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Abstract 

 

The studies presented in this thesis aimed to investigate the effects of nutritional 

modulation and age-associated changes on insulin sensitivity. Four separate studies 

were performed; three of these had insulin sensitivity as the primary outcome. Existing 

studies show that ageing is associated with insulin resistance, but data may be 

confounded by several factors that also occur with increasing age, such as increased 

adiposity, skeletal muscle lipid accumulation and reduced physical activity. To elucidate 

this further the first study compared body composition, skeletal muscle lipid content, fat 

metabolism during light-intensity exercise and whole-body and skeletal muscle insulin 

sensitivity between 7 healthy young and 14 older males. Ageing and insulin resistance 

are also associated with impaired skeletal muscle protein synthesis, however the effects 

of insulin resistance per se on amino acid metabolism and associated insulin signalling 

pathways are not really known. The second study involved 8 young healthy males and 

aimed to explore the effect of insulin resistance on the protein synthetic response to 

amino acid ingestion and muscle protein signalling pathway in humans. Dietary intake 

has been shown to affect insulin sensitivity; however it is unclear if diet composition 

affects liver fat content independent of energy balance. Therefore the third study aimed 

to investigate the effects of hyperenergetic diets high in fat or carbohydrate on liver fat 

and insulin sensitivity. The study involved 23 healthy but overweight and obese males 

who initially consumed an isoenergetic diet for one week, and then were randomised to 

2 weeks of either hyperenergetic (+25% excess) high fat or high carbohydrate diets. 

Liver fat content, abdominal visceral fat, skeletal muscle fat content, hepatic lipid 

metabolism and insulin sensitivity were assessed before and after the 2 week 

intervention period. Whilst dietary excess can exacerbate insulin resistance, certain 
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micronutrients may improve insulin sensitivity. Carnitine has shown encouraging 

outcomes in relation to promoting fatty acid oxidation, metabolism and modulating 

body composition in healthy young volunteers. However the effects on older people 

have never been explored. This formed the basis of the fourth study that investigated the 

effects of 6 months of oral carnitine supplementation or placebo in 14 older (≥65 years 

of age) healthy males in relation to fatty acid metabolism, skeletal muscle lipid and 

insulin sensitivity. 

The main findings are summarised. Irrespective of age, adiposity and physical 

activity are associated with impaired fatty acid oxidation, greater skeletal muscle lipid 

accumulation and reduced insulin sensitivity. However ageing per se appears to increase 

the sympathetic response to exercise and enhance systemic fatty acid delivery and 

adipose tissue lipolysis. Insulin resistance induced by acute elevation of lipid was found 

to affect the skeletal muscle protein synthetic response to amino acid ingestion, and this 

impairment appeared to occur downstream from the Akt insulin signalling pathway. 

Energy excess per se increases liver fat content and affects liver metabolism but there 

were no differential effects of carbohydrate or fat on hepatic insulin sensitivity and liver 

fat content.  Finally, oral carnitine ingestion for 6 months successfully increased skeletal 

muscle total carnitine content of older healthy people and resulted in increased fatty 

acid oxidation and intramyocellular lipid (IMCL) utilisation during light-intensity 

exercise, but no effect on skeletal muscle insulin sensitivity was seen.  

These studies have increased mechanistic insight into the associations between ageing, 

nutrients and insulin sensitivity, paving the way to further research.     
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CHAPTER 1: INTRODUCTION 

 

 

‘Der Mensch ist, was er iBt’ 

‘Man is what he eats’ 

 

Ludwig Andreas Feuerbach 1863 

Concerning Spiritualism and Materialism 

 

Coined over 150 years ago, the expression that man is what he eats and that the food 

one eats has bearing of ones’ state of health and mind still holds true to today.  

What has become very apparent in modern times is the increasing prevalence of Type 2 

Diabetes (T2DM), which is strongly associated with diet and lifestyle. This has been 

demonstrated in large-scale population studies (Tuomilehto et al. 2001, Knowler et al. 

2002, Li et al. 2008). A plethora of studies have attempted to shed light on the 

fundamental question of how diet and nutrition drive the development of insulin 

resistance. However what remains uncertain and has given rise to conflicting study 

outcomes is what aspect of diet exerts the greater influence; increased energy intake or 

change in the proportion of the macronutrient. Further, can introducing certain 

micronutrients improve insulin sensitivity? How does insulin resistance as a result of 

acute and chronic manipulation of the diet affect human metabolism?  

In line with diet and insulin resistance, the obesity epidemic is also of concern, 

afflicting people of all ages. In particular, the 21
st
 century and beyond will see an 

increased prevalence of ageing and development of diabetes, with a growing number of 

studies examining underlying mechanisms and strategies to impede or even ‘reverse’ 
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the development of insulin resistance associated with ageing. However overweight and 

obesity and other changes in metabolism occur with ageing and not necessarily due to 

ageing per se, so it is not entirely clear what directly influences insulin sensitivity as 

people age. 

An analysis of evidence in the literature reveals inconsistent results on the effects of 

dietary modulation, obesity and ageing per se on insulin sensitivity, but cautious 

consideration to interpreting these results has to be taken due to confounding variables 

and difficulty in conducting nutritional and age-related studies in controlled settings.  

This thesis presents new and unique evidence to the discussion and topical issues 

surrounding the association of diet, ageing, obesity, insulin sensitivity and metabolism, 

and attempts to reconcile differing concepts in insulin resistance development.  
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1.1 Historical perspective  

 Figure 1.1: Concepts of diet and development of insulin resistance over the last 60 

years. 

1.1.1 Concepts and hypotheses on nutrients and insulin sensitivity 

The association between diet and insulin sensitivity has been a matter of much interest, 

debate and controversy for more than 60 years. The first major and well-known 

prospective study investigating risk factors for heart disease (Framingham, 

Massachusetts) began in 1948 and probably led to the term ‘lifestyle disease’ whereby 

over-nutrition and low physical activity led to positive energy balance and obesity 

(Dawber, Kannel et al. 1959).  

Until the end of the 19th century, at least a proportion of the population in developed 

countries were struggling with famine and malnutrition, considered a major cause of 

industrial unproductivity (Fogel, Proceedings of the World Food Programme/United 

Nations University Seminar; 1997). In the early 20th century studies of poor children 

indicated that adding carbohydrate and fat to their diets improved growth and this was 

beneficial in improving malnutrition and industrial productivity (Boyd-Orr 1937). The 

1948 
Obesity 
epidemic 

1962  

Neel's Thrifty 
Hypothesis 

1980-90s  

O'Dea Revised 
Hypotheses 

1994  

Brand-Miller & 
Colaguiri's  
Carnivore 
Connection 
Theory 

2001 
Diabesity 
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US Food and Agriculture Organisation was an important protagonist; one of their major 

aims was to increase low-cost calorie foods, namely fats and sugars. Following this, by 

2002 global food production reached 2600 kilocalories (kcal) per day per capita, and is 

projected to reach 3000 kcal by 2030 (FAO. Rome, Italy: Food and Agriculture 

Organization of the United Nations; 2002. World agriculture: towards 2015/ 2030).  

Understanding the significance of the growing prevalence of obesity arose in the early 

20th century, when life insurance companies used body weight data to determine 

premiums, having identified an association between excess weight and premature death 

(Caballero 2007). Breslow (1952) proposed a direct link between the increasing 

prevalence of obesity and increasing rates of cardiovascular disease in the US 

population which then became a recurrent theme with emphasis in US government 

reports in the 1960s and 1970s (US Department of Health. Washington, DC: US Public 

Health Service; 1966. Obesity and health (Report no.1485). Data over the past 30 years 

continue to show an alarming rise in obesity prevalence (Harlan, Landis et al. 1988) and 

by the year 2000, 65 percent of the adult population in the United States had a body 

mass index (BMI) above 25, and 30 percent had a BMI above 30 (Hedley, Ogden et al. 

2004). The projected global number of people who will be overweight or obese is 

estimated at 1.4 billion and 570 million respectively by 2030 (Kelly, Yang et al. 2008).     

1.1.2 Concepts and hypotheses linking diet, nutrition and insulin resistance 

Several hypotheses in the development of the insulin resistance syndrome have been 

postulated ever since an association with nutrition, overweight and insulin resistance 

was recognised (Figure 1.1). Indeed it is difficult not to mention obesity in the same 

context as insulin resistance or diabetes.  
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In 1962, Neel hypothesised that a genotype in diabetes existed (Neel 1962), a condition 

that suited conditions of ‘feast’ and ‘famine’, and this simply evolved over time due to 

changes in diet and lifestyle. The ‘thrifty gene hypothesis’ puts forth the notion that 

some people possess a ‘thrifty tendency and flexibility’ to minimise energy loss and 

encourage storage of energy as fat during the ‘feast’ period, and produce energy to aid 

survival during periods of ‘famine’. When the hypothesis was first proposed, it was 

thought that only small numbers of populations were highly susceptible to diabetes 

particularly in the West, but more recently it has become evident that obesity and 

insulin resistance are ‘consistent sequelae of lifestyle transition’ (Rowley, Best et al. 

1997). The increased availability of food and overconsumption, so characteristic of 

urbanisation and modern lifestyle have led to increased fat storage, obesity and 

associated insulin resistance.  

Over the years the thrifty gene hypothesis underwent refinements through studies 

carried out in populations with a high prevalence of T2DM. For example whilst 

investigating indigenous people and other populations in Australia, O’Dea recognised 

that besides food stored during the ‘feast’ period, other food were readily available 

(termed subsistence diet) (O’Dea 1991).  Therefore a transition from a traditional to a 

Westernised lifestyle occurred, characterised by a change to diets high in refined 

carbohydrates and fat that were readily available, coupled by reduced physical activity 

levels. However, O’Dea also demonstrated in population studies that development of 

insulin resistance could be reversed. When the traditional lifestyle consisting of 

ingesting high- protein, low- carbohydrate diet and increased physical activities was 

simulated over 2 weeks, glucose tolerance improved significantly and hyperinsulinemia 

was reduced. A subsequent study by the same group showed that when subjects with 

diabetes followed a low-fat diet consisting of lean meat for a period of 7 weeks and 
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increased physical activity, mean fasting blood glucose levels fell from 11.6 to 6.6 

mmol/L, with a mean weight loss of 8 kilograms (kg) (O’Dea et al. 1992).   

 Another one of the most intensely studied population group in the aetiology of T2DM 

is that of the Pima Indians of the Gila River Indian Community in Arizona. This 

community has participated in longitudinal studies since the 1960s (Knowler 1979) and 

their clinical characteristics have defined T2DM across most populations (Knowler 

1990). In fact T2DM diagnostic criteria adopted by the World Health Organisation 

(WHO) were initially established in this tribe. Whilst their traditional diet consisted of 

high carbohydrate but low fat nutrients (24% saturated fat of total energy) (Hesse F 

1959, Boyce et al. 1993), by the mid-20
th

 century they had begun conforming to modern 

lifestyle changes, consuming diets of fat that contributed up to 40% of total energy and 

became less physically active. This tribe is now one of the most obese in the world, with 

50% or more of the population developing diabetes. Despite little genetic disparity 

between Pima Indians in Mexico and Arizona and non-Pima Mexicans, Mexican Pima 

Indians have a much lower prevalence of T2DM and obesity providing evidence that 

lifestyle changes play an important role in the development of diabetes (Schulz et al. 

2006). 

Brand-Miller and Colagiuri in 1994 proposed the ‘carnivore connection’ theory, where 

insulin resistance evolved as a consequence of scarcity of carbohydrates and high intake 

of animal protein. This provided an advantage to populations that adapted to high-

protein but low carbohydrate diets, but proved deleterious in a high-carbohydrate 

environment. Perhaps the switch to consuming high-carbohydrate and fat diets in 

modern times has facilitated an increase in insulin resistance rates. In this context it is of 

interest to note that populations that have changed dietary high-protein ‘hunter gatherer’ 

intakes to modern high carbohydrate diets relatively later than their European 
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counterparts have shown a proportionally greater increase in the incidence of 

developing T2DM, compared to European descent populations who switched to high 

carbohydrates thousands of years ago. A prime example is China. The prevalence of 

diabetes in the 1980s was 1%, but by 2008, around 10% of the population developed 

diabetes (Yang, Lu et al. 2010). However, the relationship between overweight, obesity 

and diabetes varies between different populations. In Asia diabetes appears to develop 

at a lower BMI and younger age, a modest increase in weight appears to lead to rapid 

development of insulin resistance (Yoon, Lee et al. 2006). It could be that the greater 

tendency for populations in Asia to develop increased abdominal adiposity but less 

muscle mass increases risk of insulin resistance. Indeed tomography has shown greater 

visceral fat in Asians compared to White Europeans despite similar waist 

circumferences (Lear, Humphries et al. 2007). 

Nevertheless overweight and obesity appear to be the prime drivers of insulin 

resistance. The association between obesity and diabetes is so strong that the term 

‘diabesity’ emerged around the turn of the century (Zimmet P 2012).  

In summary, the association between diet and insulin sensitivity has been 

established for at least the past half century, interspersed with various concepts and 

hypotheses that attempt to describe the emerging global prevalence of diabetes. 

‘Diabesity’ has become a great concern of the 21
st 

century with growing diabetes and 

obesity rates. Insulin resistance appears to be associated with changes in dietary intake 

that predisposes to adiposity, particularly in these times of increased availability and 

easy access to food. The following sub-chapters attempt to define insulin resistance, 

examine the mechanisms involved in impaired insulin sensitivity and how certain 

nutrients might contribute to the development of insulin resistance. How diets and 

exercise improve insulin sensitivity will also be discussed. 

file:///C:/Users/mbxcc2/Dropbox/Thesis%20%20Chapter%201.docx%23_ENREF_13
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1.2 Mechanisms of Insulin Signalling and action 

Understanding the mechanisms underlying normal insulin action is paramount to 

appreciating how insulin resistance develops and what influences insulin homeostasis.  

 One would have predicted that when Banting and Best first purified insulin and treated 

a patient with diabetes in 1922, a mechanism that explained insulin action would soon 

follow. Almost a century later the mechanism has proven complex, still not completely 

understood and is continuously being unraveled.    

  

 

 

 

 

 

 

 

     
 

 

Figure 1.2: Mechanism of insulin signalling pathway: Early work by Saltiel and Kahn (2001) 

describes the binding of insulin to the insulin receptors, phosphorylating serine-threonine 

protein systems of insulin receptor substrates (IRS-1-4). These then become coupled to protein 

kinase signal systems of phosphatidylinositol 3 kinase (PI3k) and formation of PI (3,4,5) 

Phosphate 3 (PIP3). PIP3 then binds to the surface membrane and associates with PDK-1 

leading to phosphorylation and activation of protein kinase b/Akt). Akt is phosphorylated by 

phosphoinositide-dependent protein kinase -1 and mammalian target of rapamycin complex 2 

(mTORc2) (Shepherd P 2005). 
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What is well established is that insulin action is initiated by the binding of the hormone 

insulin to its membrane receptor consisting two α and two β subunits (Freychet P 1971, 

Kahn CR, 1985). The insulin receptor is present in varying quantities in almost all 

mammalian tissues, with the greatest concentration seen on adipose tissue and liver 

cells. Insulin binds to the α-subunits, stimulating tyrosine phosphorylation of the 

intracellular portion of the β-subunit such as tyrosine, serine and threonine – IRS 1 to 4. 

At least until the end of the 1980s, it was uncertain how the receptor kinase ultimately 

transmitted its signal. Models proposed and largely accepted as playing a central role 

include receptor autophosphorylation (Herrera R et al. 1985) or dephosphorylation of 

cellular enzymes and conformational change of beta-subunit receptor (White MF, Kahn 

CR 1986) leading to interaction of secondary effector systems such as PI3k activity and 

phospholipase C (Sale et al. 1986, Machicao and Wieland 1984). So it became clear that 

activation of PI3-K associates with phosphoinositol dependent kinase 1 (PDK1) leading 

to phosphorylation of protein-kinase B (Akt).  

 

The relatively recent discovery of novel insulin receptor products indicates that there are 

more undiscovered receptors and mechanisms involved in insulin signalling. Activation 

of inositol hexakisphosphate (IP6) kinase (IP6K1) yields 5-diphospho-

inositolpentakisphosphate (5-PP-IP5) or IP7 that binds to Akt, inactivating it and 

preventing its function as a substrate for mTORC2 and PDK1 phosphorylation  

(Chakraborty et al. 2010, Manning B et al. 2010). mTOR is a nuclear serine/threonine 

protein kinase found in two complexes (mTORC1 and mTORC2) in most of the body's 

tissues.  These appear to be essential in the regulation of metabolism, including 

organization of the insulin and growth factor signals.   
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Insulin resistant states such as T2DM are characterised by reduced receptor numbers 

due to down-regulation, altered kinase activity and reduction in insulin-receptor 

autophosphorylation. These appear to be regulatory in nature (Bar et al. 1979). 

 

1.3 Role of insulin in nutrient metabolism  

 

1.3.1 Role of insulin in carbohydrate metabolism 

Insulin is the hormone central to glucose homeostasis on ingestion of nutrients 

particularly dietary carbohydrates (Bessessen 2001). Post-prandial, glucose is taken up 

by hepatocytes via GLUT-2 transporters (Guyton 1996) and phosphorylated to glucose-

6-phosphate by the enzyme glucokinase. This process is not regulated by insulin but is 

reliant on the glucose concentration outside the hepatocyte (Frayn 1999). Insulin 

stimulates glycogen synthase which polymerises glucose to glycogen (Petersen et al. 

1998) and inhibits glycogen phosphorylase. When glucose metabolism in liver exceeds 

hepatocyte glycogen-storing capacity, insulin and glucose promote conversion of excess 

glucose into fatty acids via the transcription factors sterol regulatory element-binding 

protein-1c and carbohydrate response element-binding protein-1c respectively, a 

process known as de novo-lipogenesis (DNL) (Postic C 2007).  DNL is limited in 

humans under normal conditions (<5% of triacylglycerol pool); (Diraison 2003) 

compared to people with non-alcoholic fatty liver disease (NAFLD) with 25% of the 

triacylglycerol pool (Donelly 2005). Hepatic glucose production originates from 

glycogenolysis and gluconeogenesis, the breakdown of which depends on glycogen 

phosphorylase and glucose-6-phosphate. Insulin inhibits glucagon secretion, lipolysis 

and proteolysis in muscle and lipolysis in adipose tissue.  

 



11 
 

1.3.2 Role of insulin in lipid metabolism 

Insulin’s role on lipid metabolism is evident by the immediate reduction in lipidaemia and 

acetonuria following insulin administration in an individual with diabetes (Fonseca 1924, 

Killian 1923).  

Insulin controls fatty acid and triacylglycerol synthesis through activation of pyruvate 

dehydrogenase and acetyl-coenzyme A (acetyl-coA) carboxylase by promoting its 

polymerisation, and appears to regulate esterification of fatty acids to triacylglycerol. Fatty acids 

taken up by the liver also go through beta-oxidation (Frayn K 1999). Through the process of 

beta-oxidation, non-esterified fatty acids (NEFA) are split into acetyl-coA which enters the 

tricarboxylic cycle for energy production or alternatively condensed into ketone bodies. Insulin 

promotes storage of NEFA in the form of triglycerides through reesterification.  It is well-

documented that insulin possesses a potent inhibiting effect on adipose tissue lipolysis via 

activation of insulin receptors (IR) expressed on these cells (Fain, J et al. 1966; Lavis, V and 

Williams, R 1973). 

