the
similarity between Equations 7.2 to 7.3 and those of Equations 5.1 to 5.2
in Chapter 5. The only difference is that in this case p; corresponds to the
sum of row ¢ of the matrix P, which includes the sum of the probabilities
that flight ¢ suffers crew-related delay which are propagated from previous
flights.
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Algorithm 8 Objective function evaluation

1. P=Q
2: for k=1to R do
3 =1
4: m = xy
5: while Dep,,, < Dep,, + DL do
6: if ATTLDN(CM) < Depzk + DL then
7 it = (1 — ppy)
8: Evaluate the immediate benefit of reserve (immedEval(r}, m))
9: Evaluate knock-on effects of reserve (knockOnEval(r*, m))
10: end if
11: m=m-+1
12: end while
13: end for

14: objVal = ZZV:[I) Z;\g iPi, 5 (li,j)b

Algorithm 8 iterates through the R reserves in the schedule (X) in
start time order (line 2), one at a time. Just as in Chapter 5, the order in
which reserve crew are considered reflects the assumed policy for the order
in which reserve crew are used. In this case the assumed reserve policy is
to use reserve crew in earliest start time order first. For each reserve crew,
the initial probability of availability is initialised to 1 (line 3). Lines 5 to
12 iterate through all flights that can be covered by the given reserve crew
feasibly within the reserves duty length (lines 5 and 6). Line 7 updates
the probability that reserve k remains available for subsequent crew-related
delays. Line 8 evaluates the effect that the probability that reserve k remains
available has on the probabilities that flight m still experiences crew-related
delay, i.e. the immediate impact of the reserve (see Algorithm 9). Line 9
evaluates the knock-on effects that using the reserve crew to absorb crew-
related delay affecting flight m has on future crew-related delays. Algorithm
10 is the procedure for line 9. The objective value for the entire schedule
is calculated on line 14, and is equal to the weighted sum of the expected
crew delay durations. The weight a; denotes the relative importance of
flight + and may be derived from factors such as passenger numbers or the
availability of alternative flights for re-routing passengers.

The immedEval (Algorithm 9) and knockOnEwval (Algorithm 10)
procedures used in objective function evaluation (Algorithm 8) calculate
how the probabilities of crew-related delays are reduced by a given reserve
crew schedule. These reduced probabilities of crew-related delay are used in
line 14 to calculate the weighted sum of expected crew-related delay which
is to be minimised by manipulating the reserve schedule (X).

Algorithm 9 Procedure for calculating the effect a reserve crew has on the
probability that flight ¢ is delayed for crew-related reasons

1: immedEval(r}, 1)

2: for j=1to |E;| do

3 pip., =pie, 171}
4: end for

Algorithm 9 evaluates the effect that a reserve crew k, available with
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probability 7%, has on the probability that crew-delay propagated from a
previous flight or a root crew-related delay still delays flight i. E; is a list
of flights with a non-zero probability of propagating crew-related delay to
flight 7.

The purpose of accounting for knock-on delays is to determine the
effect that a reserve crew member who is available for flight j has on future
delays. The probability of the crew-related delay of future flight ¢ originating
at flight j is reduced proportionally to the probability that a reserve is
available for flight 7 and to the probability that flight ¢ is delayed due to
flight j. The assumption is made that the probability that flight 7 is delayed
due to delay propagated from flight j is proportional to the ratio of the
expected duration of the delay that propagates from flight j to flight + and
the total expected delay that propagates from flight j. E.g. if flight 1 has an
expected delay of 1 hour and flight 2 which suffers delay propagated from
flight 1 has an expected delay of an hour, this implies that delay effecting
flight 1 is directly proportional to the delay experienced by flight 2. This
reasoning is applied recursively in Algorithm 10.

Algorithm 10 Procedure for calculating the effect a reserve crew has on
the probabilities of future crew-related delays still occurring

1: knockOnEval(ri,j)
2: for i =1 to |D;| do

3 knockOnEval | 7], ‘D?‘(Dj”)’J X (yi).s ,Dji
PN (p(Djyi),k x l(Dj,i)v’“)

4 pp;yg =Py —17)

5: end for

The outer loop in Algorithm 10 considers each flight ¢ (€ D;) that
has a non-zero probability of experiencing a delay propagated from flight ;.
Within the loop the recursive call of the procedure is made. The probability
that a reserve prevents delay propagating to a subsequent flight is reduced
proportionally to the probability that the reserve is used and the probability
that the delay would have propagated. Line 4 in the procedure evaluates
the probability that a crew-related delay still occurs given that the reserve
is available at flight i.

Search Algorithm

In this chapter, the model is solved using a greedy heuristic which proceeds
by adding one reserve crew to the schedule at a time, choosing a duty start
time (discretised according to scheduled departure times) such that the
reduction in the objective value is maximised. A local search approach is
also considered, where the neighbourhood structures which are used include
single swap, cut and insert and “power set shift”. The “power set shift”
neighbourhood is defined as each possible lateral shift of each substring of a
binary string solution bounded by 1’s such that the shift does not overwrite
any surrounding 1’s. The results are shown in Section 7.4.
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7.3.3 Phase 3: Validation

Simulation was also used to validate the C DM described above, this time
considering reserves as one of the recovery actions. In contrast to the sim-
ulation of Chapter 4 each departure from the hub station is modelled as an
out-and-back cycle, so from the hubs perspective each departure results in
an arrival after visiting a single spoke station. This model therefore uses
aggregated block time distributions for each spoke destination to account
for the time between leaving the gate at the hub to the time the aircraft
arrives back at the gate of the hub.

7.4 Results

7.4.1 Data Instances

The schedules considered here cover a time span of 24 hours, contain 300
flights carried out by 37 aircraft and approximately 120 teams of crew. To
simplify the analysis, all aircraft are assumed to be of the same fleet type.
All instances were generated using a custom developed instance generator
that is underpinned by real world data (described in Section 4.5.1).

This model is designed for airline schedules that contain a risk of
crew-related delay propagation. So airline schedules that contain a risk
of crew-related delay are required to show the method’s effectiveness. An
airline schedules inherent risk of delay increases with the number of aircraft
changes by crew and with decreasing crew connection times. Without either
of these characteristics, delays are a direct consequence of other uncertain
events.

In order to vary the level of risk of crew-related delay propagation, the
schedule instance generator has two parameters that can be altered. The
first OnT'ime% chooses the allocated block time (gate to gate) such that
the specified percentage of flights according to journey time distributions
are completed on time. Aircraft routings are generated by assuming that
each aircraft serves exactly one remote destination and shuttles back and
fourth with a ground time equal to the minimum between each flight leg.
As a result OnTime% effectively determines the aircraft routing and all
scheduled departure and arrival times. Increasing the value of OnTime%
has the effect of increasing the chance connecting crew will be able to make
the connection without causing a delay to the waiting aircraft. The second
parameter PofAC (probability of aircraft change) is the rate of aircraft
changes in crew schedules and also controls the risk of crew-related delay in
an airline schedule.

25 schedules were generated using each pairwise combination of the
following parameter sets. PofAC = [0,0.1,0.2,0.3,0.4] and OnTime% =
[55, 60,65, 70, 75]. These 25 schedules are used in Section 7.4.2 and Section
7.4.4. These parameters were chosen to generate airline schedules with a
risks of crew-related delay ranging from low to high. The variety of test
instances will also give some degree of confidence that the method will work
in a variety of real world situations.
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7.4.2 Convergence

Average root mean squared error of probabilities of crew delay (P) derived
x 10 3from 10 fold cross validation with a variety of partition sizes

—<—— schedule 1
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Average root mean squared error

partition size/simulations X 104

Figure 7.1: Average root mean squared error of P elements derived from
simulation using 10-fold cross validation for a variety of sample sizes

Since P and L were approximated using simulation in phase 1 (§7.3.1),
it was necessary to ensure that sufficient iterations had been performed to
allow these matrices to converge. In the following, the overall convergence
of the elements of P and L are considered. K-fold cross validation [47] was
used to find the appropriate number of repeat simulations to train P and L.
A partition (a fold) in this case corresponds to a P or L matrix derived from
a number of simulations, the number of simulations defines the sample size.
The results are illustrated in Figure 7.1, showing the average root mean
squared errors over all departures from a sample of 10 schedule instances.
Seven different simulation sample sizes were considered.

It can be observed from Figure 7.1 that the average root mean squared
error for P falls to approximately 0.2 x 10~* for a sample size of 40,000.
Full convergence to zero may require a number of simulations many orders
of magnitude larger than the sample sizes considered here. The reason is
that the number of reachable simulation configurations or states is exces-
sively large. Based on a trade-off between parameter accuracy and the time
required to run the simulations, 20000 simulations was considered to be suf-
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ficient to derive useful estimates of P and L for any given schedule instance.
L has a very similar convergence rate to P.

7.4.3 Accuracy of the model

The 25 problem instances generated above were solved using the three-phase
approach described in Section 7.3. The resulting objective values, i.e. the
expected crew-related delay propagation, were recorded for each. The re-
serve schedules that were generated were simulated to estimate the total
expected crew-related delay. The values of the simulation model were then
compared against the objective function values obtained by the CDM. The
results are shown in Figure 7.2. In order to conclude that the C'DM accu-

Correlation of crew related delay minutes predicted by the probabilistic model
objective value and simulation results
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Figure 7.2: CDM predicts crew-related delay observed in validation simu-
lations

rately predicts the crew-related delay, there should be a linear relationship
with gradient 1 and intercept 0 between the values obtained by the C'DM
and the simulation. It can be observed from Figure 7.2 that a nearly perfect
linear relationship with gradient close to 1 and intercept slightly above zero
was found. This shows that the C' DM is consistent and accurately predicts
how reserves are used, as well as the impact they have.

7.4.4 Comparison with other approaches

To validate the C DM as an effective approach for scheduling airline reserve
crew taking into account other recovery actions and operational uncertainty;,

141



a comparison was made between the approach presented here and other al-
ternative approaches (briefly introduced below). Simulation was used to
validate the reserve crew schedules obtained by each of the individual ap-
proaches and to derive performance measures that reflect their quality. The
performance measures of interest are: the cancellation rate; the reserve util-
isation rate; the average crew-related delay propagation; and the average
total delay propagation. Approaches which required simulation derived in-
put parameters were limited to 20000 runs to determine a reserve schedule
for a given planned day of operations. For each schedule, 8 teams of reserve
crew were to be scheduled.

Models

Various models are evaluated including variants of the C DM and two other
types of method that are not probabilistic.

Probabilistic models: Different variations of the C'DM were developed
and compared to the model introduced above. The first two variations of
the approach, denoted by Prob 1 and Prob 2, have a delay exponent (b
in Algorithm 8) equal to 1 and 2, respectively. The idea is that having a
delay exponent that is greater than 1 will lead to reserve crew schedules
that provide more coverage for departures associated with larger expected
delays. Prob* is the same as Prob 1 except that Algorithm 10 (which
accounts for knock-on effects) is removed from Algorithm 8. The purpose
of this is to verify whether this aspect of the model, when applied in a search
method, results in improved reserve crew schedules. In the last variation
of the C DM, denoted by Prob LS, the greedy algorithm used in Prob 1 is
replaced with a local search algorithm, in order to determine the influence of
the search algorithm on the quality of the resulting reserve crew schedules.

Area under the graph: Area 1. This simulation based approach was
described in Section 4.7.1.

Iterative area under the graph: Area 2. This approach is an iterative
variant of Area 1. The reserves are used in the simulation to iteratively
derive when reserves are likely to be needed. This approach is divided into
stages where each stage derives a reserve schedule (as in Area 1) based on
the results from the previous stage. The next stage uses the new reserve
schedule to derive more information about when reserves are required. A
possible pitfall of this approach is that it may not converge towards a good
or optimal solution or it may not converge at all.

Uniform start rate: Uniform. This solution approach starts reserve
crew duties at equal times intervals throughout the scheduled day of oper-
ations. Described in Section 3.5.3.

Observations

The simulation which was used to validate the approaches described above
implements a recovery policy which first considers crew and aircraft swaps,
and subsequently reserve crew in conjunction with aircraft swaps. The vali-
dation simulation also assumes that once reserves are used they are treated
as regular crew and once regular crew are replaced by reserves, the regular
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Solution | Cance- | Reserve | Avg. Avg. Prob. of | Solution

method | llation | utili- crew total delay > | time
sation | delay | delay | 30 min | (sec)
rate rate (mins) | (mins)

No res 4.18E-6 | 0.0000 | 0.3465 | 2.0846 | 2.58E-3 | 0

Prob 1 2.20E-6 | 0.7890 | 0.1394 | 1.5511 | 7.95E-4 | 1226
Prob * | 2.40E-6 | 0.7863 | 0.1414 | 1.5735 | 7.95E-4 | 1219
Prob 2 | 2.41E-6 | 0.7797 | 0.1407 | 1.5769 | 7.83E-4 | 1232
Prob LS | 2.51E-6 | 0.7894 | 0.1399 | 1.5528 | 8.04E-4 | 1400
Area 1 241E-6 | 0.7332 | 0.1542 | 1.6383 | 8.22E-4 | 1215
Area 2 | 2.43E-6 | 0.7331 | 0.1537 | 1.6376 | 8.23E-4 | 1216
uniform | 2.35E-6 | 0.6771 | 0.1827 | 1.5420 | 1.29E-3 | 1

Table 7.2: Simulation derived performance measures for a variety of solution
methods

crew cannot be used as reserves. However, the simulation is flexible enough
to allow for changes to these assumptions.  Table 7.2 shows cancellation
rates, reserve utilisation rates average crew delays, average delays, proba-
bilities of crew delays over 30 minutes, and solution times for 8 methods of
reserve crew scheduling. The results are based on 20000 repeat simulations
for each of the 25 schedule instances for each method. This means that each
method is tested on 500,000 days of operations with a total of 150,000,000
simulated departures. The first row No res shows the results corresponding
to no scheduled reserves. The results show that cancellations due to delays
are very rare and that Prob I minimises cancellations and gives the low-
est average crew-related delay. Prob LS gives the highest reserve utilisation
rate. Prob 1 and Prob 2 have the lowest probabilities of crew delays over 30
minutes with Prob 2 having the lowest, this can be attributed to the delay
exponent of 2 used in the objective function. All of the methods that are
based on simulation (Prob 1,* 2,LS and Area 1,2) took over 20 minutes to
find reserve schedules for all of the 25 schedule instances, almost all of this
time is spent running simulations to derive parameters for the respective
models. Prob 2 took slightly longer than Prob 1, the only explanation for
this is that the presence of the delay exponent of 2 in the objective func-
tion made the objective function computationally more demanding. The
Prob * results indicate that removing the knockOnEval procedure given in
Algorithm 10 from function evaluation (Algorithm 8) results in marginally
higher average crew delay and total delay however the cancellation rate is
reduced, however cancellations are negligible in all cases.

In general the C'DM based approaches were most effective. Of the
four variants of the C DM the method Prob I dominated the other variants
on nearly all performance measures considered including the main objective
criterion used in this investigation which is to minimise crew-related delay.
Appendix A gives the results for Prob 1, Area 1 and Uniform for each
individual airline schedule instance and each performance measure, they
show that the averaged results of Table 7.2 are representative.
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7.5 Chapter summary

A probabilistic model for scheduling airline reserve crew in anticipation of
crew-related delays was presented. The C'DM takes journey time uncer-
tainty into account as well as the availability of other recovery actions.
Simulation provides the mechanism which makes this possible. The C'DM
is also able to anticipate the future impact of the reserve crew it schedules
in terms of the absorption of crew delays that are likely to propagate further
in a schedule. The method was tested over a range of schedule instances in
which the likelihood of crew-related delay propagation was controlled with
schedule generation parameters. It was shown that the CDM accurately
models the expected crew-related delay associated with a given flight sched-
ule and reserve crew schedule combination. In comparison with a range of
alternative approaches to reserve crew scheduling the C DM proved most ef-
fective overall and using a delay exponent in the objective function greater
than 1 leads to reserve crew schedules that minimise the probabilities of
longer crew delays. Additionally, results are given which suggest that the
recursive procedure (Algorithm 10) for factoring in the effect of knock-on
crew delays absorbed by reserves scheduled previously appears to reduce
average delays at the expense of a marginal increase in cancellation rate.
The solution times are also reasonable from a practical point of view.
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Chapter 8

Statistical delay propagation
model

In this chapter a statistical delay propagation model (SDPM ) is introduced.
This model is motivated by the 1%, 3¢ and 7*" bullet points of Section 3.2,
which are repeated here. Firstly, reserve crew demand is influenced by jour-
ney time uncertainty, this is important because crew who are delayed on
a connecting flight can be replaced with reserve crew. Secondly, other re-
covery actions may reduce reserve crew demand, this is important because
swap recovery actions may be available which make the use of reserve crew
unnecessary. Thirdly, the structure of an airline’s schedule dictates how dis-
ruptions may propagate through the schedule, this is important because the
scheduled departure times and the scheduled connections of all individual
crew and aircraft determine which flights suffer direct or indirect knock-on
effects from any given disruption. The SDPM accounts for these factors
as it is a model of how delay-uncertainty propagates through an airline’s
schedule which also models the effects of airline recovery actions for delays.

The SDPM is (just as the models of Chapters 5, 6 and 7) designed
as an evaluator of reserve crew schedules. A reserve crew schedule can have
a significant influence on how delay propagates. Firstly, reserve-induced
delays (see Section 6.1.3) have the potential to propagate. Secondly, reserve
crew teams have the potential to prevent delays which may have a high
chance of propagating to subsequent flights (see Chapter 7).

Early in this project, attempts were made at implementing a statistical
delay propagation model (See Figure 1.1). The initial attempt was aban-
doned due to difficulties that occurred when trying to model swap recovery
actions in such a framework. This difficulty is overcome in this chapter by
explicitly allowing for the possibility that crew and aircraft can be assigned
to different crew pairings and aircraft routings.

The SDPM supersedes the C DM of Chapter 7, which was an attempt
to circumvent the difficulty of modelling the effects of swap recovery actions
using a statistical delay propagation approach. The SDPM has several ad-
vantages over the C'DM , including: it does not require a simulation learning
phase, so it is highly convenient (fast) for use as an online reserve holding
policy; it accounts for aircraft, crew and reserve-induced delays as opposed
to crew-related delays only; and it allows for crew unavailability, because it
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takes as input the probabilities that crew absences are covered by reserve
crew, which are an output of the CAM of Chapter 6. So the SDPM also
integrates the separate models for crew absence and crew delay uncertainty:.

As described in Section 2.5.2 approaches that are conceptually similar
to the SDPM have been explored previously. Berger et al. [21] use a
similar approach to calculate departure and arrival time distributions for a
rail network. However, the problem specific details of the problem tackled
in this work and that of Berger et al. make the two approaches structurally
very different. Berger et al. calculate departure distributions as a function
of train delays and waiting time rules for connecting passengers, whereas
this work calculates departure time distributions as a function of aircraft
delays, connecting crew delays and airline recovery actions (including swaps
and reserve crew use). Berger et al. evaluate their model in terms of delay
prediction accuracy, whereas this work considers scheduling and decision
support applications in addition to delay prediction accuracy.

Chapter structure

The remainder of this chapter is structured as follows. Table 8.1 defines the
notation used by the SDPM model. Section 8.1 introduces the SDPM.
Section 8.2 gives experimental results for the SDPM. Section 8.3 describes
how the SDPM extends to case of multiple fleet types, crew ranks and
qualifications. Section 8.4 concludes with a summary of the main findings
from this chapter.

8.1 The Statistical Delay Propagation Model

- Departure time
Taxi time P Journey time
uncertainty uncertainty uncertainty
Airline recovery Arrival time
policy uncertainty
Ground time

uncertainty

Figure 8.1: Delay propagation cycle

Journey times have inherent uncertainty which can be captured in the
form of statistical distributions (see Section 2.5.4). Journey times directly
influence arrival times, and arrival times can influence the departure times
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of subsequent flights involving the same crew or aircraft. This is the case if
there is insufficient slack time between the arrival from the previous flight
and the scheduled departure time of the next flight. If resources split, e.g.
the crew does not follow the aircraft, multiple flights will be affected (see
Figure 2.2). Hence, journey time uncertainty leads to arrival time uncer-
tainty and arrival time uncertainty, coupled with an airline recovery policy,
leads to departure time uncertainty, which through journey time uncer-
tainty leads back to arrival time uncertainty. Figure 8.1 depicts this delay
propagation cycle. In the SDPM, this process is modelled in the form of
delay distributions propagating through an airline’s schedule, as illustrated
in Figure 8.2. It shows how there may be no departure time uncertainty

Journey
time

uncertainty
e

Probability

First departure Arrival time +ground time

Scheduled
departure time

Delay
recovery

Journey
time
uncertainty

»

Probability

Departure time Arrival time +ground time

Figure 8.2: Propagating delay distribution

for the first flight of the day (top left). Then, after the first journey, the
arrival time exhibits uncertainty (top middle) as a result of journey time
uncertainty. Airline recovery actions may reduce the expected departure
time of the next flight (bottom middle). The arrival time distribution of
the second flight (bottom right) attains a complex form as it is a function
of two journeys, scheduled slack, and airline recovery.

Hereafter, both aircraft and crew teams are sometimes referred to as
airline resources and both crew pairings and aircraft routings as lines of
flight. This is useful when discussing the details of the SDPM because
crew and aircraft are modelled in a very similar way.
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8.1.1 Assumptions

On the day of operation, delayed arrivals can lead to delays of subsequent
departures. The following assumptions are made regarding recovery actions
for preventing delayed departures. The SDPM structurally relies upon as-
sumptions 1, 4, 5 and 7. The other assumptions represent details which
can be easily be changed in the SDPM. For each assumption, the corre-
sponding assumptions of Section 4.2 are given in braces. As a result of the
matching assumptions between the simulation and the SDPM , the SDPM
is effectively a theoretical solution for the simulation of Chapter 4.
Assumption 1: A preference order exists for the application of recovery
actions for disrupted departures from the hub. l.e. airline recovery actions
are determined sequentially for disrupted flights according to a predefined
preference order. In this work the earliest departure time order is used as
the preference order. An extension might be to consider a preference order
based on the relative financial importance of different flights, i.e. apply
recovery actions for the high revenue disrupted departures first. {RP1 (se-
quential recovery assumption)}.

Assumption 2: In the event of delays greater than a delay threshold of
15 minutes, swap recovery actions and reserve teams use are considered for
replacing delayed crew. A delay threshold of 15 minutes is based upon the
on-time performance measure which is used by the FAA and which was also
used by Sohoni et al. [97] to rate airline performance, however this is a
parameter that can be changed. {RP2 (delay threshold assumption), RA1
(swaps can absorb delays assertion)}.

Assumption 3: Feasibility for swap recovery requires that swapped crew
can finish each other’s duties within their respective duty shifts and can
swap back to their original lines of flight before their next scheduled duty
shifts. Assumption 3 protects crew from swaps which can possibly lead to
illegal overtime and swaps which cannot be undone before the beginning of
their next scheduled duty shifts. {C9 (crew swap assumptions), L4 (line of
flight swap assumptions)}.

Assumption 4: For each departure there exists a preference order for the
lines of flight which can be used for swap recovery actions. Assumption 4
provides a preference order for the lines of flight from which resource swaps
can be obtained. The probability calculations for resource swap recovery
actions in the SDPM require a preference order to calculate conditional
probabilities. In this work, the largest common ground time is used as
the preference order in which to consider swappable lines of flight. This
approach provides the largest time window in which swap recovery actions
can be implemented (Ageeva [2] actively scheduled overlaps to increase swap
availability and as a result also increased schedule robustness). {RA6 (swap
recovery selection assumption), L4 (line of flight swap assumptions)}.
Assumption 5: A feasible resource swap is beneficial (reduces delay) if
the replacement resource is available before the delayed resource and is not
delayed for its own next scheduled departure, whilst at the same time the
delayed resource does not delay the next flight of the replacement resource’s
line of flight. Assumption 5 when combined with assumptions 1 to 4 for the
case of a single swap, provides the necessary conditions for a swap which
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reduces overall delay. Section 8.1.4 discusses this assumption in more de-
tail in relation to how the SDPM models beneficial swap recovery actions.
See Appendix C for a proof of a theorem based on assumption 5. {Ld4c
(later flights are delayed less by delayed resources assumption), L4d (the re-
placement resources must not be delayed for their own next scheduled flight
assumption)}.

Assumption 6: Airline recovery occurs at the hub station and delays oc-
curring at spoke stations are propagated. Assumption 6 reflects the fact
that the proposed SDPM is geared towards a single hub airline where all
flights from the hub station visit a spoke station and then return to the hub
station. An extension of this assumption would be to include the modelling
of recovery actions that may be available at spoke stations. {RP6 (dead-
heading not viable for solving delay and unexpected crew absence disruptions
assumption), RP7 (low spoke station flight volume assumption)}.
Assumption 7: The recovery action which best minimises delay, of those
available, is the one that is implemented. In the event of a tie, it is assumed
that crew swaps are preferred to reserve crew team use, as those reserve crew
can then be saved for later use. Tied crew swaps and/or aircraft swaps are
broken using Assumption 4. {RAG6 (swap recovery selection assumption)}.
Assumption 8: Flights are cancelled if their departure is delayed beyond
the flights cancellation threshold after the consideration of delay recovery
actions. This cancellation threshold assumption serves as a ceiling on de-
lays over which a flight is cancelled. In this work a constant cancellation
threshold of 3 hours for all flights is used. The value of 3 hours is the same
value which was used by Rosenberger et al. [85] in their aircraft re-routing
model. Another possibility would be to use different cancellation thresholds
for different flights and even for different crew, such an approach could be
used to allow for maximum working hour regulations, such as maximum
flight hours per day, week, month and year rules. Appendix H considers
a variable cancellation threshold formulation. {RP3 (cancellation threshold
assumption)}.

8.1.2 Overview of the SDPM

The SDPM follows a similar procedure to that of the simulation flow di-
agram of Figure 4.1. It considers each scheduled departure in turn. For
each departure, the simulation determines a single deterministic departure
time, whereas, the SDPM discretises time and considers the probability
that the departure takes place within each time interval between the de-
parture time and cancellation threshold. The SDPM considers all possible
assignments of crew and aircraft which may enable the departure to take
off within each time interval, including the probabilities of all possible swap
recovery actions. Once the simulation has determined a departure time, a
journey time is instantiated from the corresponding journey time distribu-
tion. Analogously, the SDPM adds the entire journey time distribution
to the departure distribution just derived (using the convolution procedure
defined in Section 8.1.8). The resultant arrival time distribution is used
for calculating departure time distributions for subsequent departures. In
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Estimated time of arrival

Crew (aircraft) ETA matrices

Probability element of the crew (aircraft) ETA matrix corresponding to crew
(airframe) j assigned to crew pairing (aircraft routing) ¢ arriving at the hub at
time interval ¢

A matrix storing negative contributions of the corresponding elements of the
probability matrix [J. For example C'~ stores the decrement of the corresponding
elements of C' as a result of those elements contributing to the probability that
the departure under consideration takes place at a given time interval

A matrix storing positive contributions of the corresponding elements of the
probability matrix 0. For example Ct stores the increment of the corresponding
elements of C' as a result of delayed resources being swapped to different lines of
flight when calculating the probability that the departure under consideration
takes place at a given time interval

true if hub departure d is a scheduled through flight, false otherwise

Scheduled departure time interval of hub departure d

Cancellation threshold time interval of hub departure d

Scheduled departure time interval of a spoke departure, that is the return flight
for hub departure d

Crew pairing (aircraft routing) assigned to hub departure d

mth (, oth) feasible crew team (airframe) for hub departure d

ut? (, st") preferred swappable crew pairing (aircraft routing) for hub departure
d

The next hub departure of crew pairing (aircraft routing) ¢ at the departure
time of hub departure d

Destination of hub departure d

Probability that crew team (aircraft) j is used for the given departure at depar-
ture time interval ¢

Probability of crew (aircraft) availability at a given time interval for a given
departure

Probabilities of crew (airframe) availability at a given time interval for a given
departure excluding the probability that the available crew and airframe were
already used at an earlier time interval for the given departure

Probability of crew (airframe) swap availability at a given time interval for a
given departure

Probability of crew (airframe) swap availability at a given time interval for a
given departure excluding the probability the same crew (airframe) swaps are
used at an earlier time interval for the given departure

Probability the pt feasible crew assigned to the given crew pairing swaps with
the vt feasible crew for the given departure which is assigned to the put* swap-
pable crew pairing for the given departure excluding the probability the pairwise
swap was used at a previous time interval for the same departure

Probability element corresponding to the v*? feasible crew for the given depar-
ture who is assigned to the pt? swappable crew pairing and can adopt the given
crew pairing at the given time interval to replace delayed crew

Probability element corresponding to the pt" feasible crew for the given depar-
ture being late and assigned to the pt" swappable crew pairing at the given time
interval

Reserve crew schedule

start time index of the k" reserve scheduled to begin a reserve block

Number of reserve crew in a given reserve crew schedule

Cancellation threshold (maximum delay before a flight is cancelled)

Delay threshold (minimum delay for which delay recovery actions are considered)
Cancellation measure of delay affecting departure d

Denotes the function used to convert a delay to a measure of cancellation, which
is a function of the departure time interval ¢ and the departure d under consid-
eration. Returns 1 for delays exceeding the cancellation threshold (as these are
cancelled) and 0 for delays below the delay threshold

Delay exponent used in the delay cancellation measure function

Width of time intervals used in the ETA matrices

Number of hub departures in the airline schedule

Table 8.1: Definitions
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effect, the SDPM simulates all possible simulation outcomes in a single
evaluation.

Algorithm 11 Outline of the SDPM
1: Inputs: Airline schedule, airline delay recovery policy, minimum
ground times, journey time distributions, probabilities of crew avail-

ability
Outputs: Departure distributions, probabilities of flight cancellations
ObjVal =0

for each hub departure d do
C'AM (Chapter 6) provides the probabilities that crew are available
at different time intervals after replacing absent crew with reserve
crew and the probabilities that reserve crew teams are available to
replace delayed crew at different time intervals (Section 8.1.4)

6: for each time interval t between the departure time and the cancel-

lation threshold of departure d do

7 Calculate the probabilities for the availability of crew and aircraft
(Section 8.1.5)
8: Calculate the cumulative probability cumuP of departure and the

probability incP that the departure takes place at time interval ¢
(Section 8.1.6)
9: ObjVal = ObjVal + (incP x f(t,d)) (delay contribution)
10: Update the departure time distributions (Section 8.1.7)
11:  end for
12: ObjVal = ObjVal + (1 — cumuP) (cancellation contribution)
13:  Provide the CAM with the probabilities that reserve crew teams were
used to replace delayed crew (Section 8.1.4)
14:  Update the ETA matrices for resources used for departure d (Section
8.1.7)
15:  Apply journey time uncertainty to the departure distributions to up-
date the ETA matrices ready for the next departure (Section 8.1.8)
16: end for

Algorithm 11 gives an overview of the SDPM when it is used as an
evaluator of reserve crew schedules, to derive an objective value (ObjVal)
for a given reserve crew schedule. ObjVal is a measure of the expected
delay and cancellation disruptions. For each hub departure d (line 4), the
SDPM calculates the probabilities of departure during each time interval
t between the departure time and the cancellation threshold (line 6). To
do this, the SDPM must calculate the probabilities that crew and aircraft
are available, including those obtained through swaps. These probabilities
are calculated from the crew and aircraft ETA matrices (see Section 8.1.3)
using the procedure explained in Section 8.1.5. The contributions to the
crew ETA matrix corresponding to reserve crew used to replace absent crew
and reserve teams available to replace delayed crew are derived from the
CAM on line 5, this is explained in Section 8.1.4. On line 7, the cumulative
probability that the departure takes place at or before the given time interval
is calculated. How it is calculated is the subject of Section 8.1.6. The
increment (incP) in the cumulative probability of departure at time interval
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t, compared to time interval ¢ — 1, is the probability that the departure
takes place during time interval ¢. This provides the weight for the delay
contribution to the objective value for a departure at time interval ¢ (line
9). The function f(t,d), is referred to as the delay cancellation measure
function, and maps the delay, due to departure d departing at time interval
t, to a measure with the units of cancellations. This function is explained in
Section 8.1.2. The next step of Algorithm 11 step 10 updates the departure
distributions with respect to the probabilities that each crew and aircraft is
used for the departure during time interval t. The details for this part of the
procedure are the subject of Section 8.1.7. After calculating the probability
of departure during each time interval, line 12 adds the probability that the
flight is cancelled to the objective value, which is one minus the cumulative
probability (cumuP) of departure. The reasons for flight cancellations are
discussed in Section 8.1.4. On line 13, the SPDM provides the CAM with
the probabilities that reserve crew teams were used for departure d, this
is explained in Section 8.1.4. On line 14, the SDPM updates the ETA
matrices to account for the crew and aircraft used for departure d. This
part of the procedure is explained in Section 8.1.7. Line 15 applies journey
time uncertainty to the derived departure distributions to update the ETA
matrices ready for subsequent departures. The procedure for this is the
subject of Section 8.1.8.

As indicated in Algorithm 11 the SDPM requires input parameters
which are obtained from the C AM (Chapter 6). The SDPM and the CAM
are therefore evaluated in a synchronised way, they each consider all sched-
uled hub departures in earliest departure time order. The SDPM requires
the CAM to be evaluated for each departure before the SDPM considers
each departure. Section 8.1.4 explains the points in both the SDPM and
the CAM at which information is exchanged between the two models. One
way to view the relationship between the SDPM and CAM is that the
CAM is the reserve crew engine for the SDPM, because the CAM is de-
voted to the fine details of the use of individual reserve crew. In contrast,
the SDPM takes a much more aggregated approach to modelling crew, i.e.
crew consist of indivisible teams which may be available at different times.

Delay cancellation measure

The delay beyond the delay threshold (DT), for departure d at time interval
t, depends on the departure time interval (Dt,). The actual delay duration
depends on the width (W) of the time interval used in the SDPM. The
delay for departure d at time interval t is given by Equation 8.1.

delay = max (0, ((t — Dtq) x W) — DT) (8.1)
ela b .
f(t,d) = (CiigT) if delay < C'T (82)
1 otherwise

To retain the simplicity of a single objective model, delay contributions to
(ObjVal) the objective function are converted to an equivalent measure of
cancellations, using Equation 8.2. For a discussion of the delay cancellation
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measure function see Section 3.5.1. Just as in Chapter 6 b = 2 is assumed
in this chapter.