 

1.3.3 Effect of insulin on Protein metabolism 

A classical action of insulin is stimulation of protein synthesis. This is exemplified in untreated 

Type 1 Diabetes (T1DM) where lack of insulin leads to weight loss, muscle loss and growth 

cessation (Kimball and Farrell et al. 2002; Proud and Denton 1997).  Insulin is widely described 

as a potent stimulus for muscle protein, indeed hyperinsulinaemia can increase muscle protein 

synthesis particularly when muscle amino acid availability is also increased (Bennet, Connacher 

et al. 1990). However insulin has been regarded to have a permissive rather than a modulatory 

role in muscle protein synthesis (MPS), and it is the availability of amino acids rather than 

insulin that appears to regulate rate of protein synthesis (Cuthbertson et al. 2005). Insulin has 

been shown to stimulate growth of cell cultures in vitro due in part to insulin binding to 
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receptors for insulin growth factor (IGF)-1 and IGF-2, demonstrating its role in tissue protein 

synthesis. Its effects are complex involving changes in synthesis and degradation; its 

mechanisms are beyond the remit of this thesis. Briefly the effects of insulin on protein take 

place over several timeframes. The rapid actions of insulin on protein metabolism involve 

increases in messenger ribonucleic acid (mRNA) translation.  Insulin controls several 

translation factors. In particular, the relatively newly-discovered protein-signalling system based 

on the Ser/Thr protein kinase, mTOR has been found to have a major role in the control of 

mRNA translation. Indeed similar signalling elements involved in protein metabolism have 

been found to be utilised in carbohydrate metabolism.   Specifically, mTOR has been shown to 

be controlled by the PI3-k pathway, an important mediator of the metabolic actions of insulin 

stimulates biosynthesis of certain proteins such as albumin, acetyl coA-carboxylase, fatty acid 

synthase, glucose-6 phosphate dehydrogenase, and pyruvate dehydrogenase, amino acid uptake, 

translation factors, and alterations in phosphorylation state of proteins involved in protein 

metabolism. Insulin activates protein synthesis by activating translational factors and 

increasing cellular ribosomes mediated primarily through phosphoinositide 3-kinase and 

activation of protein kinase B.This allows for overall activation of protein synthesis 

through its regulation of mammalian target of rapamycin (mTOR) and 4E-BP1, both of 

which are mainly involved in synthesis of protein (Proud 2006).  

Other signalling pathways in skeletal muscle cells involved in MPS include in particular 

the mTORc1 that targets and activates kinases such as S6K1 that ultimately results in 

ribosomal biogenesis and translation.  
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Figure 1.3 from Haran, Rivas et al. 2012.    

Anabolic stimuli (amino acids, growth factors (insulin, IGF-1), and exercise (not 

shown) act through the mTOR and Akt signalling pathways. mTORC1 is involved in 

the phosphorylation and activation of S6K1 and phosphorylation and inactivation of 4E-

BP1, resulting in ribosome biogenesis, increase in translational efficiency, and 

heightened MPS. The energy sensor AMPK inhibits this pathway, and is active when 

the AMP/ATP ratio is high. Growth factor stimulates activation of the PI3K pathway as 

well as mTORc2; both eventually activate Akt, which can inhibit stress signalling and 

apoptosis through inactivation of FOXO1/O3 transcription factors. Akt also plays a role 

in carbohydrate metabolism. P- phosphorylation, activation or inactivation; PI3K- 

phosphoinositide 3 kinase; Akt- protein kinase B; FOXO- forkhead protein box O; 

AMPK -AMP-activated kinase; 4E-BP1- eIF4E-binding protein 1; S6K1- S6 kinase 1 
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1.4 Defining Insulin Resistance 

Harold Percival Himsworth, who as author of the pivitol paper ‘Diabetes mellitus: its 

differentiation into insulin-sensitive and insulin-insensitive types’ was perhaps the first 

person to introduce the concept of insulin resistance. (Himsworth, 1936). Through 

insulin administration to different subjects with diabetes and comparing the rate and 

extent of fall in blood glucose levels, Himsworth was able to classify diabetes into two 

types: “those in whom insulin produced an immediate suppression of hyperglycaemia 

following glucose intake, that is subjects who are insulin-sensitive but appeared to be 

insulin deficient; and those in whom insulin had little or no effect in suppressing 

hyperglycaemia, described as insulin-insensitive.” He proposed that the observed 

insulin insensitivity was through restriction of a then unknown sensitising factor which 

in normal healthy humans produces a response to insulin in the presence of 

carbohydrate. It is now recognised that several possible mechanisms exist to explain this 

phenomena, as discussed in the subsections before. Of interest and significance is that 

Himsworth preferred the term insulin insensitivity to resistance, as he found no 

convincing evidence of a factor that ‘resists’ the action of insulin per se. The term 

insulin resistance had also been used to refer to preceding observations of an individual 

requiring more insulin than expected to produce hypoglycaemic symptoms or when vast 

amounts of insulin were insufficient to prevent the development of diabetic coma 

(Joslin 1935, Root 1929) and patients on insulin requiring increasing large amounts of 

insulin to control hyperglycaemia (Kahn CR, Rosenthal AS 1979). The term is now 

used interchangeably to describe the precursor or preceding state of diabetes.       

Following on from what is now regarded ‘a seminal contribution’(Reaven 2011), further 

experimental works from Himsworth published in the late 1930s to 60s did not have as 

much impact, and it was not until the 1970s when work by Reaven, whose experimental 
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methods in quantifying insulin-mediated glucose rekindled interest in insulin resistance. 

He found insulin resistance to be characteristic of patients with glucose intolerance 

(Shen S 1970) and later to the association of insulin resistance and different human 

diseases (Reaven 1988) and the development of clinical syndromes such as the 

metabolic syndrome (Reaven 2005).  

At its simplest level insulin resistance can be defined as decreased sensitivity or 

responsiveness to the metabolic actions of endogenous or exogenous insulin to increase 

whole body glucose uptake and utilisation (Lebovitz 2001) characterized by higher 

fasting and post-glucose loading insulin levels (Kelley 2000). No universally-agreed 

definition of insulin resistance exists but various descriptions have been proposed 

according to methods of assessments in vivo. Using fasting plasma insulin to measure 

insulin action on a population, the definition of insulin resistance used to identify at risk 

individuals in a study by Salazar et al. 2011 was based on results of a study where 25% 

of an apparently healthy population with highest insulin concentrations developed 

glucose intolerance, hypertension and coronary vascular disease to a greater degree than 

the remaining 75% of the population.   

The term insulin resistance has now been widely used and closely associated with a 

cluster of metabolic and cardiovascular abnormalities that define the metabolic 

syndrome (DeFronzo RA, 1991). This close association is acknowledged by the fact 

that the Adult Treatment Panel III (ATP III) have in their diagnostic guidelines used the 

terms ‘Metabolic Syndrome’, ‘Syndrome X’ and ‘insulin resistance syndrome’ 

synonymously. Although there appears to be a close affiliation, the metabolic syndrome 

is by no means a defining term for insulin resistance. In fact using criteria diagnostic of 

the metabolic syndrome (MetS) based on the harmonized version of the Adult 

Treatment Panel III (ATP III) and International Diabetes Federation (IDF) (see Figure 
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1.4), a number of studies (Cheal et al. 2004, Liao et al. 2004, Siera-Johnson et al. 2006, 

Salazar et al. 2011) concluded that MetS criteria did not provide an effective way of 

identifying individuals who are insulin resistant and that care should be taken when 

referring to a state of insulin resistance based on these factors. 

 Waist Circumference : ≥ 94 cm in men and ≥ 80 cm in women 

 HDL-C: <1.0 mmol/L (40 mg/dl) in men and <1.3 mmol/L (50 mg/dl) in 

women 

 Triglycerides: ≥1.7 mmol/L (150 mg/dl) 

 Systolic BP ≥130 mmHg or Diastolic BP ≥ 85 mmHg 

 Glucose: ≥6.1 mmol/L (110 mg/dl) 

 

Figure 1.4: Harmonised version of ATP III and IDF diagnostic criteria of MetS. 3 out 

of 5 criteria are required to diagnose MetS. 

1.4.1 Insulin resistance and its association with cardiovascular disease. 

Perhaps the concept of an association between clusters of cardiovascular risk factors and 

diabetes was best described by Reaven in 1988, who identified a clear relationship 

between hyperinsulianemia, glucose intolerance and hypertension, and also led to the 

descriptive term ‘Syndrome X’. However this probably had its origins much earlier in 

1923 when Kylin described the clustering of hyperglycaemia, hypertension and 

hyperuricaemia (Kylin E 1923). This was followed by others who associated obesity 

(Vague 1947) and hyperlipidaemia (Avogaro and Crepaldi 1965) with diabetes.  

Hypertension is more common in obesity as these individuals tend to be 

hyperinsulinaemic, and those who underwent exercise training experienced a decline in 

blood pressure limited exclusively to those who also had reducing insulin levels. The 

possible pathogenesis underlying this are that increases in insulin concentration 

promotes an increase in catecholamine levels and therefore sympathetic activity. Insulin 
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has also been shown to act on the kidney at the level of the renal tubules in promoting 

sodium resorption and proximal tubule to promote volume resorption (Reaven GM 

1988). Other metabolic associations with insulin resistance are listed in Figure 1.4. 

Epidemiological studies suggest that hyperinsulinaemia is a risk factor for Coronary 

Artery Disease (CAD). However the mechanisms are not entirely clear. 

Hypertriglyceridaemia appears to be secondary to insulin resistance. An inverse 

relationship between high-density lipoprotein cholesterol concentration and glucose 

intolerance and direct relationship between triglycerides and hyperinsulinaemia are 

observed.  These clusters of risk factors of CAD may be important in the development 

of CAD and in the early days have been termed Syndrome X. This included resistance 

to insulin-stimulated glucose uptake or insulin resistance, glucose intolerance, 

hyperinsulinaemia, increased VLDL triglyceride and decreased high-density lipoprotein 

cholesterol and hypertension. The common feature is insulin resistance, which has often 

led to some groups referring to insulin resistance as Syndrome X or metabolic syndrome 

(Reaven 1988).     

1.4.2 Metabolic syndrome 

As alluded to earlier, the terms metabolic syndrome, Syndrome X (Reaven 1988), 

insulin resistance syndrome (Haffner 1992); and less so the plurimetabolic syndrome 

and the deadly quartet (Kaplan 1989) have been used interchangeably to describe the 

risk factors associated with insulin resistance and cardiovascular disease. As a 

consequence, the prevalence and indeed the identification of the syndrome vary among 

different studies given the lack of unifying and accepted criteria as a definition. The 

insulin resistance syndrome appears to be widely accepted as insulin resistance is a 

common denominator seen in descriptions of the syndrome. However the term has also 

raised differing and sometimes controversial views on what constitutes an accepted 



18 
 

definition. In 1998 the World Health Organisation (WHO) agreed on the term metabolic 

syndrome, supported by the third report of the National Cholesterol Education Programs 

Adult Treatment Panel (ATP III) but with different definitions. The ATP definition or 

factors used to define the metabolic syndrome is the most widely used in literature 

(Figure 1.4), however some argue that criteria to define the syndrome remain 

ambiguous. Doubt also remains over whether all patients that meet criteria of the 

metabolic syndrome are indeed insulin resistant. Unsurprisingly it became difficult to 

directly compare data from research studies using different definitions of the syndrome. 

The International Diabetes Federation (IDF) 2005 current definition attempts to address 

both the clinical and research needs establishing a ‘platinum standard’ of diagnostic 

criteria. However not all groups or associations were on board with the new definition, 

with the ADA/EASD questioning as to whether the syndrome was indeed a ‘syndrome’, 

if it actually served a purpose and whether the term was ‘medicalising’ people 

unnecessarily, driven by industry to create markets for pharmacological intervention 

(Kahn et al. 2005).  Despite the differences in opinion the IDF’S criteria is strongly felt 

to identify individuals at high risk of developing T2DM and cardiovascular disease, 

advocating  lifestyle changes over drug treatment (IDF 2005, Alberti, Zimmet, Shaw 

2005). Further research in this area will clearly identify more accurate predictive indices 

for the future.    

1.4.3 Role of insulin resistance in the development of Type 2 Diabetes 

Two major conclusions were reached from a series of experiments utilising insulin 

clamps conducted by Himsworth et al. (1939). First, insulin-stimulated uptake of 

glucose is significantly lower in people with impaired glucose tolerance and T2DM 

compared to normal healthy subjects. The degree to which this is reduced was 

comparable between those with IGT and T2DM, indicating no relationship between 
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fasting plasma glucose concentration and insulin resistance in these groups. This 

observation was in line with studies carried out on Pima Indians. Secondly, it was 

showed that there was almost a three-fold variance in insulin-stimulated uptake in 

glucose in individuals with normal glucose tolerance. Around a quarter of the normal 

population would exhibit insulin resistance to a similar degree of severity seen in 

individuals of impaired glucose toleranc (IGT) and T2DM, regardless of degrees of 

hyperglycaemia. These apparent inconsistencies are explained by the extent of insulin 

that can be secreted to compensate for insulin resistance. The individuals’ rate and 

sustainability of beta-cell insulin secretion determines their ability to stimulate glucose 

uptake and maintain glucose levels. It is not clear why the amount of insulin secreted 

differs from one person to another, but what is clear is that the beta cells play a crucial 

role in determining the degree of glucose tolerance and maintaining glucose 

homeostasis and that the inability to maintain hyperinsulinaemia leads to development 

of hyperglycaemia seen in IFG and T2DM. Elevated FFA concentrations can also 

inhibit insulin-stimulated glucose uptake (Ferrannini 1983). There is a direct 

relationship between plasma FFA concentrations and hepatic glucose production and 

plasma glucose concentration (Golay et al. 1987). An increase in FFA flux to the liver 

augments hepatic glucose production in humans and rat liver and causes 

hyperglycaemia by stimulating gluconeogenesis. This relationship is further supported 

by evidence showing agents that interfere with hepatic fatty acid oxidation can lower 

plasma glucose concentration (Ratheiser K et al. 1991, Hubinfer A et al. 1997). 

Administration of a potent inhibitor of the hepatic carnitine palmitoyl transferase (CPT) 

system lowered plasma glucose concentrations in rats with experimental diabetes (Conti 

R et al. 2001). It is also interesting to note that with the etoximir, FFA concentrations 

increased whilst insulin concentrations remained the same, indicating that the fall in 
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glucose was not entirely due to enhanced beta-cell function but inhibition of hepatic 

FFA oxidation.  

 

1.4.4 Liver fat and development of insulin resistance 

Excess energy is stored as glycogen and in particular as fat in liver, adipose tissue and 

muscle. Excessive accumulation of fat in liver has been linked to hepatic insulin 

resistance and indeed whole-body insulin resistance. The presence of liver fat 

independent of other cardiovascular risk factors has been shown to predict the onset of 

T2DM, and observed to be present before the onset of T2DM (Yki-Jarvinen 2005). This 

is because fatty liver overproduces very low density lipoprotein (VLDL), glucose, C-

reactive protein (CRP), fibrinogen and coagulation factors, well-known cardiovascular 

risk factors. In contrast, reduction in liver fat content is associated with an improvement 

in insulin suppression of glucose production and fasting plasma glucose (Petersen et al. 

2005). Carbohydrate (sucrose) overfeeding for 3 weeks has been shown to increase liver 

fat content and liver enzymes of overweight individuals that were reversible following 

reverting to a hypoenergetic diet (Sevastianova et al. 2012). Higher plasma insulin 

levels are associated with and to an extent influences the rate of hepatic DNL (Petersen 

et al. 2012, Schwarz et al. 2003). This is further substantiated by studies showing 

hypoenergetic diet (Nobili et al. 2007), physical activity (Perseghin et al. 2007) and 

thiazolinedione (Ravikumar et al. 2005) use reduces insulin secretion and decreases 

liver fat content. 

DNL following carbohydrate intake causes transport of free fatty acids into 

mitochondria.  But because malonyl-CoA (produced during DNL) inhibits oxidation, 

newly produced triacylglycerol is preferentially directed towards storage or export, 

contributing to increased liver fat and VLDL (Taylor 2013).  Accumulation of liver fat 
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also occurs when oxidation of fatty acids is perturbed or reduced. Hepatic insulin 

resistance develops when fatty acids are esterified to diacylglycerol (DAG, an 

intermediate of triacylglycerol and phospholipid metabolism), which activates protein 

kinase C epsilon type (PKCε) that in turn inhibits the signalling pathway from the 

insulin receptor to IRS-1 (Samuel et al. 2010). This effect on the first post- receptor step 

is underscored by disruption to the insulin signalling pathway, an important part of the 

mechanism involved in insulin action as described in Subchapter 1.2. In obesity 

intrahepatic DAG correlates with hepatic insulin sensitivity (Magkos et al. 2012).  

Ceramides (a derivative of sphingomyelin) cause sequestration of Akt2 and activation 

of gluconeogenesis, but no relationship to hepatic insulin resistance in humans could be 

demonstrated (Kumashiro et al. 2011). Despite a strong relationship between increased 

liver fat and insulin resistance, high levels of liver fat do not inevitably correlate with 

hepatic insulin resistance. This observation is analogous to normal insulin sensitivity 

seen in trained athletes despite raised intramuscular triacylglycerol (van Loon and 

Goodpaster 2006) and in muscle of mice overexpressing the enzyme DGAT-1(Liu et al. 

2009). 
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Figure 1.5: Mechanism of interaction between excess amounts of fatty acids, 

diacylglycerol and ceramide and insulin action within the hepatocyte. DAG activates 

PKCε and inhibits activation of IRS-1 by the insulin receptor. Ceramides cause 

sequestration of Akt2 by PKCζ and inhibit insulin control of gluconeogenesis (Taylor, 

Diabetes Care 2013).  

 

 Figure 1.6: Twin cycle hypothesis in the development of T2DM (Taylor, Diabetologia 

2008). 

http://care.diabetesjournals.org/content/36/4/1047/F6.large.jpg
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So now the increased liver fat not only causes resistance to insulin suppression of 

hepatic glucose production, but increases fasting plasma glucose over a period of time 

and thus basal insulin. Chronic hyperinsulinaemia promotes lipogenesis and increases 

conversion of excess energy to fatty acids, and so begins the cycle of hyperinsulinaemia 

and blunted suppression of hepatic glucose production. VLDL triglycerol increases 

delivery of fatty acids to tissues, including the islet cells of pancreas.  Excess fatty acid 

availability in the pancreatic islet impairs the acute insulin secretion in response to 

nutrients, and at a certain level of fatty acid exposure, postprandial hyperglycemia 

ensues. Hyperglycaemia further increases insulin secretion rates, enhances hepatic 

lipogenesis, and further drives the liver and pancreatic cycle. Eventually, the fatty acid 

and glucose inhibitory effects on the islets reach a trigger level that leads to a relatively 

sudden decompensation into clinical diabetes (Taylor 2008).  

1.4.5 Skeletal muscle insulin resistance 

Although Taylor touched upon the contribution of muscle insulin resistance albeit a 

chronic pre-existing contribution to the twin cycle hypothesis and recognised that 

muscle insulin resistance reflects whole body insulin resistance as the earliest predictor 

of onset of T2DM (Petersen et al. 2007), it would appear that he did not regard muscle 

to exert as large of an influence on development of T2DM than the liver or pancreas. 

Taylor argues that resumption of normal or near-normal blood glucose control leads to 

improvement of liver insulin sensitivity and not muscle, and this is supported by early 

animal studies. Mice with absent skeletal muscle insulin receptors do not develop 

diabetes (Bruning et al. 1998). Moreover humans with the PPP1R3A genetic variant of 

muscle glycogen synthase who cannot store glycogen in muscle after meals are not 

necessarily hyperglycemic (Savage et al. 2008). Normoglycemic individuals have been 

shown to maintain normoglycaemia with a degree of muscle insulin resistance identical 
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to those with T2DM (Taylor 2008). He also maintained that mitochondrial defects in 

muscle of insulin resistant individuals/people with diabetes (Petersen et al. 2004) were 

irrelevant to the aetiology of T2DM. It is not difficult to comprehend why Taylor was 

opposed to muscle insulin resistance as a major contributor to development of T2DM as 

he argues it is not muscle insulin resistance per se that causes blood glucose to rise but 

chronic hyperinsulinaemia that expedites accumulation of fatty acids, causing rise to 

chronic hyperglycaemia and ultimately insulin resistance.  

This brings us to discussing how muscle insulin resistance develops, giving rise to 

whole body insulin resistance, perhaps adding to part of Taylor’s theory that it is liver 

fat and the pancreas that acutely trigger onset of overt diabetes.  