8.1.3 ETA matrices

The SDPM uses a grid-like structure to store the probabilities associated
with all possible arrival events resulting from previous departures, at a
given scheduled departure time. These structures are referred to as ETA
(Estimated Time of Arrival) matrices. This section defines the structure of
ETA matrices and a number of associated conventions that are used later
on.

There is one ETA matrix for crew (C') and one for aircraft (A). An
element, A, ;, of the aircraft ETA matrix stores the probability that aircraft
J is assigned to aircraft routing ¢, has arrived, and is available for a subse-
quent flight at time interval ¢. C;;; is defined similarly. Time is discretised
into W minute intervals.

When the ETA matrices are used to calculate the departure time
distribution for a given flight, an additional set of matrices A=, AT, C~
and C'* store the changes to the probabilities of A and C' that result from
particular resources being used for that departure. The changes are not
stored directly in C' and A because some calculations still depend on the
initial values of C' and A from immediately after the previous departure.
A~ (C7) store negative changes to A (C') corresponding to airframes (crew)
being used for a given departure. A* (CT) store positive changes to A (C)
corresponding to airframes (crew) being swapped and assigned to a different
line of flight. The changes stored in A~ (C'~) and A* (C™") are applied to A
(C) after the departure distribution has been calculated for the departure
under consideration, before moving on to the next departure. This step
occurs on line 14 of Algorithm 11.

Similarly A® (C®) is used to store changes to A~ (C~) that cannot be
applied until after the calculation of the probability of departure within a
given time interval during the calculation of a departure time distribution.
This step is demonstrated in Section 8.1.7 on line 36 of Algorithm 16.

In general, any probability matrix [J has a counterpart matrix [~
which stores changes (decrements) to the corresponding elements of [, the
changes are stored because they cannot be applied until all the calculations
that depend on the initial values of [ have been carried out. For an example,
see 0 and 7 on line 20 of Algorithm 15.

In the following, a probability such as Cj;; + C;, is referred to as
a discounted probability. A discounted probability is the probability that a
given resource is available for a departure considering (and deducting) the
probability that the resource has already been used for the departure at an
earlier time interval. For an example, see line 5 of Algorithm 15.

In the crew ETA matrix, the resource layers sum to 1 minus the prob-
ability of crew unavailability. Additionally, the corresponding line of flight
layer sums to 1 minus the probability that the initially assigned crew is
unavailable.
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8.1.4 Modelling aspects of the SDPM

This section discusses how the SDPM models: cancellations; swap recovery
actions; and the use of reserve crew to replace absent and delayed crew.

Modelling flight cancellation

In the SDP M, the probability that a given flight is cancelled is equal to the
probability that the flight does not depart before the cancellation threshold.
[.e. one minus the cumulative probability of departure before the cancella-
tion threshold. Flights can be cancelled for two reasons, crew unavailability
and delays over the cancellation threshold. To account for cancellations due
to crew unavailability (for any given flight), the C AM provides the SDPM
with the probabilities that reserve crew are available, at different times, to
replace absent crew (see Section 8.1.4). This means that when calculat-
ing a departure time distribution, the cumulative probability of departure
is capped by the probability that crew are available and not absent. The
probability of cancellation due to a delay exceeding the cancellation thresh-
old, is the probability of crew availability minus the cumulative probability
of departure before the cancellation threshold.

Modelling resource swaps

Swap recovery actions can be used to replace delayed airline resources with
those available at the hub station, which are themselves assigned to flights
with later departure times. In this work, it is assumed that swap recovery
actions are considered for departures which are delayed beyond the delay
threshold. The swap recovery actions considered are all combinations of
single crew and single aircraft swaps involving the delayed resources, the
same which is used in the simulation of Chapter 4, explained in Section
4.4.1. In the SDPM, swaps are simulated by assigning delayed resources
to other lines of flight and the non-delayed resources to the delayed line
of flight, with some probability. The effect is that the delayed departure
has some probability of departing earlier than it would have done, without
the consideration of swap recovery actions. For each departure, the lines of
flight which may provide feasible swap recovery actions are considered in a
preference order (see Assumption 4). The calculation of the probabilities
that swap recovery actions are available for a given departure at a given
time interval are the subject of Section 8.1.5.

Figure 8.3 illustrates the general approach for modelling swap recovery
actions in the SDPM. In the example there are two crew and two lines of
flight, the flight under consideration involves line of flight 1 and the crew
are swappable for that line of flight. The example considers the probability
that crew are available for a departure at time interval 2. Crew 1 has a
0.1 probability of being delayed beyond time interval 2. Crew 2 has a 0.8
probability of being available at or before time interval 2. Given this, there
is a 0.08 probability that crew 1 and crew 2 can swap lines of flight in
order to reduce the delay of the flight associated with line of flight 1. In the
example, assuming that the aircraft have no chance of being delayed beyond
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Current Current time

Line of flight 1 ‘ JDeIayed with probability 0.1
Crew 1| 0.7 0.2 0.1 0.7 0.2 0.02
Crew2|0 0 0 0 008 |0
— > 0.08 increase in the probability of
Line of flight 2 0.1x0.8=0.08 crew availability at the given time
Crewl| O 0 0 probability of swap | o 0 0.08
Crew 2| 0.5 0.3 0.2 0.45 |0.27 |0.2

Time interval 1 v 2 3

Available to replace delayed (0.5-(0.5/0.8)*0.08)  (0.3-(0.3/0.8)*0.08)
crew 1 with probability 0.8

Figure 8.3: Resource swaps in an ETA matrix context

time interval 2, the swap is implemented with a probability of 0.08. The
result is that crew 2 end up with a probability of 0.08 of being used for the
delayed flight at time interval 2, crew 1 ends up with a probability of 0.08 of
being assigned to line of flight 2 and a 0.02 probability of remaining available
at time interval 3 for line of flight 1. The probabilities that crew 2 remains
assigned to line of flight 2 available at time intervals 1 and 2 are reduced
proportionately by a total of 0.08. Figure 8.3 shows the relevant elements
of the crew ETA matrix before (left) and after (right) the (probabilistic)
swap recovery action.

The assumptions of Section 8.1.1 define what, in this work, constitutes
a feasible and beneficial swap recovery action. In the SDPM, Assumption
5 sets bounds on the time intervals for which resources assigned to different
lines of flight are considered as beneficial swap recovery actions (see w on
lines 13 to 17 of Algorithm 15). L.e. the delayed resources must not cause a
delay of any other departure, whilst the replacement resources must reduce
the delay of the affected departure. Assumption 5 accounts for all beneficial
swaps for the case where only one of the (alternative) resources (crew or
aircraft) on a swappable line of flight are delayed for their next flight, see
Appendix C.

It must be noted that Assumption 5 does not account for all possible
beneficial resource swaps when both of the resources assigned to a swap-
pable line of flight are delayed, but by different amounts. In this case it is
possible that the less-delayed resource can be swapped and still reduce the
overall delay. This is possible if the delayed resource of the current flight is
available before the most delayed resource of the other flight. Accounting
for this exception is not considered in this work, because such exceptions:
are rare; are inherently limited in terms of the amount of delay that they
can absorb; and would require an extended ETA matrix structure to retain
the information about which resources shared a previous flight.

Modelling reserve crew use

The SPDM is primarily a model of delay propagation and requires as input
the probabilities that crew are available for flights at different times (which

are stored in C'). The SDPM relies upon the C AM to provide probabilities
that reserve crew are available to cover for crew absence at different times
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and the probabilities that teams of reserve crew are available to replace
delayed crew. This step corresponds to line 5 of Algorithm 11. This section
describes the details of how the probabilities that reserve crew are available
to replace absent and delayed crew, as calculated by the CAM, are taken
into account in the SDPM, and how the SDPM notifies the CAM of the
probabilities that reserve crew teams are actually used to replace delayed
crew, after calculating a departure time distribution for a given departure.

Crew ETA matrix contributions corresponding to reserve crew being
used to cover for absent crew are provided by the CAM. When the CAM is
used in conjunction with the SDPM this step replaces line 24 of Algorithm
4 of Section 6.1.5, because the SPDM replaces the rudimentary approach
to modelling reserve-induced delay used in Chapter 6. Line 24 of Algorithm
4 is replaced with the following:

Dy + delay — Dy
t = fl 0.5
floor ( i + )
CFd7Fd7t = CFd7Fd7t + g (8'4)

Equations 8.3 and 8.4 show how the CAM provides the SDPM with crew
ETA matrix contributions corresponding to reserve crew being used to re-
place absent crew. Equation 8.3 calculates the time interval at which the
particular reserve crew will be available to replace absent crew, accounting
for reserve duty start times (Equation 6.5 without the EDTy term). The
addition of half an interval is because the actual times associated with time
intervals correspond to the centres of time intervals and time 0 is the centre
of the first time interval. Equation 8.4 updates the crew ETA matrix for
the probability of availability of crew team F; assigned to their own line
of flight at time interval ¢ due to the reserve combination (ResCom) being
used to replace absent crew. ¢ is the probability that reserve crew are used
to cover crew absence, see line 23 of Algorithm 4.

The SDPM models the use of reserve teams to replace delayed crew
as a crew swap between the delayed crew, who are assigned to the given line
of flight, and a reserve team, who are assigned to an empty line of flight.
After the swap, the replaced delayed crew are assigned to the empty line of
flight with some probability. If reserve crew are used to replace delayed crew
with some probability, after calculating the departure time distribution for a
given flight, the SDPM passes this information to the CAM (see Algorithm
14).

If on line 24 of Algorithm 4, ResCom is a full team of reserve crew,
which could also be used to replace delayed crew, crew ETA matrix con-
tributions are added corresponding to the probabilities that reserve crew
teams are assigned to the empty line of flight and are available to replace
delayed crew assigned to line of flight Fj. In this case the following proce-
dure applies:
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Algorithm 12 Reserve crew team ETA matrix contributions
t = floor (W +0.5) (time interval)
for each k € ResCom do
Rl = Rl + nodeProb
end for
RA; = RA; + nodeProb

Crosirevrae = Cros1, 004+ Fye + nodeProb
RE <+ CTC+1,TC+Fd,t

Algorithm 12 shows how the crew ETA matrix is updated with respect
to the probability that a team of reserve crew is available to replace delayed
crew at time interval . T'C' is the total number of crew and crew pairings,
so Crcy1,r0+F,+ corresponds to a reserve crew team constructed to replace
crew assigned to line of flight F};, assigned as crew team number T'C' + Fy,
who are assigned to the empty line of flight (i.e. line of flight TC + 1).
This means that the second dimension of the crew ETA matrix has a length
which is twice the total number of crew teams, because for each crew team,
a reserve crew team can be constructed to replace them. nodeProb is the
probability that the reserve combination is available (see Algorithm 4). Line
1 of Algorithm 12 calculates the time interval ¢ at which the reserve team
will be available to replace delayed crew. The purpose of lines 2 to 5 is to
store the probabilities that individual reserve crew are available as part of
reserve teams at different times between the scheduled departure time and
the cancellation threshold, which are required later (see Algorithm 14) to
update the CAM with respect to the probabilities that reserve crew remain
available for subsequent disruptions.

For each individual reserve in the reserve crew team (line 2), the prob-
ability (RIy ) that reserve crew k is available as part of a reserve crew team
at time interval ¢ is updated on line 3. Line 5 updates the total probability
(RA;) that reserve crew teams are available at time interval ¢. Line 6 up-
dates the crew ETA matrix for the probability that the given reserve team
is available to replace delayed crew. Line 7 stores the updated elements of
the crew ETA matrix in a list RE (required for Algorithm 14).

In the SDPM using teams of reserve crew to replace delayed con-
necting crew is treated as being less preferable than any crew swap (see
Assumption 7), this is achieved by including the empty line of flight last in
the preference order of swappable lines of flight for each flight. However,
alternative policies can be modelled by altering the preference order.

Once the departure distribution is calculated for departure d, C~ con-
tains the probabilities that crew are actually used for this departure. The
following two procedures (Algorithms 13 and 14) are used to update the
probabilities that individual reserve crew remain available for subsequent
departures (Algorithm 14), taking into account their possible use for re-
placing delayed crew (Algorithm 13). These procedures constitute line 13
of Algorithm 11.
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Algorithm 13 The probabilities that reserve teams are used RU

1: for each m € RE do

2 i=1i(REn), j=J3(RE,), t =t(RE,)
3 RU, = —ngvt

4: Ci,j,t =0 and Cijj,t =0

5: end for

6: Clear RE

Algorithm 13 collects from the crew ETA matrix (elements stored
in RE) the probabilities (RU;) that reserve crew teams are actually used.
Line 2 defines functions which return the indices corresponding to a given
element of an ETA matrix. Line 3 stores the probability that reserve crew
are used at each time interval. Line 4 resets the crew ETA matrix element
probability to zero, because reserve crew teams only remain in the crew ETA
matrix if they are actually used, i.e. if they are assigned to a flight other
than the empty line of flight. Line 6 clears RE ready for use in subsequent
departures.

The CAM then uses RU to update the probabilities that individual
reserve crew remain available for subsequent use. The following procedure
is applied for this. Algorithm 14 shows how the probabilities (u4y) that

Algorithm 14 The procedure for updating the probabilities that individual
reserve crew are used for departure d

. for each t € {St, to Cty} do

2:  for each kin{l to R} do

3 Udk = Udk T (1;1;;) X RU;
4:  end for
5

6

—_

. end for

: Clear RE

individual reserve crew are used for departure d are updated to account
for the probabilities (RU) that they are used as part of reserve teams to
replace delayed crew. The probabilities that individual reserve crew are
used depends on the probabilities they were available at each time interval
relative to the total probabilities that reserve crew teams were available at
the same time multiplied by the probability that reserve crew teams were
used at that time interval. Once algorithm 14 is applied, w4 on line 15 of
Algorithm 3 of Section 6.1.4 allows for the probabilities that reserve crew
are used to replace delayed crew.

8.1.5 Calculating the probabilities of resource avail-
ability and resource swap availability

As illustrated in Algorithm 11, for each departure, the SDPM considers
each time interval between the departure time and the cancellation thresh-
old. For each time interval, the SDPM computes the cumulative proba-
bility of departure on or before the given time interval. This calculation
depends on: the probabilities that airline resources are available during or
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before that time interval (see Section 8.1.4); the probabilities that resource
swaps are available (see Section 8.1.4); and the probabilities that reserve
crew teams are available to replace delayed crew (see Section 8.1.4).

Algorithm 15 Calculation of crew swap availability probabilities for a
departure d at time interval ¢
1: Inputs: Crew and aircraft ETA matrices, sets defining swappable lines
of flight and swappable resources, departure number, time interval
2: Outputs: Probabilities that crew and aircraft are available for the
departure at the given time interval, probabilities of the availability of
feasible and beneficial pairwise resource swaps
3: // Calculate the probability of (incumbent) crew availability for depar-
ture d at time interval ¢

t
4: €= szGd szl CFd’paw

’ t _

5 € = ZpGGd Zw:l (CdePﬂﬂ + CFd,p,w)

6: // The probability of preferred crew availability before considering crew
swaps and the same excluding the probabilities the incumbent crew have

already been used for the departure

7. pca =€
8: pca':e'
9: B=0,8 =0

10: Reset o and 7

11: for p € J; (swappable crew pairings for flight d) do

122 B=GyNGy,, (set of swappable crew)

13:  // Calculate probabilities that replacement crew on the p'* swappable
crew pairing are available on time

14: Tvp = D_veB Qawel. C;ﬁl/,w

15: Opu = ZueB Zwel...t C,u,u,w

16:  // Calculate probabilities that delayed crew are feasible to adopt crew
pairing u

17: Tpnu‘ = ZpEB Zwe{max(tJrl, Std+DT)-~~StLd“u} CFd7pvw

18 7,,= ZpEB Zwe{max(t—i—l, Stg+DT)..Str, ,} Crypw

19:  // Calculate the incremental probabilities of pairwise swaps involving
crew pairing p

200 Ppup = (Ouwp+ a;u) (To + T;u) (1- pca') ,Ywe B,pe B

21:  // Calculate cumulative and incremental probabilities of a crew swap
involving crew pairing p

22:  csu =0, csu' =0

23 cSU= ,.p ZpEB OvuTpu (1 — pea)

2 csu =Y, p > peB Powp

25 B=pf+csu, f =8 +csu

26:  pca = pca + csu, pca' = pca' + esu'

27: end for

Algorithm 15 shows how the probability of crew availability is calcu-
lated for a given departure d at time interval ¢, including crew obtained
through crew swaps or by reserve crew used to absorb delay. The same
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algorithm applies to aircraft availability probabilities when all of the crew
variables are replaced with the equivalent aircraft variables.

Firstly, Algorithm 15 calculates (on line 4) the probability (e¢) that
crew who are already assigned to the given line of flight (F;) are available
during or before time interval ¢. Line 5 calculates the same probability,
excluding the probability the same crew contributed to the probability the
departure took place before time interval .

Next, for each swappable line of flight (.J;), in preference order, Al-
gorithm 15 calculates the probability (f) of the availability of crew swaps,
which allow the departure to take place during or before time interval t. The
probabilities (o) that feasible crew assigned to swappable lines of flight are
available at time interval ¢ are calculated on line 14. On line 15, the same
probabilities are calculated excluding the probabilities those crew were used
in previous time intervals. The probabilities (7) that crew assigned to the
given line of flight are not available until after time interval ¢, are calculated
on line 17. On line 18, the same probabilities are calculated excluding the
probabilities that the same crew were replaced in an earlier time interval.
The probabilities (¢) that each pairwise swap is a possible recovery action
in time interval ¢ are then calculated on line 20. The calculation takes into
account: the probability (1— pca/) that crew swaps involving preferred lines
of flight are not available at the same time; the discounted probabilities (first
defined near the end of Section 8.1.3) (0+0~) that replacement crew are
available at time ¢; and the discounted probabilities (T+7~) that the crew
assigned to the given line of flight are delayed. This algorithm includes the
use of reserve crew teams, because the empty line of flight, to which reserve
crew are initially assigned, is included last in the list of swappable lines of
flight (Jy). Lines 22 to 26 keep track of the total probability of crew swap
availability and the probability that crew swaps involving preferred lines of
flight are available at the same time.

Algorithm 15 provides the probabilities of resource and swap availabil-
ities which are used in Equation 8.5 to calculate the cumulative probability
of departure during or before time interval .

8.1.6 Calculating the cumulative probability of depar-
ture during a given time interval

In Algorithm 11, line 8 stated that the cumulative probability of departure
during or before the t'* time interval is calculated. The calculation of the
probability of cumulative departure depends on whether or not the hub
departure (d) involves a crew connection, i.e. whether the crew’s last flight
was on a different aircraft. If the crew were on the same aircraft for the
previous flight, the probabilities that the crew and aircraft are available for
the next departure are dependent events, because they depend on a common
preceding event. However, if the crew connect from a different aircraft, the
probabilities that the crew and aircraft are simultaneously available for a
departure can be treated as independent events. Equation 8.5 shows how
the cumulative probabilities of departure on line 8 in Algorithm 11 are
calculated for the cases of crew connections and when crew stay on the same
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aircraft as they were on for the previous flight (also called a ”through” flight,
the name used in the airline industry to describe passenger/crew connections
that require no aircraft change).

min (0, €)
+pmax (0, 0 — €) : B

cumuP = +Amax (0, € — 0) 1 Ty = true (8.5)
+(A5)

(0+ ) X (e+ 1)) , if Ty = false

The first case of Equation 8.5 gives the cumulative probability of departure
when the crew are scheduled to stay on the same aircraft. The first term ac-
counts for the probabilities of crew and aircraft availability being dependent
on the same event. The second and third terms account for the probabilities
that the crew and aircraft, who shared the same preceding flight, are split
up by resource swaps for earlier departures occurring after their previous
arrival. In particular, the second term accounts for the probability that the
assigned crew were swapped during the recovery for a previous delayed de-
parture (implied by the max (0, § — €) term) and then the swapped delayed
crew being swapped with a different crew, during the delay recovery for
the current departure (with probability §). The third term is the aircraft
equivalent of the second term. The last term accounts for the probability
of departure where both the crew and aircraft are from resource swaps.

The second case of Equation 8.5 applies if the given departure d in-
volves a crew connection. The cumulative probability of departure during
or before the given time interval is the product of the probabilities of air-
craft and crew availability including those obtained through swap recovery.

8.1.7 Updating departure distributions

The previous section considered the calculation of the cumulative probabil-
ity of departure during or before time interval ¢, as a function of resource
availability and swap recovery availability. The increment in the cumula-
tive probability from time interval ¢ — 1 to time interval ¢ is the probability
(incP) that the departure takes place during time interval ¢. This section
shows: how the crew departure time distribution is updated for time in-
terval ¢, with respect to the probabilities that each feasible crew is used
for departure d during time interval ¢; how the relevant elements of C'~
are updated, with respect to the probability that each crew contributes to
the probability of departure during time interval ¢; and how the relevant
elements of C are updated, with respect to the probabilities that delayed
resources are swapped and assigned to different lines of flight. The equiv-
alent operations for aircraft are obtained by replacing crew variables with
the equivalent aircraft variables.
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Algorithm 16 Increase in cumulative probability of departure, updating
C, and departure distribution v for departure d at time interval ¢

2

10:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

21:

22:
23:
24:
25:
26:
27:
28:

29:

30:
31:
32:
33:
34:
35:

36:

Inputs: C, d, t, newCumuP, cumuP, €, 5,60, X, ¢
Outputs: incP, updated: v, C, cumuP

ncP = newCumuP — cumuP

cumuP = newCumulP

cau = incP ( iz (Probability of incumbent crew use)

csu = incP (e,’i—ﬁ,) (Probability of crew swap use)

// The use of incumbent crew who were already assigned to the given
crew pairing

for p € G; do

for w € {1...t} do
C?(hp,’w = _ppvw
Fy(thtd)»p = ppvw
end for
end for
// The use of crew swapped from other lines of flight

for € J; do
B=G,NGyL,,
// Update the probabilities that replacement crew are used (swaps)
for v € B do
for w € {1...t} do

Dyw = CSU (ZﬂeBﬁ(?P*V*#» <Cuaijif§:u)
C;?,V,w = —Prw
Y(k—Dtg),v = V(k—Dtg),v + Prw
end for
end for

// Update the probabilities that delayed crew are swapped
for p € B do
for w € {max (t + 1, Sty + DT)...St;, .} do

b = Ccsu <ZueB(/¢PaV,u)> <CdePvW+C;dvp,w)
pyw ﬁ

To,utTo,u
© _
Fa,pow _pp’w
+ o
P, W - CH»PﬂU + pp7w
end for
end for

end for

// Update the probabilities that crew assigned to different lines of flight
available at different time intervals have been used for the given depar-
ture on or before time interval ¢

C-=C"+4+C°,C°=0

In Algorithm 16, line 3 calculates the increase in the cumulative prob-

ability (incP) of departure compared to the previous time interval. The
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algorithm then attributes incP to the elements of C proportionately to the
relative probabilities of crew availability and crew swap availability. Line 5
determines the contribution that can be attributed to incumbent crew, and
line 6, that to crew swaps. Line 10 calculates the proportions of the con-
tribution which are due to incumbent crew that can be attributed to each
feasible crew, available during or before time interval ¢. Line 11 stores the
changes to the total probabilities that incumbent crew are used for depar-
ture d during or before time interval ¢. Line 12 updates the crew departure
distribution with the same probabilities. Then, the algorithm attributes
the probability that a crew swap is used to enable departure during time
interval t to the relevant elements of C'. For each swappable line of flight
(Line 16), line 21 calculates the contribution due to a crew swap involving
crew swapped from other lines of flight. This is proportionate to: firstly,
the ratio of the probability that a pairwise crew swap takes place involv-
ing the given crew, relative to the total probability a crew swap is used
(the first bracket); and secondly, the ratio of the discounted probability that
the alternative crew is available relative to the total discounted probabil-
ity of alternative crew availability (the second bracket). The probabilities
calculated on line 21 are used on line 22 to store the change in the prob-
abilities that each element of C' contributes to the cumulative probability
of departure d during or before time interval ¢. Line 23 updates the crew
departure distribution to account for crew swaps enabling departure during
time interval ¢. Lines 29 to 31, are analogous to lines 21 to 23, except that
they deal with the probabilities that incumbent delayed crew are replaced in
crew swaps. Whereas line 23 updated the crew departure time distribution,
line 31 updates the probabilities that incumbent crew will be assigned to
different lines of flight when subsequent departures are considered. After
performing all calculations which depend on the probabilities of crew be-
ing used for departure d before time interval ¢ (i.e. C'~), the accumulated
changes (C®) for departure at time interval ¢ are added to C~ (line 36).
After considering all time intervals, the final result is a set of fully
detailed departure time distributions, for both crew and aircraft. These
distributions are used in the procedure outlined in Section 8.1.8 to update
the ETA matrices ready for subsequent departures. Either of these distribu-
tions can be used to derive a point estimate departure time. In Section 8.2,
such predictions are used to assess the prediction accuracy of the SDPM
compared to predictions derived from the corresponding simulation model.

8.1.8 Calculating an arrival time distribution for a
hub-spoke-hub cycle

Arrival time distributions are required by the SDPM to update the ETA
matrices after calculating a departure time distribution. Algorithm 17
demonstrates how to calculate a discrete arrival time distribution for an
out and back cycle (hub-spoke-hub) from a discrete departure time distri-
bution and discrete journey time distributions for the out and return flights,
whilst allowing for the possibility that delay may be absorbed by slack at
the spoke station. Let DD denote the departure time distribution, AD the
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arrival distribution, Qout the hub to spoke journey time distribution, Qin
the spoke to hub journey time distribution, M.S the minimum rest for crew
between consecutive flights and 77T the minimum turn time for aircraft.
Note that M.S and TT are assumed to be constant here, but can vary ac-
cording to fleet types and whether or not crew are scheduled to connect from
a different aircraft. Superscripts p and ¢ denote the probability and time

Algorithm 17 Procedure for calculating arrival time distributions
1: Inputs: DD, Qout, Qin, MS, TT
2: Outputs: AD
3: for Vk € DD, VI € Qout, Vm € Qin do

4:  w = max (Sty, DD}, + Qout! + max (M S, TT)) + Qinl,

)

6

ADP = ADP + (DD¥ x Qout? x Qin?))
: end for

associated with a particular element of a discrete statistical distribution,
whilst w denotes the arrival time index of the discrete arrival time distri-
bution corresponding to a particular combination of {k,l,m}. The total
time for a hub-spoke-hub cycle depends upon the initial hub departure time
(DDistt), how much delay propagates through the spoke station given the
minimum ground time required before the return journey and the scheduled
(spoke) departure time (St4) of the return journey.

8.2 Experimental results

The SDPM is now validated in terms of modelling accuracy and delay pre-
diction accuracy. The SDPM is also assessed in reserve crew scheduling
(see Section 8.2.1) and reserve policy applications (see Section 8.2.1). The
investigation is divided as follows. In Section 8.2.3 the SDPM is validated
in terms of the accuracy of its modelling of delay propagation, swap recov-
ery actions and reserve team use. In Section 8.2.4, time interval sizes (W)
are investigated in terms of their effect on delay prediction accuracy, reserve
crew schedule quality (reserve scheduling application of the SDPM) and
reserve policy quality (reserve policy application of the SDPM). In Sec-
tion 8.2.5 the SDPM is used in reserve crew scheduling and reserve policy
applications in a range of different configurations, each configuration corre-
sponding to a different assumed recovery policy. The aim is to find the best
combination of SDPM configurations for the reserve crew scheduling and
reserve policy applications.

8.2.1 Description of SDPM applications
Reserve scheduling application of the SDPM

The SDPM is used as an evaluator of reserve crew schedules in a simulated
annealing algorithm [54] used to schedule reserve crew. The same algorithm
was used in Chapter 6, see Section 6.2.2. The cooling scheme (value of
T at any given time since time zero) is based on an exponential decay,
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starting from 7T, =the maximum number of hub departures in a crew pairing
(maxCP) and reaching a final temperature of 0.000001 after 20 minutes.
Le. T, = maxCP x e where b = —In(225000)/20. Note that the cooling
scheme in this case is a function of time as opposed to evaluation number,

as it was in Section 6.2.

Reserve policy application of the SDPM

The SDPM is also used as a reserve policy, within the validation simulation,
to evaluate alternative reserve use decisions (see Section 3.3 for the original
motivation for investigating reserve policies). The idea here is that it may
sometimes be beneficial to hold back reserve crew, if it is likely that they
can be used to greater effect later on. Reserve holding can be beneficial if
the current disruption: is a small delay and larger disruptions are expected
later, for which those reserve crew could be used for recovery; or, crew are
absent, but replacing them with reserve crew induces a large amount of
reserve-induced delay and other large disruptions can be solved more effi-
ciently using the same reserve crew. The SDPM evaluates the alternative
decisions, starting from the same (initial) conditions as those in the vali-
dation simulation plus the decision being evaluated. Actual arrival times
are used to update the corresponding entries of the ETA matrices, whose
probabilities are set to one. The SDPM recommends decisions which min-
imise the overall expected level of disruption, i.e. that minimise the value
of ObjVal.

8.2.2 Test instance

The experiments are based on the test instance that was described in Section
6.2.1. The following experiments were implemented on a laptop with a
2.4GHz dual core Intel Core i7-5500U CPU, with 8 Gb of RAM. All models,
algorithms and the simulation were implemented in Java as single threaded
applications.

8.2.3 Modelling accuracy of the SDPM

This section demonstrates that the SDPM successfully models: delay prop-
agation (Figure 8.4); the effect of swap recovery actions (Figure 8.5); and
the use of reserve crew to absorb delays (Figures 8.6 and 8.7). In the SDPM
and the simulation, the modelling/use of swap recovery actions and reserve
crew used to absorb delays, can each be switched on or off. In the follow-
ing these features are switched on and off in both the simulation and the
SDPM to demonstrate that the SDPM models the swap recovery and re-
serve crew used for delays correctly. The results in this section are based on
the smallest possible interval size, W = 1. Figure 8.4 shows the predicted
delays for each hub departure, when swap recovery actions and reserves
which could be used to absorb delays are both switched off (i.e. not mod-
elled in the SDPM and the simulation). The aim is to demonstrate that
delay propagation has been modelled correctly. Figure 8.4 shows that the
SDPM delay predictions agree very closely with those derived from the
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Figure 8.4: SDPM delay predictions compared to those derived from sim-
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Figure 8.5: The predicted average delay reductions due to allowing swap
recovery actions

simulation (Chapter 4). Figure 8.4 also shows how average delay increases
over the course of each day of the two-day schedule. Appendix Section
D.1 gives an equivalent graph (Figure D.1) to that of Figure 8.4 based on
W =5 for a test instance which is described in that Appendix. Next, the
qualitative correctness of the SDPM’s modelling of swap recovery actions
is considered. Figure 8.5 shows the average delay reductions due to allowing
swap recovery actions, as predicted by the simulation and the SDPM. The
results were obtained by switching on the modelling/use of swap recovery
actions in the SDPM and the simulation, and subtracting the resulting de-
lay predictions from those displayed in Figure 8.4. Figure 8.5 shows that the
SDPM correctly predicts which departures benefit the most (on average)
from swap recovery actions, and does so with a reasonable level of accuracy.
The SDPM does not however predict the delay reductions for departures
which experience a very small amount of delay reduction due to swap re-
covery actions. The differences between the SDPM’s and the simulation’s
predictions for the effect of swap recovery actions can be attributed to the
simplifying assumptions (discussed in Section 8.1.4) made by the SDPM
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Figure 8.6: The predicted average delay reductions due to using reserve
crew to absorb delays

on the conditions under which swaps are beneficial. In general, the effects of
swap recovery appear to be relatively small on average, but this is because
beneficial swap recovery actions are relatively rare. Appendix Section D.1
gives an equivalent graph (Figure D.2) to that of Figure 8.5 for another test
instance which is defined in Appendix D.

Next, the qualitative correctness of the SDPM’s modelling of reserve
crew used to absorb delay is considered. Figure 8.6 shows the predicted
reduction in average delays that result from allowing reserve crew to absorb
delays. The results are based on switching on the modelling/use of reserve
crew to absorb delays in the SDPM and the simulation, and subtracting
the resulting delay predictions from those displayed in Figure 8.4.

Figure 8.6 shows that contrary to expectation, always allowing reserve
crew to absorb delay can actually lead to an overall increase of delay (nega-
tive reductions). The explanation for this is that, if reserve crew are used to
reduce delay, this increases the risk that future flights which are affected by
crew absence, will be delayed longer when waiting for later starting reserve
crew to become available, because, typically, earlier starting reserve crew
will be used to absorb delay. This means that it is best to avoid always us-
ing reserve crew to absorb delay. However, it is still plausible that in some
isolated circumstances using reserve crew to absorb delay will be beneficial
both immediately and in the long run. Determining whether or not one of
those exceptional circumstances is in progress is the main purpose of the
policy application of the SDPM (see Section 8.2.5). The results of Fig-
ure 8.6 show that both the simulation and the SDPM predict this effect.
The SDPM tends to underestimate the impact of using reserve crew on
average delays by up to a minute, this can be attributed to the simplifying
assumptions used to model beneficial swap recovery actions (discussed in
Section 8.1.4), which do not account for all possible beneficial swap recovery
actions. As a result of this, the rate of utilisation of reserve crew for replac-
ing delayed crew is also marginally underestimated. A knock-on effect of
this is demonstrated in Figure 8.7. Figure 8.7 shows that cancellation rates
increase when allowing reserve crew to replace delayed crew. This result,

167



x 10

© —%— SIM 7
(%]
S 3t SDPM
5
£
(0]
8 2
c
S
8
8 1
c
[
(@]

0

0 50

hub departure number

Figure 8.7: The predicted average delay reductions due to using reserve
crew to absorb delays

Prediction Configuration
type source | no delay reserve use | delay reserve use
no swaps | swaps no swaps | swaps
delay SIM 5.221 5.161 5.499 5.300
(minutes) SDPM | 5.212 5.174 5.347 5.242
RMSE | 0.07797 | 0.1601 0.3970 0.2884
cancellation | SIM 5.913E-4 | 5.913E-4 | 12.40E-4 | 9.898E-4
(rate) SDPM | 13.90E-4 | 13.90E-4 | 16.86E-4 | 15.61E-4
RMSE | 9.276E-4 | 9.268E-4 | 8.721E-4 | 8.307E-4

Table 8.2: Overall delay and cancellation prediction accuracy results for
various simulation and SDPM configurations

together with those of Figure 8.6 confirms the idea that using reserve crew
to replace delayed crew is best treated as an exception, rather than the rule.

In terms of the accuracy of the predictions derived from the SDPM,
there is a clear qualitative agreement on which departures suffer an in-
creased cancellation rate. However, the SDPM tends to underestimate the
increased cancellation rate by a magnitude up to 2 x 1073, which can be
attributed to the SDPM underestimating the use of reserve crew for de-
lay absorption, the same explanation as for the marginal underestimation
of the impact of using reserve crew to replace delayed crew on average de-
lays. Appendix Section D.1 gives graphs (Figures D.3 and D.4) which are
equivalent to Figures 8.6 and 8.7 for a test instance which is defined in that
appendix section. They also support the idea that always using reserve crew
to replace delayed crew has negative consequences.

Table 8.2 gives average delay and cancellation predictions from the
simulation (SIM) and the SDPM, as well as root mean squared error
(RMSE) values derived from the predictions for individual departures, where
the simulation predictions are treated as the target values. Table 8.2 shows
that the RMSE’s for the SDPM predictions are very small, for both delay
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Figure 8.8: The effect of interval size (W) on prediction accuracy and eval-
uation time

and cancellation predictions. The results are given for four different config-
urations of the SDPM, representing all four combinations of swap recovery
actions and reserve crew used to absorb delays, each switched either on or
off (see the last four column headings of Table 8.2). The results support
the results described above that both the simulation and the SDPM pre-
dict that swap recovery actions lead to reduced delays, but allowing reserve
crew to absorb delays—whenever this is possible—actually increases overall
delay. The SDPM’s cancellation predictions are typically slight overesti-
mates, the reason for this has to do with the CAM, see Section 6.2.3 for
the explanation of this. However, overestimating cancellations due to crew
absence is not as potentially damaging as underestimating them.

In summary, the SDPM gives delay predictions which are very accu-
rate, as evidenced by small RMSE’s, and also correctly predicts the qualita-
tive effects of swap recovery actions and the consequences of using reserve
crew to absorb delays. Next, the effect of the time interval size W on pre-

diction accuracy, reserve crew schedule quality and reserve policy quality is
considered.

8.2.4 The effect of interval size

The prediction accuracy results of the previous section were based on an
interval size of 1 minute. Figure 8.8 displays the RMSE for delay predictions
derived from the SDPM for a range of interval sizes. The times required
to derive the predictions from the SDPM using each interval size are also
given. Figure 8.8 shows that prediction accuracy decreases as the interval
size increases. This is because, when interval sizes are large, the interval
centres become less accurate approximations of the exact times of the events
that fall within those time intervals. These errors will accumulate over the
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course of a schedule. The trend line for the delay RMSE has a gradient
which is less than 0.5, a gradient of 0.5 corresponds to the maximum error
for a single event time being represented by the nearest interval centre. The
fluctuations of the RMSE can be attributed to the variance of the average
difference between the actual event times and the nearest interval centres
for different interval sizes. l.e. some interval sizes lead to interval centres
which are closer to a larger number of the actual event times, which reduces
the RMSE, whilst for other interval sizes the opposite is true.

Figure 8.8 shows that evaluations of the SDPM can takes as long as 5
seconds, when using a 1 minute interval size. The simulation takes around
20 seconds for 20000 repeat simulations®, so the SDPM is always faster,
even with an interval size of 1 minute. Evaluation times drop rapidly as
interval size increases, because the memory requirements (sizes of the ETA
matrices) are inversely proportional to the interval size used, and the num-
ber of time intervals which need to be considered for each departure also
drop. Evaluation times are important in the scheduling and policy appli-
cations of the SDPM, because decisions are usually required in a timely
manner. A balanced trade-off between prediction accuracy and evaluation
time is required. Appendix Section D.1 gives a graph (Figure D.5) equiva-
lent to that of Figure 8.8 for a test instance which is defined in that appendix
section.

Next, the effect of interval size on the quality of the reserve crew
schedules which can be derived within a 20 minute time limit, using the
simulated annealing algorithm, is considered. Figure 8.9 shows the average
total cancellation measure derived from 20000 repeat simulations for each
reserve crew schedule derived from the SDPM, using a variety of interval
sizes. Each reserve crew schedule is tested using an absence only reserve
policy (abs only), which only uses reserve crew to cover for absent crew
and never to replace delayed crew. The abs only policy approximates an
optimal reserve policy, as will be shown in Section 8.2.5.

Figure 8.9 shows that for very small interval sizes, reserve crew sched-
ule quality is, on average, low. This is because the evaluation time is such
that the simulated annealing algorithm (Section 8.2.1) cannot perform a
sufficient number of iterations within the 20 minute time limit in order to
exploit the high modelling accuracy associated with a small interval size.
Conversely, for very large interval sizes, reserve crew schedule quality—as
indicated by the average cancellation measure—deteriorates. This can be
explained by the reduced level of modelling accuracy associated with larger
interval sizes, despite being able to perform more simulated annealing iter-
ations within the 20 minute time limit.

Figure 8.9 also shows the effect of interval size on the performance of
the reserve policy application of the SDPM. The reserve policy application
results are based on the single best reserve crew schedule from the reserve
scheduling experiments, which occurred for an interval size of 20 minutes.
The policy experiment results show that the SDPM policy improves reserve
crew schedule performance compared to the abs only policy, and that a slow

1For a 10-fold cross validation [47], the average cancellation measure RMSE, converges
to approximately 0.004, for a simulation sample size of 20000.
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Figure 8.9: The effect of interval size (W) on reserve crew schedule quality
and reserve policy quality

deterioration in policy quality occurs as interval size increases.

For an interval size of 50 minutes, a massive increase in average can-
cellation measure occurs. The explanation for this is that the low modelling
accuracy associated with an interval size of 50 minutes leads to systematic
errors which lead to recurring poor reserve use decisions. A time inter-
val of 50 minutes also has a large delay RMSE and corresponds to a large
fluctuation similar to one of the fluctuations shown in Figure 8.8.

The results of Figures 8.9 and 8.8 indicate that an efficient choice of
interval size is 20 minutes. This interval size will be used in the following
section.

8.2.5 Scheduling and policy applications of the SDPM

This section investigates the effect of different SDPM modelling configura-
tions, which are used in scheduling and policy applications, on the expected
level of day of operation disruption. The SDPM has the options of mod-
elling swap recovery actions and reserve crew used for delays. Different
configurations can be achieved by switching these features either on or off.
Different configurations correspond to assuming different airline recovery
policies and reserve policies. This section tests the effects of the following
configurations.

SDPM1: Models neither swap recovery or reserve crew used for delays.
SDPM2: Models swap recovery, but not reserve crew used for delays.
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SDPM3: Models reserve crew used for delays, but not swap recovery.
SDPM4: Models both swap recovery and reserve crew used for delays.
The SDPM1 and SDPM2 configurations correspond to assuming the abs
only policy (Section 3.5.2), which always uses reserve crew to cover for ab-
sent crew, but never to absorb delays.

The SDPM3 and SDPM4 configurations correspond to assuming the de-
fault heuristic reserve policy (see Section 3.5.2), which always uses reserve
crew to cover for absent crew, and also to absorb delays whenever this is
immediately beneficial.

This section also considers the effect of using the CAM and the SDM
(Chapter 6) to schedule reserve crew and as reserve policies.

The following experimental results are based on using each configu-
ration of the SDPM, the CAM and the SDM as the evaluator of reserve
crew schedules in the simulated annealing algorithm (Section 8.2.1), which
is used to derive reserve crew schedules. 10 repeats are performed for each,
the best reserve crew schedule, according to the abs only policy, is then used
to test the effect of using each configuration of the SDPM, the CAM, and
the SDM as a reserve policy. The results for the heuristic abs only and
default policies are also given.

The results are given for the average total cancellation measure accu-
mulated in 2000 repeat simulations, for each reserve crew schedule, tested
in conjunction with each reserve policy. 2000 repeat simulations represents
a compromise between the the amount of time required to perform all of
the experiments and ensuring that a large enough number of repeats are
performed to derive representative performance measures.

For a 10-fold cross validation, the average cancellation measure RMSE
is approximately 0.0137, for a simulation sample size of 2000. So the cancel-
lation measures of Table 8.3 are approximately accurate to within 0.0137.
The experiment took nearly 3 days to complete. The random simulation
inputs for instantiating uncertain outcomes of journey times and crew ab-
sence were the same for each combination of reserve crew schedule and
reserve policy tested, which ensures that the comparison is a fair one.
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€LT

Policy

Schedule | CAM  SDM  SDPM1 SDPM2 SDPM3 SDPM4 default abs only | Average
CAM 1.6593 2.0725 1.0847  1.0771  1.0847  1.0736  2.0057 1.4449 1.4378
SDM 0.2724 0.5350 0.2339  0.2330 0.2339  0.2499  0.7941 0.2750 0.3534
SDPM1 | 0.2799 0.5119 0.2443  0.2450  0.2443  0.2659  0.7912 0.2711 0.3567
SDPM2 | 0.2821 0.5404 0.2505  0.2496  0.2505  0.2697  0.7670 0.2682 0.3598
SDPM3 | 0.3948 0.5480 0.3154  0.3159  0.3154  0.3213  0.6668 0.4117 0.4112
SDPM4 | 0.3948 0.6398 0.3123  0.3125  0.3123  0.3227  0.6670 0.3965 0.4197
Average | 0.5472 0.8079 0.4068  0.4055  0.4068  0.4172  0.9486 0.5112

Table 8.3: Average cancellation measures for different combinations of configurations of the SDPM used for reserve crew scheduling and

as a reserve policy

Cancellations average | Reserve utilisation

reason schedule | policy CM absence delay delay absence | delay Max CM
worst CAM SDM 2.0725 | 0.0005141 | 0.00003710 | 24.233 | 0.4588 | 0.09471 | 21.25
best and increasing | SDM SDPM2 | 0.2330 | 0.0004876 | 0 7.516 0.4566 | 0.00313 | 10.33
scheduling model SDPM1 | SDPM2 | 0.2450 | 0.0005159 | 0 7.515 0.4563 | 0.00167 | 10.12
complexity SDPM2 | SDPM2 | 0.2496 | 0.0005159 | 0 7.644 0.4564 | 0.00167 | 10.12
Assumed SDPM2 | default | 0.7670 | 0.0016364 | 0.00001873 | 9.079 0.4431 | 0.13567 | 14.64
and used SDPM4 | default | 0.6670 | 0.0009898 | 0.00000689 | 10.307 | 0.4481 | 0.09913 | 15.15
policies SDPM2 | abs only | 0.2682 | 0.0003936 | 0.00000442 | 7.815 0.4579 |0 13.52

SDPM4 | abs only | 0.3965 | 0.0005913 | 0.00000053 | 8.878 0.4534 |0 14.98

Table 8.4: Extra performances measures for the interesting results of Table 8.3



Table 8.3 shows how the various approaches to reserve crew scheduling
and reserve policies compare to one another on average (last column and
last row). The average results for the approaches to reserve crew scheduling
indicate that the SDM, SDPM1 and SDPM?2 approaches perform best
overall, and attain similar average cancellation measures when compared
with one another. These approaches to reserve crew scheduling assume
that the abs only policy will be used on the day of operation. The SDM,
SDPM1 and SDPM?2 approaches to reserve crew scheduling, in this or-
der, represent increasing levels of complexity for modelling delay. SDM
is a static delay model, SDPM1 is dynamic model of delay propagation,
and SDPM?2 allows for swap recovery actions as well as delay propagation.
When these reserve crew schedules were used in conjunction with the policy
they assumed during scheduling (abs only), this increasing model complex-
ity appears to pay off. However, when these reserve crew schedules were
used in conjunction with the SDPM?2 policy, the relatively simple approach
to reserve crew scheduling, the SDM, gave the best overall result. How-
ever, this result may be on the limit of statistical significance (+/-0.0137
see above), and also, the SDPM?2 obtained better reserve crew schedules
(as low as 0.21), when it was used in the interval size experiments of Figure
8.9, so the reliability of the simulated annealing algorithm is also a factor.

Assuming that the results of Table 8.3 are representative, an explana-
tion for the good reserve crew schedules derived from the SDM is similar
to the explanation for why always using reserve crew to absorb delay led to
increased overall delay. Just as using reserve crew for delays is best treated
as an exception, the benefits offered by swap recovery actions should not be
relied upon when scheduling reserve crew. This is because swap recovery
actions are an opportunistic and unreliable method of recovery.

The SDPM?2 configuration, which allows for swap recovery actions,
works best as a reserve policy, because real time information about the
availability of swap recovery actions is less uncertain and therefore can be
exploited more reliably in an online context.

The average results for policies indicate that the SDPM based reserve
policies lead to significantly lower average cancellation measures compared
to the other alternatives considered. SDPM2 is marginally the best policy
overall, however each of the SDPM based policies attains similar results.
The results also indicate that the CAM should not be used to schedule
reserve crew, and the SDM should not be used as the reserve policy. Table
D.2 of Appendix Section D.2 contains the equivalent results for Table 8.3
based on the average cancellation measures from 10 repeats of each configu-
ration used for reserve crew scheduling, as opposed to the best reserve crew
schedule from each configuration according to the abs only policy. The
results support the conclusion that the SDM is a good approach to reserve
crew scheduling and that the SDPM is a good approach for a reserve hold-
ing policy. Table D.3 of Appendix Section D.2 gives the equivalent results
for Table 8.3 when the two day test instance uses the actual scheduled event
times as opposed to the tightened test schedule used in this section. These
additional results also support those given above.

Next, more performance measures are given for several of the combi-
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nations of approaches to reserve crew scheduling and reserve policies. The
focus here is on explaining why the various combinations of approaches
achieved the average cancellation measures they did.

Firstly, Table 8.4 shows why scheduling reserve crew with the C AM
and using the SDM as a reserve policy results in the largest cancellation
measure, which is because of very high levels of delay. The CAM does
not account for delays, only cancellations due to crew absence, which are
accordingly low, because cancellation rate can be decreased at the expense
of increased delays. On the other hand, when the SDM is used as a reserve
policy, it is unresponsive to real time information about delays, and so
performs badly as a reserve policy.

Secondly, Table 8.4 shows extra performance measures for the best
overall approach, and the effect of increasing the complexity of the model
which is used to schedule reserve crew. The results of Table 8.4 show
that, for the best reserve policy (SDPM?2), allowing for delay propagation
(SDPMT1) and swap recovery (SDPM2) during reserve crew scheduling,
marginally increases the risk of cancellation due to crew absence. The rea-
son for this is that SDPM1 and SDPM?2 give more weight to delay in the
objective function compared to the SDM, which only allows for reserve-
induced delays. Additionally, the SDPM?2 policy eliminates cancellations
due to delay and also minimises the worst case scenario (Max CM), com-
pared to the rule of thumb policies (default and abs only). The combi-
nation of the SDM used for scheduling and SDPM?2 used as the reserve
policy, works well because the SDM schedules reserve crew whilst ignoring
uncertainties such as delays and the availability of swap recovery actions,
whilst the SDPM?2 considers these uncertainties, but only when real time
information becomes available about them.

Thirdly, Table 8.4 shows the effect of assuming either, the default
policy (SDPM4), or the abs only policy (SDPM2) during reserve crew
scheduling, and that the result depends on whether or not those policies
are used on the day of operation. It turns out to be the case that the
default policy works best if it was also the assumed policy, during reserve
crew scheduling. Similarly, the abs only policy works best if it was the
assumed policy during reserve crew scheduling. In general, the performance
of a reserve crew schedule depends on which policy was used to derive it,
and in this case whether the reserve policy used on the day of operation
matches it.

Scheduling reserve crew whilst assuming the default policy leads to
low quality reserve crew schedules, where reserve crew are scheduled such
that they are unlikely to be available to absorb delays. This has the un-
fortunate consequence that reserve crew are also less able to cover all crew
absence disruptions.

Table 8.4 also shows the reserve utilisation rates for absence and delay
disruptions. In general, the policies which minimise the average cancellation
measure are very conservative with respect to using reserve crew to absorb
delays. This makes sense because absorbing delays using reserve crew is
expensive in term of manpower, but the rewards are limited in comparison
to the penalty of not being able to replace absent crew with reserve crew.
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In this way the abs only reserve policy approximates the optimal reserve
policy.

Appendix Section D.2 contains additional results for the various con-
figurations used for reserve crew scheduling, in conjunction with the SDPM 1
policy, the default policy and the abs only policy, for the 4 test instances
defined in that appendix. These additional results support the conclusion
that the SDM is a good approach to reserve crew scheduling and that the
SDPM works well as a reserve holding policy.

8.3 Including Aircraft fleet types, crew ranks
and qualifications

The CAM was extended to the case of aircraft fleets, crew ranks and qual-
ifications in Section 6.3. As a result, the task of extending the SDPM
is mostly complete. In fact the CAM absorbs all of the detail regarding
crew ranks and qualifications, because crew are viewed as inseparable teams
in the SDPM. The only difference that including fleet types has on the
SDPM is on which crew and aircraft swaps are feasible. In fact the only
additional constraint is that for a pair of crew (aircraft) to be swappable
they have to be associated with the same fleet type.

8.3.1 Experiment results for the case of multiple fleet
types, crew ranks and qualifications

In Chapter 10 the SDPM is applied to a range of realistic problem in-
stances for the case of multiple fleet types, crew ranks and qualifications.
Experiments were performed to validate delay and cancellation prediction
accuracy for the 6 test instances (summarised in Table 10.1) that feature
in Chapter 10. Appendix E.1 demonstrates the high level of prediction
accuracy attained for the 6 test instances.

8.3.2 The effect of interval size on solution quality

In preparation for the experiments of Chapter 10 the effect of interval size
on reserve crew schedule quality is investigated. The investigation is re-
peated for each of the 6 test instances which will be used in Chapter 10,
the results are based on a simulated annealing algorithm (see Section 8.2.1)
using SDPM1 as the evaluator with repeat experiments for each interval
size tested. Each repeat experiment is limited to 10 minutes (using the
same hardware and software described in Section 6.2.1). The experiments
are analogous to those of Figure 8.9 of Section 8.2.4. The aim is to find an
interval size for each test instance that represents an optimal trade-off be-
tween model accuracy and solution quality, given that a solution is required
within a specified amount of time.

The experiment results for test instances 1 to 6 are given in Appendix
F. Test instances 1 and 6 represent the two extremes of the test instances,
the results for these test instances are discussed in detail in Appendix F.
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Test instance ‘1‘2‘3‘4‘5‘6
Optimal tradeoff interval size | 10 | 20 | 80 | 15 | 35 | 55

Table 8.5: Optimal trade-off interval sizes for the Chapter 10 test instances

Table 8.5 gives the optimal trade-off interval sizes for each test instance
according to a 50/50 weighted sum of the average and minimum cancel-
lation measures achieved in the repeat experiments for each interval size.
In general, smaller schedules permit the simulated algorithm to exploit the
increased accuracy provided by using a smaller interval size, whereas for
larger schedules evaluation times inhibit this effect because of the reduced
number of iterations that can be performed within a fixed time limit.

8.4 Chapter summary

In this chapter, a statistical model of delay propagation in an airline network
has been introduced based on the concept of delay distributions propagat-
ing through an airline’s schedule. The SDPM was based on assumptions in
line with those made for the simulation of Chapter 4, which made it effec-
tively a theoretical model of that simulation. The SDPM superseded the
probabilistic crew delay model of Chapter 7 as it allows for delays in general
and not just crew related delays. The SDPM incorporates crew absence
uncertainty, which means it integrates delay and crew absence uncertainty
within a single model. The SDPM was validated in terms of delay and
cancellation prediction accuracy compared to the predictions derived from
the simulation. It was demonstrated that the SDPM models delay propa-
gation, swap recover actions and the use of reserve crew to replace delayed
crew correctly. The prediction accuracy tests were repeated for a number of
different configurations of the model, which were also implemented in the
validation simulation. The features that modelled swap recovery actions
and the use of reserve crew to replace delayed connecting crew were each
switched on or off. It was found that contrary to expectation, always al-
lowing reserve crew to replace delayed crew can actually lead to an overall
increase in delay. This was caused by an increase in the average time that
crew absence affected flights had to wait for replacement reserve crew.

An investigation of the time interval size used in the SDPM revealed
that although small interval sizes lead to more accurate predictions, larger
interval sizes can be as effective in reserve crew scheduling and reserve pol-
icy applications whilst also providing results faster. The SDPM was then
implemented in a number of different configurations, applied to schedule
reserve crew and as a reserve policy. Each configuration corresponded to a
different assumed airline recovery policy. It was found best to schedule re-
serve crew using the SDM evaluator and the SDPM as the reserve holding
policy. The reason for this was that the SDPM is better able to exploit real
time information about arrival times from previous flights and therefore the
availability of unreliable and opportunistic recovery actions such as swaps.
The SDM works best offline because it does not attempt to exploit these.

The SDPM easily extends to the case where there are multiple fleet
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types, crew ranks and qualifications, because the CAM absorbs the vast
majority of the additional modelling details. In Chapter 10, the SDPM
is applied in a range of test instances where there are multiple fleet types,
crew ranks and qualifications, experiments were performed to validate the
modified SDPM and find the optimal trade-off interval sizes for those test
instances.
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Chapter 9

Mixed integer programming
simulation scenario model

This chapter explores a scenario-based approach to modelling crew-related
disruptions and reserve crew recovery, which represents an alternative to
the probabilistic approaches described in Chapters 5 to 8. In contrast to
the probabilistic models, the scenario-based approach accounts for reserve
crew used for both crew absence and crew-related delay disruptions from
the outset, as opposed to developing and then integrating two independent
models.

Much of the content of this chapter was published in [16]. This chapter
describes a scenario-based approach to the reserve crew scheduling problem
called the Mixed Integer Programming Simulation Scenario Model
(MIPSSM) which uses information from repeat simulations of an airline
network. The simulation data is used to generate disruption scenarios which
are used to form the constraints and coefficients of the MIPSSM formu-
lation. The MI1PSSM formulation is then solved to find the reserve crew
schedule that would have minimised the level of delay and cancellation that
would have occurred in the original simulations which were used to derive
the disruption scenarios.

Influences for this work

The MIPSSM described in this chapter was influenced by approaches such
as robust optimisation (see Section 2.7.2), stochastic programming (see Sec-
tion 2.7.1) and recoverable robustness (see Section 2.7.3).

The MIPSSM is most similar to a robust optimisation approach, in
which solutions are found which are optimal over an uncertainty set, or a set
of realisations of the uncertain parameters for a given problem. In relation
to the work in this chapter, an element of an uncertainty set corresponds
to a disruption scenario. In robust optimisation, robust solutions have the
quality that they are stable under uncertainty, i.e. work well for a wide
range of possible outcomes of the uncertain parameters, including worst
case outcomes, as opposed to performing very well in some cases and very
poorly in others.

The MIPSSM described in this chapter is similar to a recoverable ro-
bustness approach. Recoverable robustness is similar to robust optimisation
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except that recoverable robustness includes a model of recovery. The model
of recovery is analogous to the recourse problem in multi-stage stochastic
programs.

The structure of the reserve crew scheduling problem does not allow
a direct application of recoverable robustness or stochastic programming.
Firstly, the recovery phase of recoverable robustness is a fixed algorithm,
whereas in the reserve crew scheduling problem, the recovery actions are the
variables to be optimised. Secondly, the assumptions required by stochastic
programming also prevent a direct application of this approach, namely
because of the assumption that the recovery decisions in one stage do not
influence the model of uncertainty of future stages. In fact, reserve crew used
now, do influence future disruptions which are related directly or indirectly
to the current disruption.

In comparison to previous chapters

The MIPSSM was developed over the same time period as the CAM of
Chapter 6, and as a result, the first formulation given applies to the case
of a single aircraft fleet type, and a single crew rank and qualification, with
crew teams consisting of a number of individual crew. The single fleet,
crew rank and qualification formulation simplifies the initial development
and analysis of the MITPSSM. The initial formulation is then modified for
the case of multiple fleet types, crew ranks and qualifications (Section 9.8).
The development of the M ITPSSM also motivated the development of the
simulation tool described in Chapter 4, as simulation is required to generate
the input disruption scenarios for the M IPSSM formulation.

A fundamental difference between the M1 PSS M and the probabilistic
approaches is that in the MIPSSM reserve crew are scheduled in such a
way that they can be used optimally over a given set of scenarios. This
means that the MIPSSM approach implicitly assumes an optimal re-
serve policy, whereas, the probabilistic models assume a preference order
based policy with no reserve holding. The optimal policy assumed by the
MIPSSM relies on full knowledge of future outcomes, which is not avail-
able on the day of operation. As a compromise, a simulation based learning
approach is proposed for learning the optimal reserve policy corresponding
to a given reserve crew schedule. The learned policy takes the form of a
look-up table.

Although the MIPSSM is an alternative approach to the probabilis-
tic approaches of Chapters 5 to 8, the MIPPSM is similar to the prob-
abilistic crew delay model of Chapter 7. This similarity lies in the use of
simulation to provide data on when to schedule reserve crew in anticipa-
tion of crew-related delays whilst assuming that swap recovery actions are
preferred to reserve crew recovery actions. In both approaches, the data
regarding the possible benefit of using reserve crew to cover delayed crew
is calculated after swap recovery actions have been applied. This provides
the mechanism through which both approaches (indirectly/implicitly) take
swap recovery actions into account. Additionally, both approaches model
the potential for knock-on delays, that reserve crew, once used to cover
crew-related delays, may prevent or reduce.
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One of the potential advantages of a scenario-based approach in com-
parison to the probabilistic approaches is that scenarios are much simpler
to model, as each scenario corresponds to a single sequence of events. How-
ever, a possible disadvantage of the MIPSSM approach is that it is not
a structural model of airline operations—which the SDPM of Chapter 8
is. As a result, the MIPSSM will not be able to capture the indirect ef-
fects of reserve crew use, only the direct ones. This is a typical limitation
of multi-stage stochastic programming formulations, they often require the
assumption that the uncertainty of future outcomes does not depend on the
decisions made in previous stages. So the difference between the quality
of the solutions from the MIPSSM approach and the SDPM approach
should (all else being equal) indicate the value of allowing for indirect (net-
work) effects.

Chapter structure

The remainder of this chapter is structured as follows. Section 9.1 gives an
overview of the proposed MIPSSM approach. Section 9.2 introduces the
simulation used to generate disruption scenarios and how disruption scenar-
ios are derived from the simulation. Section 9.3 presents the formulation
of the MIPSSM and Section 9.4 introduces several alternative objective
functions for the MIPSSM formulation and a scenario selection heuristic.
Section 9.5 describes how a look up table reserve policy can be derived for
a reserve crew schedule using an adapted version of the MIPSSM for-
mulation. Section 9.6 gives experimental results for a comparison of the
MIPSSM approach with alternative methods of reserve crew scheduling.
Section 9.7 presents an investigation into what makes a good set of input
scenarios for the M IPSSM formulation with respect to solution reliability
and the quality of the resultant reserve crew schedule. Section 9.8 modifies
the initial MIPSSM formulation to accommodate multiple aircraft fleet
types and the ranks and qualifications of crew. Section 9.9 describes possi-
ble future work. Section 9.10 gives a summary of the main findings of this
chapter.

9.1 Overview of the MIPSSM

This section describes the sequence of stages involved in the MIPSSM
approach. Additionally, an explanation is given of how the objective values
of using reserve crew to absorb crew-related delays are calculated from the
delay cancellation measure function, a function which was first introduced
in Chapter 3.5. The use of the delay cancellation measure function means
that the MIPSSM formulation can be formulated as a single objective
problem.

9.1.1 Stages of the MIPSSM approach

Figure 9.1 illustrates the stages that are required to be performed sequen-
tially in the proposed MIPSSM approach, from input data through to
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Figure 9.1: Sequential stages of the M IPSSM approach to scheduling air-
line reserve crew

validation. Note that the input data and validation simulation stages are
not part of the MIPSSM approach to reserve crew scheduling, but have
been included in Figure 9.1 to illustrate the full cycle of deriving and testing
reserve crew schedule and policy combinations. The MIPSSM approach
to reserve crew scheduling involves three main stages:

1) A simulation stage is used to derive disruption scenarios. A dis-
ruption scenario corresponds to the set of disrupted flights in a single run
of the airline simulation, where a single run corresponds to executing the
airline’s schedule in the considered time horizon from start to finish once.
A disrupted flight in the simulation results in a disruption added to the
disruption scenario. For each disruption in a disruption scenario there is a
corresponding record of all of the reserve crew start times (discretised to
match the scheduled departure times) which, if scheduled, would allow the
corresponding reserve crew to be used to remove completely, or reduce, the
given disruption.

2) A MIPSSM formulation is solved to find the best reserve crew
schedule for the set of disruption scenarios generated in the first stage. In
the MIPSSM formulation there are 2 types of variables: x the reserve
crew schedule and y the reserve use variables. For each disruption scenario
there is a corresponding subset of the reserve use variables. The reserve
use decisions made for each disruption scenario have to be feasible with
respect to the overall reserve schedule x (i.e. reserve crew can only be
used if they are scheduled). The difficulty is finding a reserve schedule that
allows disruptions in many of scenarios to be covered in an efficient manner.
Solving the M IPSSM formulation over a set of input disruption scenarios
in an appropriate solver finds both the reserve crew schedule x and the
reserve use decisions y that minimise delay and cancellations over all of the
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input disruption scenarios.

3) Lastly a reserve policy is derived corresponding to the reserve crew
schedule found in the M IPSSM formulation stage, which defines the con-
ditions on the day of operation under which reserve crew use is permitted.
The policy takes the form of a look up table which specifies the minimum
number of reserve crew that should be available at each departure time if
reserve crew are to be permitted to be used to absorb crew-related delay af-
fecting a given departure. Reserve crew are always used to cover for absent
crew and never held.

9.1.2 Cancellation measure of a delay

cmy, : Delay cancellation measure of flight h

tdp : Total delay affecting flight h

cT : Cancellation threshold

rdp : The delay that occurs when using reserve crew with start time index ! to recovery from
a delay or absence disruption affecting departure h

Dy, : Departure time of flight h

aetap, : Estimated time of arrival of the aircraft whose next flight is flight A

cetap, : Estimated time of arrival of the crew whose next flight is flight h

Tr : Minimum turn time of aircraft between consecutive flights

MS : Minimum sit or rest for crew between consecutive flights

cdp, : The delay that can be attributed to the crew assigned to flight h over and above any

delay caused by the aircraft which assigned to same flight

Table 9.1: Delay cancellation measure related notation

Table 9.1 lists and defines the notation used for calculating delays and delay
cancellation measures. The goal of the MIPSSM approach is to sched-
ule reserve crew to minimise delay and cancellation disruptions. To retain
the simplicity of a single objective problem in the MIPSSM formulation,
Equation 9.1 converts delay into a measure of cancellation. Equation 9.1
is based on Equation 3.3, which was first introduced and explained in Sec-
tion 3.5.1. Equation 9.1 is used to determine the cancellation measure of
a delay before reserve crew recovery actions have been taken into account.
In this case the total delay is calculated using Equation 9.3. If a flight is
delayed due to delayed connecting crew, i.e. Equation 9.4 returns a non-
zero value, reserve crew can be used to absorb the delay by replacing the
delayed crew. In which case, Equation 9.2 replaces Equation 9.3 as the
numerator of Equation 9.1 to obtain the cancellation measure of a delay if
reserve crew with start time index [ (start time=D);) are used to replace the
delayed connecting crew of flight h.

cmy, = (tc%) (9.1)

rdp; = max (0, max (D;, aeta, +TT) — D) (9.2)

td, = max (0, max (aetap, + 1T, cetay, + MS) — Dy) (9.3)
cdp, = max (0, cetap, + MS — max (Dy, aetay, +TT)) (9.4)

In this thesis the delay exponent of the delay cancellation measure function
is set to 2 (n = 2), see Section 3.5.1. The disruption scenario generation
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stage collects information about the possible objective value (i.e. the as-
sociated cancellation measures) of using reserve crew scheduled at different
times for different disruptions in each disruption scenario. The equations
described above are used for this purpose.

9.1.3 Disruption scenarios

The proposed MIPSSM approach uses the concept of disruption scenar-
ios. A disruption scenario corresponds to a set of crew-related disruptions
that could occur during the implementation of an airline’s schedule. In the
MIPSSM approach disruption scenarios are collected from a simulation
of an airline. The simulation has stochastic crew absence and journey time
inputs instantiated from corresponding statistical distributions. For each
disruption in a disruption scenario information must be maintained about
the disruption size (in the form of a cancellation measure), the number of re-
serve crew required to cover the disruption, and the benefits of using reserve
crew scheduled at different times to cover the disruption. The information
about the benefit of using reserves scheduled at different possible times is
stored in the form of sets of feasible reserve instances corresponding to each
disruption in each disruption scenario (see Section 9.1.4)

9.1.4 Feasible reserve instances

In the simulation which generates disruption scenarios, information regard-
ing the benefit of using reserve crew scheduled at different times to absorb
a given disruption is collected. For each reserve start time that is feasible
to absorb a given disruption, a feasible reserve instance is generated. A
feasible reserve instance therefore corresponds to a combination of a reserve
crew duty start time and a disruption that could be absorbed by using a
reserve crew with such a duty start time. For each feasible reserve instance
there is a cancellation measure that replaces the cancellation measure of
the disruption when no reserve crew were available, if the reserve is used
(in the MIPSSM formulation of Section 9.3). The use of feasible reserve
instances means that the M1 PSSM formulation only contains binary vari-
ables corresponding to feasible instances of reserve crew use and therefore
reserve feasibility constraints are not required.

Feasible reserve instance (b)

- Cancellation measure (CM(b))

- Reserve use variable index (V(b))

- Knock-on effect variable index (U(b))
- Reserve delay (RD(b))

Figure 9.2: Feasible reserve instance attributes
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Let b denote a given feasible reserve instance. For each feasible reserve
instance (b) there is:

1) A corresponding cancellation measure (C'M (b)) which is calculated
in the disruption scenario generation stage. This is the cancellation measure
that applies in the M I PSS M formulation if reserve crew with the duty start
time (corresponding to b) are used to cover the disruption (corresponding
to b).

2) An associated unique reserve use variable index (V' (b)) which identi-
fies the binary reserve use variable in the M IPSSM formulation associated
with the feasible reserve instance.