 De Fronzo and Tripathy (2009) considered skeletal muscle insulin resistance as the 

initiating factor for development of T2DM long before beta cell failure of the pancreas 

(Lillioja et al. 1998, Warram et al. 1990) with impaired muscle glycogen synthesis as 

the primary defect in the development of insulin resistance. Under hyperinsulinaemic 

clamp conditions, around 75-80% of insulin-mediated glucose uptake occurs in skeletal 

muscle (Thiebaud et al. 1982, DeFronzo et al. 1981) whilst the remainder 20-25% of 

insulin-stimulated muscle glucose disposal is oxidised to CO2 and H20 (De Fronzo 

1997).  The earliest metabolic manifestation in the pathogenesis of T2DM appears to be 

moderate to severe insulin resistant muscle, demonstrated by examining lean, normal 

glucose tolerant, first degree relatives of people with T2DM (Warram et al. 1990) and 

long-term follow-up of normal glucose tolerant individuals as they progress from 

impaired glucose tolerance to overt diabetes (McCance et al. 1994). This approach 

provides a robust examination of development of diabetes as it excludes confounding 

factors such as obesity and hyperglycaemia. The earliest detectable metabolic 

abnormality seen in humans in T2DM is impairment of glycogen synthesis secondary to 
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reduced glycogen synthase activity (Bogardus 1984, DeFronzo 1997). In non-glucose 

tolerant offspring of parents with T2DM, using the two-step euglycaemic insulin clamp, 

impairment of glucose uptake was entirely accounted for by non-oxidative glucose 

metabolism (which represents glycogen synthesis). No defect was noted in the 

suppression of hepatic glucose production by insulin (Gulli et al. 1992). Insulin 

secretion was significantly increased excluding a primary defect in beta cell function. 

Perseghin et al. (2007) directly quantified the defect in muscle glycogen synthesis over 

time in (non-glucose tolerant) NGT offspring of parents with diabetes using nuclear 

magnetic resonance (NMR) spectroscopy and demonstrated that reduced glycogen 

synthesis accounted for almost all of the decrease in insulin-stimulated muscle glucose 

disposal. Using the triple isotope method of 
12

C mannitol, 
13

CO methylglucose and 
3
H 

glucose and euglycaemic clamp, defects in muscle glucose transport and 

phosphorylation were seen in NGT offspring of T2DM parents, similar to that seen in 

T2DM individuals. Using 
14

C NMR, a similar defect along the glucose 

transport/phosphorylation pathway in particular the glucose-6-phosphate levels were 

seen by Rothman et al. (1995). A follow-up prospective study on Pima Indians (Weyer 

et al. 1999) found that at-risk individuals were resistant to insulin but at the stage of 

NGT, beta cells were able to secrete sufficient insulin to offset the insulin resistance. 

Over time progressors (at-risk individuals who progressed to T2DM) and non-

progressors (at-risk individuals who remained as NGT) experienced further reduction in 

insulin sensitivity (11-14%). However an interesting observation was that progressors 

were able to off-set muscle insulin resistance by augmenting insulin secretion by 30% 

whilst non-progressors were associated with almost an 80% decline in the acute insulin 

response to the intravenous glucose challenge. As the majority of glucose disposal after 

intravenous glucose administration occurs in muscle, this provides compelling evidence 
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that insulin resistance in muscle is the earliest demonstrable defect in the development 

of T2DM. However for overt T2DM to occur, beta cells must be at a stage where they 

are unable to compensate for the defect in insulin action (Gastaldelli 2004, Abdul-Ghani 

et al. 2006).  

The molecular mechanisms involved in the aetiology of skeletal muscle insulin 

resistance in genetically-predisposed individuals have been identified and appear to 

manifest at an early stage in NGT insulin resistant offspring of parents with T2DM. 

Using the euglycaemic insulin clamp and skeletal muscle biopsies, defects in IRS-1 

tyrosine phosphorylation and PI-3 kinase and Akt activation were consistently 

demonstrated in T2DM subjects (Krook et al. 2000, Cusi et al. 2000, Bouzakri 2003). 

Basal and insulin-stimulated IRS-1 tyrosine phosphorylation (a requisite for glucose 

transport and glycogen synthesis) and PI-3 kinase activity are significantly reduced in 

NGT subjects with a strong family history of T2DM (Morino et al. 2005). A similar 

significant reduction in PI-3 kinase activity has been observed during conditions of 

elevated FFA levels induced in lean healthy subjects during insulin-mediated glucose 

disposal (Belfort, Mandarino et al. 2005) 

NGT offspring of parents with T2DM were shown to possess muscle insulin resistance 

but normal sensitivity to the suppressive effects of insulin on hepatic glucose production 

(Gulli et al.).  Elevated fasting plasma FFA concentration during conditions of fasting 

hyperinsulinaemia and impaired suppression of plasma FFA during the euglycaemic 

insulin clamp indicate the presence of adipocyte resistance to the anti-lipolytic effects of 

insulin. Impaired insulin –mediated suppression of whole-body lipid oxidation was also 

present. The accumulation of lipid in muscle (IMCL) has been demonstrated in 

offspring of T2DM (Petersen et al. 2005), and as elaborated below is one of the primary 

drivers to the development of muscle insulin resistance as a result of accumulation of 
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lipid metabolites (ceramides, DAG and long-chain fatty acyl-coAs) that interfere with 

the insulin-signalling pathway (Hotamisligil et al. 1996, Schmitz-Peiffer 2000). In 

relation to this, accumulation of lipid in muscle is associated with skeletal muscle 

insulin resistance (Phillips, Caddy et al. 1996). Ceramides and DAG have been shown 

to be elevated in obese insulin resistant rat muscle with increased intra-myocellular lipid 

(IMCL) content (Turinsky, O'Sullivan et al. 1990) . DAG and ceramide act as second 

messenger involved in intracellular signalling with roles in cPKC and nPKC –mediated 

activation and reduction in Akt and GLUT4 translocation respectively.   

However improvements in human skeletal muscle insulin sensitivity have also been 

seen with little or no change (Bruce, Thrush et al. 2006) and even an increase in IMCL 

concentrations (Phillips, Green et al. 1996).  For example, master athletes have been 

shown to have high levels of IMCL, yet they are insulin sensitive (Goodpaster, He et al. 

2001) , indicating it is not the quantity of  IMCL per se but the complex interplay and 

balance of lipid availability, uptake and oxidation. The significance of cellular uptake 

and oxidation despite differing FFA availability will be discussed in chapter 3.  

Lower fat oxidation has been demonstrated to occur in people with T2DM and in obese-

insulin resistant but non-diabetes individuals (Kelly DE 2005), suggesting impairment 

of mitochondrial oxidative capacity. NGT offspring of parents with diabetes had 

reduced expression of key mitochondrial genes involved in regulation of oxidative 

metabolism in skeletal muscle such as energy generation, glycolytic, tricarboxylic acid 

cycle and oxidative phosphorylation. Shulman and others demonstrated impaired 

mitochondrial activity via 
1
HNMR and postulated that mitochondrial dysfunction was a 

primary defect leading to accumulation of lipid metabolites as a result of reduced fat 

oxidation and subsequent insulin resistance. However, small increases in palmitoyl-

carnitine have been shown to impair ATP synthesis in mitochondria of human muscle, 
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therefore it is not clear which is the cause, and which is the effect (Abdul Ghani et al. 

2006). 

Plasma lipid concentrations determine the rate of muscle FFA uptake, during conditions 

of hyperinsulinaemia (Brechtel, Dahl et al. 2001). Obese and insulin resistant states are 

often accompanied by high levels of FFAs and in addition to reduced lipid oxidation 

seen in obese muscle is likely to lead to excess IMCL deposition(Kim, Hickner et al. 

2000).  Excess muscle FFAs are either converted to lipid droplets for energy use or 

signalling molecules (ceramides, DAG) which may play a central role in lipid-mediated 

insulin desensitisation. Fatty acids are converted into fuel for muscle use and for this to 

occur FFAs are converted to long-chain fatty acyl co-As (LCFA co-As). These are 

transported into mitochondria by carnitine acyltransferase for beta-oxidation. The 

importance and beneficial effects of carnitine and fatty acid metabolism will be 

discussed at length in Chapter 6.  

To summarise, although there is no universally-accepted definition for insulin 

resistance, it can simply be described as a state of reduced sensitivity to the metabolic 

effects of endogenous or exogenous insulin of glucose uptake and use. There are 

differing opinions on what should constitute the metabolic syndrome, but factors that 

appear to be mutually agreed upon include factors that increase cardiovascular risk such 

as impaired glucose tolerance/diabetes, overweight/obesity, hypertriglyceridaemia and 

hypertension. Mechanisms underlying hepatic and skeletal muscle insulin resistance 

contribute to development of T2DM.  
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1.5. Skeletal muscle, lipid accumulation and insulin resistance 

Elevated levels of FFA concentrations are associated with obesity and skeletal muscle 

insulin resistance, and may even predict development of T2DM (Jenssen et al. 1989, 

Poulisso et al. 2005, Samuel and Shulman 2012). Indeed, Randle et al., besides 

proposing their theory on the glucose-fatty acid cycle, were one of the first to 

demonstrate that elevated plasma FFA concentrations were responsible for the reduced 

insulin sensitivity in diabetes mellitus (Randle et al. 1967).  Randle’s proposal of the 

glucose-fatty acid cycle described FFA’s inhibitory effect on glucose metabolism in 

rat’s diaphragm and isolated heart, whereby under aerobic conditions increased FFA 

availability increases fatty acid oxidation. This results in mitochondrial citrate and 

acetyl-coenzyme A (CoA) build-up and a rise in the cytoplasmic NADH/NAD ratio. 

The increase in acetyl-coA thus inhibits pyruvate dehydrogenase activity and 

subsequent inhibition of phosphofructokinase. This would cause a rise in glucose-6-

phosphate, inhibition of hexokinase II activity, increase in intracellular glucose and 

subsequent reduction in glucose uptake (Randle 1998, Dresner et al. 1999). In muscle 

and adipose tissue, glucose promotes reesterification of circulating FFA, whereas FFA 

inhibits muscle glycolysis, thus restricting glucose utilisation.  

However in contrast to Randle’s hypothesis not all subsequent studies have yielded 

similar findings (Schonfeld and Kipnis 1968). Using lipid infusion, insulin clamp 

technique and nuclear magnetic resonance (Roden et al. 1996, 1999) demonstrated that 

in contrast to Randle’s theory, FFAs induced insulin resistance at the level of glucose 

transport/phosphorylation, which then leads to a reduction in muscle glycogen synthesis 

and carbohydrate oxidation.  In concert with these findings, others (Griffin et al. 1999, 

Rothman et al. 1992) showed that lipid infusion decreases intracellular glucose and 

glucose-6-phosphate content secondary to inhibition of skeletal muscle glucose uptake.  
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Plasma lipid concentrations determine the rate of muscle FFA uptake, during conditions 

of hyperinsulinaemia  (Brechtel, Dahl et al. 2001). Obese and insulin resistant states are 

often accompanied by high levels of FFAs and in addition to reduced lipid oxidation 

seen in obese muscle is likely to lead to excess IMCL (Kim, Hickner et al. 2000).  On a 

mechanistic level, lipid infusion during hyperinsulinaemic euglycaemic clamp has been 

demonstrated to affect the intracellular signalling pathways in skeletal muscle by 

reducing IRS- 1 tyrosine phosphorylation, IRS-1 and 2 associated PI3-kinase activity 

and Akt phosphorylation and activity (Kim et al. 2000, Yu et al. 2002). Mechanisms 

implicated include activation of kinases such as PKCs, IKKβ, and JNK and p38 MAP 

kinase, thought to reduce phosphorylation of tyrosine residues of IRS-1 by insulin, 

blocking its downstream signal transduction (Tirosh et al. 1999, Bloch-Damti 2005; 

Evans et al. 2005).    

Another putative mechanism underlying lipid-induced insulin resistance include 

accumulation of  DAG that can activate novel protein kinase C (PKC) isoforms that 

cause serine phosphorylation of insulin receptor substrate-1 (Samuel and Schulman 

2012) and  ceramides as a consequence of binding of fatty acids to Toll-like receptor 4 

(TLR-4), which impairs Akt activation (Bikman and Summers, 2012). High-fat diets 

and lipid and heparin infusion induced accumulation of intracellular DAG in muscle 

(Schmitz-Peiffer et al. 1997) and activation of PKC, caused by reduction in tyrosine 

phosphorylation of IRS-1. Ceramides on the other hand may affect insulin signalling by 

activation of activation of Akt dephosphorylation at threonine 308 and inhibition of its 

translocation to the plasma membrane (Summers 2010).   

There also appears to be a causal role for the inflammatory pathways and development 

of insulin resistance. Fatty acids, like the bacteria-derived lipopolysaccharide (LPS), 

may bind to TLR-4 on macrophages and adipocytes and activate the proinflammatory 
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pathways (Medzhitov 2007) promoting c-Jun NH(2)-terminal kinase (JNK) and Iκb 

kinase (IKK) complex activation. These kinases cause phosphorylation of serine 

residues on insulin IRS-1 and inhibition of the stimulatory phosphorylation of tyrosine 

residues (Hotamisligil et al. 1993, 2008). This results in inhibition of insulin action  

Ingestion of high-fat meals and infusion of low-dose LPS can raise circulating cytokines 

such as tumour necrosis-α (TNF-α), IL-1β and IL6 (Krogh-Madsen et al. 2008) which 

in turn could cause elevation of lipid metabolites (Bikman and Summers 2011).  

Reactive oxygen species (ROS) are involved in important physiological processes, 

produced in response to stimuli such as nutrient metabolism and signalling through 

plasma membrane receptors. High levels of ROS are associated with chronic elevation 

in plasma lipid levels and intramyocellular fatty acids (Carvalho-Filho et al. 2005) and 

can negatively affect various biological signalling pathways. Impairment of the insulin 

signalling pathway is not completely understood, but ROS has been demonstrated to 

induce IRS serine/threonine phosphorylation, decrease GLUT-4 gene transcription and 

decreasing mitochondrial activity (Bloch Damti 2005, Morino et al. 2005). Animals fed 

a high-fat diet were found to have increased ROS production and were insulin resistant. 

Conversely when treated with antioxidants this improved oxidative stress and insulin 

sensitivity (Ogihara et al. 2004; Blouet et al. 2007).  

Several studies have shown mitochondrial dysfunction to play a pivitol role in the 

development of insulin resistance, whilst others have not (Dela, Helge 2013). 

Mitochondrial content, function and oxidative capacity in muscle were found to be 

reduced in insulin resistant obese and in T2DM (Holloway 2007, Schrauwen-

Henderling et al. 2007). These findings are corroborated by studies involving high fat 

diet or lipid infusion to healthy humans and rodents, resulting in impaired oxidative 

phosphorylation and ATP synthesis (Chanseaume et al. 2006, Szendroedi et al. 2009).  
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With regards to the interaction between FFA and the liver, early studies have shown that 

FFA stimulates gluconeogenesis from lactate (Struck et al. 1966), alanine (Herrera et al. 

1966) or pyruvate (Friedman et al. 1967) in perfused rat liver.  A relatively new 

hypothesis proposed is the association between skeletal muscle insulin resistance and 

excessive fat oxidation rates and mitochondrial overload. According to this hypothesis, 

when beta-oxidation exceeds the mitochondrial’s capacity to utilise acetyl-coA in the 

TCA cycle, incompletely oxidised, short-chain fatty acid products such as acylcarnitines 

may impair skeletal muscle insulin sensitivity (Muoio et al. 2008). This proposal is 

supported by increased levels of partially oxidised acylcarnitines seen in skeletal muscle 

of insulin-resistant high fat diet (HFD)-fed mice and diabetic fatty rats. The mechanism 

however has not been largely explored and investigated in humans.  

 

1.6 Lipid infusion 

Several of the studies described above utilised intravenous lipid infusion and heparin. In 

at least the last five decades intravenous lipid infusion has been used as a means of 

examining the effects of an acute increase of FFA levels on glucose uptake and 

underlying mechanisms of insulin resistance development in healthy subjects. Felber 

and Vannotti (1964) were one of the earliest to observe that lipid infusion caused 

glucose intolerance in normal, healthy individuals. Several studies substantiating this 

finding show a reduction in rate of plasma glucose disappearance following lipid 

infusions (Schalch and Kipnis (1965), Balasse and Neef (1975)). 

Ferrannini et al. explored the effects of physiological elevations of FFA concentrations 

on glucose production and utilisation under controlled hyperinsulinaemic conditions and 

findings were shown to be compatible with Randle’s glucose fatty acid hypothesis 
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(Ferrannini et al. 1983). In this study, heparin was infused concurrently to raise FFAs 

three to four fold, by intravascular lipolysis of infused lipids which stimulates activity 

of lipoprotein lipase in blood. When FFA concentrations were raised following IV lipid 

infusion under hyperinsulinaemic euglycaemic conditions (where endogenous glucose 

production was entirely suppressed), total glucose uptake was significantly lower 

compared to control (lower M/I ratio; where M is glucose uptake and I is steady state 

insulin concentration). This clearly demonstrated that by acutely elevating FFA levels, 

insulin-stimulated glucose uptake is inhibited even in the presence of hyperglycaemia. 

When insulin levels were low, lipid infusion had no effect on glucose utilisation, 

thought to be due to uptake of glucose by non-insulin dependent tissues. It was also 

speculated that inhibition by FFAs occurred at a peripheral level, most likely muscle. In 

this regard, inhibition of glucose metabolism by FFA is more likely to occur in 

conditions where there is insulin present at particularly high levels, ie insulin resistant 

states or T2DM.   

     

1.7 High fat overfeeding 

The issue concerning high-fat diet and its association with insulin resistance is of topical 

interest and continues to be a matter of intense investigation, discussion and debate. But 

there is without doubt that high fat diets play a pivotal role in the subject of insulin 

sensitivity and is an independent risk factor for overweight and obesity (Astrup, 2001).   

The role of dietary fat in weight gain relies on the individual’s genetic background, 

environment and ability to oxidise dietary and endogenous fat (Giacco et al. 2004).      
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Data on interventional human studies investigating the effects of high-fat diets on 

metabolism and insulin sensitivity are plentiful but largely inconclusive given the short 

period of intervention and relatively small number of subjects. 

 

Whereas excessive intake of fat (>37% of daily energy intake) appears to impair insulin 

sensitivity irrespective of the composition of fatty acids in the diet (Thomas and Pfeiffer 

2011), substantial evidence from animal studies suggest that certain fats promote 

accumulation of intramuscular triglygeride (IMTG). In line with this the first way in 

which fatty acids can affect insulin sensitivity is the type or quality of fat. There appears 

to be ‘good’ and bad’ types of fatty acid that improve or reduce insulin sensitivity 

respectively (Marshall, Bessesen et al. 1997). Specifically a selective increase in 

saturated fat intake may impair insulin action (Maron et al. 1991, Parker et al. 1993; 

Mayer et al., Mayer-Davis et al. 1997) whereas increasing unsaturated fat (when total 

fat intake is low) has been linked to improving insulin sensitivity (Vessby et al. 1994, 

Pan et al.1995). One way by which fatty acids can influence insulin sensitivity is the 

fatty acid composition of cellular membrane which may influence cell insulin signalling 

(Inokuchi 2006). Fatty acid types in human diet; saturated fatty acids (SFAs), mono-

unsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), trans-

unsaturated FAs differ by spatial configuration and chemical property. The efficacy of 

molecular signalling and transduction is highly dependent on the complex positioning of 

various proteins within the fatty acid cellular membrane, and so intake of various lipid 

molecules that can affect membrane fluidity and rigidity could potentially alter the 

mechanism’s sensitivity to configurative changes. Animal studies (Storlien, Pan et al. 

1996) show that saturated fat–laden membranes promote insulin resistance, whereas 

more unsaturated membranes protect against it, a finding also noted in humans.  

file:///C:/Users/mbxcc2/Dropbox/Chapter%201%20b.docx%23_ENREF_16
file:///C:/Users/mbxcc2/Dropbox/Chapter%201%20b.docx%23_ENREF_16
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The monounsaturated fatty acids (MUFAs) may improve insulin sensitivity by exerting 

an effect on cell membrane FA composition, membrane fluidity, insulin receptor 

binding/affinity and up-regulation of glucose transporters (Riserus, Willett et al. 2009). 

It may also be that MUFA are preferentially oxidised over saturated fatty acids (SFA) 

that gradually accumulate in muscle (DeLany, Windhauser et al. 2000).  

 

PUFA may improve insulin sensitivity by its anti-inflammatory effects mediated by toll-

like receptors in particular TLR 2 and 4 (Thomas and Pfeiffer 2011). Other postulated 

effects of PUFA on insulin sensitivity include beneficial changes to membrane fluidity, 

increased binding affinity of the insulin receptor and increased glucose transport into 

cells and effects on triglycerides.  