3) A unique (knock-on effect) reserve use variable index (U (b)) cor-
responding to feasible reserve instances which can absorb a root delay that
subsequently propagates, hence reducing the secondary delay.

4) A reserve delay (RD (b)) caused by waiting for the given reserve
crew to start their standby duty before they can be used for the disruption
associated with the given feasible reserve instance.

Feasible reserve instances generated in the disruption scenario gener-
ation phase are each stored in two sets. In one set containing all of the
feasible reserve instances which were generated for the same disruption and
the same disruption scenario, and in a second set containing all of the feasi-
ble reserve instances generated with the same reserve start time and for the
same disruption scenario. These sets are then used to form the constraints
of the MIPSSM formulation (Section 9.3).

9.2 Disruption scenario generation simula-
tion

This section explains the disruption scenario generation stage of the MIPSSM
approach. Table 9.2 introduces the schedule notation and Table 9.3 intro-
duces the notation of disruption scenarios. Section 9.2.1 describes how the
single hub airline simulation of Chapter 4 is used firstly for disruption sce-
nario generation and then later reused for experimental validation of reserve
crew schedules. Section 9.2.2 defines what is meant by a disruption scenario
and how the information it stores is collected from the simulation.

Ch : Crew team number scheduled to flight A

Ap ¢ Aircraft number scheduled to flight h

crewSizep, @ Number of crew in crew team scheduled to flight h

| P : Number of hub departures in crew pairing n

Pn,m : Departure number of the mt* hub departure of crew pairing n

Table 9.2: Schedule notation

9.2.1 Simulation

The simulation of a single hub airline is used without reserve crew to gen-
erate a set of disruption scenarios which contain information on the pos-
sible benefit of using reserve crew scheduled at specified times to mitigate
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the given disruption. These disruption scenarios form the input for the
MIPSSM formulation (Section 9.3.1).

The simulation of Figure 9.3 is the same as that introduced in Chapter
4 except for the added stages of collecting information for disruption scenar-
ios in the event of uncovered crew absence or crew-related delay. The input
crew and aircraft schedules were built using first in first out’ scheduling
(more details of the test instance can be found in Section 9.6.1).

The simulation has a dual purpose: disruption scenario generation
and reserve crew schedule validation. For disruption scenario generation,
no reserve crew are scheduled and none are therefore available for recovery
(as the point of disruption scenario generation is to find information about
when reserve crew are most needed). In contrast the validation simulation
does include a reserve crew schedule and is used to compare the reserve
crew schedules which were found using the M1 PSSM against reserve crew
schedules obtained using alternative approaches.

resInstanceDiagram

Last flight of
the day?

| Consider first departure |

1 No

- Generate journey
—| Consider next departure |

time

Delay>DT?

If Delay>DT
Yes
Add delay
disruption to
scenario

New crew
pairing?

Instantiate crew

Delay recovery
absence

Yes
Absence recovery?

Add absence Cancel flight
disruption to

No

scenario

Figure 9.3: Flow chart of the simulation used to derive disruption scenarios

Figure 9.3 illustrates: how the simulation models the execution of an air-
line’s schedule; how crew absence uncertainty and journey time uncertainty
are included in the simulation; the process of airline recovery and the points
in the simulation at which information is yielded about disruptions that are
solvable by using reserve crew. This is then used to derive the disrup-
tion scenarios. A single run of the simulation proceeds by considering each
scheduled departure in departure time order. If a departure corresponds
to the start of a crew pairing then the number of absent crew is instanti-
ated from the cumulative statistical distribution. If reserve crew are not
available (as is always the case in the disruption scenario generating simu-
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lation) then the flight has to be cancelled. At this point in the simulation,
information on the possible benefit of scheduling reserve crew at different
start times is collected (Section 9.2.2). l.e. a crew absence disruption is
added to the current disruption scenario. If reserve crew are available (as
may be the case in the validation simulation used in Section 9.6) they are
considered for use in earliest start time order and the reserve policy, which
is introduced in Section 9.5, determines whether or not reserve crew should
be used or held. If a departure is delayed by more than the delay threshold
(DT =15 minutes) all combinations of single crew and aircraft swaps are
considered in an attempt to recover from the delay (note that the approach
would still work for other approaches to modelling swap recovery actions).
If the delay is still above the delay threshold, even after the consideration
of swap recovery actions, information is collected on the possible benefit
of using reserve scheduled at different possible start times (Section 9.2.2).
L.e. a delay disruption is added to the current disruption scenario. If the
post recovery delay is still above the cancellation threshold (180 minutes),
or crew absence cannot be covered, the affected flights are cancelled.

w : Number of disruption scenarios

W; : Number of disruptions in scenario

N; ; : The number of reserve crew required to cover disruption j in scenario

cmg : Cancellation measure contribution when no reserve crew are used to cover disruption
J in scenario ¢

1o : Set of feasible reserve instances for disruption j in scenario ¢

Fi ok . ktP feasible reserve instance associated with disruption j in scenario i

Gi,j 1 Set of feasible reserve instances corresponding to feasible reserve instances first used

to absorb delay on a preceding flight that also have the knock-on effect of preventing
or reducing delay disruption j in scenario @

Gijk : kM feasible reserve instance corresponding to a feasible reserve instance which could
be used to absorb crew delay on a preceding flight that also has the knock-on effect of
reducing delay disruption j in scenario ¢

R;; : Set of feasible reserve instances with start time index [ in scenario ¢

Rk : kM feasible reserve instance in the set of feasible reserve instances corresponding to
corresponding to reserve crew with start time index [ in scenario ¢

b :  Feasible reserve instance (used in pseudocode to refer to a newly generated feasible
reserve instance which is then added to the applicable sets of feasible reserve instances)

V (b) ¢ Index of the reserve use variable corresponding to a given feasible reserve instance b

U (b) : Index of the reserve use variable corresponding to a feasible reserve instance generated

for a knock-on disruption which, if feasible reserve instance b is used to cover the root
delay (preceding flight), reduces the delay propagated to that follow-on flight
CM (b) : Cancellation measure contribution corresponding to a given feasible reserve instance b
RD (b) : Reserve delay corresponding to a given feasible reserve instance b

Table 9.3: Disruption scenario notation

9.2.2 Simulation derived scenarios

A given disruption scenario ¢ corresponds to a single run of the simulation.
This section explains how simulation is used to derive the information for
disruption scenarios.

In disruption scenario 4, a disruption j corresponds to the j* crew
disrupted flight for which reserve crew use could be a beneficial recovery
action. Reserve crew use is beneficial when a flight is delayed due to crew
(where the delay is greater a specified delay threshold DT'), even after the
consideration of swap recovery, or has to be cancelled due to crew absence.
Such disrupted flights have a positive cancellation measure, where cm, ;
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denotes the cancellation measure of disruption j in disruption scenario .

In a given run of the simulation, when a disruption occurs that can
be absorbed by using reserve crew, data is collected regarding all of the
possible feasible reserve start times that, if scheduled, could be used to
reduce the disruption. For each such beneficial reserve start time, feasible
reserve instances are generated. A feasible reserve instance (Section 9.1.4)
corresponds to a feasible reserve crew duty start time index which can be
used to cover a given crew disrupted flight in a given scenario (i.e. reserve
start time/disruption pair). For each disruption the number of feasible
reserve instances which are generated for each feasible reserve start time
index is equal to the number of reserve crew required to cover the given
disruption, which is either the number of crew absent (for crew absence
disruption) or the size of the crew team assigned to flight h (crewSizey,) for
a delay. Let F;; denote the set of feasible reserve instances corresponding
to possible reserve start times that could, if scheduled, be used to solve or
reduce disruption j of disruption scenario .

For the specific case of delay disruptions it is also possible that reserve
crew use can have the effect of reducing or preventing knock-on delays. For
this purpose the set G, ; is introduced which denotes the set of feasible re-
serve instances corresponding to the possible use of reserve crew originally
used to absorb the root delay also being used to absorb the knock-on dis-
ruption. Note that crew-related delays occur when a flight has to wait for
crew on a delayed connecting flight, so the reserve used for the root delay
can only influence the delay of the following flight if other reserve crew are
not used to absorb the delay of that following flight. Algorithms 18 and 19
outline the procedure of collecting information for the disruption scenarios
from the single hub airline simulation.

The notation used in Algorithms 18 and 19 is that which was defined
in Section 9.1.4, Tables 9.1, 9.2 and 9.3.

Algorithm 18 is used in the disruption scenario generating simulation
when a crew absence occurs, the algorithm considers all of the possible ways
the absence disruption can be covered using reserve crew (reserve crew with
different start time indices ) and generates NV; ; feasible reserve instances
for each. The number of reserve crew required to cover a disruption equals
the number of absent crew (line 6). The cancellation measure of the absence
disruption is the number of hub departures in the disrupted crew pairing
that would have to be cancelled if reserve crew were unavailable to cover the
absent crew (line 7), with no delay contribution to the cancellation measure.

The algorithm then considers each possible reserve start time (line
8) used to cover absent crew at each hub departure in the disrupted crew
pairing (line 9). If a reserve is feasible, N, ; new feasible reserve instances
are generated with unique reserve use variable indices. For each of these
the associated cancellation measures are equal to the number of flights that
have to be cancelled before crew absence is covered at the m‘* hub departure
in the disrupted crew pairing plus a delay cancellation measure contribution
from any reserve-induced delay (lines 13-20). The newly generated feasible
reserve instances use are stored in sets according to which disruption and
scenario they are applicable to (line 17) and to which reserve start time
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Algorithm 18 Pseudocode for deriving disruption scenario information for
a crew absence disruption occurring at simulation run ¢ departure k

1: Inputs: Crew-related disruption affecting departure k of simulation run ¢ (number
of absent crew)

2: Outputs: Disruption j of scenario i (emy j, Nj j, F; j...)
3: RUV I =number of reserve use variable indices used so far
4: if crew absence disruption then
6:  N;; = number of crew absent
7:  cemyj = |Pc,| (all hub departures cancelled if absence is not covered)
8: for [ = 1 to total hub departures do
9: for m =1 to |P¢, | do
10: if reserve crew with start time D; are feasible to cover crew absence at the
mt" hub departure of the crew pairing assigned to crew team number Cj,
then

11: f=PFc,m (m!" flight of the crew pairing assigned to flight k)

12: em =m—1+ (%) (number of cancellations before reserve with start
time index [ can be used plus cancellation measure due to reserve-induced
delay when reserve is first used)

13: for n =1to N;; do

14: b = new feasible reserve instance

15: CM (b) = em/

16: V (b) = RUVT (index of new feasible reserve instance)

17: Fi,j = Fi,j Uub

18: Ry =R U b

19: RUVI=RUVI+1

20: end for

21: end if

22: end for

23: end for

24: =441

25: end if

index and scenario they are applicable to (line 18). These sets are useful
later on when creating constraints for feasible reserve use in the M 1PSSM
formulation.

Algorithm 19 is used in the disruption scenario generating simulation
when a crew-related delay occurs. The algorithm stores the size of the dis-
ruption and then considers all of the possible reserve crew recovery actions
and generates feasible reserve instances for each. Algorithm 19 differs from
Algorithm 18 because of the type of disruption (delay rather than absence)
and because of the possibility that, if they were used, feasible reserve in-
stances generated for previous crew delay disruptions in the same simulation
run could have reduced the current delay. If the current crew-related delay
is a delay propagated from a previous crew-related delay, feasible reserve
instances are generated corresponding to the reserve crew which could have
been used to absorb the root crew-related delay also being used to cover
the knock-on delay. These feasible reserve instances are stored in the set
G, ;. The number of reserve crew required to cover the given disruption
in Algorithm 19 is the number of crew in the delayed crew team (line 6).
The cancellation measure of the delay disruption when reserve crew are not
available to cover the delayed crew is computed (line 7). The algorithm
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Algorithm 19 Pseudocode for deriving disruption scenario information for
a crew delay disruption occurring at simulation run ¢ departure k

1: Inputs: Crew-related disruption affecting departure k of simulation run ¢ (number
of absent crew)

2: Outputs: Disruption j of scenario i (em; j, N j, F; j, G j...)
3: RUVI = number of reserve use variable indices used so far
4: if crew delay disruption then
5: W, =W;+1
6: N; j = crewSizey
7 CMmy.; = (% "
8: for [ = 1 to total hub departures do
9: if reserve crew with start time D, are feasible to absorb crew-related delay of
departure k ther711
10: em' = Tg’;ﬁ
11: for n=1to N;; do
12: b = new feasible reserve instance
13: CM (b) = em/
14: V(b) = RUVI
15: Fiﬂ' = Fi,j Uub
16: Ry =R U b
17: RUVI=RUVI+1
18: end for
19: end if
20: end for
21: if current crew delay is crew delay propagated from the crew’s previous flight
then
22: q =crew’s previous flight
23: o =disruption number of flight ¢
24: for [ =1 to |F,;,| do
25: em’ = (max(o, tdk_(’g;_RD(F"’o”))))n (cancellation measure of the propa-
gated delay if feasible reserve instance F; ,; is used to absorb the root delay)
26: b = new feasible reserve instance
27: CM (b) = em/
28: V(b)) =RUVI
29: U (F ) = RUVI (reference to the knock-on effect reserve use variable)
30: Giyj = Giyj ub
31: RUVI=RUVI+1
32: end for
33: end if
34: j=J7+1
35: end if

then considers each possible reserve start time (line 8) used to cover the
delay. If the reserve start time is feasible (line 9) and can absorb the de-
lay, N;; (= crewSize;) new feasible reserve instances are generated (line
11) with unique reserve use variable indices and cancellation measures as
calculated on line 10.

Lines 21 to 33 of Algorithm 19 apply if feasible reserve instances gen-
erated for the previous flight prevent or reduce the delay propagated to
the current flight. For such feasible reserve use instances (line 24) U (F; ;)
(line 29) stores a new unique reserve use variable index corresponding to
the same reserve being used to absorb the delay of the following flight. The
reason why an extra reserve variable index is generated for the same reserve
used on a following flight is that it is possible that other reserve crew might
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instead be used to cover the knock-on delay if the reserves used for the root
crew-related delay do not absorb all of the delay and some delay can still
propagate. The set GG stores feasible reserve instances corresponding to fea-
sible reserve instances which were generated for the root crew-related delay.
Line 25 calculates the corresponding cancellation measures for these feasible
reserve instances. The cancellation measure depend on the amount of delay
that would have propagated if the feasible reserve instance corresponding
to the root crew delay was utilised. The MIPSSM has constraints that
ensure that the beneficial knock-on effects can only apply if the reserve is
actually used to absorb the root crew delay. After the disruption scenarios
have been created they can be used to create the constraints and objective
of the MIPSSM formulation.

9.3 The MIPSSM’s Mixed Integer Program-

ming formulation

This section explains the mixed integer linear programming formulation.
Table 9.4 defines the notation used, Section 9.3.1 presents and explains the
objective and constraints.

x : Integer decision variable describing the number of reserve crew with start time index [
(reserve crew schedule)
Ym :  Binary decision variable describing whether (1) or not (0) a reserve crew with a particular

duty start time is used for a particular disruption. This variable is referred to as a (the
mth) reserve use variable. There is one reserve use variable for each feasible reserve
instance generated

05,5 :  Binary (output) variable describing whether or not disruption j in scenario ¢ is left un-
covered (1) or covered (0) by reserve crew in the MIPSSM formulation

Yi,j ¢ Real valued (output) variable which takes on the cancellation measure of disruption j in
scenario ¢ given the reserve recovery decision made by the model

Z : Variable that takes on a value equal to the cancellation measure total of the scenario with
the maximum cancellation measure

TR : Total reserve crew available for scheduling

ND : Total flights in the schedule

Table 9.4: MIPSSM formulation notation

9.3.1 MIPSSM formulation

Once a set of disruption scenarios has been generated, they are used to
form the objective and constraints of the MIPSSM formulation. The
MIPSSM formulation finds the reserve crew schedule (z) that minimises
the total cancellation measure over all disruption scenarios which were
added to the formulation. The reduced cancellation measures that replace
the original cancellation measures, that occurred in the disruption scenario
generating simulations, depend on which reserve use variables (y) are se-
lected to cover each disruption. Furthermore, which reserves can be used
(Y) depends on which are scheduled (x).
Minimise:

woW;

S i (9.5)

i=1 j=1
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s.t.

|71 |G 51
k=1 k=1

ND
Y u=TR (9.7)
=1
|R;1
> Y(ruy) < o VL€ LND, Vi€ LW (9.8)
k=1

yU(Ri,l,k) < yV(Ri,z,k)’ Vk € Ri’l|3yU(Ri,l,k)7 Viel.. W, ¥Viel.ND
(Si’jCTTLZ'J’ S ’}/iJ,Vi € 1W7 VJ € 1Wz
yV(Fi,j,k)CM (E,j,k) S %,J,Vz € 1W, Vj € 1VVZ, Vk c E,j

ym € {0,1}, Ym e Y
9;,; €{0,1}, Vie 1.W,Vj e 1.W,

)

(9.10)

(9.11)

?/v(c,,j,k)CM (Gijk) <7ij,Vie LW, Vjel. W, Vk e G, (9.12)
(9.13)

(9.14)

x; € {0,1..maxCA; — 1,maxCA},Vl € 1.ND (9.15)

Objective 9.5 minimises the sum of all cancellation measures over all dis-
ruptions in all of the scenarios included in the model. The cancellation
measures that apply for each disruption in each scenario depend on the de-
cision variable vectors X and Y. Constraint 9.6 ensures that disruptions are
only considered covered if the required number of reserve crew are used for
the given disruption. Constraint 9.6 forces d; ; to 1 when no reserve recovery
can be applied to disruption j in scenario ¢+ and to 0 otherwise. l.e. dis-
ruptions are only considered covered if each and every one of the disrupted
crew affecting a flight are replaced. Constraint 9.7 ensures that no more
than the total number of reserve crew available (T'R) are scheduled. As
the total number of reserve crew available for scheduling is assumed to be
fixed. Constraint 9.8 ensures that in each disruption scenario the number
of reserve crew used with the same start time index does not exceed the
number of reserve crew which are scheduled to that start time index. This
constraint prevents the same reserve crews being used for multiple disrup-
tions in the same scenario, which is not allowed. Constraint 9.9 ensures
that knock-on delays can only be absorbed by reserve crew if those reserve
crew are actually used to cover the root delay. This constraint provides
the mechanism through which this scenario-based approach to reserve crew
scheduling allows for the possibility of reserve crew reducing the potential
for downstream crew-related delays (which was the aim of the model pre-
sented in Chapter 7). Constraints 9.10 to 9.12 ensure that if reserve recovery
actions are applied, the cancellation measure for the disruption is that which
is associated with the latest available reserve crew used (as the flight can’t
take off before all of the crew are present). If no reserve crew are used
for a given disruption, that disruption gets the cancellation measure cm; ;
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that occurred in the simulation run in which the disruption occurred. The
indices of the y variables in Constraints 9.9, 9.11 and 9.12 make use of the
functions U and V' that return reserve use variable indices for any feasible
reserve use instance passed as the argument, see Section 9.1.4. Constraints
9.13 to 9.15 are the integrality constraints for the indicator and decision
variables of this model.

Section 3.1 cited the result that two-stage stochastic integer program-
ming with discretely distribution parameters has #P-hard complexity. The
MIPSSM formulation is a two-stage stochastic integer program. The un-
certainty of the second stage is modelled using scenarios sampled from
Monte Carlo simulation which itself used discretely distributed random
variables (for crew absence and journey times). The complexity of the
MIPSSM formulation under all possible disruption scenarios is therefore
#P-hard. However, the act of including only a sample of all disruption sce-
narios means that the complexity is controlled by the number of scenarios
that are included and the number of variables that are required to encode
these scenarios in the formulation. The M TPSSM approach is therefore to
solve an approximation of the full problem.

9.4 MIPSSM modifications

This section firstly considers 2 alternative objective functions for the ba-
sic MIPSSM formulation given by Equations 9.5 to 9.15. Then a scenario
selection heuristic is presented, which has been designed to address the ques-
tion of whether the types of scenarios or the number of scenarios included
in the formulation has the greatest effect on solution quality.

9.4.1 Alternative objectives for the MIPSSM
MiniMax1

The objective of minimising the sum of cancellation measures over all dis-
ruption scenarios included in the model (Objective 9.5) could be replaced
with the alternative objective MiniMax1 of minimising the largest sum of
cancellation measures for any scenario. This is a minimax objective func-
tion, discussed in [103], and can be implemented by replacing Objective 9.5
with Objective 9.16 and adding Constraint 9.17. This approach will have
the effect of finding a reserve crew schedule that minimises the extent of
the worst case scenario as opposed to minimising the average cancellation
measure.

min: 7 (9.16)

W;
> vj<Z Vi€l W (9.17)

j=1

MiniMax?2

Instead of minimising the total cancellation measure of the disruption sce-
nario with the largest cancellation measure, the same principle can be ap-
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plied to individual scenarios with the alternative objective MiniMaz2. L.e.
find the reserve crew schedule that minimises the single largest disruption.
To implement this approach replace Constraint set 9.17 with Constraint set
9.18.

In the results (Table 9.6) there is no performance measure which is
directly relevant to the MiniMax2 formulation because in the reserve crew
schedule validation simulation the worst single disruption is a cancellation
and these will inevitably occur in each method. However in the MiniMax2
formulation the worst single disruption is leaving an absence disruption
uncovered which would result in all flights on the absent crew’s line of flight
being cancelled.

vij < Z,¥Viel.W,Vjel. W, (9.18)

9.4.2 Scenario Selection Heuristic

The basic MIPSSM formulation and the two alternative formulations
MiniMazl and MiniMax2 are solved over a randomly generated set of
disruption scenarios in a linear programming solver (CPLEX in this case).
Although CPLEX yields optimal solutions, the solutions are only optimal
for the set of disruption scenarios considered in the model. This section
introduces a scenario selection heuristic (SSH) to address the issue of the
choice of scenarios which should be included in the M1 PSSM formulation.
The solution time increases sharply as the number of disruption scenarios
increases, which provides another motivation for considering a scenario se-
lection heuristic solution approach, which includes the right scenarios rather
than ensuring that plenty of disruption scenarios are included in the model
to increase the probability of including the important ones.

Algorithm 20 Pseudocode for the scenario selection heuristic

1: newScenarioFound = true
2: its =10
3: while newScenarioFound A its < itLim do
4: newScenarioFound = false
5: rpts =0
6: while —newScenarioFound A rpts < rptLim do
7 Run simulation to generate disruption scenario newScenario
8: Solve new scenario subproblem
9: if subObj > max;(masterObj;) then
10: newScenarioFound =true
11: add new scenario to the master problem
12: else
13: rpts = rpts + 1
14: end if
15: if newScenarioFound then
16: resolve master problem
17: end if

18: end while
19: its =1ts+ 1
20: end while

21: return solution

The scenario selection heuristic given in Algorithm 20 is based on
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adding one disruption scenario to the model at a time and stopping when
a new acceptable disruption scenario cannot be found within the iteration
limit (¢¢Lim) (line 3), for which the sub-problem objective value (subObj) is
larger than the objective contribution of the scenario already in the master
problem with the largest objective contribution (max;(masterObj;)). The
sub-problem objective value of a new scenario is calculated (line 8) from
the MIPSSM formulation with the new scenario as the only input dis-
ruption scenario and with the incumbent reserve crew schedule (X) fixed.
This heuristic is analogous to column generation in which the master prob-
lem and pricing problem are solved iteratively (described in Section 2.6.1).
In summary, this scenario selection approach focusses on finding a reserve
schedule that can cope with a wide variety of difficult scenarios as opposed
to a random set of scenarios representing the average outcome.

9.5 Optimal reserve use policy derivation

Rtq : Reserve use policy, the minimum threshold number of reserve crew remaining for
using a team of reserve crew to cover a delayed connecting crew to be considered
acceptable at flight ¢

obsq : Number of times reserve teams are used to cover delayed connecting crew at flight ¢
in reserve use policy derivation
simRpts : Number of repeat simulations used to derive a reserve use policy for a given reserve

crew schedule

Table 9.5: Notation for the MTPSSM derived policy

The default reserve policy of the simulation uses reserve crew in earliest start
time order, so as to leave the largest amount of unused reserve crew capacity
available for subsequent disruptions. The M IPSSM approach uses reserve
crew in each disruption scenario in an optimal way based on full knowledge
of future disruptions. In the simulation, knowledge of future disruptions is
not available, and so, if a scenario included in the MIPSSM formulation
repeats in the validation simulation, reserves might not necessarily be used
in the same optimal way.

In this section, an algorithm for deriving a look up table reserve use
policy, corresponding to a given reserve crew schedule, is described. The
policy is based on reserve use decisions in response to delayed crew where
a team of reserve crew could be constructed and used to absorb the delay.
The policy consists of threshold numbers of reserve crew remaining for each
departure for which using reserve teams to absorb crew-related delay is
deemed globally beneficial. The threshold values are learned from repeat
simulations in which the M IPSSM is solved for the scenario generated by
each single run of the simulation, with the given reserve crew schedule fixed.
The aim is to learn the conditions under which reserve crew should be used
to replace delayed crew.

The policy which is used for reserve crew use in response to crew
absence is the default policy. The reasoning is that the penalty for not
replacing absent crew with reserves is far too high (cancellation) to consider
a crew absence reserve holding policy, and that the penalty of using teams of
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reserve crew to cover delayed crew is too high, if this leaves too few reserve
crew to cover subsequent absences. In general, using teams of reserve crew
to cover for delayed connecting crew is expensive as it solves a smaller
disruption (delay compared to a cancellation) using more reserves than are
usually required to cover absent crew. However, in certain circumstances
using teams of reserve crew to cover delayed connecting crew can be globally
beneficial in the long run as well as beneficial immediately.

This policy is optimal in a very limited sense, in that it is learned
from optimal decisions derived from full knowledge of future outcomes, even
though such information will not be available when the policy is used in the
simulation. The algorithm used to learn the threshold numbers of reserve
crew that allow reserves to be used to cover for delayed connecting crew is
given in Algorithm 21.

Algorithm 21 Pseudocode for optimal reserve crew use policy derivation

Read in reserve schedule X
n=>0
Rto.np = R+1
obso.np =0
while n < simRpts do
Run simulation to generate disruption scenario newScenario
Solve MIPSSM for newScenario with fixed reserve schedule
m =20
9: while m < disruptions in newScenario do
10: if disruption m is a delay and reserves were used to absorb it then
11: deduce how many reserves were remaining at the time of the decision rr
12: update policy
13: 7 = delayed departure number
14: Rt; = ((Rtj x obs;) +rr)/(obs; + 1)
15: obs; = obs; +1
16: end if
17: end while
18: n=n-+1
19: end while

In Algorithm 21 the policy’s threshold values are calculated by re-
peatedly solving the reserve use variables of the MIPPSM for different
disruption scenarios with the given reserve crew schedule variables fixed
(for the reserve schedule the policy is being derived for). The threshold
value for a given flight is the average of the number of reserve crew remain-
ing immediately before that crew delayed flight, averaged over instances
where using a team of reserve crew was the recommended decision for that
flight in the solution of the MIPSSM formulation.

To implement the look up table reserve policy in the simulation, every
time it is possible to use a team of reserve crew to absorb crew-related delay,
check that the number of remaining reserves is greater than or equal to the
corresponding element of Rt.
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9.6 Experimental results

The MIPSSM (Section 9.3.1), MiniMax1 and MiniMazx2 (Section 9.4.1)
and SSH (Section 9.4.2) approaches are tested and compared to one an-
other. IBM CPLEX Optimization Studio version 12.5 with Concert tech-
nology is used as the MIP solver, on a desktop computer with a 2.79GHz
Core i7 processor and 6Gb of RAM.

These methods are also compared to alternative methods for reserve
crew scheduling including;:

Prob: this probabilistic approach is the SDM of Section 6.1.3. The
SDM is used as the evaluator in a greedy algorithm (see Section 3.5.4).

Area: the area under the graph approach is the same as first intro-
duced in Section 4.7.1.

USR: the uniform start rate heuristic approach was described in Sec-
tion 3.5.3.

Zeros: this method was described in Section 3.5.3.

9.6.1 Experiment design

The reserve crew scheduling approaches listed above are used to derive
reserve crew schedules for a generated test instance problem, which is de-
scribed in this section. The input airline schedule features fully detailed crew
connections and aircraft routings. Journey time uncertainty is modelled us-
ing statistical distributions based on real data. Crew absence uncertainty
is modelled as each individual scheduled crew member having a 1% chance
of being absent and missing their entire crew pairing. All teams of crew
consist of 4 individuals with identical rank (primarily aimed at cabin crew,
but extending also to cockpit crew). The schedule is based on a 3 day single
hub airline schedule with 243 flight legs a day with half of these being from
the hub station and the other half back to the hub. The schedule uses 148
teams of crew and 37 aircraft (single fleet). The schedule was generated
using a first in first out approach with stochastic parameters controlling the
rate of crew aircraft changes (0.3) and the 60" percentile journey time from
each destination’s cumulative journey time distribution. These parameters
influence the likelihood of delay propagation and the occurrence of delayed
connecting crew. The section following investigates the effect of the number
of reserve crew available for scheduling for each solution approach.

9.6.2 Investigating the effect of varying the number
of reserve crew available for scheduling

The results in Figure 9.4 show the effect on the average cancellation mea-
sure of varying the number of reserve crew available for scheduling, using
20000 repeat validation simulations for the reserve crew schedules from each
solution approach. The MIPSSM based approaches are restricted to 50
input disruption scenarios and a maximum of 1 hour to find a solution.
Figure 9.4 shows how the various reserve crew scheduling approaches
compare for different numbers of reserve crew available for scheduling. The
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Figure 9.4: The effect of the number of reserve crew which are scheduled
on the solution quality of different solution approaches

SSH, MIPSSM and Prob approaches obtain the lowest average cancella-
tion measures of those tested for all numbers of available reserve crew. The
Prob model gives a smooth curve of average cancellation measures, whereas
MIPSSM and SSH have small fluctuations in average cancellation mea-
sure as the number of reserve crew available for scheduling changes. This
fluctuation can in part be attributed to the limited number of disruption sce-
narios, used as input for these methods, especially in relation to the number
repeat simulations the resultant schedules are tested in. The MiniMax1
modification generally leads to higher average cancellation measures espe-
cially when between 9 and 12 reserve crew were available for scheduling.
MiniMaz2 gave the unexpected result that scheduling more reserve crew
can lead to a higher average cancellation measure. This behaviour can be
explained by the fact that the objective of the MiniMax2 modification is
designed to suppress the single largest delay or cancellation disruption that
can occur and is not to minimise the average cancellation measure. The
Area under the graph approach led to average cancellation measures simi-
lar to those from the MiniMax2 modification but without the fluctuations.
The USR approach led to the highest average cancellation measures when
10 or fewer reserve crew are available for scheduling. For more than 10
reserve crew the zeros approach gave the highest cancellation measures.
The zeros approach also gave the best results when fewer than 4 reserve
crew were available for scheduling, this is because most crew absences are
realised at the start of the first day, so scheduling reserve crew at that time
prevents cancellations due to crew absence from the outset.
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Figure 9.5: The effect of the MIPSSM derived reserve use policy

The difference between the various solution approaches is clearest
when there are around 10 to 12 reserve crew available for scheduling, which
also appears to be the most sensible number of reserve crew to schedule
(due to diminishing returns). In this range, Figure 9.4 shows that the best
performing solution approach was the SSH. 10 to 12 reserve crew for the
given problem instance is approximately proportionate to the number of
reserve crew scheduled in reality.

Figure 9.5 shows the effect of using the MIPSSM derived reserve
use policy described in Section 9.5 compared to the default policy of using
reserve crew as demand occurs. Using the MIPSSM derived policy had
the effect of reducing the average cancellation measure.

9.6.3 Other performance measures and solution reli-
ability

Table 9.6 gives average performance measures when each method is applied
to the same problem instance 20 times, for the M IPSSM approaches the
simulation generated scenarios differ in each of the 20 repeats as they start
with a different random seed. The results of Table 9.6 correspond to the
case where 11 reserve crew are available for scheduling. The first column
gives the methods which are being compared, the second column gives the
average cancellation measures attained by each method. The third column
gives the average delay calculated over the flights which experienced delays.
The fourth column gives the probability that a flight is delayed by more than
30 minutes. The fifth column gives the probability a flight is cancelled. The
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sixth column gives the average reserve utilisation rate. The last column
gives the average solution times.

Method Average | Average | Probabi- | Cance- | Reserve | solu-
name cancella- | delay lity of llation | Utili- tion
tion /mins delay rate sation time
measure > 30mins rate /mins
NoRes 15.009 11.147 0.00682 0.03925 | - -
MIPSSM | 1.159 12.180 0.00898 0.00140 | 0.674 28.688
MiniMaxl | 1.246 12.393 0.00938 0.00154 | 0.666 7.060
MiniMaz2 | 1.724 13.874 0.01114 0.00171 | 0.656 2.259
SSH 1.066 11.870 0.00871 0.00141 | 0.667 2.871
Prob 1.077 11.518 0.00818 0.00166 | 0.690 0.443
Area 2.399 14.001 0.01130 0.00353 | 0.589 0.060
USR 2.925 14.970 0.01336 0.00438 | 0.555 <0.001
zeros 3.756 11.167 0.00725 0.00902 | 0.571 <0.001

Table 9.6: Performance measure averages from 20 repeats

The results show that on average the MIPSSM performs best on
cancellation rate, however the MIPSSM is also the slowest method with
average solution times of 28 minutes. The average cancellation measure
can be interpreted as the number of cancellations expected in each of the
simulations, but this also includes delays which have been converted to a
cancellation measure using Equation 9.1. On the whole the SSH is a highly
efficient approach with the lowest cancellation measure, a low average delay
and a low solution time in comparison with the MIPSSM approach. The
low solution time of the SSSH in comparison to the that of the M IPSSM is
a result of the termination criteria being satisfied, on average, before more
than 10 disruption scenarios are added to the master problem. This result
suggests that the SSH outperforms the MIPSSM approach because it is
possible to find a better reserve crew schedule with fewer input disruption
scenarios, provided that some effort is made to find such a set of scenarios.
The Prob approach has the second lowest average cancellation measure,
good average delay performance and a solution time much quicker than
those of the MIPSSM based approaches.