 

The MUFAs may improve insulin sensitivity by exerting an effect on cell membrane FA 

composition, membrane fluidity, insulin receptor binding/affinity and up-regulation of 

glucose transporters (Riserus, Willett et al. 2009). MUFA diets have been found to 

prevent central fat redistribution and prevent insulin resistance from ingesting a 

carbohydrate-rich diet (Paniagua, Gallego de la Sacristana et al. 2007). 

 

In contrast SFAs have been shown to have a direct relationship with the incidence of 

insulin resistance and T2DM. Under conditions of hyperglycaemia SFA influence 

enzyme activities and transcription factors and serine kinases interfering with insulin 

signalling pathways and inflammatory pathways associated with impaired insulin 

sensitivity (Rioux and Legrand 2007; Poitout and Robertson 2008). Furthermore, high 

intakes of TFA may lead to insulin resistance and increased risk of cardiovascular 

events. (Axen, Dikeakos et al. 2003; Mozaffarian 2006). 



36 
 

With respect to ingestion of these different fatty acid types on muscle, it would appear 

that accumulated lipid metabolites may be influenced by the type of fat ingested, that 

may be detrimental to mechanisms involved in insulin signalling. Saturated fatty acids 

such as palmitate, stearate or arachidate induce ceramide and DAG synthesis, inhibit 

Akt activation (Storz, Doppler et al. 1999; Chavez, Knotts et al. 2003), reduce glucose 

uptake by desensitisation of insulin stimulation (DAG) (Montell, Turini et al. 2001) and 

inhibit IR or IRS-1 phosphorylation (palmitate)(Storz, Doppler et al. 1999). A 

mediterranean- style diet consisting 25-35% of fat, containing mostly monounsaturated 

fats, has been linked to preventing risk factors of metabolic disease. (Kastorini, Milionis 

et al. 2011).  

N-3 PUFAs found in fish oil have been shown to be beneficial against development of 

insulin resistance, although the reversal of insulin resistance by increasing intake is not 

definitive. Rats fed a high-fat diet enriched with n-3 PUFA maintained IR, IRS-1, PI3-k 

activity and GLUT-4 content in skeletal muscle. N-3 PUFA are also preferentially 

oxidised over saturated fatty acids, and can up-regulate genes involved in lipid 

oxidation such as PPARs. In contrast n-6 PUFA appear to exhibit effects opposite of 

that seen with n-3 PUFA.  

1.7.1 Fat overfeeding studies, liver fat and insulin resistance 

  One of the more pertinent studies involved overfeeding rats a high-fat diet for 3 days 

such that a model of  NAFLD was simulated to determine the effect of hepatic fat on 

hepatic insulin responsiveness without the possible confounding effect of peripheral 

insulin resistance (Shulman 2004).  After 3 days of overfeeding fat (59% fat, 26% 

carbohydrate, 15% protein), hepatic triglycerides and fatty acyl-coA content nearly 

tripled but remained unchanged in muscle. Therefore high fat overfeeding resulted in 

marked hepatic insulin resistance whilst peripheral (muscle and adipose tissue) insulin 
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sensitivity was unaltered. This was attributed in part to decreased insulin-stimulated 

tyrosine phosphorylation of IRS-1 and IRS-2 which may result from activation of PKC-

ε or JNK, limiting the ability of insulin to activate glycogen synthase.  

In humans ingestion of a 2 week isocaloric high-fat diet increased liver fat, but body 

weight and subcutaneous fat mass were unchanged implying possible uptake of excess 

fat by the  liver (Westerbacka et al. 2005). This was in accordance with a 3 week study 

incorporating isocaloric high-fat diet in overweight men (van Herpen et al. 2011). 

Although these studies demonstrate accumulation of liver fat, it would appear that this 

did not translate to hepatic insulin/peripheral insulin resistance or that to see a 

significant effect on insulin sensitivity a hyperenergetic diet and longer duration of 

overfeeding is required. In contrary, Brons et al showed that a hyperenergetic high fat 

diet for 5 days led to a significant increase in hepatic glucose production. 

1.8 High Carbohydrate feeding  

Fructose and glucose overconsumption have long been associated with fatty liver but 

there is still controversy as to whether it is the macronutrient or energy excess from 

increased consumption that contributes primarily to liver fat accumulation and insulin 

resistance. Fructose in particular has been related to fatty liver and severity of 

histological changes in people with NALFD (Kang et al. 2006) independent of obesity 

and total caloric intake.  However studies on the effect of excessive carbohydrate on 

liver fat content are relatively few. One of the first few studies examining this possible 

relationship showed no effect on liver fat after 4 weeks of fructose overfeeding in lean 

healthy men (Kang et al. 2006, Silbernagel 2011). Insulin sensitivity in the latter study 

also remained unchanged. In contrast, others shown that a high fructose diet does have a 

positive effect on increasing liver fat (Le at al. 2009, Ngo et al. 2010, Sobrecases H et 
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al. 2010). The reason for the discordance in results is not entirely known, however a 

possible explanation could be that some studies were conducted in lean healthy men 

with little or absence of liver fat at baseline. The use of isoenergetic vs. overfeeding 

diets in different studies should also be taken into consideration. When carbohydrate 

overfeeding (fructose/sucrose/glucose) was examined in overweight or offspring of 

people with T2DM, an increase in intrahepatic lipid content was observed, further 

suggesting that overweight (Sevastianova et al. 2012)  and offspring of T2DM subjects 

tended to have a predisposition towards increased TAG/liver fat content.  The I148M 

variant in the palatin-like phospholipase domain containing protein 3 (PNPLA3) gene is 

associated with liver fat (Sookoian and Pirola 2011) and mutant PNPLA3 is unable to 

hydrolyse intrahepatic triglycerides (He et al. 2010). Therefore possession of this 

genotype may exert an influence an individuals’ response to carbohydrate feeding. A 3 

week hyperenergetic high carbohydrate diet (1000kcal/day with 98% energy from 

carbohydrate) in overweight healthy men resulted in weight gain and a 27% increase in 

liver fat content from baseline (Sevastianova et al. 2012). This study did not primarily 

study the effects of high carbohydrate diet on insulin sensitivity, but no difference in 

fasting plasma glucose was seen post-overfeeding period although a trend in increased 

fasting serum insulin concentrations. Johnston et al. 2013 showed that overweight men 

on isocaloric high-fructose or high-glucose diets did not develop significant changes in 

hepatic concentration of TAGs; however under hyperenergetic conditions these diets 

produced significant increases in liver fat indicating an energy, rather than a specific 

macronutrient-mediated effect. No effect on hepatic insulin sensitivity was seen.  

 Fructose is a unique monosaccharide in that most of its metabolism and extraction (50-

70% of fructose delivery) takes place in the liver. Therefore increased availability of 

fructose places greater demands on hepatocytes and increase abnormal glucose flux. 
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There are data to suggest that high concentrations of fructose produce adaptations in the 

liver that include metabolic intermediates, gene expression and insulin action. Increased 

fructose supply has been shown to induce a hepatic stress response activation of stress-

activated protein kinases such as c-Jun N-terminal kinases (JNK) and subsequent 

hepatic insulin signalling. Hepatic DNL (fatty acid and triglyceride synthesis) 

contributes to fatty liver and NAFLD (Donnelly et al. 2005) and substrates involved 

include primarily glucose, fructose and amino acids.   
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Table 1.1: Studies of iso-or hyperenergetic high carbohydrate or fat diets 

Authors Study description Results 

Horton et al. 1995 14 days of high energy (+50%) fat or 

carbohydrate in 9 lean and 7 obese 

males 

Carbohydrate overfeeding increased energy expenditure and carbohydrate 

oxidation and less fat oxidation. Fat was more likely to be stored as excess 

energy. No differences in energy or nutrient balance were seen in both obese 

and lean subjects in response to fat overfeeding. Obese subjects had greater RQ 

and oxidised more carbohydrate. Insulin concentrations and FFA were higher 

and lower respectively in the carbohydrate-fed group.   

Lammert et al. 2000 Effects of  3 weeks of isoenergetic high 

carbohydrate and fat overfeeding on 

body composition, sleep calorimetry and 

DNL in 20 healthy non-obese males 

Both groups had similar weight and fat mass gain. Carbohydrate overfeeding 

caused a greater increase in fractional hepatic DNL compared to fat 

overfeeding. 
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Bisschop et al. 2001 6 healthy men on 3 different fat content 

diets for 11 days. 0% and 85% [low-fat, 

high-carbohydrate (LFHC) diet], 41% 

and 44% [intermediate-fat, intermediate-

carbohydrate (IFIC) diet], and 83% and 

2% [high-fat, low-carbohydrate (HFLC) 

diet]  

A high-fat, low-carbohydrate intake reduces the ability of insulin to suppress 

endogenous glucose production and alters the relation between oxidative and 

non-oxidative glucose disposal in a way that favours storage of glucose. 

Westerbacka et al. 2005 2 weeks of isoenergetic high fat diet 

(56%) in 10 overweight/obese healthy 

females 

Liver fat at baseline averaged 10 +/- 7%. It increased by 35 +/- 21% during the 

high-fat diet. Fasting serum insulin increased during the high-fat diet. Serum 

lipids, free fatty acids, and intraabdominal and subcutaneous fat mass were 

unchanged. 

Le et al. 2006 4 weeks of overfeeding in lean healthy 

male subjects with 18% excess energy 

per day of carbohydrate (fructose) 

Increased TAG, VLDL-TAG and fasting glycaemia. Unchanged hepatic, 

adipose and whole-body insulin sensitivity 
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Kechagias et al. 2008 4 weeks of high energy overfeeding of 

carbohydrate, fat and protein in the form 

of convenience food in young healthy 

individuals 

Increased weight, serum ALT and hepatic triglyceride content. Maximal 

ALT/baseline ratio correlated with carbohydrate intake during the second 

week. HDL cholesterol increased 

Le et al. 2009 7 days of overfeeding (+35% energy 

excess) of carbohydrate (fructose) in 

healthy controls and offspring of T2DM  

Increased VLDL-TAGs, IHCLs, IMCLs in healthy controls and offspring of 

T2DM, IHCL higher in offspring of T2DM 

Ngo Sock et al. 2010 7 days of overfeeding carbohydrate 

(fructose and sucrose)  in healthy young 

males 

High fructose and sucrose diets increased VLDL-TAGS and IHCL. IMCL 

increased on the high glucose diet 

Sobrecases et al. 2010 7 days of high fructose (+35%), high fat 

(+30%) or high fructose high 

carbohydrate diets on liver fat 

Hyperenergetic diets increased IHCL, highest with combination high fat and 

carbohydrate followed by high fat and high carb. VLDL concentration 

increased post overfeeding with fructose, decreased with fat and remained 

unchanged with the combination of high fructose and fat.  
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Silbernagel et al. 2011 

4 weeks of overfeeding with 150g 

excess carbohydrate (fructose vs. 

glucose) in lean healthy male and female 

subjects 

Increased TAG in fructose group; but liver, visceral, subcutaneous abdominal 

fat and IMCL unchanged 

Van Herpen et al. 2011 3 weeks high fat isoenergetic diet 

(15%protein, 30% CHO and 55% fat) 

for 3 weeks in overweight men. 

IHL increased by 17%, IMCL and peripheral insulin sensitivity unaffected, 

reduced metabolic inflexibility. Plasma parameters insulin, free fatty acids, 

high-sensitivity C-reactive protein, and liver enzymes and body weight were 

unaffected by diet. 

Brons et al. 2011 5 days high energy (+60% energy)high-

fat (+50%) in healthy men 

Hepatic glucose production and fasting glucose levels increased significantly in 

response to overfeeding. Peripheral insulin action, muscle mitochondrial 

function, and general and specific oxidative phosphorylation gene expression 

were unaffected. 

Sevastianova et al. 2012 3 week high energy carbohydrate 

feeding (1000kcal/day, 98% energy ) in 

healthy overweight subjects 

Liver fat increased by 27% above baseline of 9.2% with significant increase in 

DNL.  
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Yu et al. 2013 10 wk overfeeding of sucrose or high 

fructose corn syrup equivalent to 

25
th
,50

th
 and 90

th
 percentile in 138 

subjects 

Weight and total energy intake increased. There was no difference in waist 

circumference, fat mass, liver or muscle fat. There was an increase in 

triglycerides but not cholesterol levels. 

Johnston et al. 2013 Effects of 2 weeks of isoenergetic vs. 

hyperenergetic fructose vs. glucose on 

liver TAG, insulin sensitivity and liver 

biochemistry  

No difference between high-fructose and high-glucose diets on liver 

triacylglycerol or biochemistry in healthy overweight men. 
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1.9 Carbohydrate and fat overfeeding diets 

Studies comparing carbohydrate vs. fat overfeeding are scarce. When healthy men with 

normal body mass index were fed either a hyperenergetic (30-35% excess energy from 

fructose or fat) or 65% excess energy from fructose and fat) for a period of 4-7 days, 

intrahepatocellular lipid (using 
1
H MRS imaging) increased with all diets, but more so with 

fat overfeeding (+86% compared to fructose, +16%). Interestingly subjects were only overfed 

fat for 4 days compared to a week in the fructose group. Fasting glycaemia remained 

unchanged whilst serum insulin tended to increase in all groups. Hepatic glucose production 

remained unchanged (Sobrecases et al. 2010).   

Another pertinent study examined the effect of subjects overfed isoenergetic amounts (+50% 

above energy requirements) of fat or carbohydrate on energy expenditure for 2 weeks. The 

study showed that carbohydrate overfeeding produced progressive increases in carbohydrate 

oxidation and total energy expenditure resulting in 75-85% excess of energy being stored, 

whilst fat overfeeding had minimal effects on fat oxidation and total energy expenditure 

resulting in greater fat storage of 90-95% excess energy (Horton et al. 1995). This suggests 

that fat overfeeding results in greater fat accumulation than carbohydrate excess. This is in 

concert with other studies showing a similar result (Flatt et al. 1985, Acheson et al. 1988, 

Schutz et al. 1989, Bennett et al. 1992).  

In summary, a number of mechanisms have been implicated in association with development 

of insulin resistance, from well-established Randle’s fatty-acid glucose cycle to relatively 

recent hypotheses concerning accumulation of lipid metabolites and partially oxidised lipid 

by-products that may interfere with insulin signalling pathway. Intravenous lipid infusion has 

been shown to induce insulin resistance, providing an ideal condition for investigating 

insulin-resistant states without the influence of confounding co-existent factors.  High fat 
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diets appear to modulate insulin sensitivity depending on the type of fatty acids and 

composition ingested that may be as important as lowering total fat consumed. It would 

appear that certain fatty acids are more likely to undergo oxidation in skeletal muscle and 

lipid metabolites such as ceramide and DAG can exert a negative effect on insulin sensitivity. 

High carbohydrate diets seem to increase hepatic triglycerides particularly in overweight and 

obese humans but do not appear to have an effect on insulin resistance, probably influenced 

by the timescale and small numbers investigated in these trials.   

Another significant association with development of insulin resistance is that of ageing and 

shall be discussed in the next section.   
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1.10 Ageing and insulin resistance 

  

Ageing- related insulin resistance deserves particular attention given the rising ageing 

population and its association with diabetes and the metabolic syndrome. 

 

Figure 1.7: Global diabetes prevalence by age and sex for year 2000. Figure taken from 

Wild, S et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 

2030. Diabetes Care 2004; 27(5): 1047-1053. 

A report published in 2004 estimated diabetes prevalence for all age-groups to rise by 1.6% 

and the number of people with diabetes projected to more than double in 2030. A striking 

observation from this study was that the increase in the number of people > 65 years has 

become the major contributor to global demographic change in diabetes prevalence (Wild, 

Roglic et al. 2004). 

An inevitable consequence of ageing and undeniably the most significant contributor to 

development of T2DM, cardiovascular disease and metabolic syndrome seems to be an 

increasing risk of the development of insulin resistance. Impaired glucose tolerance and 
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development of T2DM is more common in older persons, moreover the Third National 

Health and Nutrition Examination Survey (NHANES III) found that the prevalence of 

impaired glucose tolerance, impaired fasting glucose and diabetes mellitus increases with 

advancing age; T2DM was evident in >20% while impaired glucose tolerance was found in 

another 20% of those between 60 and 74 years of age (Harris, Flegal et al. 1998).  It is well 

established that when methods of assessing insulin sensitivity was compared in old and 

young, there appears to be a clear negative correlation of insulin sensitivity and increasing 

age. Table 1.2 presents studies supporting these observations. A comprehensive review by 

Davidson in the 1970s reported at least 60 papers using the oral glucose tolerance method and 

demonstrated a progressive deterioration in oral glucose tolerance as the population aged 

(Davidson 1979). 

Table 1.2: Studies supporting an association between age and decline in insulin sensitivity 

utilising various methods of assessing glucose uptake. 

Authors Study Method Results 

DeFronzo R 

1979 

19 young 

subjects (26±1 

year) vs 17 

older subjects 

(64±2 yrs) 

Hyperinsulinaemic 

euglycaemic clamp 

Amount of glucose infused (M) 

to maintain euglycaemia was 

significantly higher in young 

than older subjects. M (amount 

of glucose)/I (insulin 

concentration) (x 100) ratio was 

higher in young vs older subjects. 
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Refaie et al. 

2006 

40 healthy non-

obese older men 

(mean age 65 

+/-4.8 years vs 

30 young and 

40 T2DM 

subjects 

IV GTT 

Insulin sensitivity 

index 

Lower fasting insulin, insulin 

sensitivity index,insulin 

resistance index,HOMA-IR, 

QUICKI, second phase insulin 

response,fractional insulin 

clearance in old vs young 

Amati et al. 

2009 

7 endurance 

trained young 

athletes vs 12 

older athletes vs 

11 young 

normal weight 

vs 10 normal 

weight older vs 

15 young obese 

vs  15 older 

obese 

 

Hyperinsulinaemic 

euglycaemic clamp 

Higher glucose disposal rates 

regardless of age in athletes 

followed by normal weight and 

obese individuals 

Karakelides et 

al. 2010 

12 young lean, 

12 young obese, 

12 elderly lean 

vs 12 elderly 

obese 

Hyperinsulinaemic 

euglycaemic clamp 

Lower insulin sensitivity in older 

people thought to be secondary to 

age-related increase in obesity 
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The effect of age on insulin secretion remains a matter of debate, likely due to differing 

methods of assessing glucose disposal in the elderly and generally few studies that focus on 

insulin sensitivity in this age group.  There’s the pertinent question of whether it is ‘age’ per 

se or other factors associated with ageing that ultimately affects insulin sensitivity. It is well 

established that ageing is associated with glucose intolerance and increasing insulin 

resistance (Davidson 1979, DeFronzo 1981, Morley 2008). Both fasting and post-prandial 

glucose concentrations are generally higher in the elderly leading to compensatory 

hyperinsulinaemia. The mechanisms underlying age and reduced insulin sensitivity are not 

completely understood, although factors associated with ageing may likely contribute to 

impairing glucose tolerance in the older population.  Insulin resistance may not be a direct 

consequence of aging per se but due to obesity (Kelley, Goodpaster et al. 1999) and physical 

inactivity. (Amati, Dube et al. 2009) Early studies seem to point to a post-receptor defect in 

target insulin function (Rowe, Minaker et al. 1983). In recent years several causes that have 

been implicated include changes in body composition such as increasing fat mass (Schutz, 

Kyle et al. 2002),(Amati, Dube et al. 2009), together with accelerated decline in skeletal 

mass and strength (Baumgartner, Wayne et al. 2004), and accumulation of lipid in muscle 

(IMCL) (Goodpaster, He et al. 2001). In addition an increasing sedentary lifestyle seen in the 

elderly attenuates muscle use, leading to atrophy and promotes weight gain (Stenholm, Harris 

et al. 2008), in line with sarcopenia (Zamboni, Mazzali et al. 2008). Other metabolic 

perturbations in ageing include abdominal obesity, unrestrained hepatic gluconeogenesis, 

adipose lipogenesis, defective glycogen synthesis and glucose uptake in skeletal muscle 

(Morley 2008). An increase in pro-inflammatory cytokines derived from age-associated 

accrual of visceral fat and increasing senescent cells are also known to interfere with insulin 

action (Sepe, Tchkonia et al. 2011). As part of the normal biology of ageing, lipid 

accumulates in muscle. Compared to younger individuals IMCL content is increased by up to 
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40% in older people, as seen on 
1
H NMR  (Petersen, Befroy et al. 2003). Mitochondrial 

activity and oxidative phosphorylation was reduced in elderly insulin resistant individuals. In 

particular intermediate lipid and metabolites associated with IMCL such as ceramides, DAG 

and acyl-coA cause insulin resistance by activating key proteins that antagonise insulin-

responsive and signalling pathways (Savage, Petersen et al. 2007), therefore accumulation of 

lipid in ageing is correlated with skeletal muscle insulin resistance (Dube, Amati et al. 2008) 

Lipid accumulation also arise from a reduction in mitochondrial quantity and function (Hoeks 

and Schrauwen 2012) resulting in decreased fatty acid oxidation rate (Petersen et al. 2003). 

The association between impaired mitochondrial function and how it might affect insulin-

signalling is complex and is thought to involve incomplete beta-oxidation of fatty acid 

substrates in liver and muscle.  

 

Figure 1.8: Factors contributing to insulin resistance in ageing. IR=Insulin resistance, 

IMCL=intramyocellular lipid 
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The factors contributing to insulin resistance in ageing are most probably multifactorial and 

changes seen to accompany ageing have to be considered as playing an influential role.   

1.10.1 Visceral adiposity 

A common feature of ageing is increased visceral fat (sum of fat depots within visceral 

cavity) (Folsom et al. 1993), a risk factor for insulin resistance and correlates strongly with 

insulin sensitivity in human and animal models (Atzmon et al. 2002). Putative mechanisms 

underlying visceral fat and its association with insulin resistance include  increased portal 

release of FFAs (Muzumdar et al. 2008) and/or abnormal expression and secretion of fat-

derived peptides such as leptin, ACRP30, and inflammatory cytokines eg TNF-α. Surgical 

removal of visceral fat in a young rat model improved hepatic insulin action, and was 

reproduced in older rat models (Muzumdar et al. 2008). In animal models at least, selective 

intra-abdominal depots (perinephric and epididymal) appear to modulate insulin action and 

glucose tolerance.  

1.10.2 Sarcopenic obesity 

An inevitable consequence of advancing age is the decline in muscle mass and strength 

(Morley et al. 2001) and this appears to accelerate from around the fourth decade at a rate of 

just under 1% per year (Zamboni et al. 2008, Stenholm 2008). Muscle strength appears to 

decline three times faster than mass, which suggests changes within muscle associated with 

age or physical inactivity: accumulation of fat, structural proteins and mitochondrial 

dysfunction (reduction in mitochondrial numbers, morphology change, oxidative damage, 

reduced oxidative capacity and increased DNA mutations and oxidative stress and damage 

(Jensen et al. 2001).  
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1.10.3 Mitochondrial content 

The reduction in mitochondrial content and activity with ageing (Hoeks and Schrauwen 

2012) may contribute to the development of insulin resistance through the observation that 

muscle of older healthy people contained increased muscle fat and a reduction in 

mitochondrial oxidative phosphorylation activity.   Non-invasive magnetic spectroscopy 

demonstrate a 40% reduction in resting muscle mitochondrial tricarboxylic acid (TCA) cycle 

flux and ATP synthesis rate in lean insulin-resistant elderly subjects (Petersen et al. 2003). 

However there is emerging evidence to suggest that although mitochondrial dysfunction and 

insulin resistance occurs concurrently, this association may occur coincidentally or through a 

common factor such as physical inactivity (Lanza et al. 2009). 

1.10.4 Intramyocellular lipid 

A strong association has been demonstrated between ageing, IMCL accumulation in muscle 

and skeletal muscle insulin resistance. Indeed whilst the physiological role of IMCL was once 

a topic of interest solely associated with exercise physiology, it has become increasingly 

important since the finding of an association with insulin resistance was found. This 

association and the mechanisms underpinning IMCL and insulin resistance have been 

touched upon earlier. In relation to ageing, IMCL is increased by up to 40% in the elderly as 

seen on 
1
H NMR spectroscopy (Petersen et al. 2003). They tended to have larger IMCL 

droplets, fewer mitochondria and lower proportion of IMCL in contact with mitochondria. 

These are likely to contribute to reduction in mitochondrial function and lipid metabolism, 

and thus reduced fatty acid oxidation rates (Crane et al. 2010). The underlying cause for the 

accumulation of IMCL in ageing is not completely understood. It may be because use of 

muscle (as discussed above) declines with age, however muscle loss and strength are also 

seen in highly-trained older athletes (Faulkner et al. 2007). It could be because there is an 
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imbalance between lipid supply and proportional fatty oxidation. Despite the accumulation of 

lipid in muscle of highly–trained endurance athletes, insulin sensitivity was not affected, 

raising the possibility that capacity of lipid oxidation metabolism is one of the major 

mediators in the development of insulin resistance.  

1.10.5 Physical inactivity 

Ageing is often associated with a decline in habitual physical activity and adopting a more 

sedentary behaviour. In early old age (65-75 years of age), a modest increase in activity may 

be observed in an attempt to improve health and fill the time resulting from retirement. By 

middle old age (75-85 years) most would develop some physical disability and by late old 

age (85 years and above), many would be become physically dependent.  However inter-

individual variances in functional capacity occur at any given chronological age (Shephard et 

al. 1998).  Limiting factors include maximal oxygen consumption, fatigability, muscle loss 

and strength, metabolic and hormonal responses, risks of exercise and motivation. Maximal 

oxygen uptake declines by about 5ml per kg per min per decade from 25 to 65 years, with 

possible acceleration thereafter. It is uncertain whether this is an inevitable consequence of 

the ageing process per se or reduced physical activity that occurs with advancing age. Age-

related decline in aerobic capacity may be caused by decrease in maximal heart rate, stroke 

volume and arterio-venous difference.  Increase accumulation of fat mass, IMCL, reduction 

in physical activity therefore increases the risk of development of insulin resistance.  

1.11 Mechanisms of insulin resistance in ageing 

The exact underlying mechanisms of insulin resistance in ageing are mostly unknown. Early 

studies described receptor and post-receptor perturbations in insulin action (Rowe et al. 1983, 

Lonnroth and Smith 1986). Despite the maximally-stimulatory effect of insulin concentration, 

glucose disposal was reduced in the elderly, confirmed with hyperinsulinaemic euglycaemic 

file:///C:/Users/mbxcc2/Dropbox/Thesis%20%20Chapter%201.docx%23_ENREF_3
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clamps (1200 mU/m
2
/min) causing a rightward shift in the insulin-action dose-response curve 

(Fink and Kolterman 1983).  

Molecular mechanisms underlying insulin resistance in ageing was studied at the level of the 

insulin signalling cascade in rats in response to in-vivo insulin infusion (Ropelle et al. 2013). 

White adipose tissue of aged rats showed altered subcellular distribution of insulin receptors 

and IRS-1 and a reduction in insulin-stimulated IR tyrosine phosphorylation. Activation of 

Akt and GLUT-4 translocation to the plasma membrane was impaired. Muscle from rats also 

exhibited a defect in GLUT-4 trafficking; however insulin signalling at IR and Akt was 

increased. No difference was seen in liver, indicating that IR in adipose tissue precedes 

development of insulin resistance in liver and skeletal muscle. 

Of the molecular mechanisms implicated in the development of insulin resistance in the 

elderly, one of the more robust mechanistic evidence associated with negative regulation of 

insulin action appears to be stimuli that activate inflammatory serine/threonine kinases eg c-

Jun NH2-terminal kinase and inhibitor of κb kinase.  These stimuli include over-nutrition 

(particularly lipids), oxidative and endoplasmic reticulum stress (Samuel and Schulman 2012, 

Evans et al. 2012, Hotamisligil 2003, 2010) and are linked to reduced mitochondrial content 

and/or function predisposing to accumulation of IMCL.  IMCL appears to be increased in 

ageing (see below) that in turn promotes production of toxic lipids as discussed earlier.  

Ageing has also been associated with increased nitric oxide production as a result of 

inducible nitric oxide synthase (iNOS). iNOS is increased in macrophages and inflammatory 

cells, stimulated by proinflammatory cytokines and has been implicated in insulin resistance 

in the context of obesity (Kaneki et al. 2007). Recent research (Ropelle et al. 2013) report 

that ageing mice exhibited increased iNOS expression and S-nitrosation of the insulin 
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receptor IRS-1 and Akt/PKB leading to insulin resistance. More studies should be conducted 

to substantiate similar findings in humans.  

1.12   Improving insulin sensitivity 

 

Diet and lifestyle is one of several factors that can entirely reduce or even prevent the 

development of diabetes. Several randomised controlled population studies can attest to this, 

including the Da Qing Study, Finnish Diabetes Prevention Study and U.S. Diabetes 

Prevention Program.  

The Da Qing Study was conducted in a province of China involving 6 years of active 

intervention, where diabetes risk was reduced by 31, 46, and 42% in the diet-only, exercise-

only, and diet-plus-exercise groups, respectively, compared with the control group (Pan, Li et 

al. 1997). The intervention proved effective in the long-run assuming the intervention was 

adhered to as in a subsequent 14-year follow-up study, the intervention groups had a 51% 

lower risk of diabetes during the active intervention period compared to control, and a 43% 

lower risk over a 20-year follow-up. (Li, Zhang et al. 2008) 

In both the Finnish Diabetes Prevention Study (Lindstrom et al. 2003) and the U.S. Diabetes 

Prevention Program (DPP), lifestyle intervention significantly reduced diabetes incidence by 

58% (Knowler, Barrett-Connor et al. 2002). 

 

1.11.1 Diet 

As weight gain and adiposity are strongly associated with insulin resistance (McAuley and 

Mann 2006) most dietary plans proposed in improving insulin sensitivity focus on promoting 

weight loss and remain one of the main principles in managing people with T2DM. 



57 
 

The American Diabetes Association (ADA, 2011) published nutritional recommendations for 

treatment of individuals with T2DM and subjects at high risk of developing diabetes that 

include: 

1) Weight loss of at least 7% in overweight/obese individuals 

2) Restriction of intake of saturated fats to < 7% of energy intake 

3) Cholesterol intake of <200mg/day including reduction of trans-fat intake 

4) High-fibre intake of > 14g/1000kcal  

5) Protein intake is no longer restricted, providing 15-20% of energy as long as renal function 

is normal. 

Various dietary concepts on modification of macronutrients have been used and are discussed 

below. It has to be borne in mind that some of these studies are short-term and warrant a 

longer period of study under controlled settings to appreciate meaningful outcomes and 

adherence to diets. The latter is key to maintaining weight loss, but often difficult to achieve 

and depends on the practicality, sustainability and palatability of the diets proposed and 

motivation of the individual.  

 

1.11.1.1 Low-energy diets 

Energy-restricted dietary intakes have been proven to reverse pancreatic cell failure and 

hepatic insulin resistance associated with T2DM (Lim et al. 2011). Short term very low 

calorie diet (VLCD) has also been shown to cause a significant reduction in IMCL and an 

increase in insulin sensitivity in the absence of substantial changes in total body fat in people 

with and without T2DM (Lara-Castro et al. 2008).    
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1.11.1.2 Low-fat diets  

Short-term low-fat intervention diets appear to lead to weight loss in overweight individuals 

(Astrup, Grunwald et al. 2000); however these diets appear to have no more an advantage 

than other energy-restricted diets in maintaining weight loss in the long-term. Low-

carbohydrate non-energy restricted diets appear to be at least effective as low-fat non-energy 

restricted diets in promoting weight loss for up to a year. Furthermore adherence to a low-fat 

diet particularly in insulin-resistant individuals is difficult and particularly challenging 

(McClain, Otten et al. 2013).  

 

1.11.1.3 High fibre diets 

The beneficial effects of diets high in fibre is well-known and is regarded an important 

recommendation in nutritional guidelines. Fibre slows gastric emptying and absorption of 

dietary fat and carbohydrate contents attributed to the viscous water soluble types of dietary 

fibre (Weickert and Pfeiffer 2008). However data on fibre’s effects are inconclusive, with 

some only showing moderate effects on weight loss (Howarth, Saltzman et al. 2001). 

Of the different fibres guar gum has received the most attention but its effect on insulin 

resistance is equivocal, varying amongst different populations. No effect was seen in obese 

individuals but a reduction in insulin levels was seen in T2DM patients.  

 

1.11.1.4 Low glycaemic index (GI) diets 

Glycaemic index (GI) is a measure of the ability of carbohydrate in a particular food to raise 

glucose levels defined by the incremental area under the glycaemic response curve (AUC) 

(Wolever, Mehling et al. 2008). Low-GI and/or low-glucose load diets may reduce the risk of 

metabolic syndrome, T2DM, cardiovascular disease and chronic inflammation. In contrast, 

carbohydrates high in GI lead to increases of postprandial glucose and insulin concentrations 
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that may compromise metabolic flexibility (Brand-Miller, McMillan-Price et al. 2009; Isken, 

Klaus et al. 2010). Overweight or obese subjects on short duration low glycaemic index (GI) 

diets lost more weight and have better improvement in lipid profiles than controls receiving 

other diets (Thomas, Elliott et al. 2007). However other findings have been inconclusive, 

most likely due to small study samples and short duration of these studies.  In one of the 

largest intervention studies published to date, weight regain at 1 year was only marginally 

lower with a reduction of the GI (Larsen, Dalskov et al. 2010). In a meta-analysis, 2 servings 

per day of whole-grain intake were associated with a 21% decrease in insulin resistance risk. 

It is likely that diet only will not entirely prevent development of diabetes, but could work in 

conjunction with other factors such as exercise, as will be discussed in more detail in the next 

subsection.  

 

1.11.1.5 Micronutrients 

Evidence has shown that micronutrients such as magnesium (Hua et al. 1995, Lima et al. 

1998), zinc (Chen et al. 1991, Singh et al. 1998), chromium (Thomas and Groper 1996, 

Anderson et al. 1997), L-carnitine (Heller et al. 1986, Mingrone et al. 1999) and fish oils 

(Bathena et al. 1991) can positively influence insulin sensitivity, however results are often 

equivocal and require larger, well-designed human studies. The amino acid L-carnitine will 

be discussed in greater detail as a possible contributor to insulin sensitivity (Chapter 5).    

1.11.2 Exercise  

It has become well established that physical activity and exercise training are effective means 

of increasing insulin action in muscle of insulin resistant individuals and have been proven to 

reduce the risk of development of diabetes. As previously described, the Da Qing IGT and 

Diabetes Study demonstrated that exercise intervention (20 min of mild or moderate, 10 min 

of strenuous, or 5 min of very strenuous exercise one to two times a day) reduced the 
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incidence of diabetes by 46% in people classified as having impaired glucose tolerance (IGT) 

more than diet and exercise (42%) and diet alone (31%) (Pan, Li et al. 1997).  

Briefly, in the early stages of exercise and with increasing exercise intensity, fuel for muscles 

is provided for predominantly by glycogen. When this becomes depleted blood glucose and 

free fatty acids from adipose tissue become the primary source for fuel utilisation (Bergman, 

Butterfield et al. 1999). Intramuscular lipid stores are mostly used during longer duration 

activities (Borghouts, Wagenmakers et al. 2002). 

Exercise training induces improvements in insulin action by: 

(1) up-regulation of GLUT4 expression and facilitation of insulin signal transduction 

(2) chronic activation of AMPK 

(3) promoting mitochondrial biogenesis and increasing lipid oxidation and turnover thereby 

preventing the accumulation of deleterious lipid species. 

 

1.11.2.1 Chronic exercise 

 

Although a single bout of exercise has been shown to improve insulin sensitivity in 

previously sedentary adults (Devlin, Hirshman et al. 1987) and increase glucose uptake by up 

to 40% (Perseghin, Price et al. 1996), these effects only last for 48-72 hours post-exercise 

(King, Baldus et al. 1995). Regular long-term exercise has been shown to exert chronic 

effects on insulin sensitivity. Aerobic exercise at all intensities over a period of weeks has 

been shown to improve insulin sensitivity, enhance the responsiveness of skeletal muscle to 

insulin with increased expression and/or activity of proteins involved in glucose metabolism, 

insulin signalling and fat oxidation capacity. Endurance exercise induced an adaptive increase 

in the GLUT-4 protein concentrations, activities of both glycogen synthase and hexokinase, 

the enzyme that phosphorylates glucose of the glucose transporter in skeletal muscle 
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(Holloszy 2005).  Despite the presence of increased intramuscular triglycerides (IMTG) in 

highly-trained athletes, the observation of a paradoxical increase in insulin responsiveness 

may be reconciled by the muscles ability to increase lipid turnover (increased uptake, 

transport, utilisation and oxidation). Following 12 weeks of endurance training, ageing 

human skeletal muscle that contained higher IMCL content showed improvements in 

mitochondrial biogenesis and electron transport chain activity (Menshikova, Ritov et al. 

2006). The same improvements were seen in Bruce et al.’s study but involved obese subjects 

and IMTG content remained relatively unchanged (Bruce, Thrush et al. 2006). This would 

imply that improved fatty acid oxidation and improvement in insulin sensitivity may be 

driven by greater FFA delivery and uptake and reductions in deleterious lipid metabolites 

from a greater lipid flux. Bruce et al. also showed that following endurance training in obese 

individuals fatty acid metabolites were also reduced.  

Another type of exercise, resistance training, enhances whole-body glucose disposal capacity 

by increasing muscle mass and strength and even a single resistance exercise training session 

can improve insulin sensitivity for up to 24 hours after cessation of exercise (Koopman et al. 

2005). These benefits are possibly partly attributed to reductions in IMTG stores. In  

randomised controlled trials (RCTs), resistance or aerobic training for 10 - 16 weeks in men 

with newly diagnosed or established T2DM improved insulin action, blood glucose control 

and HbA1c values and resulted in significant losses in visceral fat and improved fat oxidation 

(Ibanez et al. 2005; Bweir S et al. 2009).     

Exercise training may improve insulin sensitivity indirectly through its effect on lipids.  

Goodpaster et al. 2003 postulated that the strongest predictor of insulin sensitivity in obesity 

following endurance training is enhanced whole-body fat oxidation. Increased oxidative 

capacity following exercise training is associated with increased CPT-1 activity and 

decreased ceramides and DAG in muscle of obese individuals (Bruce et al. 2006). 
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Collectively this suggests that exercise training may improve insulin sensitivity by increased 

lipid oxidation, therefore preventing accumulation of lipids that may interfere with insulin 

signalling pathways. Four weeks of exercise training was shown to attenuate effects of a 

high-fat diet on muscle lipid storage and was associated with increased palmitate oxidation 

and elevated PGC-1 expression (Lessard et al. 2007). Despite the ‘metabolic inflexibility’ 

and reduced fatty acid oxidation at rest commonly seen in insulin-resistant individuals, they 

have been shown to readily utilise lipids during exercise. Obese sedentary individuals with 

abdominal adiposity were shown to have increased fatty acid oxidation rates during 

submaximal exercise compared to lean sedentary exercised controls (Goodpaster et al. 1999). 

Thus it would appear that the molecular/insulin signalling events that accompany contraction 

during exercise can override metabolic flexibility and predispose to increased fat oxidation.    
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CHAPTER 2: METHODS 

2.1 Common Methods 

Methods common to all studies undertaken are described as follows. 

2.1.1 Ethical approval 

Ethical approval for studies carried out and described in this thesis was obtained from the 

University of Nottingham Medical School Research Ethics Committee.  

Study 1 Comparing skeletal muscle lipid, fat metabolism and insulin sensitivity in older vs. 

young healthy men- medical ethics approval number E13102011BMS 

Study 2 Investigating the effects of lipid on amino acid and insulin sensitivity- medical ethics 

approval number F131020122BMS 

Study 3 Investigating the effects of hyperenergetic high fat vs high carbohydrate diet on liver 

fat and insulin sensitivity- medical ethics approval number B14022013BMS 

Study 4 Investigating the effects of carnitine on improving skeletal muscle insulin sensitivity 

in healthy ageing - medical ethics approval number E13102011BMS 

All volunteers who participated in these studies were informed of risks associated with 

experimental procedures before obtaining informed written consent. All studies were 

performed in accordance with the Declaration of Helsinki of the World Medical Association 

(World Medical 2013). 

2.1.2 Pre-screening procedure 

Volunteers were medically screened and completed a health questionnaire, blood screen of 

full blood count, urea and electrolytes, liver function tests (including Hepatitis B and C viral 

screen and ferritin for Study 3), coagulation, lipid profile, thyroid function test and 
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electrocardiograph (ECG). Subjects were excluded if they had a history of diabetes, 

cardiovascular, metabolic or respiratory disease.  Those who did not meet inclusion criteria 

were excluded from further participation.  