The results in Table 9.6 suggest that there is merit in both the proba-
bilistic and M1 PSS M based approaches (SSH in particular) for scheduling
airline reserve crew under uncertainty. Table 9.6 also includes performance
measures when no reserve crew are scheduled at all as a point of reference.
Contrary to expectation the probability of delay over 30 minutes is lower
without reserve crew, as is the average delay, however this can be attributed
to the high cancellation rate, since cancelled flights do not count as delays.

Figure 9.6 shows the spread of cancellation measures corresponding
to each method over the 20 repeats of each method, with each being tested
in 20000 repeat validation simulations. The percentile axis has exponential
scale (cubed) for clarity, as this increases the linearity of the data. Fig-
ure 9.6 also displays the 100" percentile (worst case) cancellation measure
from each approach, and this is the most appropriate validation criteria
for the MiniMaz2 modification. The MiniMax2 modification does not
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have the lowest cancellation measure for the 100" percentile, so it appears
that this modification does not achieve its goal. The reason for this is that
MiniMaz2 schedules reserve crew with respect to the worst case scenarios
in a limited set of scenarios, so when a worst case scenario occurs in the val-
idation simulation which is different from the worst case scenarios used to
derive the reserve crew schedule, the reserve crew schedule performs worse
than a reserve crew schedule aimed at the average case scenario.

Figure 9.6 demonstrates that for each given percentile the ordering of
the methods supports the results given in Table 9.6 except for the zeros
approach which has the lowest worst case cancellation measure. This result
suggests that the worst scenario is, for a very large number of crew to be
absent at the start of each day, which is precisely the situation the zeros
approach can cope with. The MiniMax2 approach will only achieve it’s goal
if such worst case scenarios happen to be in the limited sets of scenarios.
The other methods have relatively high worst case cancellation measures
because they are aimed at the average case scenario.

Cancellation measure percentiles from 200000 repeat simulations
using an exponentially scaled x—axis
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Figure 9.6: Percentile cancellation measures

Table 9.6 and Figure 9.6 show that the MiniMax1 and MiniMazx2
approaches which were aimed at minimising the effects of worst case sce-
narios do not appear to have been effective in achieving this goal when
considering the relatively high probabilities of delay over 30 minutes (Ta-
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Solution stability of MIPSSM based methods
compared to the probabilistic model
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Figure 9.7: Solution reliability of MIPSSM based methods compared to
Prob

ble 9.6) and the 100" percentile (worst case) cancellation measures (Figure
9.6) associated with these approaches. The possible explanation is that the
best reserve crew schedule for one worst case is not the best reserve crew
schedule for a different worst case scenario.

Each point on Figure 9.7 represents a solution to the given method
starting from a different random seed in the simulation used to generate
the set of disruption scenarios over which the method is solved. Figure 9.7
shows that the MIPSSM based methods have a solution reliability issue.
Figure 9.7 also shows that the M I PSSM based methods have the potential
to give solutions of higher quality than the probabilistic method (Prob), but
this depends on the selection of disruption scenarios which are used as input
for the given M IPSSM based method. For this reason further research was
performed to investigate the scenario selection mechanism, see Section 9.7.

9.7 The effect of scenario sets on reserve crew
schedule quality

The basic MIPSSM formulation requires a set of input disruption sce-
narios. This section attempts to address the issue of solution reliability
illustrated in Figure 9.7, through careful selection of the scenarios added to
the MIPSSM formulation of Section 9.3.1. Disruption scenarios were gen-
erated randomly in the previous sections. In the case of the SSH, scenarios
are selected if the cancellation measure for the new scenario is worse than
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the cancellation measure in any of the already selected scenarios, with the
incumbent reserve crew schedule. This section investigates what makes a
good set of scenarios. To answer this question attributes of sets of scenarios
are defined. These are defined by the pool of scenarios that scenarios in
the set belong to and the number of scenarios in the set. Three pools of
scenarios are considered, and these are generated using the procedure out-
lined in Figure 9.8. Section 9.7.1 presents an investigation into the effect
of the number of scenarios selected and the different types of pools from
which they are selected of scenarios on the quality of reserve crew schedules
derived from those sets of scenarios using the M 1PSSM formulation.

9.7.1 Attributes of sets of scenarios

As previously mentioned, the attributes of a set of scenarios are defined as
the number of scenarios and the pool from which the scenarios are selected.
Each pool of scenarios has a defining criterion for accepting scenarios into
the pool.

Solve MIPSSM for each

single scenario alone ’ Pool A. 1000
- Randomly
l generated
Test the 1000 reserve crew scenarios

schedules in repeat simulations
to derive an associated average

A4
Select 200 sets of

scenarios of various sizes .
v with the lowest

without replacement
Pool B. Select the 100 > .
from the given pool
scenarios corresponding reserve schedule
l cancellation measure

cancellation measure

Pool C. 100 scenarios

A

associated average

to the reserve crew

schedules with the lowest For each set of scenarios, 4
100 average cancellation solve MIPSSM to find
measures reserve crew schedule
For each set of scenarios
v from pool A, compute the
Test reserve crew schedules in average cancellation
repeat simulations to derive an measure for each scenario
associated average > over the reserve
cancellation measure schedules they were used
to generate

A 4

Plot data point corresponding
to a reserve schedule obtained
by solving a set of scenarios

from a given pool (pool, number
of scenarios, average
cancellation measure)

Figure 9.8: Flowchart of the population of three pools of scenarios
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Pool A: 1000 random scenarios

Pool A consists of 1000 randomly generated scenarios.

Pool B: Good individual scenarios

Figure 9.8 shows how the two pools of scenarios B and C are derived from
pool A. To create pool B, the first step is to solve the MIPSSM for-
mulation for each scenario in pool A on its own to obtain a reserve crew
schedule corresponding to each scenario in pool A. Each reserve crew sched-
ule corresponding to each scenario in pool A is then tested in the validation
simulation to obtain an associated average cancellation measure. Pool B is
then populated with the 100 scenarios from pool A which have the lowest
associated average cancellation measures. Pool B represents scenarios, that
when solved alone in the MIPSSM formulation, give good reserve crew
schedules.

Pool C: Good scenarios for sets

To create pool C, 200 sets of scenarios of various sizes are randomly sampled
from pool A and solved in the MIPSSM formulation. The reserve crew
schedules corresponding to each set of scenarios are tested in the validation
simulation to obtain associated average cancellation measures. Pool C is
then populated with the 100 scenarios from pool A with the lowest average
cancellation measures, where the average cancellation measure is calculated
from the cancellation measures corresponding to the sample sets of scenarios
they are a member of. Pool C represents scenarios that improve the quality
of reserve crew schedules when added to a set of scenarios to be solved in the
MIPSSM formulation. Figure 9.8 outlines the process of populating pools
B and C from pool A. Figure 9.8 also illustrates the process of deriving data
points for Figure 9.9, which is designed to show the quality and variance of
the quality of reserve crew schedules derived from sets of scenarios selected
from each pool of scenarios.

9.7.2 Testing pools of scenarios

A total of 200 sets of scenarios were each selected, without replacement,
from each pool (A, B and C), where the number of scenarios selected for
each set is distributed uniformly between 5 and 45. The results in Figure
9.9 show the cancellation measures of the reserve schedules which were ob-
tained by solving these scenario sets in the MIPSSM formulation. Each
data point in Figure 9.9 gives the number of scenarios in a set of scenarios
used as input for the MIPSSM (x-axis) and the cancellation measure of
the resultant reserve crew schedule (y-axis), as derived from the validation
simulation. The colour of the data point indicates which pool of scenarios
the scenario set was selected from. The results displayed in Figure 9.9 show
that the number of scenarios in a set is weakly negatively correlated with
the average cancellation measure associated with the reserve crew schedule
derived from that set of scenarios for all pools. I.e. Increasing the number
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The effects of the number of scenarios in a set and the type of scenario pool
on the resultant solution quality when MIPSSM is solved for the given set
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Figure 9.9: The effect of the pool from which scenarios are selected and the
number of scenarios selected on the average cancellation measure associated
with the reserve crew schedule derived from the given set of scenarios

of scenarios will decrease cancellations/delays. Figure 9.9 also shows that
the quality of reserve crew schedules derived from sets of scenarios selected
from pools B and C is on average greater than reserve crew schedules de-
rived from sets of scenarios from pool A. Furthermore the quality of reserve
crew schedules corresponding to sets of scenarios derived from Pool B is
much less sensitive to the number of scenarios in those sets. This is intu-
itive as scenario pool B consists of scenarios that give good solution quality
when solved alone. This also suggests that scenarios that work well as the
single input for MIPSSM do not necessarily lead to improved solutions
when used together as a set of input scenarios for the MIPSSM. Figure
9.9 shows that the average cancellation measure of reserve crew schedules
derived from sets of scenarios selected from pool C has the most convincing
negative correlation (highest negative gradient and magnitude of correla-
tion coefficient R) with the number of scenarios in those sets. This is also
intuitive as pool C represents scenarios that improve reserve crew schedule
quality when included in a set of scenarios.

The conclusion is that scenarios which are used as input for the MIPSSM
can be divided according to whether they work best as the sole input sce-
nario (pool B) or whether they are scenarios that complement a pre-existing
set of scenarios (pool C). The difference in the gradients of the regression
lines corresponding to pools B and C in Figure 9.9 shows that pools B and C
contain different scenarios. It is also interesting to note that the best result
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in Figure 9.9 occurred for a set of scenarios derived from pool C that only
contained 16 scenarios. Increasing the number of scenarios beyond around
15 leads to an improvement in solution reliability for sets selected from pools
B and C, however the same does not occur for the random scenarios of pool
A. This is a positive result as solution reliability is one of the MITPSSM’s
biggest problems (Figure 9.7).

9.7.3 Algorithms based on the results of the scenario
set investigation

Best single scenario algorithm

To exploit these findings, one possible algorithm would involve finding the
single scenario that leads to the highest solution quality. This could be a
tractable approach as solution time is proportion to the number of scenarios
in a set, with one scenario being solved very rapidly. Such a scenario can
be said to have coincidental coverage.

Best set scenarios algorithm

Another algorithm would search for scenarios that work well as part of a
set, however such an algorithm may be less scalable than the first suggested
algorithm. The reason being that the measure used to populate pool C
involves solving lots of sets of scenarios and testing the resultant reserve
crew schedules, which can be very time consuming.

Probabilistic and MIPSSM hybrid approach

The algorithms described above work by sampling disruption scenarios, and
then using simulation testing to ascertain which disruption scenarios are as-
sociated with the best reserve crew schedules. However, in Chapter 8 it was
shown that the SDPM is an accurate evaluator of reserve crew schedules
because it effectively replaces an infinite number of simulations with a sin-
gle evaluation of the SDPM. So, replacing the simulation testing step with
evaluations of the SDPM should result in much more efficient algorithms,
and in doing so, draws together the two main alternative approaches con-
sidered in the project, in algorithms which utilise the main strengths of
each approach. l.e. reserve crew schedule generation in the case of the
MIPSSM, and reserve crew schedule evaluation in the case of the SDPM.
These hybrid algorithms were implemented and are tested in Chapter 10 on
a range of schedule instances which include multiple fleets types and the
ranks and qualifications of crew. But first, Section 9.8 presents the required
fleets, ranks and qualifications extended M IPSSM formulation.
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9.8 Extending the MIPSSM approach for the
case of fleets, crew ranks and qualifica-
tions

This section is analogous to Section 6.3 where the improved probabilistic
crew absence model was extended to the case of multiple fleet types and the
ranks and qualifications of crew. The extended formulation presented in this
section is used in Chapter 10 when all approaches to reserve crew scheduling
and policies are compared with one another in multiple fleet, crew rank and
qualification test instances. Up until this point the MIPSSM approach
has been based on the simplified case of a single fleet and single crew rank.
This meant that crew qualifications could be ignored as all crew considered
were qualified for the single fleet. To recap, when considering multiple air-
craft fleet types, crew qualifications have to be taken into account because
crew will be qualified for a subset of the airline’s fleets. Additionally dif-
ferent fleets have different crewing requirements. Cabin crew also come in
a number of ranks, according to their training and experience. The highest
cabin crew rank is purser and all flights require at least one purser. The
consideration of crew ranks also gives rise to the possibility of "flying below
rank”, this means that higher rank crew rank are qualified to perform the
duties of lower ranked crew.

The simulation disruption scenario generation procedure of Section 9.2
and the M IPSSM formulation of Section 9.3 both require modifications in
order to be applicable to the case of multiple fleets, crew ranks and qualifi-
cations. To incorporate fleets, crew ranks and qualifications, the notational
changes given in Table 9.7 are required. FRQ is used as short hand for fleet,
rank and qualification in the heading of Table 9.7.

9.8.1 Example problem

In the following and in Chapter 10, the extended M IPSSM formulation is
based on the case where there are 3 fleets, 3 reserve crew qualifications and
2 reserve crew ranks. The fleets that a reserveis qualified for are the same
as those used in Table 6.3 of Section 6.3, which were captured by the simple
expression (qualified if) qualification # fleet. The fleet crew requirements
of the example problem are the same as those given in Table 6.4 of Section
6.3. FCRy;,, denotes the number of crew of each rank (r) each fleet (f1)
legally requires.

9.8.2 Extended simulation generation of disruption
scenarios

To extend the disruption scenario generation algorithms of Section 9.2.2
for the case of multiple fleets, crew ranks and qualifications the following
changes need to be taken into account.

1. Reserve crew have distinct ranks and qualifications
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FRQ

formulation

Single | Multiple | Description

T Tl qr Number of reserve crew with start time index [, qual-
ification ¢ and rank r

TR TR, Number of reserve crew of each qualification (¢) and
rank (7) to be scheduled

N;j NL;; Number of low rank disrupted crew in disruption j of

scenario ¢

N;;j NH,; ; Number of high rank disrupted crew in disruption j
of scenario ¢

Fiir | Fijerx | The k™ feasible reserve instance of rank r, qualifica-
tion ¢ generated for disruption j of scenario ¢

Gijx | Gijgrr | The k™ feasible reserve instance of rank r, qualifica-
tion ¢ generated for disruption j of scenario ¢ corre-
sponding to a reserve crew used to absorb a secondary
delay

Riir | Risgrr | The k'™ feasible reserve instance of rank r, qualifica-
tion ¢, with start time index [ generated for scenario
i

Table 9.7: Notational changes required for extending the MIPSSM ap-
proach for the case of multiple fleets, crew ranks and qualifications

2. The number of disrupted crew for a given disruption is influenced by
the fleet type

3. Reserve crew can only be used for the fleets they are qualified for

4. Reserve crew of high rank can if necessary by used to replace low rank
disrupted crew

To account for reserve crew ranks and qualifications (Change 1) feasible
reserve instances also have specific ranks and qualifications.

The effect of Change 2 is that the number of disrupted crew for a
delay disruption depends on the crew requirements of the fleet. For crew
absence disruptions there is also the possibility of different numbers of ab-
sent crew of each rank, for this purpose the notation NH;; and NL;; is
introduced to denote the number of high rank and low rank crew disrupted
crew respectively in disruption j of scenario i.

The effect of Change 3 is that feasible reserve instances have to be
generated corresponding to each applicable qualification for a given disrup-
tion. No feasible reserve instances are generated corresponding to reserve
crew with the incorrect qualification for a given disruption, this means that
constraints are not required which state that reserves can only be used if
qualified.

The effect of Change 4 is that the total number of feasible reserve
instance generated for each applicable qualification is equal to the number
of disrupted crew plus extra feasible reserve instances corresponding to high
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rank reserve crew to allow for the possibility of high rank qualified reserve
crew flying below rank.

The sets used to store the feasible reserve instances F', G and R are
extended with extra dimensions for the ranks and qualifications of feasible
reserve instances (see Table 9.7).

9.8.3 Extended MIPSSM formulation

For the case of multiple fleets, crew ranks and qualifications the MIPSSM
formulation (Section 9.3) has to be modified. The following gives the mod-
ified constraints, stating which constraint it replaces in the original formu-
lation.

. ‘Fiyj,q72| |Gi’qu72| .. .. = ..
Zq:l ( k=1 yV(Fi,j,q,Q,k) + 2 k=i yV(Gz‘,j,q,z,k) + 5WNHW = NHZJ

Viel.W, V5 el.W;

(9.19)
3 2 |Fi,5,q,r] 1Gij,q.r
Zq:l Zr:l ( k=1 yv(Fi,j,q,r,k) + 2 k=i yv(Gi,j,q,r,k)>
+
0ij (NHi; + HLj;) (9.20)
NH; ; + HL; ;

Viel.W, V5 el.W,

Constraint 9.6 of the original formulation is replaced by Constraints 9.19
and 9.20. Constraints 9.19 and 9.20 ensure that the crew-related disruption
is only considered covered if all disrupted crew are replaced with reserve
crew. Additionally, these constraints allow for the possibility of reserve
crew flying below rank because constraint 9.19 ensures that all high rank
disrupted crew are replaced with high rank reserve crew, whilst Constraint
9.20 allows the low rank disrupted crew to be replaced with reserve crew of

any rank.
ND

> @igr =TRy,, Vg €1.3,¥r € 1.2 (9.21)

1=1
Constraint 9.7 of the original formulation is replaced with Constraint 9.21,
which states that the total number of reserve crew of each rank and qualifi-
cation scheduled must equal the total number of reserve crew of each rank
and qualification available for scheduling. In Constraint 9.7 the equality
could be replaced with < if scheduling all available reserve crew is not a
strict requirement.

‘Ri,l,qm‘
> YW (Ropnrs) < Plar Y9 €1.3,¥r €1.2, VI € L.ND, Vi € L.W

= (9.22)

Constraint 9.8 of the original formulation is replaced with Constraint 9.22,
which states that the total number of reserve crew of each rank (r) and
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qualification (q) scheduled to each start time index (/) used to cover crew
disruptions in each scenario (i) cannot exceed the number of reserve crew
scheduled with the same start time index (1), rank (r) and qualification (q).

yU(Ri,l,q,r,k:> S yV(Ri,l,q,'r',k)
) Vg € 1.3,Vr € 1.2, Vi€ LW, ¥l € L.ND

(9.23)
Constraint 9.9 of the original formulation is replaced with Constraint 9.23
which states that reserve crew of each rank and qualification can only absorb
knock-on crew-related delays if those reserve crew are used to absorb the
root delay. Constraints 9.11 and 9.12 of the original formulation are replaced
with equivalent constraints where the notation changes specified in Table
9.7 are applied and whilst also adding Vg € 1..3 and Vr € 1..2 to the
combinations of indices those constraint sets are generated for.

Constraint 9.15 of the original formulation stated that the number of
reserve crew scheduled to each start time index had to be an integer between
0 and the maximum number of disrupted crew affecting the departure as-
sociated with the given start time index. In the extended formulation this
constraint is removed on the grounds that reserve crew of different qual-
ifications can be scheduled to each start time index, but reserve crew of
different qualifications are feasible for different fleets which have different
crew requirements. Therefore such a constraint may preclude finding the
best reserve crew schedule for a given set of disruption scenarios. In the
extended MIPSSM formulation, the reserve schedule z is constrained by
Constraint 9.21 only.

Constraints 9.10, 9.13 and 9.14 are unchanged for the case of multiple
fleets, crew ranks and qualifications.

Wk € Ritarl3yy(

Rit,q,r.k

9.8.4 Results

Chapter 10 compares the extended MIPSSM formulation and each of its
variants with the alternative approaches to reserve crew scheduling explored
in this project, over a number of realistic problem instances.

9.9 Future work

9.9.1 [Iterative solution approach to MIPSSM

One of the weaknesses of the MIPSSM approach is that solution times
increase dramatically as the number of input disruption scenarios increases.
The reason for this is the large number of binary variables in the resul-
tant MIPSSM formulation. One possible approach to tackling this issue
is to use an iterative solution approach in which some variables are fixed in
each iteration. The variables of the M IPSSM formulation can be divided
according to reserve schedule variables (X) and reserve use variables (Y),
therefore one possible approach is to alternative between fixing the reserve
crew schedule (namely X) and fixing which disruptions are covered using re-
serve crew in each iteration (fixing certain Y variables to zero). The desired
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outcome of such an approach is that the reserve crew schedule converges to
the optimum corresponding to the set of input disruption scenarios.

9.10 Chapter summary

This chapter has introduced an alternative approach to reserve crew schedul-
ing, to that of the the probabilistic approaches of Chapters 5 to 8, in the
form of a scenario-based approach to airline reserve crew scheduling. The
main idea of which is to schedule reserve crew using information from repeat
simulations of an airline network where reserve crew are not available, and
then scheduling reserve crew in a hindsight fashion in such a way that had
they been available, the level of delay and cancellation that was related to
disrupted crew would have been minimised. The MIPSSM formulation
also took potential knock-on delays into account.

A range of alternative objective functions for the MIPSSM formu-
lation were tested, it was found that minimising the sum of all cancellation
measures over all disruption scenarios was the most effective. A minimax
objective function even failed to minimise the worst case scenario that oc-
curred in the simulation testing of solutions. The reason for this was be-
cause the optimal solution for the worst case scenario in a limited sample
was typically not a good solution for a different worst case scenario.

The SSH approach showed that the choice of individual scenarios in-
cluded in the model is at least as important as the number of scenarios, as
this heuristic scenario selection approach yielded solutions of higher quality
on average compared to the MIPSSM approach, with fewer input dis-
ruption scenarios. In general it was found that the MIPSSM, SSH and
Prob approaches gave results that were very similar on average, however the
MIPSSM based approaches had lower solution stability from one run to
the next due to the stochastic nature of these approaches, but significantly
outperformed the Prob approach in some cases. Further investigation of the
effect of selecting scenarios from pools of scenarios with particular charac-
teristics revealed the existence of scenarios that lead to good quality reserve
crew schedules when used as the single input scenario for the M1PSSM
formulation. Such scenarios were said to have a high level of coincidental
coverage. In contrast evidence was found for the existence of scenarios that
lead to good quality reserve crew schedules when used as one of a set of
input scenarios from the same pool.

The MIPSSM formulation was also extended to the case of multiple
fleet types, crew ranks and qualifications with relatively few modifications
to the initial model.
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Chapter 10

Comparison of all reserve crew
scheduling and policy
approaches

In this chapter the approaches to reserve crew scheduling and reserve policies
introduced in previous chapters are applied to the same test instances and
compared with one another.

Chapter structure

The test instances are described in Section 10.1. Section 10.2 defines the
approaches to reserve crew scheduling and the configurations of those ap-
proaches that are to be tested in this chapter. Section 10.3 describes the two
phase experiment design. The first phase (Section 10.4) tests all approaches
to reserve crew scheduling considered in this thesis, in a variety of configu-
rations, with repetitions of each. The aim is to find representative reserve
crew schedules for comparing all methods in the second phase. The second
phase (Section 10.5) takes the best reserve crew schedule from each general
reserve scheduling approach found in phase 1 and tests each in conjunction
with each of the reserve policies considered in this thesis. This will allow
an overall comparison of all of the reserve crew scheduling approaches and
reserve policies considered in this thesis. Section 10.6 then summarises the
main findings from this chapter.

10.1 The test instances

The test instances are based on data provided by KLM. The aircraft rout-
ings are the same as those in the data provided by KLM, whilst the crew
schedules were generated using a set partitioning model solved in CPLEX.
The test instances are based on a 3 fleet example. The fleet crewing re-
quirements are those given in Table 6.4. There are crew/reserve crew with
2 ranks and 3 qualification types, making 6 different grades of crew. The
3 qualification types of crew were defined in Table 6.3.  Table 10.1 sum-
marises the six test instances considered in this chapter. The first three
(columns) test instances are classed as real schedules, which means that the
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Type Real Tightened real
Schedule 1 2 3 4 5 6
Days 1 3 7 1 3 7

Hub deps 139 424 983 139 424 983
Total deps 280 849 1970 280 849 1970
Crew 123 195 272 120 190 262
Crew s.t. abs. | 71 136 180 68 131 170
Aircraft 71 75 78 71 75 78
Reserve crew | 10 14 16 10 14 16
Delay risk 0.04262 | 0.01051 | 0.01190 | 0.4997 | 0.4990 | 0.4960
Crew CR 0.4331 | 0.4196 | 0.4216 | 0.375 | 0.4124 | 0.4103

Table 10.1: Test instance properties

aircraft routings and the scheduled departure and arrival times are exactly
the same as in the source data. The real schedules have a low risk of delay.
The tightened real schedules are based on the same data but with mini-
mum ground times scheduled, and the allocated journey times are equal
to the average journey times. This explains the increased, approximately
0.5, probability of delay for the tightened schedules. The purpose of the
tightened schedules is to show that the methods introduced in this thesis
do not rely on the input airline schedule being very conservative in terms
of the risk of delay propagation. The low risk of delay in the real schedules
is a result of the use of hub banks, where an airline schedules sequences of
arrivals together to allow passengers to connect to different aircraft before a
subsequent sequence of departures. The low risk of delay ensures that pas-
sengers have a good chance of successfully catching their connecting flights.
Figure 4.2 of Chapter 4 gives an example of a real airline schedule where
hub banking is visible.

For both the real and the tightened schedules there are three schedules
ranging in length from 1 day to 7 days. The length of the schedule represents
the time horizon over which the set of available reserve crew can be sched-
uled. In each test instance reserve crew pairings span 3 days, this constraint
only becomes important in the 7 day schedules. Table 10.1 also gives the
number of departures, crew, crew which may be subject to crew absence,
aircraft, reserve crew and the crew connection rate (CR) or mid shift air-
craft change rate. The crew who are subject to crew absence correspond to
the crew who are stationed at the hub station, crew absence affecting crew
stationed at spoke station are covered by reserve crew at spoke stations (see
Assumption RP6 of Section 4.2, the deadheading is not a viable option for
solving delay and unexpected crew absence disruptions assumption). The
number of reserve crew available for scheduling are chosen so that there is
at least one of each rank/qualification combination available and the num-
ber of reserve crew of each type is 1.5 times the expected number of crew
absence of each type. The expected number of absent crew is based on the
assumed 1% chance (also used in Section 6.2.1) that any given member of
crew is absent for their assigned crew pairing. The main focus in this thesis
is on how the set of available reserve crew can best be scheduled and used,
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Evaluator SPCAM | SDM | CDM | SDPM
Thesis chapter 5 6 7 8
Absence model
Simplified v’
Detailed v’ v’ v’
Delay model
None v’
static v’ 0.5
Dynamic 0.5 v’
Reserve delays v’ v’ v
All delays v
Delay propagation 0.5 v
Assumed reserve policy
Absence only v v’ v
default v
GRP v v v v’

Table 10.2: Details of the probabilistic models used as evaluators in various
search methodologies

see Section 2.3 for information about work regarding reserve crew sizing.

10.2 Description of the reserve crew schedul-
ing approaches being compared

10.2.1 Probabilistic approaches

The reserve crew scheduling approaches based on the probabilistic models of
Chapters 5 to 8 are each defined by a combination of a search methodology
and a probabilistic reserve crew schedule evaluator. This section describes
the search methodologies, and Table 10.2 details the features of the prob-
abilistic evaluators.  Table 10.2 shows that each probabilistic evaluation
method corresponds to a different chapter of this thesis. The acronyms
for each method were all defined in the acronyms section at the beginning
of this thesis. The SPCAM (simplified probabilistic crew absence model)
evaluator uses a simplified model of crew absence uncertainty, in which it
is assumed that a maximum of one crew member can be absent from each
crew pairing. The SPCAM evaluator does not take delay into account and
assumes the absence only reserve policy.

The SDM (static delay model) evaluator uses the fully detailed model
of crew absence uncertainty, with a static estimate of delays, which it uses
to estimate the delays which are introduced when using reserve crew to
cover for absent crew. The SDM assumes the absence only policy.

The CDM (crew delay model) evaluator is very similar to the SDM
evaluator except that the model of delay takes the propagation of crew
related delays into account and the effect that teams of reserve crew can have
when used to replace such delayed connecting crew. The CDM evaluator
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is partially dynamic, in that the model of delay propagation changes in
response to the probabilities that reserve crew have been used for particular
crew related disruptions. The CDM of Chapter 7 was designed purely for
reserve crew used for crew related delay disruptions, so the CDM evaluator
is actually a combination of Chapters 6 and 7. The CDM evaluator assumes
the default reserve policy, if it assumed the absence only policy CDM would
reduce to SDM.

The SDPM evaluator uses the fully detailed model of crew absence
uncertainty and a fully detailed model of delay propagation uncertainty.
The SDPM is fully dynamic which means that the predicted delays of flights
are responsive to the probabilities that reserve crew are used for each flight,
in terms of any direct or indirect knock-on delay that may result from reserve
crew use. The SDPM evaluator takes reserve-induced delay into account as
well as propagated delays. The SDPM evaluator is also capable of modelling
delay recovery using swaps and teams of reserve crew (see Section 8.1.4),
however as was shown in Section 8.2.5 doing so resulted in little benefit in
terms of reserve crew schedule quality and also vastly increases the time
required to evaluate a single reserve crew schedule, which in turn inhibits
the efficiency of any search algorithm it is used with. As a result of this,
these features of the SDPM will not be utilised in this chapter. The SDPM
evaluator assumes the absence only policy (because the reserve team use
model will be switched off).

Search heuristics for reserve crew scheduling using a probabilistic
model as the evaluator

In this section the probabilistic models of Chapters 5 to 8 are tested and
compared with one another in terms of the quality of reserve crew schedules
which can be derived whilst using those models as the evaluation function
in a variety of search heuristics. The search heuristics tested in this section
include:

e GH: Greedy heuristic. Implemented as described in Section 3.5.4.

e LS: Local search. Implemented as described in Section 3.5.4, with
a cut and insert neighbourhood.

e SA: Simulated annealing. Implemented as described in Section
3.5.4.

e GA: Genetic algorithm. Implemented as described in Section 3.5.4,
with a population size of 50, 4 competitor tournament selection, a
crossover rate of 1 and simulated annealing based approach to muta-
tion (see Section 3.5.4).

These frequently used search methodologies are all discussed in more detail
in Sections 3.5.4 and 5.4.1. All of the approaches, except for the greedy
heuristic, were limited to a maximum solution time of 10 minutes.

The SDPM experiments use the optimal trade-off interval sizes de-
rived in Section 8.3.2. The GRP (generalised reserve policy) parameters
used are those which were derived in Section 6.4.4.
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The following experiments were implemented on a laptop with a 2.4GHz
dual core Intel Core i7-5500U CPU, with 8Gb of RAM. All models, algo-
rithms and the simulation were implemented in Java as single threaded
applications.

10.2.2 MIPSSM based approaches

The reserve crew scheduling approaches based on the MIPSSM of Chapter
9 that will be tested and compared with alternative approaches, in this
chapter, are as follows.

e MIPSSM: The method descibed in Section 9.3 with 15 randomly
generated input scenarios.

e SSH: The method described in Section 9.4.2 with a limit of 200 repeat
simulations to find each new scenario.

e SingleScen: Best single scenario algorithm, which was described in
Section 9.7.3, with 1000 scenarios are generated and evaluated for each
repeat.

e SetScen: Best set scenarios algorithm, which was described in Sec-
tion 9.7.3, with 1000, 300 and 100 samples of 10, 5 and 3 scenarios
respectively for 1, 3 and 7 day schedules (for tractability reasons).
For tractability reasons sampling phase uses the iterative solution ap-
proach alluded to in Section 9.9.1.

Each repetition of each method (applied to the six test instances defined
in Table 10.1) is limited to a maximum of 1 hour to find a solution. The
experiments were carried out using IBM CPLEX Optimization Studio ver-
sion 12.5 as the MIP solver, on a desktop computer with a 2.79GHz Core
i7 processor and 6Gb of RAM.

10.2.3 Other approaches

This thesis also considers a number of rule of thumb heuristic and simulation
based approaches to reserve crew scheduling. In Section 10.5 the best reserve
crew schedule from the probabilistic and the MIPSSM based approaches are
compared with the uniform start rate heuristic (USR) of Section 3.5.3, and
the area under the graph approach (Area) of Section 4.7.1.

10.3 Experimental design

The following experiment is divided into two phases. Phase 1 will per-
form repeat experiments for each of the probabilistic (Section 10.4.1) and
scenario-based (Section 10.4.2) approaches. The aim in phase 1 is to find
reserve crew schedules that represent the best possible solutions that can be
derived from these approaches. This approach vastly reduces the number
of reserve crew schedules which have to be tested in phase 2, in conjunction
which the very computationally intensive SDPM and SIM reserve polices.
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Phase 2 will allow for a comparison of the best approaches to reserve crew
scheduling and reserve policies considered in this thesis.

In phase 1 the probabilistic and MIPSSM approaches defined in Sec-
tion 10.2 are applied to the test instances defined in Table 10.1 with 20
repetitions in each case. The repetitions are required because most of the
approaches involve stochastic inputs at one point or another. 20 repetitions
gives 20 chances to find a representative solution from each approach whilst
allowing the experiments to be performed in a timely manner. Furthermore,
a method that requires more than 20 repetitions to find a representative so-
lution has the disadvantage of being unreliable. The search heuristics used
in conjunction with probabilistic model evaluators, such as simulated an-
nealing, genetic algorithms and the initial solutions for local search involve
stochastic inputs. The scenarios of the MIPSSM based approaches are de-
rived from simulations which use random inputs. The resultant reserve
crew schedules are then each tested in 20000 repeat simulations in conjunc-
tion with a subset of all of the reserve policies considered in this thesis.
Appendix Section G.1 shows that 20000 repeat simulations gives reliable
average cancellation measures using a 10-fold cross-validation analysis. The
default policy, absence only policy and the look up table (LUT, as described
in Section 4.7.3) policy will be used, whilst the SIM and the SDPM policies
will not be applied until phase 2 (as described above).

10.4 Phase 1: Reserve crew scheduling re-
sults

This section gives results for the probabilistic and MIPSSM approaches
applied to test instances 1 to 6. The best reserve crew schedules from each
approach will be used to represent the corresponding approach in Section
10.5 when all approaches to reserve crew scheduling and reserve policies are
compared.