2.1.3 Randomisation of volunteers 

Randomisation of volunteers in these studies was done using randomisation codes generated 

electronically (www.randomisation.org). Studies 1, 2 and 3 were partially blinded 

randomised trials whilst study 4 was a double-blinded randomised trial. The intervention or 

placebo groups for study 4 were revealed once data collection was complete. Magnetic 

resonance imaging (MRI) operators involved with scanning the volunteer’s liver and 

investigators analysing liver fat in study 3 were blinded to the groups receiving either high 

carbohydrate or fat diets.  

2.1.4 Blood sample collections 

Blood samples at screening were taken via venepuncture into the appropriate Vacutainer 

blood collection tubes. In all studies arterialised venous blood were obtained by inserting a 

cannula (Venflon, Ohmeda, Sweden) retrograde into a vein of the dorsum of the hand, 

warmed in a device with static air heated at 55
0
C. The heated hand technique has been proven 

under experimental conditions to provide a safe and practical approach to an otherwise 

difficult and less feasible way of sampling blood from arteries (Gallen, Macdonald 1990). In 

previous studies blood chemistry values of pH, pCO2, pO2 and O2 saturations of blood 

sampled from a heated hand vein were consistently similar to that in the arterial range (Liu et 

al. 1992).  For purposes of sampling in metabolic studies, compared to true arterial blood, 

‘arterialised’ or heated venous blood sampling provided no significant differences in 

concentrations of glucose, non-esterified fatty acids, insulin, glucagon and several amino 

acids (Morris, Ueda et al. 1997). With pertinence to the sampling of blood during the 

http://www.randomisation.org/
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hyperinsulinaemic  euglycaemic clamp mean glucose concentrations in ‘arterialised’ venous 

blood and arterial blood have been shown to produce a difference of only 0.1 mmol/L under 

basal and hyperinsulinaemic conditions (Liu et al. 1992).  

A critique of using the hand-heated device in studies presented in this thesis is that the 

temperature of the environment in the device was not routinely measured during the studies 

and it can only be assumed that the temperature remained constant (50-55°C) from study to 

study to avoid inter-visit variability. Other perturbations that contribute to this include the 

volunteers having their hands out of the device during toilet breaks. Hand-warming has been 

shown to effectively arterialise venous blood and gives significantly higher insulin sensitivity 

values but induces systemic haemodynamic effects that may affect measurements of insulin 

sensitivity (Morris, Ueda et al. 1997).     

 

Figure 2.1: A subject having his left hand warmed in the hand heated device during the 

hyperinsulinaemic euglycaemic clamp. 

2.1.5. Blood samples analyses 

Blood obtained for plasma analyses was spun at 3.3G at 4°C for 10 minutes. Plasma was 

divided into aliquots and frozen at -80°C until analysis. Serum samples were left to clot for at 
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least 30 minutes before being spun and frozen also at -80°C. The following assays were 

performed by technicians at the High Performance Liquid Chromatography (HPLC) 

laboratory of the Metabolic Physiology Group, School of Life Sciences, University of 

Nottingham: serum insulin, non-esterified fatty acid (NEFA), lactate, adrenaline and 

noradrenaline (studies 2 and 3) and glucagon, C-peptide, β- hydroxybutyrate, leptin and 

cytokines (Study 2).  

Measurements of plasma to determine enrichment and isotope ratios of tracers [6,6-
2
H2]  

glucose (Study 3), 2-Deoxy-D-Glucose (2DG) and [U-
13

C] Palmitate (Studies 1 and 4) were 

analysed by researchers and technicians at the Human Physiology Labs at Derby Medical 

School, University of Nottingham. 

In all studies utilising the hyperinsulinemic euglycaemic clamp, arterialised blood glucose 

concentrations were measured using the Yellow Springs Instrument  2300 Stat Analyser 

(YSI; YSI Inc, Yellow Springs, Ohio, USA) every 5 minutes. The YSI uses steady-state 

measurement methodology whereby the membrane-based immobilised glucose oxidase 

catalyses the oxidation of glucose to gluconic acid and hydrogen peroxide (Chua and Tan 

1976). The difference between the sample generated plateau current and the initial baseline 

current is proportional to the glucose concentration (YSI STAT 2300 Laboratory manual 5-

4).The YSI 2300 STAT uses an aqueous rather than a serum or plasma –based standard. On 

injection of a test sample into the YSI, the following reactions take place: 

1                   g  
1) D-Glucose + oxygen   (glucose oxidase) gluconolactone + H202 oxidase 

2) The H202 sensitive electrode oxidizes a constant portion of the H202 at the platinum 

anode: H202          2H
+
 + 2e

-
 + 02. 
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3) The circuit is completed by a silver cathode at which oxygen is reduced to water: 4H + 02  

2H20 + 4e
- 

The YSI was found to have good intra and interbatch precision with a coefficient variation of 

1.2% or less for glucose concentrations of 0.94 to 3.98g/litre (5.2 – 22.1mmol/L) and 5.8% or 

less for glucose concentrations of 0.29 to 2.91 g/litre (1.6-16.2 mmol/L) respectively. It is 

simple to use, analyses are quick and requires only small samples (Chua and Tan 1978). 

Determination of glucose using the YSI correlates well with Beckman’s Glucose Analyser     

(r=0.997) and the Haemacue device (r= 0.979).   

2.1.6 Radioimmunoassay 

The radioimmunoassay method as described by Yalow and Berson 1968 was used to 

determine serum insulin and glucagon. This technique involves making a known quantity of 

antigen radioactive by labelling it with it with gamma-radioactive isotopes of iodine, such as 

125
-I, attached to tyrosine.  

2.1.7 Serum Insulin assays 

Serum insulin aliquots were frozen at a minimum of -20
◦
C and measured using a solid-phase 

125
I radioimmunoassay using standard insulin kits.  

2.1.8 Non-esterified fatty acid assays 

FFA was measured using an automated immunoassay analyser and commercially available 

kit. Tubes used to collect blood were pre-filled with 7.5ul per ml plasma of ethylene glycol 

tetraacetic acid (EGTA)-Gluthathione, a preservative to prevent degradation of FFAs during 

storage. 10uL of Tetrahydrolipstatin (THL) was added to vials to inhibit in vitro lipolysis and 

prevent falsely high plasma FFA readings, thus increasing accuracy of determining plasma 

FFA concentrations (Krebs M et al. 2000).   
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2.1.9 Glucagon assays 

Blood samples for glucagon were collected into tubes containing aprotinin, a protein bovine 

pancreatic trypsin inhibitor used for rapidly-degraded proteins and stored in glass tubes at -

80°C until analysis. Total glucagon concentrations were determined using solid-phase 
125

I 

radioimmunoassays as described above.  

2.1.10 β-Hydroxybutyrate (β-OHB) assays 

Serum βOHB and lactate were measured using an automated immunoassay analyser and 

commercially available kits.  

2.1.11 Hyperinsulinaemic euglycaemic clamp  

The glucose clamp technique as described by DeFronzo et al. (DeFronzo, Tobin et al. 1979) 

remains the gold standard method of directly determining metabolic insulin sensitivity in 

vivo, particularly when the assessment of insulin sensitivity is of primary interest and 

feasibility is not an issue.  Under steady conditions it has a coefficient 

variation/reproducibility of 0.1 and a discriminant ratio of 6.4 (measure of reproducibility and 

ability to distinguish individual results) (Mather et al. 2001). To assess an individual’s 

glucose disposal, a hyperinsulinaemic state is induced via intravenous infusion of insulin 

based on body surface area is achieved resulting in increased skeletal muscle and adipose 

tissue glucose disposal and suppressed hepatic glucose production. 20% glucose is infused at 

variable rates aiming to achieve euglycaemia (an arbitrary predetermined level of glycaemia 

within normal range of glycaemia, 4.5mmol/L was chosen for studies presented in this 

thesis). The glucose infusion rate (GIR) is thus equal to glucose disposal rate (M) under the 

assumption that hyperinsulinaemia is sufficient to completely suppress hepatic glucose 

production and there is no net-change in glucose concentrations under steady state conditions. 
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The method has been shown to be reproducible in subjects at high (insulin infusion rate 

40mU/m
2
/min; concentration 100µunits/ml) (De Fronzo, Tobin et al. 1979), mid-(60-

70µunits/ml) (Soop et al., 2000) and low (insulin infusion rate 20 mU/m
2
/min; concentration 

38µunits/ml) (Kingston, Livingston et al. 1986) physiological ranges of hyperinsulinaemia. 

M is typically normalised to body weight or fat free-mass. Lean body mass was determined 

from Dual energy x-ray absorpmetry (DEXA) (apart from Study 2 where fat-free mass was 

determined via skin calipers and Bioelectric Impedance Analysis (BIA) were used in 

estimating glucose disposal rates of volunteers in these studies. The validity of insulin 

sensitivity utilising the glucose clamp technique depends on steady state conditions being 

achieved. A more reliable approach of determining accurate values for glucose disposal rates 

is to take a period of at least 30 minutes, more than 1 hour post insulin start during which the 

coefficient of variation for blood glucose, plasma insulin and GIR is < 5% (KatzA et al. 

2000).  

Under ideal settings insulin infusion rates should be matched to the population studied, thus 

multiple infusion rates are adjusted according to an individual’s insulin resistant or insulin 

sensitive state in a stepwise fashion.  Although desirable, this approach is time-consuming 

and not feasible for both the operator and subjects (Muniyappa et al. 2008). Another 

significant advantage of the clamp is the ability to simultaneously measure and distinguish 

hepatic glucose production and peripheral (mostly skeletal muscle) insulin 

resistance/sensitivity, lipolysis and protein metabolism using radiolabelled tracers. The use of 

glucose tracers also proves useful at lower insulin infusion rates or in studies in insulin-

resistant individuals so appropriate corrections can be made to glucose disposal.   

Radiolabelled glucose tracers can also be used simultaneously during the clamp to quantify 

hepatic glucose production and whole body disposal, 2DG in Studies 1 and 3, deuterated 
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glucose in Study 2. Other isotope tracers such as phenylalanine may also be used to assess 

metabolism of glycerol or protein metabolism during the clamp.  

A small but important limitation of this method is that it is laborious and time consuming, so 

may not be feasible for large population or epidemiological studies. It also requires trained 

personnel who are able to deal with complications related to the clamp. These are generally 

infrequent, indeed the commonest issue encountered during studies in this thesis was the 

cannula ceased working temporarily thus several blood glucose samplings were missed.  

The clamp should also only be considered if the primary objective is to assess insulin 

sensitivity, as it is costly.  Consideration should also be given to the assumption that levels 

achieved during steady state are supraphysiological and this may reverse the normal 

peripheral to portal gradient, so it may not accurately reflect insulin action and glucose 

dynamics under normal physiological conditions (Muniyappa et al. 2008). 

The studies presented in this thesis utilised the hyperinsulinaemic euglycaemic clamp for a 

number of reasons: 

1) Assessment of insulin sensitivity was the primary or one of the primary objectives of   

each study.  

2) Gold standard technique of assessing insulin sensitivity 

3) Could be used simultaneously with phenylalanine, 2DG and [6,6
2
H2] glucose tracers. 

4) Relatively small group of volunteers undergoing glucose clamp and availability of 

trained personnel to run the clamp. 

Compared to other methods of quantifying insulin sensitivity such as the insulin suppression 

test, oral glucose tolerance test and Homeostatic Model of Assessment of Insulin Resistance 



71 
 

(HOMA-IR), where only fasting plasma insulin and glucose are required, running an insulin 

clamp is labour intensive, costly and requires an experienced operator to manage technical 

difficulties.  

2.1.12 Other direct and indirect measures of assessing insulin sensitivity 

Table 2.1 Summary of the advantages and disadvantages of other methods of assessing 

insulin sensitivity. 

Test Method Advantages Disadvantages 

Insulin 

suppression 

test 

Somatostatin/ octeotride 

is infused to suppress 

endogenous secretion of 

insulin and glucagon. 

Insulin and glucose are 

infused simultaneously 

for 180mins 

Highly reproducible 

test 

Applied to larger 

populations 

Not as labour 

intensive or costly as 

the clamp 

Used to determine 

skeletal muscle insulin 

sensitivity but does not 

specifically reflect 

hepatic insulin 

sensitivity 

Oral Glucose 

Tolerance 

Test 

75g glucose load 

Blood glucose and 

insulin every 30 mins for 

120 mins 

Mimics glucose and 

insulin dynamics of 

physiological 

conditions, (more so 

than the 

hyperinsulinaemic 

euglycaemic clamp)  

Does not assess insulin 

sensitivity per se 
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Minimal 

model 

Analysis of 

frequently 

sampled 

intravenous 

glucose 

tolerance test 

5 min infusion of insulin 

(4mU/kg/min) 20 mins 

after the IV bolus of 

glucose. Glucose and 

insulin blood samples 

taken at 1, 2, 10 mins 

then 20 min intervals 

until 180 mins. Data 

entered into a minimal 

model of analysis 

programme generates an 

index of insulin 

sensitivity (SI). 

Advantages over the 

clamp: less labour 

intensive, steady-state 

and continuous 

infusion of insulin and 

glucose not required. 

Coefficient of 

variation of SI as good 

as clamp 

 

Oversimplifies 

physiological glucose 

homeostasis. Estimates 

of SI are less reliable in 

individuals with 

impaired insulin 

secretion or significant 

insulin resistance 

Simple 

indices of 

insulin 

resistance 

1/Fasting insulin 

Glucose/Insulin ratio 

HOMA-IR, QUICKI 

Simple, inexpensive 

and minimally 

invasive, can be used 

in large 

epidemiological 

studies.  It is 

appropriate to be 

considered where 

insulin sensitivity is 

not the primary 

outcome, direct 

Poor correlations with 

clamp, less predictive of 

insulin sensitivity in 

glucose 

intolerance/diabetes 
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measurement of 

insulin sensitivity is 

not required or 

unfeasible to obtain. 

   

2.1.13 Indirect calorimetry 

 

Figure 2.2: Indirect calorimetry during the hyperinsulinaemic euglycaemic clamp. A plastic 

hood is placed over the subject’s head and connected to the GEM machine that measures VO2 

and VCO2 which is then used to measure energy expenditure. 

One of two ways (the other being direct calorimetry) and by far the most practical of 

measuring energy expenditure in humans is indirect calorimetry. This approach allows 

measurement of whole-body consumption of oxygen and production of carbon dioxide using 

a calorimeter with built-in on-stream analysers. A plastic hood is placed over the subject so 

air drawn through this canopy by a pump is collected and analysed. For resting studies 

presented in this thesis, indirect calorimetry was used using the Gas Exchange Machine) 

GEM (GEMNutrition Ltd, Cheshire, UK). 
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Indirect calorimetry quantifies resting energy expenditure (REE) or Basal Metabolic Rate 

(BMR), thus total energy expenditure (TEE) can be calculated using the following equation 

(Levine JA 2005): 

TEE = (REE + diet induced thermogenesis)* activity factor 

The REE or BMR is energy expended at complete rest in a post-absorptive state accounting 

for approximately 60% of TEE in sedentary adults. 

Thermic effect of food describes energy derived from digestion, absorption, and storage of 

food and nutrients; accounting for around 10% of TEE. 

The activity factor can account for up to 100% of TEE depending on the degree of activities 

of daily living and fidgeting.  

Indirect calorimetry by gas exchange measurement can accurately predict energy expenditure 

and poses minimal burden on subjects and costs. 

When VCO2 and VO2 values are obtained via breathing under the canopy or mask of the gas 

exchange machine, substrate oxidation rates are measured. Frayn’s equation (Frayn 1983) for 

calculating substrate utilisation includes calculations for urinary nitrogen excretion, and as 

opposed to the equations below assumes the accumulation and excretion of metabolic 

intermediaries or end products through the form of ketogenesis, lipogenesis, gluconeogenesis 

or lactate. For studies utilising indirect calorimetry in this thesis, the non-protein equations of 

Peronnet and Massicotte (Peronnet and Massicotte 1991) were used, as urine was not 

routinely collected for measurement of nitrogen excretion.    
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Carbohydrate oxidation:  4.585 * VCO2 – 3.226 * VO2   

Fat oxidation:   1.695 * VO2 – 1.701 * VCO2 

Where VO2 and VCO2 are expressed in litres per min (L/min) oxidation rate in grams per 

minute (g/min).  

There are few requirements to be observed during use of the indirect calorimetry method. 

These include an air-tight canopy to provide constant flow of air to provide oxygen and 

carbon dioxide within a reasonable range, sensitive, stable O2 and CO2 analysers for 

continuous sampling of expired air, a calibration routine using standard gas mixtures and a 

system to trap or condense out the moisture of the expired air line feeding into sensors.  

During the course of each study the indirect calorimeter was calibrated several times to 

correct for any drift in analyser sensitivity. This method can be used concomitantly with other 

research methods such as hyperinsulinaemic euglycaemic clamping and tracer methodology. 

Indeed indirect calorimetry was carried out during infusion of the tracers 2- deoxy-D-glucose, 

[6,6-
2
H2] glucose and 

13
C6 palmitate. It is important to take into account that indirect 

calorimetry estimates whole-body rates of substrate oxidation whilst most tracer techniques 

calculate blood or plasma turnover rates.   

However achieving perfect conditions during indirect calorimetry measurements can be 

challenging, and certain conditions can contribute to errors in data acquisition. Clearly 

operator expertise and volunteer compliance help to minimise errors.  Restlessness, hyper or 

hypoventilation and other perturbations may impinge on the assumed VO2 and VCO2 data 

derived from metabolic events.  
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2.1.14 Muscle Biopsies 

Bergstrom’s percutaneous muscle biopsy technique provides a simple and reproducible 

method of obtaining muscle samples (Bergstrom 1975).  When handled correctly and 

appropriately, this method of sampling is quick, relatively atraumatic and well-tolerated. It 

also avoids the use of general anaesthesia, reduces scarring and the need for repeated biopsies 

(Goldberger, Henry et al. 1978; Edwards, Young et al. 1980; Edwards, Round et al. 1983), 

With suction applied to the biopsy needle whilst doing biopsies, the reliability of obtaining 

adequate amounts and size of tissue is increased. (Greig, Askanazi et al. 1985; Tarnopolsky, 

Pearce et al. 2011).  Muscle tissue is obtained 10-15cm above the patella on the vastus 

lateralis or quadriceps which is the preferred site of biopsy (other than gastrocnemius (calf 

muscle), deltoid and biceps (arms).  

Briefly once the volunteer has consented to the procedure, the location where muscle is to be 

obtained is identified and marked. The vastus lateralis muscle is located by measuring a spot 

16cm above the patella bone, then 4-5 cm lateral. The volunteer is asked to tense the thigh to 

confirm the site. After the area is cleaned with betadine solution, 1 ml of 1% Lidocaine is 

injected just under the skin. A further 5-10mls of Lidocaine is injected intramuscularly, 

carefully avoiding blood vessels. After 1minute a scalpel is introduced into the anaesthetised 

area making a 2 cm incision after which firm pressure using gauze is applied immediately to 

the incision site. After about 2-3 minutes, a size 5 or 6 Bergstrom needle (size corresponds to 

diameter size of the window at the tip of the needle) is inserted into the incision, a further 

firm pressure is applied with the needle until a ‘give’ is felt. This corresponds to cutting 

through the tough fascia layer of muscle. The introducer needle is released and pushed into 

the needle holder a few times to ‘snip’ muscle, whilst suction connected to the top of the 

needle is applied to improve yield of the sample. The needle is then taken out completely and 
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pressure is applied once more to the site to stop further bleeding. The site is secured with 

steristrips and bandage.   

    

Figure 2.3: Bergstrom muscle biopsy kit and incision site over vastus lateralis. 

 Of the over 350 muscle biopsies performed for the studies presented here, three subjects 

experienced haematomas/bruising, 3 temporary loss of sensation over biopsy sites, and 3 

older volunteers experienced vasovagal syncope secondary to biopsy-induced pain. It could 

be contended that ultrasound-guided muscle biopsies should be used to avoid or minimise the 

risks of complications, however this is not used routinely and may not be practical 

particularly when biopsies are required immediately post-exercise. The use of ultrasound 

helps avoid major vessels but cannot avoid the possibility of biopsy induced pain.  