10.4.1 Probabilistic model results

When analysing the results for the probabilistic approaches the main ques-
tions are: ‘what is the most effective method of evaluation?’ and ‘what is
the most effective solution methodology?’ To answer these questions the
average cancellation measures (cancellations plus cancellation measures of
delays) derived from simulation testing were plotted for each test instance,
reserve policy, evaluator and solution methodology. Figure 10.1 shows the
dot plots corresponding to test instance 1 with the absence only policy.
Equivalent results were obtained for the other policies. i.e. the choice of
online policy between the default policy, absence only policy and the LUT
policy does not change the ordering of the evaluators and search method-
ologies used for reserve crew scheduling.
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Probabilistic approaches applied to schedule:1 tested with the abs only policy

SPCAM
GA (BN ] 0000 X 00D @
SA X
X
LSE | average X
GH 1 1 1 1 L 1
0.4 0.5 0.6 0.7 0.8 0.9
SDM
GAre® e
LS, X
GHI— X 1 1 1 1 1
0.4 0.5 0.6 0.7 0.8 0.9
CDM
GAI-
SA| X
LSl: x
GH X 1 1 1 1 1
0.4 0.5 0.6 0.7 0.8 0.9
SDPM
GAI-Q--
SA; X
LSl: x
GH D4 1 1 1 1 1
0.4 0.5 0.6 0.7 0.8 0.9

Average cancellation measure

Figure 10.1: The effect of solution method and the probabilistic evaluator
on cancellation measures for test instance 1 with the absence only policy

Figure 10.1 shows that for test instance 1, reserve crew schedules de-
rived from the SPCAM evaluator used with the absence only reserve policy
result in the highest cancellation measures. In fact, this pattern is repeated
for each test instance and each reserve policy. The equivalent plots for test
instances 2 to 5 are given in appendix Section G.2. Furthermore, exclud-
ing the SPCAM results, the local search approach is on average dominated
by simulated annealing and the genetic algorithm in all cases. Again, this
is a result which occurred for each test instance and reserve policy tested
(see appendix Section G.2). Figure 10.1 also shows that the variance of the
cancellation measures is relatively high for the SDPM evaluator compared
to the cases when the SDM and CDM evaluators are used. This can be
attributed to the increased evaluation times for the SDPM model, which
for test instance 1 were roughly 50 times larger than the other evaluators
(0.125 seconds as opposed to 0.06 seconds), meaning that fewer evaluations
could be performed within the 10 minute time limit. Despite this some good
reserve crew schedules are obtained from the SDPM evaluator.

Dominated approaches: local search and the SPCAM evaluator

The next two figures sequentially eliminate the local search methodology
and the SPCAM evaluator from consideration, which will allow for a closer
examination of the differences between the remaining approaches.
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Average cancellation measures for each solution heuristic
for all combinations of input schedule, probabilistic evaluator
and policy used in simulation testing
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Figure 10.2: Cancellation measures for each solution methodology for all
combinations of test schedule, reserve policy and evaluator, in descend-
ing order of the average cancellation measure for each combination of test
schedule, reserve policy and evaluator

In Figure 10.2 each location on the x-axis corresponds to a combina-
tion of a test schedule, a probabilistic evaluator and reserve policy used in
simulation testing, the information on which combination is which has been
anonymised because the main aim is to demonstrate that the local search
method is dominated by the other solution methodologies in all cases and
can therefore be eliminated from consideration at this stage. Figure 10.2
shows that the local search approach never found the best reserve crew
schedule in any case, and that in fact they gave the worst solutions in the
vast majority of cases. The reason why the local search approach was much
less effective compared to simulated annealing, genetic algorithm and the
greedy heuristic is due to the size of the search neighbourhood which has
to be enumerated at each stage before a new solution can be accepted and
the process repeated. The probabilistic model is a very detailed evaluator
and this is reflected in the time required per evaluation. For a local search
based approach to be an effective search methodology the size of the local
neighbourhood needs to be small enough given, the cost/time requirements
of evaluations and a sufficient amount time in which to reach a local op-
timum. These criteria are not met for the case of the probabilistic model,
especially for the larger test schedule instances and especially as a 10 minute
solution time limit had been imposed for each repeat experiment.
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Average cancellation measures for each probabilistic evaluator
for all combinations of input schedule, solution methods (except for LS)
and policy used in simulation testing
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Figure 10.3: Cancellation measures for each probabilistic evaluator for all
combinations of test schedule, reserve policy and solution methodology, in
descending order of the average cancellation measure for each combination
of test schedule, reserve policy and solution methodology

Figure 10.3 shows that after the elimination of the dominated solu-
tion methodology (local search) it is apparent that the SPCAM evaluator
is on average dominated by each of the other probabilistic evaluators for
all combinations of test schedule, reserve policy and solution methodology.
This result was expected because the SPCAM evaluator corresponds to the
initial simplified probabilistic model which used a simplified model of crew
absence uncertainty and made no attempt to model the effect that reserve
crew can have on expected delays.

Delay and cancellation performance of the remaining approaches

Having eliminated the local search methodology and the SPCAM on the
grounds of consistently low reserve crew schedule quality, the remaining
approaches are examined in terms of their associated delay and cancellation
performance measures. Figure 10.4 shows the average delay and cancellation
rates corresponding to the reserve crew schedules derived using the SDM,
CDM and SDPM evaluators for test instances 1 and 4. The results for
test instances 2, 3, 5 and 6 are not shown because test instance 1 captures
the results of test instances 2 and 3, whilst test instance 4 captures the
results of test instances 5 and 6. l.e. a pattern emerges with regard to
the performance of different evaluators which depends on the type of test
instance being solved: real or tighter generated schedules.
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Average delay and cancellation rates for reserve crew schedules
derived from different probabilistic evaluators (except SPCAM)
for schedule:1
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Figure 10.4: Average delay and cancellation performance of the reserve crew
schedules derived using the SDM, CDM and SDPM probabilistic evaluators

In Figure 10.4 the data has been anonymised in terms of the solution
methodology and reserve policy that each data point corresponds to, as the
purpose here is to highlight a trend that occurs regardless of these features.
Figure 10.4 shows that the average delay and cancellation rate performance
of reserve crew schedules derived using the SDM, CDM and SDPM eval-
uators are closely matched for test instance 1. However for test instance
4 (the tightened version of test instance 1) the reserve crew schedules de-
rived using the SDPM evaluator attain a minimised average delay at the
expense of an elevated cancellation rate, without a significant increase in
the cancellation measure. This pattern is repeated in pairwise fashion for
test instances 2 and 5, and instances 3 and 6 (see appendix Section G.3).
The explanation for why the SDPM evaluator leads to reserve crew sched-
ules which minimise average delays for the tightened real schedules is that
the SDPM evaluator uses the SDPM, a model which allows for delays from
all causes including propagated delays. The tightened schedules have an
elevated risk of delay propagation and so the reserve crew schedules derived
from the SDPM evaluator are primed for delay minimisation. Note that the
CDM evaluator only allows for crew related delays and their propagation,
the vast majority of delayed connecting flights in the tightened real sched-
ules are due to delayed aircraft rather than crew, which is because aircraft
operate all day whereas crew operate on a relatively small number of flights
before new crew begin and typically have to wait for a delayed aircraft.
The real strength of the SDPM evaluator lies in its ability to model the
propagation of reserve-induced delays that occur when using reserve crew
to cover for absent crew. Additionally, the SDM and CDM use static mod-
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els of delay for reserve-induced delays, that occur when covering for absent
crew, but do not allow for their propagation.

Figure 10.4 also shows that test instance 1 has much larger average
delays than test instance 4, even though instance 4 has the elevated risk
of delay. The explanation for this is that in test instance 1 all delays were
reserve-induced delays, which can be very large, whereas in test instance 4
many small delays also occurred due to journey times exceeding the allo-
cated block time and then the minimal ground time being unable to prevent
these delays from propagating. So, although the average delay was lower
in test instance 4, the total delay was higher in test instance 4 than in test
instance 1. On a similar note the cancellation rates are typically higher
in test instance 1 than in test instance 4, which can be explained by test
instance 4 being a tightened schedule. This means that in test instance
4 reserve crew will typically be feasible for a larger number of flights that
may be affected by crew absence, which reduces the expected number of
cancellations due to crew absence.

Results for probabilistic model based approaches

Table 10.3 gives the average and minimum cancellation measures for the
non-dominated probabilistic reserve crew scheduling approaches. In Ta-
ble 10.3 each number is an average (minimum) cancellation measure over 60
reserve crew schedules derived using the same combination of evaluator and
solution methodology. The 20 repeats for each combination of evaluator
and solution methodology were each tested with 3 reserve policies. Table
10.3 does not give results for the local search methodology or the SPCAM
evaluator as these have already been shown to be dominated approaches.
Table 10.3 shows that in general the simulated annealing solution method
provides the reserve crew schedules with the lowest average and minimum
cancellation measures for all six test instances. However, there is no sin-
gle probabilistic evaluator which always provides the reserve crew schedules
with the lowest cancellation measures. In fact, across the six test instances
each evaluator is associated with a lowest minimum or lowest average can-
cellation measure at one time or another.

The best (probabilistic model based) reserve crew schedules for each
schedule are judged to be those which correspond to the lowest minimum
cancellation measures for each schedule in Table 10.3. In Section 10.5 those
best reserve crew schedules are used to test all reserve policies and also
to compare the probabilistic approaches with the alternative approaches to
reserve crew scheduling.

10.4.2 MIPSSM results

The results in Figure 10.5 show the average cancellation measures for the
20 repeats of each MIPSSM based method (see Section 10.2.2) tested in
conjunction with 3 different reserve policies (60 data points per method)
for each test instance.
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GH SA GA
mean (min) mean (min) mean (min)
schedule 1

SDM
CDM
SDPM

0.3944 ( 0.3944 )
0.3944 ( 0.3944 )
0.4110 ( 0.4110 )

0.3206 ( 0.3153 )
0.3270 ( 0.3153 )
0.3419 ( 0.3117 )

0.3299 ( 0.3229 )
0.3377 ( 0.3244 )
0.3809 ( 0.3317 )

schedule 2

SDM
CDM
SDPM

0.4038 ( 0.3945 )
0.2746 ( 0.2729 )
0.2759 ( 0.2742 )

0.2643 ( 0.2578 )
0.2633 ( 0.2584 )
0.2778 ( 0.2621 )

0.3044 ( 0.2703 )
0.2896 ( 0.2643 )
0.3402 ( 0.2901 )

schedule 3

SDM
CDM
SDPM

1.5028 ( 1.5017)
1.5028 ( 1.5017)
1.7568 ( 1.7567 )

1.5589 (1.4831)
1.4827 ( 1.3977 )
1.6106 ( 1.4635)

1.9104 ( 1.7627 )
1.6816 ( 1.5149 )
1.9540 ( 1.6294 )

schedule 4

SDM
CDM
SDPM

0.4282 ( 0.4259 )
0.4245 ( 0.4218 )
0.4247 ( 0.4241 )

0.3742 ( 0.3478)
0.3748 ( 0.3501 )
0.3745 ( 0.3492 )

0.3925 ( 0.3682 )
0.3948 ( 0.3599 )
0.4019 ( 0.3596 )

schedule 5

SDM
CDM
SDPM

0.4963 ( 0.4264 )
0.4866 ( 0.4251 )
0.4555 ( 0.3196 )

0.4203 ( 0.2592 )
0.5008 ( 0.3068 )
0.4139 ( 0.2557 )

0.4502 ( 0.2554 )
0.4831 ( 0.2801 )
0.4634 ( 0.2577 )

schedule 6

SDM
CDM
SDPM

Table 10.3: Average cancellation measures for each solution methodology

1.5928 ( 1.4638)
1.8039 ( 1.7012)
1.5581 ( 1.4600 )

and probabilistic evaluator

1.5155 ( 1.1602 )
1.3877 ( 1.1356 )
1.4957 ( 1.1074 )
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Figure 10.5: Average cancellation measures for MIPSSM based approaches

Figure 10.5 shows that the SetScen algorithm approach always outper-
forms the SingleScen algorithm in terms of both the average and minimum
cancellation measure attained. The SSH has the lowest average cancellation
measure in 5 out of 6 of the test instances and the lowest minimum average
cancellation measure in half of the test instances. The MIPPSM attained
the overall best solutions for test instances 4 and 6, whilst the SetScen
algorithm attained the best overall solution for test instance 3.

Figure 10.5 also shows that the variance of the quality of solutions from
each method across all schedules are roughly similar, none of the methods
have an outstanding level of reliability. This is a general weakness of the
scenario-based approach to reserve crew scheduling. Another contributing
factor to the unreliability of MIPSSM based approaches is the imposed time
limit for finding a solution, which meant that the MIP solutions were not
always proven to be optimal, but instead an optimality gap still existed as
the time limit ran out. The use of a time limit is in a practical context
a reasonable constraint. In summary the MIPSSM based approaches have
an aspect of unreliability due to the requirement that only a limited set
of disruptions can be included in the model before it becomes computa-
tionally intractable and the time required to solve the resultant problems
are effectively random variables in any given case. In future, to address
these issues, the following issues need to be considered: more efficient solu-
tion methods; model simplification and further refinement of the scenario
selection procedure. Section 12.1.2 discusses these issues in more detail.

The results 10.5 also demonstrate that when aircraft fleets, crew ranks
and qualifications are modelled and larger schedule instances are considered,
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the increase in solution reliability of the SetScen and SingleScen algorithms
that was demonstrated in Figure 9.9 is reduced.

The MIPSSM derived best reserve crew schedule for each test instance
(circles in Figure 10.5) will be used to represent the MIPSSM based ap-
proach in Section 10.5 when the effects of different reserve policies are con-
sidered.

10.5 Phase 2: Comparing all approaches for
reserve crew scheduling and reserve poli-
cies

In this section, the best reserve crew schedules for each test instance from
the probabilistic and MIPSSM approaches are tested in conjunction with a
larger variety of reserve policies. Figure 10.6 also gives results for the other
two main types of reserve crew schedule, those of the simulation based and
heuristic based approaches. The reserve policies being tested are:

e default: Default policy (see Section 3.5.2). Use reserve crew as soon
as any demand occurs.

e abs only: Absence only policy (see Section 3.5.2). Use reserve crew to
cover absence as demand occurs, but never cover for delayed crew.

e LUT: Look up table (see Section 4.7.3). Evaluate all alternative re-
serve decisions using a look up table.

e SIM: Simulation policy (see Section 4.7.2). Evaluate all alternative
reserve decisions by running simulations starting from those decisions.
With 1000 repeat simulations to evaluate each alternative.

e SDPM: Statistical delay propagation model policy (see Section 8.2.5).
This implementation uses the SDPM1 version of the policy to eval-
uate all alternative reserve decisions.

Of these reserve policies, the default and abs only policies are rule of thumb
policies. The LUT policy represents a learning based approach, the SIM
policy represents a direct application of simulation as a reserve policy and
the SDPM policy represents a theoretical probabilistic approach. The LUT,
SIM and SDPM are policies are all based on evaluating the effect that each
available reserve decision has on the expected cancellation measure that will
be accumulated from the given time until the end of the considered time
horizon and then choosing the decision with the lowest associated cancel-
lation measure. The SIM and SDPM policies are more computationally
intensive than the other policies. This is the reason they were not used in
Section 10.4 when testing multiple repeat reserve crew schedules for each
approach to reserve crew scheduling.

The results in this section are based on testing the best reserve crew
schedules from each general approach to reserve crew scheduling, for each
test instance, in conjunction with the reserve policies listed above. The
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general approaches to reserve crew scheduling are: probabilistic (Prob);
MIPSSM; simulation based; and rule of thumb approaches. The area under
the graph approach (Area) of Section 4.7.1 represents a simulation based
approach. Whilst the uniform start rate heuristic (USR) (Section 3.5.3)
represents a rule of thumb approach to reserve crew scheduling. For each
test instance, each combination of a reserve crew schedule and a reserve
policy will be tested in the same 5000 repeat simulations. This helps to
make the comparison a fair one. The results of this experiment are given in

Figure 10.6 and Tables 10.5, 10.6 and 10.7.
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Figure 10.6: Average cancellation measures for all tested approaches to
reserve crew scheduling and reserve policies, for each test instance

Figure 10.6 shows the average cancellation measures attained by each
reserve crew schedule and reserve policy combination for each test instance.
Colours correspond to reserve policies and groups of adjacent bars corre-
spond to the same approach to reserve crew scheduling. Figure 10.6 shows
that the probabilistic and MIPSSM approaches to reserve crew scheduling
lead to average cancellation measures far lower than those of the Area ap-
proach and the USR heuristic regardless of the reserve policy used. The
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reason for this is that the probabilistic and MIPSSM approaches use all
available information to schedule reserve crew whereas the Area and USR
approaches do not. The difference between the probabilistic and MIPSSM
approaches when used with different policies is not very clear in Figure
10.6, Tables 10.5, 10.6 and 10.7 show more clearly the differences between
the these approaches to reserve crew scheduling when used in conjunction
with different reserve policies.

Figure 10.6 is arranged into subplots with 3 rows and 2 columns. Rows
1, 2 and 3 correspond to test instances of length 1, 3 and 7 days respectively.
The left hand column corresponds to the test instances which have a low risk
of delay. The right hand column contains the corresponding test instances
which have an increased risk of delay. This arrangement highlights the result
that reserve policies become more important as the risk of delay increases,
which is seen as an increase in the variance of the average cancellation
measures across the range of policies tested. This is because there will
be more instances where critical reserve use decisions are required, such
as whether or not (and if so, which) reserve crew should be used to cover
for delayed crew. The default policy suffers the largest increase of average
cancellation measure for the test instances with a heightened delay risk. The
reason for this is that using reserve crew for every disruption that occurs
runs the risk of using reserve crew unnecessarily for small disruptions (such
as small delays) when they could have been held for larger disruptions (such
as replacing absent crew to prevent flight cancellations). In contrast, the
difference between the performance of different reserve policies is minimal
for the case of the low delay risk test instances. The reason for this is
that fewer reserve crew are required in the low delay risk test instances
and therefore reserve holding, as considered by the LUT, SIM and SDPM
policies, will be rarely beneficial.

Another pattern that can be seen in Figure 10.6 is that the SDPM
policy leads to significant reductions in average cancellation measure when
used in conjunction with a relatively poor quality reserve crew schedule,
such as those corresponding to the area under the graph and uniform start
rate heuristic approaches. On the other hand, the total benefit of using the
SDPM policy is reduced if the reserve crew schedule it is used with is of a
relatively high quality. These observations can be attributed to the fact that
the high quality reserve crew schedules are typically derived with knowledge
of an assumed reserve policy as an input, i.e. they are typically designed to
work well with simple reserve policies. This means that it could be possible
to find further performance improvements by increasing the sophistication
of the reserve policy that is assumed when scheduling reserve crew.

A result that is also visible in Figure 10.6 is that the SIM policy
never achieves the best average cancellation measure. Additionally, the
SIM policy attains particular high average cancellation measures for test
instances 5 and 6, i.e. the longer schedules with an increased delay risk.
An explanation for this is that in longer schedules where there are more
disruptions, the number of simulations required to accurately evaluate each
alternative decision also increases. So the SIM policy used an insufficient
number of repeat simulations to evaluate alternative decisions in these cases.
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This result reiterates an advantage of the SDPM policy over the SIM policy,
it only requires one evaluation to obtain predictions with an accuracy equal
to that obtained from an arbitrarily large number of repeat simulations.
Figure 10.6 also shows that the abs only policy and the LUT policy
are very reliable policies, given their relative simplicity, with average can-
cellation measures that are below average in most cases. The good results
for the abs only policy can be attributed to it being a risk averse policy. It
never replaces delayed crew with reserve crew, which avoids future cancel-
lations due to crew absence that were avoidable. In contrast, the LUT, SIM
and SDPM policies allow for the possibility of taking risky decisions, such
as using reserve crew to cover for delayed crew and holding reserve crew
in the event of crew absence, if this is expected to minimise the average
cancellation measure in the long term.
Due to low solution quality, the Area approach and the USR heuristic are
discarded at this point and no further results for these approaches are given
hereafter.

10.5.1 Applying policies in instances of crew absence

The results for the LUT, SIM and SDPM policies in Figure 10.6 and Tables
10.5, 10.6 and 10.7 are each taken from the best of two variant applications.
Those where the policies are used for all reserve use decisions (to cover crew
absence and delayed crew) and those where the policies are only applied
in cases where reserve crew can be used to cover for delayed crew, whilst
always covering for crew absence disruptions as they occur. Table 10.4
states the number of times these policy variants outperformed one another
for each policy type in each test instance. The test instances are arranged
in increasing length order. Table 10.4 shows that for the LUT policy,

Not applied at absence (NA)
Applied at absence (AA)
days in | test LuUT SIM SDPM
schedule | schedule | NA:AA | NA:AA | NA:AA
1 1 0:4 1:3 0:4
4 0:4 2:2 2:2
3 2 0:4 4:0 0:4
) 0:14 2:2 1:3
7 3 1:3 3:1 3:1
6 0:14 3:1 2:2
Total 1:23 15:9 8:16

Table 10.4: Number of times two policy variants outperform one another

applying the policy for all reserve decisions nearly always resulted in the
lowest average cancellation measure, only one exception to this was found.
For the SIM policy it was found that in the majority of cases it was beneficial
to only apply the policy in cases where reserve crew could be used to cover
for delayed crew. In contrast to the SIM policy, for the SDPM policy
it was found that in the majority of cases using the policy to make all
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reserve decisions was beneficial. Table 10.4 also shows that for the SIM
and SDPM policies, applying those policies to make all reserve decisions
tended to become less beneficial as the schedule length increased. The
explanation for this is that in the longer schedules, risky decisions such as
holding reserve crew in the event of crew absence, has a higher penalty, that
of a larger number of cancellations, because crew pairings are longer in those
schedules. So in such schedules, a reserve policy with a risk averse approach
to crew absence reserve decisions tended to work best. Additionally, it is
rare for reserve holding to be a beneficial decision in the event of crew
absence. Even if a policy determines that the expected value of holding is
greater, in a particular scenario it may in hindsight still turn out to be the
wrong decision. This is due to the variance of the outcomes of events on
any given day. Giving the best results from two alternatives for each of the
LUT, SIM and SDPM policies (as in Figure 10.6 and Tables 10.5, 10.6 and
10.7) helps to indicate the potential of these general approaches to reserve
decision making in their best configurations.

10.5.2 Results tables

Tables 10.5, 10.6 and 10.7 display a variety of performance measures and
statistics for the best probabilistic and MIPSSM derived reserve crew sched-
ules for each test instance, tested in conjunction with each reserve policy.
The performance measures given include: cancellation measure; reserve util-
isation rate for absence and delay disruptions; average delay; probability of
delay greater than 15 minutes; cancellation rate; and the maximum cancel-
lation measure recorded over 5000 repeat simulations. Fach of Tables 10.5,
10.6 and 10.7 gives the results for two test instances of the same length, one
based on actual scheduled departure times and the corresponding schedule
with a heightened risk of delay. In Tables 10.5, 10.6 and 10.7 an asterix
after a policy name (LUT*, SIM* and SDPM*) indicates that the results
for that policy correspond to the variant of that policy where reserve hold-
ing is never considered in the event of crew absence disruptions (see Section
10.5.1).
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Test Reserve Cancellation | Reserve use rate Average | Probability | Cancellation | Max
instance | schedule Policy measure absence | delay delay of delay rate CM
(> 15 mins)
1 Probabilistic | default | 0.3050 0.3126 | 4.000E-4 | 28.53 0.005715 0.001881 6.172
abs only | 0.3051 0.3126 | O 28.55 0.005722 0.001881 6.172
LuT 0.3050 0.3126 | 2.400E-4 | 28.54 0.005718 0.001881 6.172
SIM 0.3404 0.3101 | O 28.97 0.005822 0.002121 7.172
SDPM 0.3012 0.3122 | 0 24.71 0.005453 | 0.001964 6.172
MIPSSM default | 0.3911 0.3099 | 0.006560 | 41.77 0.006873 0.002071 7.665
abs only | 0.3892 0.3101 | 0O 41.44 0.006983 0.002053 | 7.665
LuUT 0.3888 0.3101 | 0.002880 | 41.54 0.006932 0.002053 | 7.665
SIM 0.4258 0.3079 | 0.002200 | 41.63 0.007118 0.002296 8.665
SDPM 0.3820 0.3087 | 0.003620 | 36.71 0.006381 | 0.002222 6.295
4 Probabilistic | default | 0.3611 0.3018 | 0.01944 | 10.96 0.1000 0.001134 9.619
abs only | 0.3585 0.3020 | O 10.96 0.1003 0.001114 | 9.619
LuT 0.3588 0.3019 | 0.00832 | 10.95 0.1002 0.001118 9.619
SIM 0.4354 0.2946 | 0.00310 10.64 | 0.0992 0.001803 7.261
SDPM* | 0.3328 0.3011 | 0.00352 | 10.87 0.0843 0.001191 9.616
MIPSSM default | 0.3906 0.3007 | 0.004480 | 10.85 0.0999 0.001364 8.989
abs only | 0.3885 0.3008 | 0O 10.85 0.1000 0.001348 | 8.989
LuT 0.3885 0.3008 | 0.000880 | 10.85 | 0.1000 0.001350 8.989
SIM* 0.4587 0.2964 | 0.002480 | 11.06 0.1002 0.001755 8.989
SDPM* | 0.3635 0.3003 | 0.001920 | 11.00 0.0849 0.001380 8.986

Table 10.5: 1 day test instance performance measures for the best probabilistic and MIPSSM derived reserve crew schedules used in

conjunction with each reserve policy




Table 10.5 shows the results for the 1 day test schedules. It shows
that the SDPM policy leads to the lowest average cancellation measure
and lowest probability of delay in each case. The SDPM policy is able to
minimise the average cancellation measure by accepting a small increase in
cancellation rate in order to achieve a significant reduction of delay. Com-
pared to Figure 10.6 the results of Table 10.5 clearly demonstrate that the
probabilistic model based approaches to reserve crew scheduling result in
lower average cancellation measures compared to the MIPSSM based ap-
proaches, the reason for this is discussed in Section 10.6. The probabilistic
approach also outperforms the MIPSSM based approach in each of the other
performance measures. The reserve use rate statistics are not regarded as
measures of performance, because it is possible to inefficiently use a high
number of reserve crew. The reserve use rate statistics can however be used
to infer the sorts of decisions made by policies which may have lead to bet-
ter or worse performance compared to other policies. For test instance 1
the rate of using reserve crew to replace delayed crew is low, as expected.
In the same test instance, the MIPSSM derived reserve crew schedule has a
significantly higher rate of using reserve crew to replace delayed crew than
that of the probabilistically derived reserve crew schedule. A possible rea-
son for this is that the MIPSSM based approach explicitly models reserve
crew being used to cover for delayed crew, and is therefore more likely to
schedule reserve crew such that feasible combinations of reserve crew can
be combined into teams to replace delayed connecting crew. On the other
hand, the probabilistic approach worked best when assuming the absence
only policy rather than the default policy during scheduling. The default
policy always has the highest rate of using reserve crew to cover for delayed
crew, which is the expected result.

Table 10.5 also shows that the abs only policy always minimises the
cancellation rate for the 1 day test instances. This can be attributed to
the fact that the abs only policy only uses reserve crew to cover for crew
absence, the leading cause of cancellation. The SIM policy leads to the
highest average cancellation measures, however it does minimise the maxi-
mum cancellation measure (worst case scenario) and average delay for the
probabilistic reserve crew schedule of test instance 4. The poor performance
of the SIM policy can be attributed to the low accuracy of the evaluations
of alternative reserve decisions, which in turn can be attributed to the use
of a finite number of repeat simulations for each evaluation. This means
that the SIM policy has tractability issues that have to be overcome.
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Test Reserve Cancellation | Reserve use rate Average | Probability | Cancellation | Max
instance | schedule Policy measure absence | delay delay of delay rate CM
(> 15 mins)
2 Probabilistic | default | 0.2552 0.2867 | 0.003029 | 23.42 0.003744 0.0004406 11.45
abs only | 0.2551 0.2867 | 0O 23.36 0.003763 0.0004401 11.45
LUT 0.2549 0.2867 | 0.002057 | 23.38 0.003749 0.0004401 11.45
SIM* 0.2987 0.2858 | 0.002457 | 24.18 0.003812 0.0005259 15.17
SDPM | 0.2567 0.2865 | 0.001157 | 21.09 0.003586 | 0.0004849 11.45
MIPSSM default | 0.3035 0.2864 | 0.002000 | 30.16 0.003479 0.0004958 11.89
abs only | 0.3022 0.2864 | 0O 30.06 0.003491 0.0004929 | 11.89
LUT 0.3022 0.2864 | 0.001314 | 30.13 0.003483 0.0004929 | 11.89
SIM* 0.3503 0.2858 | 0.001600 | 30.58 0.003510 0.0005958 15.05
SDPM 0.2906 0.2861 | 0.001014 | 25.80 0.003093 | 0.0005377 11.81
5 Probabilistic | default | 0.4898 0.2687 | 0.1847 8.000 0.09093 0.0005792 12.09
abs only | 0.2481 0.2733 |0 7.416 | 0.09139 0.0001981 | 11.18
LUT 0.3516 0.2708 | 0.1384 7.556 0.09072 0.0004000 12.02
SIM* 0.4753 0.2682 | 0.1197 7.620 0.09152 0.0006703 12.10
SDPM* | 0.2341 0.2729 | 0.0527 7.599 0.07472 0.0002340 11.17
MIPSSM default | 0.5196 0.2678 | 0.1844 7.963 0.09104 0.0006623 11.15
abs only | 0.2619 0.2733 |0 7.571 0.09211 0.0001995 | 11.15
LUT 0.3609 0.2713 | 0.1344 7.728 0.09127 0.0003679 11.15
SIM* 0.5069 0.2674 | 0.1223 7.794 0.09221 0.0006995 11.15
SDPM | 0.2910 0.2729 | 0.0602 7.570 0.07496 0.0003429 11.14

Table 10.6: 3 day test instance performance measures for the best probabilistic and MIPSSM derived reserve crew schedules used in

conjunction with each reserve policy




Table 10.6 shows that for the 3 day test instances, the probabilistic
approach to reserve crew scheduling leads to lower average cancellation mea-
sures, average delays and probabilities of delay compared to the MIPSSM
approach. However, the probabilistically derived reserve crew schedule only
marginally outperforms the MIPSSM reserve crew schedule in test instance
5.

In terms of reserve policies Table 10.6 shows that the SDPM policy re-
sulted in the lowest cancellation measure in two instances. The LUT policy
minimised the average cancellation measure for the probabilistically derived
reserve crew schedule of test instance 2 and the abs only policy minimised
the average cancellation measure for the MIPSSM reserve crew schedule of
test instance 5. The SDPM policy also minimised the probability of delay
and the maximum cancellation measure for both 3 day test instances for
each reserve crew schedule. However the maximum cancellation measures
were very similar in all 3 day schedule cases except for the SIM policy in
test instance 2. The average delay reductions associated with the SDPM
policy applied to test instance 2 are greater than those of test instance 5.
This can be explained by the fact that most of the delays in test instance
2 are reserve-induced delays and these types of delay are very sensitive to
the reserve policy used.

The reserve use rates of Table 10.6 show that for the 3 day test in-
stances, beside the abs only policy, the SDPM policy always had the lowest
rate of using reserve crew to cover for delayed crew. Table 10.6 also shows
that the SDPM approach of exploiting the trade-off between delays and
cancellations and their effect on the average cancellation measure does not
always pay off. In fact Table 10.6 gives evidence that sometimes the risk
averse abs only policy can out perform more advanced policies. Addition-
ally, the SDPM policy, which worked best with the probabilistically derived
reserve crew schedule for test instance 5, was the more risk averse variant,
where reserve crew holding is never considered in the event of crew absence
(as indicated by the asterix).
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Test Reserve Cancellation | Reserve use rate Average | Probability | Cancellation | Max
instance | schedule Policy measure absence | delay delay of delay rate CM
(> 15 mins)
3 Probabilistic | default | 1.395 0.3186 | 3.500E-4 | 27.02 0.002636 0.001288 23.60
abs only | 1.393 0.3186 | 0O 27.01 0.002637 0.001286 | 23.60
LuT 1.393 0.3186 | 0O 27.01 0.002637 0.001286 | 23.60
SIM* 1.522 0.3165 | 1.000E-4 | 26.97 0.002623 | 0.001419 23.01
SDPM* | 1.458 0.3184 | 0O 28.10 0.002627 0.001338 24.83
MIPSSM default | 1.783 0.3254 | 0.001000 | 33.49 0.002814 0.001575 27.34
abs only | 1.778 0.3254 | 0O 33.45 0.002815 0.001570 | 27.34
LUT* 1.751 0.3199 |0 28.70 0.002636 0.001616 26.28
SIM 1.931 0.3236 | 0.000125 | 28.11 0.002364 | 0.001818 27.32
SDPM* | 1.894 0.3250 | 0O 33.44 0.003025 0.001667 27.34
6 Probabilistic | default | 1.742 0.3007 | 0.1472 7.61 0.08929 0.001329 30.57
abs only | 1.126 0.3062 | 0O 7.54 0.08982 0.000724 26.67
LUT 1.239 0.3044 | 0.0333 7.54 0.08969 0.000836 26.67
SIM* 1.710 0.3001 | 0.1075 7.59 0.08974 0.001299 30.59
SDPM* | 1.148 0.3059 | 0.0010 8.05 0.07422 0.000737 26.73
MIPSSM default | 1.861 0.3020 | 0.1145 7.32 0.08861 0.001493 38.65
abs only | 1.322 0.3047 | 0O 7.30 0.08917 0.000955 | 26.27
LUT 1.411 0.3040 | 0.0323 7.30 0.08905 0.001044 26.27
SIM* 1.918 0.2992 | 0.0894 7.37 0.08905 0.001531 27.21
SDPM 1.450 0.2988 | 0.0142 7.57 0.07355 0.001119 24.21

Table 10.7: 7 day test instance performance measures for the best probabilistic and MIPSSM derived reserve crew schedules used in

conjunction with each reserve policy




Table 10.7 shows, just as Tables 10.5 and 10.6 do, that the reserve crew
schedules derived using a probabilistic approach lead to average cancellation
measures lower than those derived from a MIPSSM based approach. For
the seven day test instances the abs only policy leads to the lowest average
cancellation measures in three out of four cases. The LUT policy attains
the lowest average cancellation measure for the MIPSSM derived reserve
crew schedule of test instance 3. Table 10.7 also shows that the benefit of
using the SDPM is much reduced compared to the cases of the one and
three day test instances. An explanation for this is that, for the seven day
schedules, the penalty for holding reserve crew in the event of crew absence
is much higher, because crew pairings are longer (up to five days) in these
schedules. So as a result, the potential benefit of using reserve crew to
cover for delayed crew will typically also be reduced. It is very likely that
the SDPM policy made some reserve holding decisions in the event of crew
absence that in hindsight turned out to be very costly. The evidence for
this is that the SDPM policy has a low rate of reserve crew used to cover
for delayed crew, average rates of using reserve crew to cover for absent
crew, but an elevated cancellation rate, which is the reason for the elevated
average cancellation measures. Table 10.7 leads to the conclusion that risk
averse reserve policies (such as the abs only policy) are recommended for
long schedules where risky decisions have potentially very large penalties if
things go wrong.

10.6 Results summary

In this section the overall meaning of the results in Tables 10.5, 10.6 and 10.7
is discussed. The results of Section 10.5 consistently showed that the prob-
abilistic approach outperforms the MIPSSM based approach in all cases.
The reason for this can be attributed to the fact that the MIPSSM based
approach is limited by the number input scenarios that can be solved within
a reasonable amount of time. This in turn means that the MIPSSM has an
incomplete picture of reserve crew demand in all situations. So in fact, it
is perhaps surprising how good the quality of the MIPSSM derived reserve
crew schedules actually is. On the other hand, the probabilistic approaches
use a continuous model of uncertainty and therefore do not suffer the same
limitation as the MIPSSM approach. The surprisingly high quality of the
MIPSSM derived solutions, given its limitations, may also be taken as indi-
cating that the probabilistic approach has its own limitations, namely that
a continuous model is unrepresentative of any individual possible outcome.
In all, it may be possible that if the tractability of the MIPSSM approach,
in terms of the number of input scenarios that can be solved simultane-
ously, can be addressed, the MIPSSM might have greater potential than
a probabilistic approach. Another possibility to consider is that the best
approach might involve a hybridisation of both distinct approaches, which
is an interesting further research question.

Another general theme of the results given in Section 10.5 is the vary-
ing performance level of different reserve policies in different situations. In
general it was found that the benefit of using the SDPM policy was great-
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est when the maximum penalty of making risky decisions, such as holding
reserve crew in the event of crew absence, was low and when the potential
reward of using reserve crew to cover delayed crew was high. Which was
particularly the case for the 1 day schedule with a high delay risk (test in-
stance 4). When there was a low risk of delay or when the schedule was long
and the potential penalty of not covering for absent crew was highest, the
benefits of the SDPM policy were reduced or removed entirely. In such cases
the risk averse rule of thumb policy, abs only, gave comparable, and in some
cases, better results. The SIM policy proved to be an unreliable evaluator
of alternative reserve decisions because it requires a very large number of re-
peats to accurately evaluate the alternative decisions. The LUT policy was
found to be a reliable policy, except for when it was applied to the longer
test instances where there was also a high risk of delay. The main result in
terms of policies is that in nearly all cases alternative reserve policies were
found that outperformed the rule of thumb policies.

Based on these results, an airline considering using this research would
be advised to use a probabilistic approach to reserve crew scheduling, unless
they can solve the MIPSSM for vastly more scenarios than that considered
in this research. In terms of reserve policies, a risk averse policy such as the
abs only policy would be advised if there are few reserve crew available for a
relatively long period of time. Otherwise the SDPM policy is recommended.
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Chapter 11

Conclusion

In this thesis the problem of airline reserve crew scheduling under uncer-
tainty has been tackled. This thesis introduced a general problem definition,
for the problem of scheduling reserve crew and using reserve crew to mitigate
unforeseen crew-related disruptions that occur on the day of operation. In
contrast to previous work on reserve crew scheduling, this thesis focusses on
the fine detail modelling of the uncertainty of day of operation crew-related
disruptions. Probabilistic and scenario based approaches to modelling the
uncertainty of crew-related disruptions which can be absorbed by using re-
serve crew were introduced. As a secondary objective, consideration was
given to the policy for reserve use on the day of operation, as well as to how
this can be improved and how the policy can be taken into account when
scheduling reserve crew.

Chapter summary

Section 11.1 summarises the main findings from the work on the probabilis-
tic models. Section 11.2 does the same for the work on the scenario-based
approach. Section 11.4 summarises the main findings from the considera-
tion of online reserve policies in this thesis. Section 11.5 lists the general
insights gained from this research. Section 11.6 contains advice to KLM (or
other airline’s that operate in similar ways) on the most promising parts
of this research that they could exploit. Section 11.7 summarises the main
points from this conclusion chapter.

11.1 Probabilistic reserve crew scheduling

The first approaches considered were the probabilistic models of crew ab-
sence disruptions (SPCAM of Chapter 5) and crew-related delay disrup-
tions (CDM of Chapter 7). The SPCAM was developed further (Chapter
6, resulting in the CAM and SDMs. Finally the SDPM (Chapter 8) was
developed, which integrated the crew absence and delay models within a
probabilistic framework. The SDPM yields cancellation and delay predic-
tions which agree closely with those derived from repeat simulations and
attained some positive results when applied to the problems of reserve crew
scheduling and online reserve crew decision making.
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The probabilistic models for crew absence disruptions (developed over
Chapters 5 and 6) started from a set of simplifying assumptions which
ignored many of the details which were judged to be obscuring the real un-
derlying problem, i.e. an initial abstraction. The initial model provided the
basic modelling principle on which all subsequent probabilistic models were
built. This basic modelling principle included: the procedure used to calcu-
late the effect a given reserve crew schedule has on absorbing crew-related
disruptions, a procedure which meant that an assumed reserve use order
policy could be taken into account during the scheduling phase; and the ba-
sic form of the objective function used when using the model to schedule
reserve crew, that of minimising the expected number of cancellations. In
Chapter 6 the SPCAM was modified (to the CAM) to include the prob-
lem specific details which were ignored in Chapter 5. This meant modelling
the possibility of different numbers of crew of different rank and qualifica-
tion combinations being absent simultaneously from different crew pairings.
This step significantly increased the complexity of the model and as a re-
sult made the model a significant computational bottleneck in any search
methodology in which it was used. Despite this, no attempt was made to
decrease the level of detail, or introduce the use of approximations into the
model, the aim was always to make the model as accurate as possible. The
underlying hypothesis was that: a more accurate model used in conjunc-
tion with a simple search methodology gives higher quality solutions than
an approzimate model used in conjunction with an advanced (evaluation in-
tensive) search methodology. Evidence for and against this hypothesis was
reported in Chapter 10, which indicated that for given a computational
budget there is a trade-off between model complexity and search methodol-
ogy complexity in terms of the quality of the resultant solutions. The exact
topology of this trade-off is relatively unexplored. A scientific investigation
of such a trade-off requires a quantification of the complexity of a model,
on the other hand many search methodologies have well defined complexi-
ties (as assessed by the number of evaluations required for a given problem
size). Furthermore, consideration should also be given to labour costs that
are required for building more accurate models and the cost of increasing
the raw CPU power that is used to solve the models.

Before the inclusion of aircraft fleet types, crew ranks and qualifica-
tions, the assumed reserve policy was the default policy of using reserve crew
in earliest start time order. After the inclusion of aircraft fleet types, crew
ranks and qualifications this policy was no longer adequate. The reason
being that reserve crew of different types with the same start times may
be feasible to cover the same disruption. The solution was a generalised
(default) reserve policy (GRP) which orders reserve crew “on the fly” using
a weighted sum of a number of different criteria, including: earliest start
time; a measure of reluctance to using reserve crew who would have to fly
below their assigned rank and the expected future demand of individual
reserve crew. Experiments showed that the GRP weights used in reserve
crew scheduling and online each have a significant influence on the quality
of the resultant reserve crew schedules.

During the development of the CAM, the goal was to attain a model
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which gave cancellation rate predictions (associated with any given reserve
crew schedule which it might be evaluating) which match those derived
from simulation testing. It was found in Section 6.1.7 that the CAM fails
to account for worst case crew absence scenarios, because it implicitly as-
sumes that the total number of absent crew is always exactly the expected
number, the result being an underestimation of cancellation rates. To cir-
cumvent the problem, separate CAM s, corresponding to different points
on the distribution of total absent crew, were evaluated simultaneously. The
overall objective value was then a weighted sum of the objective values from
each of these evaluations of the CAM, with weights derived from the bino-
mial distribution. Such an approach could also be applied in other problem
domains where many events have associated probabilities and overall worst
case analysis is of particular interest, for example portfolio optimisation.

The SDM accounted for (in a simplistic way) delays introduced when
waiting for reserve crew to begin their standby duties before they can be
used to cover for absent crew. For this purpose the delay cancellation mea-
sure was developed (Section 3.5.1) to map delays to a measure of cancella-
tion. The delay cancellation measure function requires a subjective input
parameter to determine the relationship between the equality of the level of
disruption caused by delays of different sizes with respect to a cancellation.
The delay exponent parameter of the delay cancellation measure function
provides a means of pinpointing a Pareto optimal reserve crew schedule for
a trade-off between cancellation and delay minimisation. In general, using a
higher delay exponent pushes the reserve crew schedule towards cancellation
minimisation and away from delay minimisation (see Section 3.5.1).

The probabilistic crew delay model of Chapter 7 was an analogous
application of the approach developed in Chapter 5, adapted and applied to
delay disruptions. It modelled the occurrence of crew-related delays (those
caused by aircraft waiting for delayed crew on connecting flights) and how
those delays can propagate in the form of subsequent crew-related delays.
The approach was shown to be effective in schedules where there exists a
high probability of delay propagation and a high rate of mid shift crew
aircraft changes. A limitation of the C' DM was that it only accounted for
crew-related delays, which are, in reality, quite rare. An improved model
based on this approach should allow for all types of delay, for example
the improved model should allow for delays which propagate not only in
the form of crew-related delays but propagated delays in general. Another
limitation of the C'DM is that it relies on a simulation learning phase, this
means that if the approach is to be applied in an online context to evaluate
alternative reserve decisions, it turns out to be just as efficient to just use
simulation directly to evaluate the alternatives.

The SDPM of Chapter 8 addressed these limitations, as it is a full
theoretical model of delay propagation in general. The SDPM is based on
the idea of a delay propagation cycle and the idea that it is possible to calcu-
late departure time distributions from arrival time distributions from earlier
flights. This in itself is not an original idea, the main contribution of the
SDPM was applying this approach to a specific problem and how the as-
sociated problem specific events can be modelled in such a framework. The
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implementation of the SDPM uses three-dimensional matrices to store ar-
rival time distributions for all airline resources as a result of previous flights
at a given time. These ETA matrices are used to sequentially calculate the
departure time distributions for all flights in a schedule which are then used
along with journey time distributions to update the ETA matrices ready
for subsequent departure distribution calculations. The three dimensional
structure of ETA matrices allows for the modelling of swap recovery actions
and their effect on departure time uncertainty. The SDPM provides accu-
rate delay predictions as compared with the predictions derived from repeat
simulations. Additionally, it was found in experiments that the fixed time
interval size used by the SDPM influences both prediction accuracy and,
as a result, the quality of reserve crew schedules. In general larger interval
sizes result in decreased prediction accuracy. However, for a fixed computa-
tional budget, it was beneficial to find a trade-off interval size that resulted
in the highest reserve crew schedule quality possible, because small interval
sizes vastly increased the time required for reserve crew schedule evalua-
tions. Future work could involve an investigation of the use of variable step
lengths, which ensure that frequently occurring event times correspond to
interval mid points.

The SDPM required input probabilities that each crew pairing has a
full complement of crew, this information was provided by the CAM. The
SDPM was then able to evaluate the expected levels of delay and cancel-
lation for each flight in a schedule as a function of a given airline schedule,
crew absence and journey time uncertainty, and a given combination of a
reserve crew schedule and an assumed reserve policy. The SDPM was val-
idated in terms of prediction accuracy, applied as an online reserve policy
and used to schedule reserve crew. When the SDPM was applied to the
problem of reserve crew scheduling, it was found that the average cancel-
lation measures were roughly the same as those of reserve crew schedules
derived from the SDM and the C'DM. However, the reserve crew schedules
derived from the SDPM vyielded qualitatively different reserve crew sched-
ules, especially for schedules with a high risk of delay: they reduced average
delay, but at the cost of a small increase in cancellation rate. The expla-
nation was that the SDPM gives a higher weight to delay minimisation
in the objective function, because it accounts for all delays and not just

reserve crew induced delays (as in the SDM), or crew-related delays (as in
the CDM).

11.2 Scenario-based reserve crew scheduling

The alternative to the probabilistic approach considered in this thesis was
the scenario-based MIPSSM. Instead of using probabilities to model the
uncertainty of the occurrence of disruptions, the occurrence of disruptions
was captured in the form of a set of actual disruption scenarios. The poten-
tial advantage of such an approach was that the scenario-based approach is
mathematically simpler in terms of modelling how disruptions can be ab-
sorbed by using reserve crew, as scenarios correspond to actual sequences of
outcomes. As a result of this, a scenario-based approach may be better able
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to capture the correlations that exists between disrupted flights. On the
other hand, the probabilistic approach is based on a single scenario where
all events have some probability of occurring, which does not correspond to
any possible outcome. Which may have the effect of limiting how accurately
the correlations that exist between disrupted flights.

Chapter 9 defines a framework for simulation scenario collection and a
mixed integer programming formulation for finding a reserve crew schedule
which minimises the occurrence of delay and cancellation disruptions that
occur in a given set of scenarios. Additionally, an extended formulation is
given for the reserve crew scheduling problem for the case where there are
multiple fleet types and multiple crew ranks and qualifications. It found
that large solution times prevented the MIPSSM from being solved with
more than 50 scenarios (for the smallest problems considered). A result of
this was that alternative objective functions which were aimed at minimising
the worst case scenario did not perform well, as the worst case scenario in
a limited sample of scenario is unlikely to be representative of a truly worst
case scenario. The most effective objective function corresponded to min-
imising the average level of delay and cancellation disruptions (cancellation
measure objective).

It was also found that the particular set of scenarios included in the
MIPSSM had a significant impact on the quality of the resultant reserve
schedules. This led to the introduction of a scenario selection heuristic
(SSH) which gave improved solution quality using fewer input scenarios.
An investigation into the effect of the types of scenarios included in a set of
scenarios revealed that scenarios can be classified according to: 1) how well
they complement an existing set of disruption scenarios or; 2) whether they
are scenarios which lead to good solution quality when used as the only
input scenario for the MIPSSM. Algorithms based on these ideas resulted
in improved solution reliability for a small example problem. The main
limitation for the MIPSSM approach is the large solution times that occur
for a seemingly small set of input scenarios, due to the large number of
binary variables in the resultant models. Given more time, the scenario-
based approach could be explored in more detail to reveal its true potential,
to do this solution approaches such as Dantzig-Wolfe decomposition could
be applied, and a revised formulation of the MIPSSM might improve the
situation.

11.3 Comparison of the probabilistic and scenario-
based approaches

Chapter 10 compared the probabilistic and MIPSSM based approaches to
reserve crew scheduling. It was shown that in comparison to other simpler
heuristic approaches to reserve crew scheduling such the area under the
graph and uniform start rate approaches, the probabilistic and MIPSSM
approaches give reserve crew schedules of higher and to each other compa-
rable quality. However, on closer inspection it was found that the probabilis-
tic approach almost always outperformed the MIPSSM based approach. The
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reason for this, was because the MIPSSM based approach cannot be solved
efficiently for a large number of input disruption scenarios. The probabilis-
tic approach does not suffer the same problem because it is able to model
all possible outcomes in what is effectively a single probabilistic scenario.
It is still possible that with additional work a scenario-based approach or a
hybrid of the MIPSSM and probabilistic approaches might have a greater
potential than a purely probabilistic approach.

11.4 Online reserve policies

As depicted in Figure 1.1 online reserve policies formed a secondary thread
of this thesis, which is interwoven with the work on reserve crew schedul-
ing. In Chapter 5 the probabilistic crew absence model provided a means
of modelling an assumed reserve use order policy. At that point a default
policy was assumed, which for the simplified model was reasoned to be the
optimal policy. In Chapter 6 the C AM required a revised default policy in
the form of the GRP, which was investigated in terms of the effect of the
policy weights used offline and online on the expected cancellation measure.
It was found that the policy parameters assumed both offline and online
had a significant impact on the quality of the reserve crew schedules derived
from the CAM. In Chapter 8, another aspect of reserve policies was in-
vestigated, that of the possibility of reserve holding when reserve crew are
the best recovery for a given disruption. The SDPM model was applied
to evaluate alternative decisions in such circumstances. It was found that
such an approach has a clear potential for minimising overall disruptions at
the expense of short term penalties.

The MIPSSM approach implicitly assumes an optimal policy because
it has access to knowledge of future disruptions, which in an online context
would not be available. Despite this, in Section 9.5 a look-up table (LUT)
reserve policy was derived from the MIPSSM corresponding to a given re-
serve crew schedule. Overall disruptions were reduced by this approach,
as demonstrated in Section 9.6. When the MIPSSM was extended to the
case of multiple fleet types, crew ranks and qualifications, the previously
described policy did not also extend. A more appropriate LUT structure
was proposed in Section 4.7.3 for a LUT policy based on approximate dy-
namic programming. A possible area for future research is to incorporate
approaches such as the MIPSSM in simulation based learning approaches
for finding reserve policies.

The simulation introduced in Chapter 4 suggested two reserve policies,
a LUT approach (referred to above) and a direct application of simulation
to evaluate alternative reserve decisions. The LUT approach was based
on approximate dynamic programming, in which the values of all states are
learned and used to select optimal decisions by directing the system towards
the state with the best value. A policy is optimal if the values of states are
based on following an optimal policy thereafter, which makes the problem
of policy learning a circular one. In section 4.7.3 the values of states are
learned from a reliable risk averse rule of thumb policy which approximates
the behaviour of the optimal policy. No exploratory learning phase was
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attempted for the LUT policy, this represents possible future work.

In Chapter 10 all of the considered reserve policies were compared over
a range of realistic test schedules used in conjunction with the best reserve
crew schedules from a variety of approaches. This comparison revealed the
strengths and weaknesses of the considered reserve policies. It was found
that the reserve policies based on evaluating alternative reserve decisions
have a clear potential for reducing overall disruptions in comparison to rule
of thumb policies, but can run into trouble in certain circumstances. For in-
stance, the SDPM policy can sometimes be caught out when basing decisions
on expected future outcomes which do not materialise. The direct simulation
policy was found to be unreliable because evaluation accuracy is related to
the number of repeat simulations used to evaluate alternative decisions. The
risk averse absence only policy (Section 3.5.2) provided a good benchmark
performance level for the more advanced approaches to aim for, and in the
longer schedules appeared to be a good approximation of an optimal pol-
icy. The reason for this was that the penalty of not covering crew absence
disruptions is much higher when crew pairings are longer. This meant that
it was rare for the risky decisions, such as holding reserve crew in the event
of crew absence and using reserve crew to cover for delayed crew, to be the
globally optimal decisions. In these cases the maximum penalty associated
with risky decisions (as opposed to following the risk averse abs only policy)
need to be accounted for.

11.5 General insights gained
The general insights gained from this research were as follows:

e A trade-off exists between model fidelity and search algorithm com-
plexity with respect to the quality of the reserve crew schedule that
can be derived using a fixed computational budget.

e Approaches developed for offline reserve crew scheduling extend easily
to online applications as reserve policies.

e Fully detailed models of delay propagation are most useful in an on-
line context, as these models are able to exploit information on the
outcomes of previous events (events such as arrival times and crew
absence) as they occur. In an offline perspective similar results can
be achieved with a much less detailed model than the SDPM.

e Meta heuristics such as simulated annealing and genetic algorithms
can find good quality solutions from the probabilistic models, even
when the available solution time is limited.

e The scenario-based approach became intractable for relatively few in-
put disruption scenarios, but given careful selection of the input dis-
ruption scenarios, reserve crew schedules of surprisingly high quality
can still be obtained.
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11.6 Advice for KLM

Based on the findings from this research KLM may find the following useful:

e When scheduling reserve crew, exploit all available information about
the structure of the airline schedule:

— The aircraft routings and crew pairings determine how poten-
tially damaging any given delay is and which subsequent flights
will also be delayed.

— The structures of crew pairings determine how potentially dam-
aging crew absence disruptions can be if the absent crew are not
replaced.

e The cancellation measure function (Section 3.5.1) allows for scheduling
and recovery decisions which are based on finding a trade-off between
cancellation minimisation and delay minimisation.

e [f a mathematical model is used to evaluate a set of alternative re-
serve crew schedules it should be noted that the assumed recovery
policy, including the reserve policy, influences the effectiveness of any
given reserve crew schedule. So an investigation of possible recov-
ery /reserve policies is required to determine the best policy to assume
whilst scheduling reserve crew.

e Reserve order policies (such as the GRP, see Section 6.4) and reserve
holding policies (such as the online application of the SDPM, see Sec-
tion 8.2.1) can identify beneficial reserve crew based recovery actions
which may not be locally optimal but are beneficial in the long run.

e Approaches such as the probabilistic models and the scenario-based
approaches can be applied to investigate manpower planning in terms
of the number of reserve crew required based on them being scheduled
and used in an efficient way.

11.7 Thesis summary

In conclusion, this thesis has shown the potential of two distinct approaches
to modelling reserve crew demand uncertainty and scheduling reserve crew.
It has been shown for the test instances considered that the reserve crew
schedule can have a big impact on the expected level of day of operation
disruptions and that improving the reserve crew schedule can be very ben-
eficial. It has also been shown that the reserve policy used on the day of
operation similarly influences the expected level of disruptions on the day
of operation, and that reserve decisions that may not be immediately ben-
eficial can be beneficial in the long run. Several approaches were developed
which successfully demonstrated this.
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Chapter 12

Potential future extensions

A number of potential future extensions based on the work presented in this
thesis are described in this chapter.

12.1 Reserve crew scheduling

This thesis has explored two distinct approaches to modelling reserve crew

demand uncertainty, which are then used to schedule reserve crew. The

MIPSSM scenario-based approach is an integer programming approach which
uses simulation derived disruption scenarios as the input, whereas the prob-

abilistic approach is deterministic, because it does not require stochastically

generated inputs. Future work based on these approaches is described be-

low.

12.1.1 Probabilistic based approaches

One of the main aims during the development of the probabilistic approaches
to reserve crew scheduling (Chapter 5 to 8) was to make the model as de-
tailed as possible. As a result of this, model evaluation became a significant
computational bottleneck in the scheduling and policy applications. Future
work could be to look into how different aspects of the model can be ap-
proximated in some way without a significant loss of accuracy or a drop
in the quality of reserve crew schedules or reserve policy performance. For
example, the CAM enumerates all feasible combinations of reserve crew for
each possible disruption (Section 6.1.5). This step could be approximated
by limiting the enumeration to, for example, the first 0.99 of the cumula-
tive probability of the reserve combinations most likely to be used. The
remaining combinations will have vanishingly small associated probabilities
and may not have a noticeable effect on the reserve crew schedule quality
or reserve policy performance. If the probabilistic models can be evaluated
quicker without a significant loss in accuracy, then more advanced (evalua-
tion intensive) methodologies can be used to find better reserve crew sched-
ules. If the level of approximation/model accuracy can be parameterised
then it would be possible to investigate the topology of the trade-off be-
tween modelling accuracy and solution methodology complexity for a given
computational budget (maximum solution time).
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12.1.2 Scenario-based approaches

One of the issues with the approaches to reserve crew scheduling which are
based on the MIPSSM is that the number of scenarios has a big impact
on the time required to solve the resultant M IPSSM formulation. Future
work could be to develop specialised solution techniques other than solving
the model directly in CPLEX. One possible alternative is to develop a hybrid
meta-heuristic and integer programming approach where the meta-heuristic
is used to search for a subset of the variables, which are then fixed for an
iteration of the MIPSSM, whilst the others are optimised.

Another approach might involve further improvements of the SSH
where scenarios are not only added but can also be removed, for example
the best case scenario could be removed and replaced with a new worst case
scenario.

Another possible improvement might involve an iterative solution ap-
proach of the MIPSSM formulation where the reserve schedule variables
(z) and the reserve use variables (y) are alternately held fixed, this would
greatly reduce the number of integer variables in each iteration, the desired
outcome is that the solution converges to the optimal solution of the full
problem.

Another possible area for future research is in the use of the M I PSSM
formulation to aid recovery decisions in an online context. The solution time
is small when considering a single disruption scenario with a fixed reserve
crew schedule. This could be exploited to evaluate alternative reserve crew
recovery decisions, by solving the MIPSSM for each of a large sample of
possible future disruption scenarios for each alternative recovery decision.
Such an approach would require an airline to have the facility to run sim-
ulations of future events based on the current schedule and the expected
departure and arrival times for all current flights.

12.1.3 Hybridised approaches

In Section 9.7.3 two reserve crew scheduling algorithms were proposed,
which were based on the idea of utilising the best features of the sce-
nario and probabilistic approaches within a single algorithm. I.e. using
the scenario-based approach to generate reserve crew schedules which are
then evaluated using a probabilistic approach. Another possible approach
might involve using a probabilistic model for modelling the crew absence
part of the problem and the MIPSSM for the delay part of the problem. The
reserve crew available for scheduling could be divided between the the two
models. The MIPSSM could schedule a number of reserve crew in anticipa-
tion of delayed crew whilst the probabilistic model schedules the remaining
crew in anticipation of the expected crew absences. On the day of operation
reserve crew need not necessarily be restricted to the types of disruptions
they were scheduled for.

Another possible hybridisation of the probabilistic and scenario-based
approaches would be to somehow formulate the MIPSSM model with the
integer requirement of certain decision variables relaxed so that the solu-
tions or inputs correspond to probabilities. For example a set of disruption
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scenarios could be modelled as a single probabilistic scenario. Then, the
reserve use decision variables integer requirement could be relaxed, but the
reserve crew schedule variables would remain integer. This approach would
vastly decrease solution times due to a vast decrease in the number of in-
teger decision variables and hence much reduced branching. However, a
likely pitfall of such an approach is that the probabilistic model will not be
linear, which would preclude the use of a linear programming solver. The
reason for the non-linearity is that the probabilities that reserve crew are
used for different possible disruptions depend on the probabilities that other
reserve crew are not available for the same disruptions, and the calculations
for this involve multiplying probabilities together, see Equation 5.1. The
model would, at most, be non-linear to a degree equal to the number of
reserve crew being scheduled. This occurs when all reserve crew standby
duties overlap with each other for a number of flights, in these cases the
probability that the last reserve crew is used depends on the probabilities
that all other reserve crew are not available.

12.1.4 Extended formulations

The current work is based on a single hub model, the single hub model
accounts only for disruptions that occur at the hub, whilst assuming that
disruptions that occur at spoke stations are dealt with there. Therefore, to
extend the current model to the case of multiple hubs, one option would be
to solve the model separately from each hub’s perspective. However, if there
are often frequent flights between hubs, a partially integrated multiple hub
model may be more appropriate. Another alternative would be to model
the schedules for the hubs as a single combined schedule. In this approach
reserve crew could be scheduled in the same way as described in this work,
provided that the additional spatial constraints for reserve crew use are
respected.

This thesis has focussed on reserve crew demands which occur on
the day of operation and which only become known close to the scheduled
departure time of the disrupted flight. These include crew absence and
delay disruptions. The approaches developed during this thesis could also
be extended to account for other types of crew related disruptions, such
as delayed crew who become infeasible for their next flight because they
are expected to exceed maximum working hour constraints. These types of
disruptions are the same as delays but they can also be considered to have
a cancellation threshold which depends on the particular crew assigned to a
flight. To extend the current work to account for disruptions due to delayed
infeasible crew the cancellation threshold (CT') has to be updated to be
function of the particular crew assigned to the given flight. In this thesis
C'T was modelled as a constant, but incorporating a variable C'T" in both the
probabilistic and scenario approaches would be relatively straight forward.
Appendix H considers a variable cancellation threshold formulation.

As described above, this thesis has focussed on scheduling reserve
crew at the hub of a single hub network, whilst assuming that disruptions
that occur at spoke stations are dealt with there. The justification for
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this assumption is that hubs are by their nature heavily congested and
therefore the minimisation of disruptions at the hub is of vital importance.
Disruptions that occur at spokes on the other hand are both less frequent
and more difficult to deal with using recovery actions available at the hub.
For example, if crew absence occurs at a spoke station and the disruption
can not be covered by reserve crew stationed at that spoke station, reserve
crew would have to deadheaded to that spoke from the hub station, but
since flights from the hub to any given station are relatively infrequent
it is unlikely that reserve crew will be deadheaded in time to avoid the
cancellation of the disrupted flight. However, deadheading is a viable option
for disruptions that can be anticipated in enough time, such as a crew
absence disruption with plenty of notice, so that a flight is available to the
spoke station on which to deadhead the required replacement crew. Future
work could include allowing for deadheading in the approaches proposed in
this thesis. Doing so would also pave the way for a possible application
of the proposed approaches to reserve crew scheduling in point to point
network structures. However, it is very unlikely that airlines that operate
point to point networks will schedule standby reserve crew at stations in
their network, because there will be a very low utilisation rate. Instead,
temporary or agency replacement crew provide a viable alternative.

12.1.5 Integrated crew scheduling and reserve crew
scheduling

During this thesis it has been demonstrated that exploiting the structure of
the crew schedule is very important when scheduling reserve crew, because
the structure of the crew schedule determines which flights are disrupted
when different crew are disrupted. Therefore, future work could be to sched-
ule crew and reserve crew in an integrated manner. One possibility is to
use an iterative approach (analogous to that of Weide’s, see Section 2.2.3)
which alternates between optimising the reserve crew schedule for a fixed
crew schedule and optimising the crew schedule for a fixed reserve crew
schedule. Such an approach could use the SDPM of Chapter 8 to evaluate
the robustness of a given combination of a crew schedule and a reserve crew
schedule. The solution space of such an approach is enormous, but the so-
lution space could be limited to allowing only small changes to an initially
cost optimal crew schedule.

12.1.6 Other applications

This thesis proposes several approaches to scheduling reserve crew under
uncertainty. These approaches could also be extended to apply to other
problem domains. One possible application is in public transport, such as
scheduling reserve coach drivers or train crew. The public transport systems
of large cities could provide an ideal application for some of the proposed
approaches, because the central stations are analogous to the hub stations
of hub and spoke networks.
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Another potential application for the proposed approaches is in port-
folio optimisation. In particular, the CAM of Chapter 6 could possibly be
applied to provide a probabilistic model of investment risk. The model re-
finement of Section 6.1.7 helped to increase the accuracy of the cancellation
rate predictions by explicitly modelling a range of crew absence scenarios
including that where many crew are absent and the available reserve crew
cannot possibly cover for all of them. The model was able to quantitatively
model the best case, average case and worst case scenarios simultaneously
as opposed to just the average case scenario.

This thesis has considered reserve crew scheduling and day of oper-
ation reserve policies, another application of the proposed approaches is
in manpower planning. This was briefly considered in Section 9.6.2 where
reserve crew scheduling models were solved for different numbers of avail-
able reserve crew, to determine an appropriate number of reserve crew to
schedule.

12.2 Reserve Policies

The main focus in this thesis was on modelling reserve crew demand uncer-
tainty and scheduling reserve crew. The study of reserve policies provides
another approach to minimising day of operation disruptions. The problem
of optimising reserve crew use on the day of operation can be cast as a
multistage decision making problem. Such problems can be tackled using
the family of techniques referred to as approximate dynamic programming
(see Section 2.7.4).

12.2.1 Approximate dynamic programming

In Section 4.7.3 a look-up table (LUT) reserve policy was described. A
state in the LUT corresponded to the number of reserve crew remaining of
each crew rank and qualification combination and the departure number.
The value of a state was the expected cancellation measure contribution
that would be accumulated after reaching that state. The LUT policy of
Section 4.7.3 was designed as a policy that was to be applied in instances
when reserve crew could be used to cover for delayed crew in order to deter-
mine whether such an action was appropriate. The LUT table values were
learned from repeat simulations in which the absence only reserve policy
was used. The reasoning was that if LUT values suggest that using reserve
crew to cover for delayed crew is beneficial even though the policy values
were derived using the absence only policy, then using reserve crew to cover
for delayed crew cannot be a very risky action and is likely to be the best
recovery action in terms of overall disruption minimisation.

In approximate dynamic programming the values of states have to cor-
respond to those that would occur when following an optimal policy. The
absence only policy only approximates the behaviour of the optimal pol-
icy. In future work the techniques of approximate dynamic programming
could be applied to the reserve policy problem to try to find a truly optimal
policy. Such a task is a worthy of a research project in itself. There are
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many hurdles to overcome when applying approximate dynamic program-
ming. The main difficulties include: the very large state spaces of problems
usually requires some kind of coarse approximation; and the problem of
learning optimal state values requires knowledge of optimal state values,
which makes it a circular learning problem. The MIPSSM implicitly as-
sumes an optimal reserve policy, such an approach could be used in the
learning phase or initialisation of an approximate dynamic programming
approach. The probabilistic models could be used in a similar way.

12.2.2 Hybridised reserve policies

In Section 10.5 it was found that different reserve policies work best in
different situations. Therefore, future work would be to devise a framework
for selecting reserve policies that are to be used in each possible situation.
Such a framework could be rule based. Another possibility is to derive a
LUT policy for the values of using different policies in different states. In
this context a state may refer to characteristics of an airline schedule such
as its average delay risk or the worst case scenario associated with making
certain risky decisions.

12.3 Integrated reserve crew scheduling and
reserve policy optimisation

During this thesis it has been demonstrated that using knowledge of the
reserve policy during reserve crew scheduling has a significant impact on
the quality of the derived reserve crew schedules. Additionally, it has been
shown that the reserve policy used on the day of operation can also sig-
nificantly improve the performance of a reserve crew schedule. In Section
6.4.4 the interaction between the reserve order policy assumed offline and
that used online was explored, and very little evidence was found to suggest
a complex interaction between assumed offline policies and online policies.
This conclusion is applicable to the GRP only. Future work could investi-
gate integrated reserve crew scheduling and reserve policy optimisation for
more complex reserve policies such as those alluded to in Section 12.2.