 Other methods of obtaining muscle samples include the open and bard needle biopsy 

methods (Dubowitz 2013). An advantage of the open biopsy method is that clamping the 

specimen prevents contraction of the biopsy fibres, but requires a larger incision and is 

slightly more invasive.  Increased amounts of local anaesthesia may be required for obese and 

particularly anxious subjects and the wound is usually sutured closed. The bard biopsy 

technique uses the same preparation method as the Bergstrom biopsy technique but instead of 

the Bergstrom needle the bard needle is inserted into the incision site and repeated cuts are 

made using the retracting needle. An advantage of this technique is that repeated biopsies can 

be made that is relatively less invasive and traumatic. However only a small piece of muscle 

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://www.weon.co.uk/page/56/&ei=lepfVPumOdSu7AbuwoDQDA&bvm=bv.79189006,d.ZGU&psig=AFQjCNFGE7HebtqA38_xdYDKSvDpd5m0ug&ust=1415658516932441
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is obtained each time and precise measurements of depth for needle insertion may be under or 

overestimated. At the David Greenfield MRC/ARUK research unit of the medical school 

University of Nottingham, the use of ultrasound prior to bard biopsies has minimised the 

risks of hitting a blood vessel and has proven invaluable in estimating depth of muscle, 

especially in overweight subjects. 

A limitation of the percutaneous muscle biopsy technique is the potential delay in freezing 

muscle tissue specimens that can lead to inaccuracy of muscle metabolite analyses and 

variation in assays caused by non-muscle contaminants. Nevertheless this delay is not 

thought to largely influence most analytical methods. (Bergstrom 1975). 

The muscle sample taken is frozen immediately to prevent degradation as this may affect 

biochemical studies. A problem of direct immersion of material into liquid nitrogen is that it 

allows gaseous nitrogen to coat the specimen, slowing the cooling process. To avoid this, 

liquid isopentane or propane is used to freeze the material which is subsequently immersed in 

liquid nitrogen to -160°C (Dubowitz 2013). Isopentane was used to freeze all muscle biopsy 

specimens in studies apart from visit 1 in Study 3 where fresh muscle specimens were 

required to prepare mitochondrial extracts for subsequent processing. Liquid nitrogen is 

preferred for long term storage of the specimen until ready for sectioning (Dubowitz 2013). 

If IMCL content is the only determinant required from muscle then a less invasive method of 

analysing muscle is through using 
1
H Nuclear Magnetic Resonance (

1
HNMR) Spectroscopy 

(Petersen et al. 2003).   
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2.1.15 Stable Isotopes 

2.1.15.1 Steele’s Equation 

 

Figure 2.4: Steele’s single compartment model 

Explained in its simplest terms, Steele’s single compartment model is analogous to a bathtub 

where water enters through a tap (endogenous glucose production, EGP) and leaves via the 

drain (glucose disappearance) Rd. The water level in the bathtub (glucose level in the single 

compartment) rises when water from the tap exceeds the water being drained (EGP>Rd), falls 

when Rd>EGP or remains in steady state when EGP=Rd. Steady state occurs during fasting 

or during the clamp when peripheral glucose concentrations remain constant. The tracer 

dilution technique is commonly used to measure endogenous glucose production where 

unlabelled glucose dilutes the tracer. Referring again to the bathtub analogy, when a dye 

(tracer) is added to the water in the bathtub it becomes uniformly distributed, such that when 

the water drains (Rd), it will not change the resultant dye concentration in the bathtub. 

However water coming from the faucet which has no dye will dilute the concentration over 

time (Vella and Rizza 2007).   
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Assuming the single compartment model can be applied to humans, where tracer and glucose 

are uniformly distributed this model can be used to measure endogenous glucose production.  

Assuming the tracer is infused at a constant rate, equilibrium is achieved when tracer and 

trace are cleared at the same rate. At this point, the concentration of the tracer and tracee 

reflects the rate of infusion and disappearance respectively (Steele et al. 1956, 1959). 

Ra   =     F            x        Tracee 

          Tracer 

 

Enrichment = Tracee     +     tracee 

                        Tracer  

APE (Atom per excess) =          tracer         x  100                                  

                                            tracer + tracee 

 

Under most experimental conditions, where there is a sudden perturbation to steady state of 

the pool such as an insulin infusion, the tracer is diluted further by ‘cold’ glucose. To account 

for changes to tracer and tracee concentrations, the equation can be modified to take into 

consideration changes over time and multiple pools, rapidly and slower- equilibrating pools 

(Wall et al. 1957). These 2 pools can be further simplified to a single compartment separated 

into two by a pool fraction of the total extracellular glucose pool. The non-steady state Steel 

equation is therefore modified to two different time points: 
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(pv x [(glucose1 + glucose2)/2]      x    SA2   -  SA1 )     X     (            1____      )     

    1         T2  -  T1            [(SA1 + SA2)/2] 

p = pool fraction, V = total extracellular pool, SA= concentration of tracer enrichments at 

times T1 and T2.  

Applying the concept above, the rate of appearance (Ra) and disappearance (Rd) of palmitate 

(Study 3) was calculated using the single pool non-steady state Steele equations (Steele 1959) 

that were adapted for stable isotope methodology(Wolfe and Jahoor 1990). 

Ra =  F – V[(C2 + C1)/2][(E2-E1)/(t2-t1)] 

                      (E2 + E1)/2 

            Rd = Ra – V (C2 – C1 /t2 – t1) 

Where F is the infusion rate (µmol kg
-1

 min
-1

), V is the distribution volume for palmitate or 

glucose (40 and 160ml kg
-1

) respectively, C1 and C2 are the palmitate and glucose 

concentrations (mmol
-1

) at times 1(t1) and 2 (t2), respectively, and E1 and E2 are the plasma 

palmitate or glucose enrichments (tracer to tracee ratio TTR) respectively at t1 and t2 

respectively. 

 

2.1.15.2 Determination of hepatic insulin sensitivity 

The labelled euglycemic–hyperinsulinemic clamp is the most frequently used method for 

measuring hepatic insulin sensitivity in response to glucose and insulin infusions. 



82 
 

Among the stable-isotope glucose tracers, [6,6-
2
H2]glucose appears to be the most suitable 

because apart from being safe and non-recycling, it is also considered to give the best 

estimate of true endogenous glucose production. 

        

Figure 2.5: Monocompartment model (based on Steele’s monocompartmental model and 

modified from Choukem and Gautier 2008). V: volume of compartment; Ra: hepatic glucose 

production rate; Ra*: tracer infusion rate; C: plasma glucose concentration; C*: plasma tracer 

concentration; Rd: rate of glucose disappearance; Rd*: rate of tracer disappearance 

Basal hepatic glucose production rate corresponds to the hepatic response to physiological 

plasma insulin, under clamp conditions HGP measured is an estimate of the hepatic response 

to supraphysiological insulin concentrations (residual HGP). Under non-steady state 

conditions created by insulin and glucose concentrations, a one-compartment model with 

constant volume (V) is used (Fig. 3) to facilitate calculation of residual HGP. Steel’s equation 

is the most widely used, although a more complex (Radziuk et al. 1978) and more recent 

model (Bluck and Clapperton 2005) that accounts for the error in Steele’s equation has also 

been proposed.  
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 Assuming basal HGP rate is equal to the liver’s response to plasma insulin, under steady-

state conditions, the glucose rate of appearance (Ra) equals its rate of disappearance (Rd); 

and the ratio of plasma tracer/tracee (C*/C), which corresponds to tracer enrichment (ε), is 

equal to the ratio of tracer infusion rate/glucose rate of appearance (Ra*/Ra). Thus, ε 

=Ra*/Ra (Ra=Ra*/ε). As Ra corresponds to the HGP rate in steady-state,  

HGP = Ra*/ε  

Although the isotope dilution method remains the best in determining hepatic insulin 

sensitivity in vivo and by far the safest and most practical compared to the arteriovenous-

difference method and use of radioactive-isotope tracers, a number of limitations make it less 

than perfect. The liver is not the only glucose-producing organ during fasting conditions. The 

kidney’s relative contribution to endogenous glucose production in the post- absorptive state 

is estimated to range from 5% to 28% (Cherrington et al. 1998, Gerich et al. 2001, Diraison 

et al. 2003). The monocompartmental model and the assumptions that constitute the basic 

principles of tracer methodology may also be subject to error. Another inconsistency is the 

computation of HGP rate using Steele’s equation, which often generates negative values of 

HGP during the euglycemic clamp; this is perhaps due to an error in the equation itself. These 

negative values have been seen in studies (Choukem et al. 2008) and are assumed to 

correspond to zero, that is, complete suppression of HGP.  

2.1.15.3 Palmitate tracer as a FFA tracer 

FFAs are avidly bound to albumin and are insoluble in aqueous media. The stable isotope 

method described by Woolfe in the 1970s utilises palmitate labelled with 
13

C or 
2
H and 

provides a precise and sensitive method of FFA tracer kinetics. For Study 3, 63.6mg of 
13

U 

palmitate was made up in 5mls of water. Because palmitate in its diluted form precipitates at 

room temperature, the palmitate was made up in warm water at 55°C and the syringe 
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containing the tracer was warmed again on a hot plate just before mixing with human 

albumin solution. 100mls of 4.5% human albumin solution was heated in a bath at 55°C. 

Once the palmitate became dilute it was injected sterilely into the bottle of albumin (as 

palmitate will bind to albumin and this mimics biological processing) and allowed to cool to 

room temperature before infusing. 

                      

gure 2.6a and b: Palm itate solution is  injected in to a 100mls  bott le of Human Al bumin S olution 4. 5% war med to 55°C, then left t o cool at roo m temperatu re before i nfus ing into  the human subject.  

 

Figure 2.6a and b: Palmitate solution is injected into a 100mls bottle of Human Albumin 

Solution 4.5% warmed to 55°C, then left to cool at room temperature before infusing into the 

human subject.  

 

The sample tracer is extracted from plasma after addition of a stable isotope internal standard 

to allow quantification of concentration, purified by thin layer chromatography and 

derivatised to their methyl esters. Isotopic enrichment of palmitate is then determined by gas 

chromatography mass spectrometry (GCMS). This method is superior to older methods of 

tracing FFAs, such as calorimetry and enzymatic assays. It provides an accurate way of 

identifying low individual and total FFA concentrations observed during an insulin infusion 

and is specific in determining tracer enrichment. However relatively large amounts of tracer 

and albumin were required to allow detection. Infusion rates can now be reduced with the 

introduction of combustion isotope ratio mass spectrometry where 
13

CO2 is measured. Of the 
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FFA tracers, palmitate, oleate and linoleate provide estimates of total FFA flux that are within 

15% of actual values. Continuous palmitate infusion allows determination of regional kinetics 

in tissues. FFA oxidation can be estimated using FFA carbon tracers 
13

 C and 
14

 C. A 

correction for CO2 fixation is often done to prevent inaccuracy (Sidossis et al. 1995).  

2.1.15.4 Sodium bicarbonate  

0.006375mg/kg of sodium bicarbonate was dissolved in 10mls of 0.9% saline and injected 

intravenously to prime the bicarbonate pool, to allow isotopic equilibrium of the palmitate. 

The main advantage of a primer is to achieve plateau in a shorter period of time, making 

infusions for volunteers feasible and cuts isotope costs and time of running studies. However 

some argue that the normal physiology of the tracer may be altered by priming due to rapid 

intake of tracer and that priming produces an artificial plateau (Wolfe and Chinkes 2005).  

2.1.15.5 Breath samples enriched with 
13

CO2 

For Study 3 breath samples were collected into a bag and then transferred into a vacutainer. 

Briefly the subject is asked to form a tight seal with their mouth over the rubber tubing 

connected to the bag, blowing comfortably into the bag. Before removing the tube from their 

mouths the tube is clamped, and then connected to a 3 way tap. One end is connected to the 

vacutainer (BD) where expired air is injected into evacuated tubes for determination of 

13
CO2/

12
CO2 ratio. As described by Siddossis et al. expired air is passed through a water trap 

followed by condensation in a liquid nitrogen trap to allow isolation of CO2 and evacuation 

of other gases. 
13

CO2/
12

CO2 is then determined by isotope ratio mass spectrometry (IRMS).  

The ratio is expressed in units of tracer to tracee ratio (TTR), defined as: 

TTR = (
13

C/
12

C)sa -   (
13

C/
12

C)ref – [(
13

C/
12

C)bk   -  (
13

C/
12

C)ref] 

Where sa = sample, ref = reference gas and bk = baseline sample 
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Figure 2.7: Breath bag and 3 way-tap to collect breath samples for 
13

CO2 analysis 

2.1.15.7 [6, 6-
2
H2] glucose quantification 

50 µl of plasma was mixed with 10µl of internal standard (methyl glucopyranose 50µg/ml). 

Addition of the internal standard results in a characteristic spectrum where the peak of 

interest is divided by the internal standard peak to account for losses. 300µl of cold absolute 

ethanol was then added to the mixture to deproteinise it. This mixture was spun down and the 

supernatant removed. A tenth of the supernatant was evaporated under N2 at 90
o
C to form a 

dried solid residue. 50µl of pyridine and hydroxylamine (25mg/ml) was added to this solid 

residue to form an oxime group. This was then incubated at 70
o
C for 45 minutes and allowed 

to cool slightly. 50µl of Trimethylsilyl-N-Trimethylsilyl Trifluoroacetimidate (BSTFA, 1% 

TMCS) was added and it was incubated at 70
o
C again for 45 minutes.  

The resultant mixture was then injected in a gas chromatography mass spectrometer at 240
o
C 

for up to 240 minutes. An enrichment curve was generated by making up 0.5%-5% 

deuterated glucose standards.  By this method, internal standard peaks, unlabelled glucose 

peaks and deuterated glucose peaks are generated.  
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2.1.15. 8  2-Deoxy-D-glucose (2DG) plasma concentrations 

100uL of plasma was aliquoted and mixed with 10ul of fluorodeoxyglucose (FDG) standard. 

1 ml of 100% ice cold ethanol is added to each tube and placed in ice/fridge for 20mins then 

spun for 2 mins at 10000rpm. The supernatant is dried completely in the techne
®
 block at 

90°C for 10mins. 100uL of oxime (20mg hydroxylamine HCL per 1ml pyridine) is added to 

each tube, vortex-mixed and incubated at 75°C for 30 mins in the oven. After cooling at room 

temperature, 70uL of BSTFA is mixed and incubated for 30 mins at 70°C in an oven in fume 

hood. Around 90uL is transferred into autosampler vials and capped. 

These were run on GCMS, and the first major doublet peak area (2DG) and second major 

doublet peak area of FDG standard (elutes closely after second 2DG peak) are recorded.  
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Figure 2.8: The trace shows 4 peaks, the lower shows 2, which are both glucose derivatives. 

The mass spectrum shows the major fragments in the glucose-oxime-TMS derivative. 
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Figure 2.9: The chromatograms show the 3 masses monitored. The 319 mass is used for 

quantitation and is the major fragment where there are to labelled atoms (no deuterium). The 

tracer 
2
H2, 2 deuteriums are replaced in the glucose molecule, so mass 319 + 2 =321 is looked 

at and quantified.  The 323 mass represents the internal standard, added to quantify glucose. 

When added to plasma the ratio between glucose is fixed, so a standard glucose curve (of 

known concentrations & containing the same amount of internal standard) is generated. 

Diagram courtesy of Dr K Smith, School of Medicine, University of Nottingham, UK. 

2.1.15.9 Determining skeletal muscle protein synthesis rate  

The tracer L-[ring-
2
H5 ]-phenylalanine was utilised in Study 2 to determine the fractional rate 

of mixed muscle protein synthesis (FSR). An amino acid bolus (which excluded 

phenylalanine and tyrosine) was fed via nasogastric tube in the same study due to palability 

issues. Arterialised blood samples were obtained into evacuated-heparinised tubes 

(Vacutainer) and chilled on ice.  
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After deproteinisation on ice with dry 5-sulfosalicylic acid and derivatisation with tert-butyl 

dimethylsilyl (TBDMS) as described (Gorissen, Burd et al. 2014), plasma was analysed for 

phenylalanine and leucine concentrations and enrichment by GCMS.   

Muscle protein synthesis rate was calculated by dividing the increment in enrichment in L-

[ring-
2
H5 ]-phenylalanine by the enrichment of the precursor. Plasma and muscle free L-[ring-

2
H5 ]-phenylalanine enrichments were used to provide an estimate of the lower and higher 

boundaries of true FSR respectively. Thus the formula used was: 

FSR (% hr 
-1

) = [∆Ep/Eprecursor x t] x 100 

Where ∆Ep is the delta increment of protein bound L-[ring-
2
H5]-phenylalanine during 

incorporation periods, Eprecursor is the enrichment of the precursor used during the time 

period for amino acid incorporation determination, and t denotes the time duration (hour) 

between biopsies. The equation is multiplied by 100 to express FSR as percentage per hour.  

As the administered amino acid drink in Study 2 did not contain phenylalanine, whole body 

protein breakdown during the basal and fed periods could be determined from the rate of 

appearance of phenylalanine using the single-pool equation Ra=F/Ess where F is the infusion 

rate (µmol/kg min) and Ess is the steady state plasma phenylalanine enrichments (TTR) 

during the final hour of the basal and fed period.  
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2.2 Methods specific to studies 

The following methods are specific to the studies presented in this thesis 

2.2.1 Energy Predictions 

Whilst indirect calorimetry is one of the most accurate in estimating basal metabolic rate 

(BMR), where this is unavailable or not feasible, BMR could be obtained by using equations 

based on anthropometric measurements. The FAO/WHO/UNU 1985 recommended the use of 

age and gender-specific equations based on weight and height or weight alone to predict 

BMR in all populations. These have been modified and widely adopted (Schofield et al. 

1985), until recent times when it was observed that Schofield equations were inaccurate in 

predicting BMR in certain populations (Piers and Shetty 1993; Henry and Rees 1998). 

Specifically the inclusion of data from a population where the majority were Italian male 

military cadets and miners tended to result in overestimation of BMR in other populations. A 

challenging issue that persists is which predictive equation is most suitable for use in 

overweight and obesity.  The issue lies with the lower metabolic rate of adipose tissue 

compared to lean tissue. Resting energy expenditure (REE) thus increases in a non-linear 

fashion with weight, and tends to over-estimate energy requirements in overweight and obese 

(Horgan and Stubbs 2003). Thus the Schofield equation is inappropriate for use in this group 

(Frankenfield 2005). 

Based on comparisons made between the most commonly used predictive equations in 

clinical practice of Harris and Benedict (1919), FAO/WHO/UNU weight or weight and 

height equations (1985), Mifflin –St Jeor (1990) and Owen (1986, 1987), the Mifflin-St Jeor 

was found to be the most reliable, predicting resting metabolic rate (RMR) within 10% of 

measured in more nonobese and obese individuals than any other equation, and also had the 
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narrowest error range (Frankenfield 2005). However errors existed when applied to 

individuals and generalized to certain age and ethnic groups.     

The current modified Schofield or Henry’s/Oxford equation excludes Italian data and is 

currently accepted for use in most populations (Henry and Hayter 1999, Henry 2005). The 

new predictive formula includes height in addition to weight, and has been proven to be more 

accurate than the Schofield equation in an overweight or obese setting (Ramirez-Zea 2005; 

Weijs 2008) and showing a smaller deviation compared with REE determined with indirect 

calorimetry in adults with BMI within the normal range (Razalee et al. 2008).  

Henry/Oxford prediction equations for BMR using height and weight: 

 18 - 30 years:   REE = 14.4 x W + 313 x H + 113  

30 - 60 years:   REE = 11.4 x W + 541 x H – 137 

Henry/Oxford prediction equations for BMR using weight alone: 

18-30 years:                REE=16.0 X W + 545 

30-60 years:       REE=14.2 X W - 593 

Where W is weight in kilograms, H is height in meters, and REE is kcal/day 

Although both equations incorporating weight and height and just weight alone could be 

used, the equation used for estimating energy requirements in study 2 used body weight as 

the only independent variable. Body weight, an easily and accurately acquired variable has 

been considered the best single predictor of BMR (Schofield 1985, Henry 1991). Regression 

equations with body weight and combination of body weight and height yielded similar R
2
 

values (Razalee 2010).  Based on regression equations from the 1985 FAO/WHO/UNU 

Expert Consultation on Energy and Protein Requirements, including height as a second 
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predictor after weight, did not contribute significantly further to the equations for both 

genders, apart from those under three and above sixty years of age (Schofield 1985).     