Another future work possibility for the approximation dynamic pro-
gramming approach to reserve policies is to make the reserve crew schedule
an element of the policy, thus integrating reserve crew scheduling and reserve
policy optimisation. In such an integrated framework the policy learning
phase would have to learn the optimal policy and reserve crew schedule
simultaneously. One possibility is that the learning rates could fluctuate
between both aspects of the overall policy to mimic an iterative approach
to integrated reserve crew scheduling and reserve policy optimisation. It
may also be possible to calculate or accurately approximate how the values
of states change as the reserve schedule is slightly modified, for example,
scheduling one reserve crew at a slightly different time will automatically
change the potential for reserve crew induced delay of some of the disrup-
tions they are feasible to cover.
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Appendix A

Extra results for the
probabilistic crew delay model

A.1 Experimental results representative of
the three main types of methods of re-
serve crew scheduling for each of the 25
data instances

This appendix gives the experiment results for each performance measure
and each of the 25 test instances which were averaged in Chapter 7. The
results are given for the three main approaches to reserve crew scheduling
considered in Chapter 7. These results show that the averaged results given
in Chapter 7 are representative of the results achieved in each of the 25 test
instances.

A.1.1 Prob 1 results

The results in this section correspond to the Prob 1 method of Section

7.4.4.

Table A.1: Prob 1 cancellation rate results from 25 schedule instances

Probability of aircraft change
On time % 0 0.1 0.2 0.3 0.4
55 5.67E-6 | 7.50E-6 | 7.33E-6 | 9.83E-6 | 9.50E-6
60 1.33E-6 | 3.83E-6 | 2.17E-6 | 2.50E-6 | 2.17E-6
65 0.00E+0 | 1.67E-7 | 8.33E-7 | 5.00E-7 | 3.33E-7
70 3.33E-7 | 1.67TE-7 | 8.33E-7 | 0.00E+0 | 0.00E+0
75 0.00E+0 | 0.00E+0 | 0.00E+0 | 0.00E+0 | 0.00E+40
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Table A.2: Prob 1 reserve utilisation rate results from 25 schedule instances

Probability of aircraft change
On time % 0 0.1 0.2 0.3 0.4
55 0.9085 | 0.9652 | 0.9615 | 0.9591 | 0.9663
60 0.8801 | 0.9135 | 0.9157 | 0.9318 | 0.9121
65 0.8197 | 0.8155 | 0.8676 | 0.8535 | 0.8762
70 0.6698 | 0.7032 | 0.7234 | 0.7453 | 0.7266
75 0.4887 | 0.4380 | 0.5865 | 0.5510 | 0.5468

Table A.3: Prob 1 average crew delay results from 25 schedule instances

Probability of aircraft change
On time % 0 0.1 0.2 0.3 0.4
55 0.2655 | 0.4473 | 0.4240 | 0.5109 | 0.4677
60 0.1377 | 0.1846 | 0.1312 | 0.2019 | 0.1448
65 0.0684 | 0.0510 | 0.0990 | 0.0643 | 0.1347
70 0.0164 | 0.0173 | 0.0217 | 0.0304 | 0.0246
75 0.0062 | 0.0050 | 0.0117 | 0.0097 | 0.0097

Table A.4: Prob 1 average total delay results from 25 schedule instances

Probability of aircraft change
On time % 0 0.1 0.2 0.3 0.4
55 3.1606 | 3.9289 | 3.8914 | 4.1917 | 4.0285
60 1.7284 | 2.0006 | 1.8662 | 2.0804 | 1.9148
65 1.0244 | 1.0012 | 1.2273 | 1.1154 | 1.3822
70 0.5186 | 0.5689 | 0.5645 | 0.5929 | 0.5768
75 0.2690 | 0.2624 | 0.2963 | 0.2932 | 0.2935

Table A.5: Prob 1 probability of delay over 30 minutes results from 25
schedule instances

Probability of aircraft change
On time % 0 0.1 0.2 0.3 0.4
55 1.53E-3 | 2.83E-3 | 2.61E-3 | 2.98E-3 | 3.03E-3
60 6.58E-4 | 7.24E-4 | 7.83E-4 | 1.01E-3 | 7.90E-4
65 3.54E-4 | 2.71E-4 | 5.69E-4 | 3.28E-4 | 7.12E-4
70 7.27E-5 | 8.38E-5 | 1.05E-4 | 1.44E-4 | 9.02E-5
75 2.90E-5 | 1.98E-5 | 5.13E-5 | 4.20E-5 | 3.85E-5

A.1.2 Area 1 results

The results in this section correspond to the Area 1 method of Section
7.4.4.
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Table A.6: Area 1 cancellation rate results from 25 schedule instances

Probability of aircraft change
On time % 0 0.1 0.2 0.3 0.4
55 7.17E-6 | 9.67E-6 | 1.12E-5 | 5.83E-6 | 7.83E-6
60 2.17E-6 | 2.00E-6 | 2.33E-6 | 5.17E-6 | 2.17TE-6
65 6.67E-7 | 8.33E-7 | 1.17TE-6 | 1.67E-7 | 6.67TE-7
70 6.67E-7 | 0.00E+0 | 1.67E-7 | 0.00E+0 | 0.00E+0
75 0.00E40 | 3.33E-7 | 0.00E40 | 0.00E40 | 1.67E-7

Table A.7: Area 1 reserve utilisation rate results from 25 schedule instances
Probability of aircraft change
On time % 0 0.1 0.2 0.3 0.4
55 0.8849 | 0.9579 | 0.9580 | 0.9738 | 0.9722
60 0.8274 | 0.9158 | 0.8940 | 0.9288 | 0.8824
65 0.5930 | 0.6735 | 0.7630 | 0.7218 | 0.8374
70 0.6078 | 0.6653 | 0.6683 | 0.6884 | 0.6783
75 0.4182 | 0.3770 | 0.5006 | 0.4895 | 0.4536

Table A.8: Area 1 average crew delay results from 25 schedule instances

Probability of aircraft change
On time % 0 0.1 0.2 0.3 0.4
55 0.2977 | 0.4713 | 0.4201 | 0.5606 | 0.5215
60 0.1596 | 0.1927 | 0.1396 | 0.2120 | 0.1604
65 0.0984 | 0.0758 | 0.1216 | 0.0915 | 0.1581
70 0.0202 | 0.0172 | 0.0229 | 0.0251 | 0.0260
75 0.0082 | 0.0060 | 0.0191 | 0.0121 | 0.0182

Table A.9: Area 1 average total delay results from 25 schedule instances

Probability of aircraft change
On time % 0 0.1 0.2 0.3 0.4
55 3.3800 | 4.0415 | 3.8705 | 4.3012 | 4.1980
60 1.8951 | 2.0084 | 1.9932 | 2.1515 | 2.0531
65 1.2517 | 1.1504 | 1.3978 | 1.2900 | 1.5120
70 0.5500 | 0.5792 | 0.5961 | 0.6149 | 0.6118
75 0.2772 | 0.2659 | 0.3342 | 0.3094 | 0.3248
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Table A.10: Area 1 probability of delay over 30 minutes results from 25

schedule instances

Probability of aircraft change

On time % 0 0.1 0.2 0.3 0.4
95 1.77E-3 | 2.91E-3 | 2.56E-3 | 3.37TE-3 | 3.35E-3
60 6.47E-4 | 7.19E-4 | 6.94E-4 | 1.04E-3 | 8.12E-4
65 4.80E-4 | 2.12E-4 | 5.36E-4 | 2.99E-4 | 7.25E-4
70 7.00E-5 | 4.30E-5 | 8.05E-5 | 4.95E-5 | 4.22E-5
5 1.35E-5 | 7T.17E-6 | 5.42E-5 | 2.78E-5 | 2.87TE-5

A.1.3 Results for uniform distribution

The results in this section correspond to the Uniform method of Section
7.4.4.

Table A.11: Uniform cancellation rate results from 25 schedule instances

Probability of aircraft change
On time % 0 0.1 0.2 0.3 0.4
55 8.67E-6 | 7.33E-6 | 8.50E-6 | 5.67TE-6 | 8.50E-6
60 2.17E-6 | 1.17E-6 | 3.17E-6 | 3.50E-6 | 4.00E-6
65 6.67E-7 | 1.67E-6 | 8.33E-7 | 1.17TE-6 | 1.17E-6
70 0.00E+0 | 1.67E-7 | 0.00E+0 | 1.67E-7 | 1.67E-7
75 0.00E+0 | 0.00E+0 | 0.00E+0 | 0.00E+0 | 0.00E+0

Table A.12: Uniform reserve utilisation rate results from 25 schedule in-
stances

Probability of aircraft change
On time % 0 0.1 0.2 0.3 0.4
55 0.7502 | 0.8303 | 0.8378 | 0.8475 | 0.8472
60 0.7020 | 0.7900 | 0.7877 | 0.7846 | 0.7994
65 0.6563 | 0.6847 | 0.7252 | 0.7284 | 0.7414
70 0.5608 | 0.6241 | 0.6371 | 0.6491 | 0.6402
75 0.4366 | 0.3918 | 0.5078 | 0.4857 | 0.4807

Table A.13: Uniform average crew delay results from 25 schedule instances

Probability of aircraft change
On time % 0 0.1 0.2 0.3 0.4
55 0.3611 | 0.5143 | 0.5257 | 0.5887 | 0.5644
60 0.2299 | 0.2403 | 0.2002 | 0.2640 | 0.1972
65 0.1021 | 0.0886 | 0.1423 | 0.1054 | 0.1870
70 0.0298 | 0.0270 | 0.0374 | 0.0411 | 0.0371
75 0.0102 | 0.0090 | 0.0291 | 0.0173 | 0.0171
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Table A.14: Uniform average total delay results from 25 schedule instances

Probability of aircraft change
On time % 0 0.1 0.2 0.3 0.4
55 3.1351 | 3.6842 | 3.6217 | 3.8921 | 3.8962
60 1.8655 | 1.8982 | 1.9784 | 2.0921 | 1.9824
65 1.0665 | 1.0602 | 1.3404 | 1.2124 | 1.4012
70 0.5414 | 0.5833 | 0.5919 | 0.6100 | 0.6102
75 0.2752 | 0.2668 | 0.3352 | 0.3062 | 0.3023

Table A.15: Uniform probability of delay over 30 minutes results from 25
schedule instances

Probability of aircraft change
On time % 0 0.1 0.2 0.3 0.4
55 2.69E-3 | 3.94E-3 | 4.00E-3 | 4.30E-3 | 4.25E-3
60 1.76E-3 | 1.38E-3 | 1.54E-3 | 1.87E-3 | 1.47E-3
65 5.79E-4 | 5.,51E-4 | 1.00E-3 | 7.94E-4 | 1.20E-3
70 1.19E-4 | 1.22E-4 | 1.53E-4 | 1.69E-4 | 1.18E-4
75 3.68E-5 | 3.10E-5 | 1.62E-4 | 5.25E-5 | 5.50E-5

263




Appendix B

GRP parameter experiment
results: Average cancellation
measure sensitivity to policy
parameter sets used in reserve
crew scheduling and online
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Figure B.1: Average cancellation measures corresponding to each of the
reserve crew schedules generated using each parameter combination tested
using each of the test parameter combinations online for schedule 2
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Figure B.2: Average cancellation measures corresponding to each of the
reserve crew schedules generated using each parameter combination tested
using each of the test parameter combinations online for schedule 3
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Figure B.3: Average cancellation measures corresponding to each of the
reserve crew schedules generated using each parameter combination tested
using each of the test parameter combinations online for schedule 4
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Sensitivity of average cancellation measure to the
online policy parameter set for each parameter set used in
reserve crew scheduling (constructed 3 day schedule)
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Figure B.4: Average cancellation measures corresponding to each of the
reserve crew schedules generated using each parameter combination tested
using each of the test parameter combinations online for schedule 5
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Appendix C

Conditions for a
delay-reducing resource swap

In the single hub airline simulation (Chapter 4), if a flight (d) is delayed
beyond a specified delay threshold (D7), the airline resource (crew or air-
craft) individually responsible for the delay can, if feasible, be swapped with
a resource that is available and is awaiting a later scheduled departure than
departure d (because flights are recovered in earliest departure time order
first, see assumptions RP1 (sequential recovery assumption) and Ldc (later
flights are delayed less by delayed resources assumption) of Section 4.2). For
a swap to be feasible the resources must be able to legally complete each
others remaining flights on the same day (Assumption C9b, the assertion
that crew swaps must be mutually duty length feasible), and it must be pos-
sible to undo the swap before the next day’s duties begin (Assumption L4b,
the same overnight station swap assumption). For a swap to be beneficial
the following conditions are required:

1. The available resource on the other line of flight must be available
before the delayed resource.

2. The overall delay must be reduced by the swap.

For the case where only one of the resources assigned to a flight is delayed
the following theorem holds true.

Theorem 1

A resource swap can reduce overall delay if the alternative resource is not
delayed for its own next scheduled departure.

Proof

Let d1 be the delayed flight for which a resource swap is required, let d2 be
the next flight of the alternative/swappable resource for flight d1. Let rty
and rtg be the earliest times the resources initially assigned to flights d1
and d2 are available. The two conditions for feasible resource swaps can be
expressed as follows.
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Ttae < Tla (C.1)

(Ttdl - Stdl - DT) + max (O, Ttdg - Stdg - DT)
> (C.2)
max (0, 7tz — Sty — DT') + max (0, rtg — Stgo — DT)

Theorem 1 is proven by considering the alternative case where the
alternative resource is delayed for its own next flight before the swap, i.e.
Ttgy > Stge + DT. Then given that Sty < Sty (see assumptions RP1
(sequential recovery assumption) and Ldc (later flights are delayed less by
delayed resources assumption)) and the first condition (Equation C.1), the
second condition (Equation C.2) then reads as follows.

(Ttdl — Sty — DT) + (’l“tdg — Stgp — DT)
> (C.3)
(TtdQ — Stdl — DT) + (T’tdl - Stdg — DT)

Which is a contradiction (rearranges to 0 > 0). This means that a
resource swap can only reduce overall delay if the alternative resource is
not delayed for its own next scheduled departure. The intuitive meaning of
Theorem 1 is that a delayed resource should only be replaced with available
resources which are assigned to later flights if they are not delayed for their
assigned flight, otherwise both flights will actually be delayed by a greater
amount than they would have been without the swap. The second condition
for a beneficial resource swap with the precondition given in Equation C.1
now reads as follows.

(T‘tdl — Stdl — DT)
= (C.4)
max (0, 7tz — Sty — DT') + max (0, rty — Stgo — DT)
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Appendix D

Additional experimental
results for the SDPM

Schedule 1 2 3 4
Type Generated | Generated | real real
Days 1 3 1 3

Hub departures 130 373 116 354
Crew 74 91 7 89
Aircraft 37 37 42 43
Reserve crew 6 10 6 10
Crew subject to absence | 74 91 50 62
Delay risk 0.1620 0.1554 0.0374 | 0.0413
Crew connection rate 0.2308 0.2106 0.3032 | 0.3208

Table D.1: Test instance properties

The additional experimental results for the SDPM are based on the test
instances which are summarised in Table D.1. The difference between real
and artificial schedule instances is that the real schedules are based actual
aircraft routings with the actual scheduled departure and arrival times. The
artificial schedules are the same but have adjusted scheduled departure and
arrival times to elevate the risk of delay propagating from one flight to the

next. The crew were scheduled using a set partitioning formulation solved
in CPLEX.

D.1 Modelling accuracy of the SDPM

The following results are based on generated 1 day test instance of Table
D.1, using a SDPM interval size of W = 5.
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Departure delay predictions for straight forward delay propagation
(No crew absence, no swap recovery, no reserve crew)
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Figure D.1: Straight forward delay propagation
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Predicted average delay reduction from reserve team use
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Figure D.3: Predicted decrease in average delays when reserve crew can be
used to cover for delayed crew as well as covering for absent crew

The predicted increase in cancellation probability due to allowing

-3

reserve crew teams to absorb delay disruptions

x 10
3 T T T T T T
SDPM
2 Simulation derived prediction
5 25f .
- \ / ’\4
g 7 | “‘\e“ | ““u il
W ATI At
8 15t | \ i
(I
AR T
g fifmly I ’
3 A
3 | MU H\ ] M H\‘ |
3 05f \W \H‘\ ‘H \ A
& \w | I
ot ML
O 1 1 1 1 1 1
0 20 40 60 80 100 120

hub departure number

140

Figure D.4: Predicted increase in cancellation probabilities when reserve
crew can be used to cover for delayed crew as well as covering for absent

Crew
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The effect of interval size on delay prediction accuracy (no swap recovery)
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Figure D.5: The effect of interval size on prediction accuracy and evaluation
time

D.2 Scheduling and policy applications of the
SDPM

272



€LC

Policy
Schedule | CAM  SDM  SDPM1 SDPM2 SDPM3 SDPM4 default abs only | Average
CAM 24241 2.7426 1.3056  1.2956  1.3056  1.3083  2.5569 2.0028 1.8677
SDM 0.3175 0.6236 0.2291  0.2293  0.2291  0.2526  0.7804 0.2845 0.3683
SDPM1 | 0.3246 0.5841 0.2464  0.2462  0.2464  0.2739  0.7790 0.2765 0.3721
SDPM2 | 0.2826 0.5350 0.2463  0.2457  0.2463  0.2739  0.7765 0.2710 0.3597
SDPM3 | 0.4552 0.6554 0.4039  0.4044  0.4039  0.4068  0.6878 0.5144 0.4915
SDPM4 | 0.4218 0.6217 0.3575  0.3576  0.3575  0.3620  0.6908 0.4388 0.4510
Average | 0.7043 0.9604 0.4648  0.4631  0.4648 0.4796  1.0452 0.6313

Table D.2: Average cancellation measures for different combinations of configurations of the SDPM used for reserve crew scheduling and
as a reserve policy averaged over 10 repeats for each configuration used for reserve crew scheduling

Policy
Schedule | CAM  SDM  SDPM1 SDPM2 SDPM3 SDPM4 default abs only | Average
CAM 0.9717 1.2860 0.8500  0.8497  0.8500  0.8514  0.8272 0.7347 0.9026
SDM 0.1182 0.2706 0.0617  0.0617  0.0617  0.0620  0.0718 0.0718 0.0975
SDPM1 | 0.1195 0.2547 0.0611  0.0612  0.0611  0.0623  0.0719 0.0719 0.0955
SDPM2 | 0.1242 0.2634 0.0608 0.0609  0.0608  0.0622  0.0720 0.0720 0.0970
SDPM3 | 0.1018 0.2297 0.0575  0.0575  0.0575  0.0590  0.0719 0.0719 0.0884
SDPM4 | 0.1289 0.2703 0.0605  0.0604  0.0605  0.0618  0.0750 0.0750 0.0990
Average | 0.2607 0.4291 0.1920 0.1919  0.1920  0.1931  0.1983 0.1829

Table D.3: Actual event times version of the 2 day test instance. Average cancellation measures for different combinations of configurations
of the SDPM used for reserve crew scheduling and as a reserve policy averaged over 10 repeats for each configuration used for reserve
crew scheduling



The effect of the reserve scheduling method and policy used on the day of
operations on average cancellation measure for schedule 1
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Figure D.6: Average cancellation measures when reserve schedules are used
in conjunction with different reserve policies in schedule 1

The effect of the reserve scheduling method and policy used on the day of
operations on average cancellation measure for schedule 2
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The effect of the reserve scheduling method and policy used on the day of
operations on average cancellation measure for schedule 3
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Figure D.8: Average cancellation measures when reserve schedules are used
in conjunction with different reserve policies in schedule 3

The effect of the reserve scheduling method and policy used on the day of
operations on average cancellation measure for schedule 4
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Figure D.9: Average cancellation measures when reserve schedules are used
in conjunction with different reserve policies in schedule 4

275



D.3 Reserve policy application comparison

This section compares a range of reserve policies introduced in this thesis for
the schedule instances defined Table D.1. The reserve crew schedule used
for testing different each of the reserve policies are as follows. test instance
1: is the same as that which was used in Section D.1 to demonstrate the
modelling accuracy of the SDPM. For the remainder, the SDPM was used
in a greedy algorithm approach (see Section 3.5.4) to schedule the reserve
CTew.

D.3.1 Reserve crew policies under consideration

The reserve policies compared are as follows.

SDPDM1a: is the same as reserve policy SDPM1 of Section 8.2.5.
SDPM1b: is the same as reserve policy SDPM1 of Section 8.2.5, except
that the policy is only applied in instance where reserve crew can be used
to cover for delayed crew, reserve crew are always used to replace absent
crew whenever possible.

SDM: is the same as the SDM policy used in Section 8.2.5.

CAM: is the same as the CAM policy used in Section 8.2.5.

default: is the same as the default policy of section 3.5.2.

abs only: is the same as the abs only of Section 3.5.2.

SIM1: is the simulation based policy described in Section 4.7.2. This
version of the policy assumes a default policy in each of the 100 repeat
simulations used to evaluate each of the alternative reserve decisions.
STM?2: is the simulation based policy described in Section 4.7.2. This ver-
sion of the policy assumes the abs only policy in each of the 100 repeat
simulations used to evaluate each of the alternative reserve decisions.

D.3.2 Reserve policy application results

In this section the reserve policies above are each tested in the same set
of 1000 simulations runs, for each test instance. The simulation is used to
derive average performance measures for each reserve policy. The perfor-
mance measures include: the cancellation measure; the average delay; the
average cancellation rate; and the reserve utilisation rate for both absence
and delay disruptions.
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Policy Cancel | Average | Cancel- Reserve utilisation rate

-lation | delay lation total used for
measure | (/mins) | rate delay

default 1.2707 13.0908 | 0.008069 | 0.4978 | 0.1127
abs only 1.2154 13.1390 | 0.007615 | 0.3908 | 0.0000
SDPM1la | 1.2131 | 13.1261 | 0.007608 | 0.4507 | 0.0600
SDPM1b | 1.2141 13.1255 | 0.007615 | 0.4508 | 0.0600

SDM 1.2131 | 13.1255 | 0.007608 | 0.4507 | 0.0600
CAM 1.2144 13.1390 | 0.007608 | 0.3907 |0

SIM1 1.2136 13.1231 | 0.007608 | 0.4220 | 0.0313
SIM?2 1.2147 13.1281 | 0.007615 | 0.4215 | 0.0307

Table D.4: Reserve policy performance measures: Test instance 1

Policy Cancel | Average | Cancel- Reserve utilisation rate
-lation | delay lation total | used for
measure | (/mins) | rate delay

de fault 0.8785 12.0915 | 0.0009625 | 0.6416 | 0.2988
abs only | 0.5593 11.8690 | 0.0002225 | 0.3522 | 0.0000
SDPM1a | 0.5335 | 11.7115 | 0.0002466 | 0.4356 | 0.0836
SDPM1b | 0.5510 11.8308 | 0.0002225 | 0.4358 | 0.0836
SDM 0.5510 11.8302 | 0.0002225 | 0.4330 | 0.0808
CAM 0.5511 11.8352 | 0.0002225 | 0.3522 | 0

SIM1 0.5533 11.7475 | 0.0002761 | 0.4313 | 0.0796
SIM?2 0.5413 11.7527 | 0.0002413 | 0.4066 | 0.0544

Table D.5: Reserve policy performance measures: Test instance 2

Policy Cancel Average | Cancel- Reserve utilisation rate
-lation delay lation total | used for
measure | (/mins) | rate delay

de fault 0.09633 | 8.0798 | 0.0004741 | 0.3333 | 0
abs only | 0.09633 | 8.0798 | 0.0004741 | 0.3333 | O
SDPM1la | 0.08729 | 6.3582 | 0.0006121 | 0.3333 | O
SDPM1b | 0.09633 | 8.0798 | 0.0004741 | 0.3333 | O
SDM 0.09704 | 8.0492 0.0004828 | 0.3332 | 0
CAM 0.09704 | 8.0492 0.0004828 | 0.3332 | 0
SIM1 0.08860 | 7.2744 | 0.0005172 | 0.3333 | 0

SIM?2 0.08860 | 7.2744 | 0.0005172 | 0.3333 | O

Table D.6: Reserve policy performance measures: Test instance 3
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Policy Cancel | Average | Cancel- Reserve utilisation rate
-lation | delay lation total | used for
measure | (/mins) | rate delay

de fault 0.1735 | 6.0688 | 0.0002853 | 0.3982 | 0.1568

abs only | 0.0842 | 5.4715 | 0.0000904 | 0.2433 | 0.0000
SDPM1la | 0.0726 | 5.0119 | 0.0001243 | 0.2569 | 0.0136
SDPM1b | 0.0838 | 5.4998 | 0.0000904 | 0.2569 | 0.0136

SDM 0.0838 5.4998 | 0.0000904 | 0.2569 | 0.0136
CAM 0.0838 5.4911 0.0000904 | 0.2433 | O
SIM1 0.0741 5.1124 | 0.0001158 | 0.2601 | 0.0168

SIM?2 0.0736 5.0702 | 0.0001186 | 0.2537 | 0.0104

Table D.7: Reserve policy performance measures: Test instance 4

The results in Tables D.4, D.5, D.6 and D.7 show that for test instances
1, 2, 3 and 4 the SDPM1a reserve policy based on the SDPM attains the
lowest (joint lowest for test instance 1) average cancellation measure in each
of the four test instances considered. These results vindicate the SDPM of
Chapter 8 when applied as a reserve policy.
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Appendix E

Additional statistical delay
propagation model test results

E.1 Additional initial prediction tests
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Figure E.1: Predicted average delays and cancellation rates for test instance

1 derived from repeat simulations and the SDPM

279



X 10 Cancellation predictions for test schedule:2
2
5 101
@
Qo
=
o
c
S 5r
s
©
o
3
S gl=taememenict
0 50
Delay predictions for test schedule:2
o 81
[0
5
£
E
)
]
=]
(]
[o))
o
g
S

100 15 200 250 300 350 400 450
hub departure number

Figure E.2: Predicted average delays and cancellation rates for test instance

2 derived from repea

0.021
0.015¢
0.01

0.005

cancellation probability

average delay/minutes

0 100

t simulations and the SDPM

Cancellation predictions for test schedule:3

—— SDPM
—e— SIM !

200 300 400 500 600 700 800 900 1000
hub departure number

Figure E.3: Predicted average delays and cancellation rates for test instance
3 derived from repeat simulations and the SDPM
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Figure E.4: Predicted average delays and cancellation rates for test instance
4 derived from repeat simulations and the SDPM
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Figure E.5: Predicted average delays and cancellation rates for test instance
5 derived from repeat simulations and the SDPM
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Figure E.6: Predicted average delays and cancellation rates for test instance
6 derived from repeat simulations and the SDPM
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Appendix F

Extra results for the statistical
delay propagation model

The effect of interval size on solution quality
for a 10 minute solution time limit
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Figure F.1: The effect of interval size on solution quality in test instance 1

Figure F.1 shows that for test instance 1 using either a very small inter-
val size (below 5 minutes) or a very large interval size (over 30 minutes)
results in reserve crew schedules with high associated average cancellation
measures. The likely cause of the reduced solution quality for very small
interval sizes is the imposed 10 minute solution time, this is because small
interval sizes correspond to large evaluation times (see Figure 8.8), which
means the simulated annealing algorithm has fewer iterations in which to
find a solution. For large interval sizes beyond, 30 minutes, solution quality
gradually deteriorates, so despite the simulated annealing algorithm hav-
ing a larger number of iterations in which to find a solution the reduced
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accuracy of the SDPM precludes the simulated annealing algorithm from
finding a high quality solution. Based on the 50/50 weighted sum of average
and minimum cancellation measures criterion an interval size of 10 minutes
is judged to be the optimal trade-off interval size for test instance 1.

The effect of interval size on solution quality
for a 10 minute solution time limit
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Figure F.2: The effect of interval size on solution quality in test instance 2
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The effect of interval size on solution quality
for a 10 minute solution time limit
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Figure F.3: The effect of interval size on solution quality in test instance 3

The effect of interval size on solution quality
for a 10 minute solution time limit
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Figure F.4: The effect of interval size on solution quality in test instance 4
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The effect of interval size on solution quality
for a 10 minute solution time limit
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Figure F.5: The effect of interval size on solution quality in test instance 5

The effect of interval size on solution quality
for a 10 minute solution time limit
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Figure F.6: The effect of interval size on solution quality in test instance 6

Figure F.6 shows that for test instance 6 very small interval sizes
(below 4 minutes) lead to very poor reserve crew schedules. Unlike the
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results for test instance 1 (Figure F.1) Figure F.6 demonstrates a trend of
increasing solution quality as interval size increases. So in contrast to Figure
F.1, Figure F.6 does not exhibit a rapid deterioration in solution quality for
interval sizes over 30 minutes. This observation can be attributed to both
the imposed 10 minute solution time limit and the increased problem size
of test instance 6 in contrast to instance 1. Test instance 6 corresponds to
a 7 day schedule in which there is a heightened risk of delay propagation
in comparison to test instance 1 which is a 1 day schedule with a minimal
risk of delay propagation. Test instance 6 evaluation times are therefore
very long and therefore the simulated annealing algorithm with a 10 minute
time limit is unable to exploit the SDPM used with a medium or small
interval size. Based on the 50/50 weighted sum of average and minimum
cancellation measures criterion an interval size of 55 minutes is judged to
be the optimal trade-off interval size for test instance 6.

The results given above suggest that given an unlimited amount of
time, a simulated annealing algorithm would provide the best solutions
when using an interval size which is as small as possible. However it is more
realistic that the time horizon in which a solution is required is limited,
and therefore the experiments performed for this section can be performed
analogously to find the optimal trade-off interval sizes for any given solution
time limit. A time limit of 10 minutes was used here for practical reasons.
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Appendix G

Additional results for the
comparison of all approaches

G.1 10 fold cross-validation for test instances
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Figure G.1: Convergence of the average RMSE of the average cancellation
measure for different fold sizes
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G.2 Average cancellation measure plots

Probabilistic approaches applied to schedule:2 tested with the abs only policy
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Figure G.2: The effect of solution method and the probabilistic evaluator
on cancellation measures for test instance 2 with the absence only policy

Probabilistic approaches applied to schedule:3 tested with the abs only policy

SPCAM
GAr aaxea»
LS X
GH 1 b4 1 1 1 1 1 1 1 1
2 3 4 5 6 7 8 9 10 11
SDM
GA( =
SA X
LSL X
GH 1 1 1 1 1 1 1 1 1 1
2 3 4 5 6 7 8 9 10 11
CDM
GA
SA>[<-
LSt X
GH I I I I I I I I I 1
2 3 4 5 6 7 8 9 10 11
SDPM
GA F.-
SA X
LSt. X
GH 1 1 1 1 1 1 1 1 1 1
2 3 4 5 6 7 8 9 10 11

Average cancellation measure

Figure G.3: The effect of solution method and the probabilistic evaluator
on cancellation measures for test instance 3 with the absence only policy
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Probabilistic approaches applied to schedule:4 tested with the abs only policy
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Figure G.4: The effect of solution method and the probabilistic evaluator
on cancellation measures for test instance 4 with the absence only policy

Probabilistic approaches applied to schedule:5 tested with the abs only policy
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Figure G.5: The effect of solution method and the probabilistic evaluator
on cancellation measures for test instance 5 with the absence only policy
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Probabilistic approaches applied to schedule:6 tested with the abs only policy
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Figure G.6: The effect of solution method and the probabilistic evaluator
on cancellation measures for test instance 6 with the absence only policy

G.3 Delay and cancellation performance mea-
sures of the probabilistic models

Average delay and cancellation rates for reserve crew schedules
derived from different probabilistic evaluators (except SPCAM)
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Figure G.7: Average delay and cancellation performance of the reserve crew
schedules derived using the SDM, CDM and SDPM probabilistic evaluators
(3 day test instances)
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Average delay and cancellation rates for reserve crew schedules
derived from different probabilistic evaluators (except SPCAM)
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Figure G.8: Average delay and cancellation performance of the reserve crew

schedules derived using the SDM, CDM and SDPM probabilistic evaluators
(7 day test instances)
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Appendix H

Variable cancellation threshold

Throughout this thesis it has been assumed that the airline uses a fixed
cancellation threshold, beyond which delayed flights are cancelled. This ap-
proach has allowed for a clear analysis of the use of the cancellation measure
to penalise delays in the proposed approaches to reserve crew scheduling.
This approach has also served as a place holder for the more general case
in which the cancellation threshold is a variable. A variable cancellation
threshold is useful for modelling cancellations due to maximum working
hour constraints of the assigned crew. For example, crew each have maxi-
mum numbers of flying hours per year, month, week and day.

ctix = min(CT, EDS, ) (H.1)

When allowing for the possibility that some crew schedules can become
infeasible at times before the fixed cancellation threshold (C'T), a variable
cancellation threshold (ct; ) can be used to penalise delay accordingly. In
this case the cancellation threshold (ct;, Equation H.1) is the minimum
of two quantities. Firstly, the usual fixed cancellation threshold (CT), and
secondly, the expected duty slack (EDS; ), which is the expected amount
of time remaining at the end of the crew duty (assigned to flight i), before
crew team k become infeasible. The expected amount of crew duty slack
can be calculated using Equation H.2.

EDS;), = (EDT, + ERDT;) — (CST, + DL+ DLS,)  (H.2)

The first bracket calculates the expected finish time of the duty (corre-
sponding to flight ) as the earliest departure time (EDT;) plus the expected
remaining duty time (EFRDT;). The second bracket gives the latest time
at which the crew’s duty can finish legally, which is the crew’s start time
(CSTy) plus the duty length (DL) plus duty length slack (DLSy). Duty
length slack represents the amount of overtime that crew £ can legally work,
this may depend on the number of hours the given crew member has already
worked in the given week, month or year.

delay; \ "
Cth

CMM:( (IL3)

The cancellation measure of a delay (Equation H.3) when using a variable
cancellation threshold is the same as for the fixed cancellation threshold,
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but with ct;; replacing CT. Where the delay is the amount by which the
(actual) departure time (DT;) exceeds the earliest possible departure time
(EDT;), as in Equation H.4.

delay; = max(0, DT; — EDT;) (H.4)

Variable cancellation threshold applications

The variable cancellation threshold can be used to evaluate potential re-
covery actions in terms of a trade off between delay minimisation and crew
feasibility.

e Swaps: Different crew duties may utilise different amounts of the max-
imum duty length, therefore it is possible that when using a variable
cancellation threshold, a swap that increases delay can possibly reduce
the overall cancellation measure. This corresponds to finding a trade
off between delay minimisation and crew feasibility.

e Reserve use: Reserve crew have fixed duty lengths, just as regular
crew. So the risk of the illegal overtime of different reserve crew could
mean that using later starting reserve crew (who are more likely to
finish the disrupted duty feasibly) to replace delayed crew could actu-
ally lead to a reduced overall cancellation measure compared to earlier
starting reserve crew.
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