Once the predicted BMR has been estimated, total energy expenditure (TEE) is determined 

by factoring in the physical activity of the subject. Subjects’ physical activity was assessed 

using the self-completed short version of the International Physical Activity Questionnaire 

(IPAQ) (Hagstromer, Oja et al. 2006) at screening. The IPAQ was developed in the late 

1990s by a multi-national group, supported by WHO and has been shown to correlate with 

objective evidence of physical exercise (Mader, Martin et al. 2006).  It assesses physical 

activity levels during the preceding seven days and generates a low (1.5), moderate (1.6) or 

high (1.8) activity score.  

2.2.2 Determination of energy and macronutrient intake 

For study 3 subjects completed 3 day food records of two weekdays and one weekend day 

before embarking on their study diet. ‘Microdiet’ software (Downlee Systems Ltd., Salford, 

UK) is a nutrient analysis software package that incorporates UK based nutrient data with the 

ability to edit and add additional foodstuffs not within the database. Nutrient content of 

foodstuffs could be added based on the nutritional information from food labels and 

published values. The Microdiet software was also used to design the food plans (isoenergetic 

with 50-55% CHO, 30-35% Fat and 13-15% Protein) for one week and 25% excess energy of 

either CHO or Fat for the following two weeks. Subjects were provided with and delivered 

commercially prepared food.    
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2.2.3 Methods of determining exercise capacity and performance 

2.2.3.1 Incremental shuttle walk test 

Baseline incremental shuttle walk test (ISWT) outcomes were compared between older lean 

and overweight volunteers in Study 1. Older volunteers performed the ISWT at the start and 

after the 6 month intervention for Study 4. Briefly this test involves shuttling between 2 cones 

10 metres apart in time increments paced to a series of bleep signals until they are no longer 

able to keep up or exhibited symptoms limiting their performance. It provokes a symptom 

limited maximal performance that allows direct comparison of a patient’s performance 

originally developed to evaluate functional capacity in patients with chronic progressive 

obstructive disease.(Singh et al. 1992) and later validated for use in other chronic diseases 

(ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories). It 

is proven to be a feasible measure of functional capacity in older people and correlates well 

with other markers of disability (Dyer et al. 2002).  

2.2.3.2 VO2 max testing 

VO2 max testing was determined using an electronic-braked cycle ergometer (Lode 

Excalibur, Groningen, The Netherlands) during an incremental exhaustive exercise test to 

determine rate of VO2 max measured using an online gas analysis system. This allowed 

further determination of the corresponding workload at 50% VO2 max at which older subjects 

cycled to. Most data describing maximal oxygen uptake and requirements for achieving this 

have been developed using young healthy subjects. There is no single standardised or 

protocol of determining the maximum aerobic function in elderly people. Cycle ergometer 

and treadmill tests are considered the commonest method of exercise stress tests. Of the two, 

the treadmill has more diagnostic sensitivity and presents a more familiar and functional 

exercise modality ie walking (Lear, Brozic et al. 1999), but this may present a problem for 
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some elderly patients with balance problems or arthritis. VO2 max values achieved with cycle 

ergometer are generally 11% (range 8-15%) lower than those with the treadmill due primarily 

to smaller volume of exercising muscle mass (Hermansen and Saltin 1969). VO2 max tends 

to decline with age, at around 1% each year after the 3
rd

 decade of life (Astrand 1960). This 

may be associated with the decline in cardiorespiratory function and muscular function with 

advancing age. The difficulty of directly measuring VO2 max in the elderly stems from the 

physical limitations or chronic medical conditions in older people but also other factors such 

as muscle fatigue, perceived exhaustion, subject motivation and the clinicians willingness to 

continue exercising until exhaustion, particularly in elderly subjects who are at higher risk of 

coronary artery disease and arrhythmias.(Astrand 1976) Current literature indicates 

variability in protocols used to achieve VO2 max and was mostly developed for use in young 

subjects. The requirements seen in literature include:- 

1) Respiratory Exchange Ratio (RER)>1.0 (Cress, Thomas et al. 1991, Hollenberg, Ngo 

et al. 1998) or >1.1 (Shephard, Allen et al. 1968) 

2) Peak exercise heart rate of at least 85% of age-predicted maximum (Borg 1982)or 

heart rate within 10 beats per minute of age-predicted maximum (Howley, Bassett et 

al. 1995) 

3) Borg’s perceived exertion scale >15 

No single protocol for exercising elderly subjects exists. Table 2.2 current protocols used in 

various studies on VO2 max.  A protocol for VO2 max tests for elderly subjects (65-75 years) 

in this study was proposed based on current protocols used in exercising young healthy 

subjects but  modified to take into account the physical limitations, early fatigability, 

increased risk of arrhythmias and coronary heart disease. Of relevance is the study by 

Thomas et al. (Thomas, Cunningham 1987) who compared three different VO2max testing 

protocols across the same group of elderly subjects and suggested that a continuous ramp-like 
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protocol with small increases in both speed and grade was the most appropriate for healthy 

older men. The protocol however had limited generalisation to the greater population of older 

adults due to the exclusion of women. A longitudinal study performed on 375 healthy women 

(48.6±16 yrs) and 435 men ( 51.9±16 yrs) from the Baltimore Longitudinal  Study of Aging 

(BLSA) using treadmill testing considered achievement of maximal exercise to have been 

achieved when volunteers heart rate reached > 85% of predicted and appeared fatigue, and 

could not have carried on for at least another minute (Fleg and Lakatta 1988).  

Therefore the requirements for ensuring VO2 max has been achieved for this study were 

similar to that used for testing younger subjects and based on protocols seen in other studies 

involving elderly subjects  ie RER>1.1 or HR> 85% of predicted maximal heart rate (HR) for 

age or Borg scale > 15. Modifications from that used in younger volunteers included a short 

familiarisation period (10 mins) of cycling at 40W. Power output then increased by 20 W 

every 3 mins, until 12 mins where it was increased every 20 W/min per minute until 

exhaustion. Subjects were attached to the heart rate (3 lead) monitor and the test was stopped 

if the volunteer exhibited chest pain, increasing dizziness, deceleration of heart rate, more 

than 2 ventricular ectopics on the ECG screen ie > 2 ectopics per 10 seconds. 

It has been suggested that VO2 peak data may provide sufficient information in determining 

maximum aerobic capacity in elderly people or perhaps redefining the maximum HR to be 

achieved during the max test. 
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Table 2.2: Protocols to determine VO2 max in older subjects seen in literature and of that used in study 4. 

Authors Subjects Protocol 

Jones et al., 

1985  

• 100 healthy subjects (50 male and 50 female), 

selected to provide an even distribution of age 

(15–71 y) and height 

• Initial power setting 16.3 W 

• 10 men and 10 women between 55 and 71 y 

• Power increased by 16.3 W/min until a symptom-limited power 

output reached 

Poehlman & 

Danforth, 1991  

• 19 older adults (13 men, 6 women) (64 ± 1.6 y) • Initial workload for women: 25 W at 50 rpm 

• Initial workload for men: 50 W at 50 rpm 

• Initial workload sustained for 3 min 

• Increased by 25 W every 2 min until exhaustion or until subjects 

unable to maintain 50 rpm 

Fairbarn et al., 

1994  

• 231 men and women equally divided within 

decades between 20 and 80 y (no breakdown of 

specific ages within decades provided) 

• Initial power ouput at 16 or 32 W 

• Power increased by 16 W/min until subject reached symptom-

limited maximal power output 

Cress & Meyer, 

2003  

• Men and women (N = 192; 76 ± 7 y) from 

single-family community dwellings or retirement 

communities with multiple levels of care  

• Familiarization period 

• Ramped test 

• Power output increased at a rate of 8–16 W/min 
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Pruchnic et al. 

2004 

 

13 healthy (67.3 ± 0.7 yr old) volunteers (8 

women and 5 men) 

 

Initial workload of 0-25W for first 2 mins then increment of 10-

25W every 2 mins until volutional exhaustion and until one of 

established criteria reached based on the American College of 

Sports Nutrition  

Study 4 of 

present thesis 

23 healthy men (mean 69 years) Initial workload 40W,increased by 20 W every 3 mins for first 12 

mins,then 20w every min until subjects unable to maintain 60 

rpm and until one of RER>1.2 or HR>85%predicted or Perceived 

Borg Score> 15 
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2.2.4 Methods of determining body composition 

2.2.4.1 Anthropometric assessments 

Skinfold measurements and bioelectric impedance analysis (BIA) were used to assess body 

composition in study 3. 

Skinfold measurement is used to assess subcutaneous fat thickness at various regions of the 

body. It is traditionally used to assess the degree of fatness and specifically the size of 

subcutaneous fat depots  The primary limitation is that most callipers have an upper 

measurement limit of 45 -55 mm, so this would not be ideal in very overweight or obese 

subjects (Duren, Sherwood et al. 2008). The mean of skinfold thickness measurements are 

calculated, per cent body fat is then calculated from the means of each four skin fold 

thickness measurements (biceps, triceps, subscapular and suprailiac) following the method of 

Durnin and Womersley (Durnin and Womersley 1974). Body fat percentage is estimated 

from the Siri formula (Siri1961), by dividing 495 by the body density (ε) calculated from the 

mean skinfold thickness measurements, minus 450 and multiplying by 100: 

Body fat = (495/ε skinfold measurement -450) x 100.  

2.2.4.2 Bioelectric Impedance Analysis 

This method produces estimates of total body water (TBW), fat-free mass (FFM), and fat 

mass by measuring resistance of the body as a conductor to a very small alternating electrical 

current (Lukaski, Johnson et al. 1985; Chumlea and Guo 1994). The impedance index 

[stature squared divided by resistance (S
2
/R) at a frequency] is proportional to the volume of 

total water and is an independent variable in regression equations to predict body 

composition (Baumgartner RN et al. 1990). BIAs use these equations to describe statistical 

associations for a specific population therefore these are useful only for subjects that closely 
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match the reference population in body size and shape. BIA’s ability to predict the degree of 

fat in obese subjects can be difficult to interpret because these individuals have a greater 

proportion of body mass and body water accounted for by the trunk, the hydration of FFM is 

lower in the obese, and the ratio of extracellular to intracellular water is increased in the 

obese.(Gray, Bray et al. 1989). BIA’s advantages are its portability, ease of use, relatively 

low cost and safety. The validity of BIA is influenced by gender, age, disease state, race and 

ethnicity (Rush, Chandu et al. 2006) and level of fatness (where TBW and relative ECW are 

greater in obesity compared with normal-weight individuals). Single-frequency BIA has 

better agreement than multifrequency BIA compared to DEXA  as a criterion measure for fat 

mass and FFM estimates in overweight and obese men.(Pateyjohns, Brinkworth et al. 2006) 

2.2.4.3 Dual energy x-ray absorptiometry (DEXA) 

Dual energy x-ray absorptiometry (DEXA) scan (Lunar Prodigy, GE Healthcare) was used to 

measure body composition of volunteers in studies 1, 2 and 4. Study 3 utilised the methods of 

Bioelectric Impedance Analysis (BIA) and skinfold anthropometric measurements. Originally 

developed by Mazess et al. (Mazess, Peppler et al. 1981) to precisely measure total bone 

mineral content, DEXA is today widely and commonly used to measure fat and lean body 

mass. Commercially available DEXA scanners manufactured by Lunar, Norland and Hologic 

generate two low energy x-rays levels to distinguish total body adipose and soft tissue, bone 

mineral content and density. Calculations are based on the assumptions on levels of 

hydration, potassium and tissue density and vary between manufacturers. The method is 

based on the energy dependence of the attenuation coefficients for photon absorption of bone 

mineral (containing high atomic number of calcium) and soft tissue (contain low atomic 

number elements of carbon, hydrogen and oxygen) (Mazess, Barden et al. 1990) An x-ray 

tube behind a filter converts the polychromatic x ray beam into one with two main energy 

peaks. The attenuation of non-bone tissue was previously assumed to be constant but is now 
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measured therefore limiting errors in estimation of composition (Roubenoff, Kehayias et al. 

1993).  

The ratio of soft tissue attenuation (RST) at the two energy levels is measured. The subject’s 

ratio of lean mass and fat (RL and RF) are known from theoretical calculations and human 

experiments. Thus the proportion of fat (alpha) and lean (beta) mass in each pixel can be 

determined: 

RST (40Kv) = α (Rf) + β (RL)          (1) 

RST (70Kv) = α (Rf) + β (RL)          (2) 

In its’ primary role of assessing bone mineral density, DEXA has a confidence value (CV) of 

~ 1 %.( Mazess, Barden et al.1990)  

Physical limitations include body weight, length, thickness and width of the subject. Indeed 

others have found that DEXA is unreliable in assessing body composition in obesity. 

Nevertheless DEXA is considered quick, convenient, non-invasive and exposes volunteers to 

a low radiation of <5mrem. This method can be applied to populations requiring minimal 

cooperation. It can also be performed by operators with minimal training.   

Wang et al. (1992) described changes in body composition with growth, ageing and illness. 

When assessing composition, it has to be assumed that the hydration of lean body mass is 

uniform and fixed at 0.73ml/g (Roubenoff and Kehayias 1991). This may not hold true in 

elderly or hospitalised ill patients (Heymsfield and Waki 1991) and will clearly also affect 

analyses using the bioelectric impedance and underwater weighing method in these groups. 

Abnormal hydration affects the subjects RL (ratio of lean mass) leading to deviation from the 

RL in the equations 1 and 2, leading to an error in the amount of lean tissue contributing to 

total body tissue. DEXA measurements of bone are sensitive to the anteroposterior thickness 
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of the body so there may be a difference in thin and obese subjects. Bias can thus emerge 

from following body composition during weight-reduction studies or growth in adolescents. 

(Roubenoff et al.1993). 

Particular regions such as the thorax and arms (where bone forms the greatest proportion of 

total mass) could lead to errors in soft tissue measurements. Pixels can sometimes miss small 

areas of bone and be included as lean tissue as the average absorption of coefficient for x-rays 

is closest to lean tissue than is bone, leading to possible overestimation of lean mass. It has 

also been shown that DEXA instruments from different manufacturers produce different 

measurements, and lack cross-validation using a standard phantom (Roubenoff et al. 1993).  

For studies presented here, at least three trained technicians have carried out DEXA scans  

using the same DEXA scanner (Lunar Prodigy). Ideally the same operator should carry out 

both scans (at the beginning and end of the study) to minimise inter-operator variability. To 

attempt to minimise this inconsistency, the regions scanned were re-measured by one single 

operator at the end of the study.   

Despite its limitations, considering the advantages, relative precision and practicality of 

DEXA compared to MRI/CT scanning and other indirect methods such as BIA and skinfold 

measurement, DEXA scanning appears to be the most useful in determining body 

composition.   
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Figure 2.10a and b: DEXA scanner and MRI scanner used to determine body composition in 

Studies 1, 2, 4 and hepatic and muscle triglyceride in study 3 respectively. 

 

2.4.4.4 Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectrometry 

(MRS) 

For study 3 magnetic resonance imaging and spectroscopy was employed at the beginning 

and end of the 2 weeks of overfeeding either fat or carbohydrate to quantify the effect of both 

diets on liver fat. 

The basic principles of MR scanning depend on a nucleus with non-zero spin such as 
1
H, 

13
C 

and 
19 

F. As 
1
H is the most naturally abundant element it produces the most intense MR 

signals and is thus the most frequently analysed element for MR and spectroscopy assessment 

(van der Graaf 2010).  

The MRI process consists of five major elements (van der Graff 2010): 

1) Magnet 

2) Gradient systems 

3) Radiofrequency (RF) coil system 

http://www.google.co.uk/imgres?imgurl=http://www.meridianclinic.ie/images/navigation/img_ns_title_55.jpg&imgrefurl=http://www.meridianclinic.ie/home_ns_55.html&h=264&w=407&tbnid=EO7aEHoLrXAchM:&zoom=1&docid=8-i9DRxnaIg7CM&ei=DChYVJXVDaKr7AbcwICABQ&tbm=isch&ved=0CF8QMyg4MDg&iact=rc&uact=3&dur=1000&page=3&start=38&ndsp=24
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4) Receiver 

5) Computer 

The magnet aligns the nuclei in low (parallel) and high (anti-parallel) energy states. A strong 

magnetic field is required and should be uniform over the area of interest; a shim system 

maintains this uniformity. The field uniformity can be altered using a magnetic field gradient 

(GZr) which varies linearly with position r to spatially encode the NMR signal. Gradients are 

generated by passing currents through arranged coils of wire placed surrounding the subject 

imaged.  

To generate an NMR signal, an RF field flips the magnetisation away from its equilibrium 

state using an RF transmitter that is responsible for pulse shape, duration, power and timing. 

Each spin produces a sinusoidal signal at a frequency dependent on the local magnetic field. 

An RF coil detects the signal from the spins by coupling the nuclei to an external circuitry. 

Either a volume or surface coil can be used, with the former being the most efficient. 

The RF signal is ‘received’ by a receiver system, where it is first amplified with a low-noise 

amplifier which is then transmitted to form an image on a remote computer. The computer 

system then retrieves images using a form of Fourier transform (FT). The fast FT can be used 

for two to three dimensional images.     

As smaller metabolite signals other than water or fat are often required in MRS, a magnetic 

field of sufficient strength is required, generally 1.5 Tesla (T) or higher. Clinical MR systems 

with field strengths of 3T have improved signal-to-noise ratio (SNR) in MR spectra, enabling 

acquisition of spectra from smaller volumes (van der Graff 2010).  

Liver fat content was quantified using H –MRS with a 3.0 Tesla (T) scanner (Philips Medical 

Systems) in Study 2. At 3T the chemical shift between water and the dominant fat peak 

corresponding to a frequency difference of -434 Hz. This oscillation period is half that of 
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1.5T and the corresponding IP and OP echo times at 3T are halved.  A spectroscopy 

localisation technique with time of repetition of 3000ms, echo time of 30ms, and 16 

acquisitions was used to obtain liver spectra. Measurements of abdominal subcutaneous and 

intraabdominal adipose tissue volume were obtained from 16T1-weighed axial magnetic 

resonance imagesby using selective fat excitation ranging from 8cm below and above the 

L4/L5 lumbar intervetebral disc. Adipose tissue volume and liver fat content were analysed 

by 2 different investigators using MRI software.     

MRS is considered the most accurate non-invasive means of measuring liver fat content 

showing good correlations with histological samples (Longo et al. 1993, Thomsen et al. 

1994, Szczepaniak et al. 1999). This method separates the liver signal into its water and fat 

components and calculates a signal fat-fraction. MRS is particularly recommended for 

assessment of small lipid fractions in liver as sensitivity to low signal intensities from fat is 

higher, and signals from water and fat are better distinguished.  Resonance frequencies as 

depicted by MR correspond to protons in water and dominant protein signals in fat. When 

signal intensities at frequencies corresponding to water and fat are quantified the signal-fat 

fraction is calculated (Mitchell et al. 1991, Fishbein et al. 1997, Hussain et al. 2005). 

Fat-signal fraction η is calculated as the signal from fat protons divided by combined signal 

from fat and water protons in the liver   

η = F / W+F 

F = fat signal  

W =Water signal 

It is assumed that the fat signal fraction reflects fat concentrations if the signals from W and F 

are corrected for confounding factors. 
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In particular 
1
H MRS directly measures the protons in the fatty acids of the triglycerides, 

providing a quantitative assessment of hepatic triglyceride. 

MRS carried out in this study used the Dixon method (Mitchell et al. 1991), the in phase and 

out of phase (IOP) imaging acquired in-phase images when signal from water and fat add, 

and out of phase images when signal from water and fat subtract.  

Sagittal, coronal and axial slices through the right lobe of the liver were acquired and a single 

voxel measuring 3x3x3cm
3
 was manually placed in liver parenchyma using multiplanar 

localising images. For reliable spectra from liver parenchyma to be recorded, voxels are 

carefully placed to avoid artificial signal contributions from intrahepatic blood vessels, large 

bile ducts, lateral margin of the liver and surrounding adipose tissue.  Shimming (placing a 

box within area of the liver to be scanned) is performed to achieve a homogenous magnetic 

field across the voxel and to avoid non-uniformity of fat suppression (See figure 2.11). A 

spectroscopic sequence is then performed.  

 

Figure 2.11: Placement of volume shim for optimum fat suppression in liver imaging: 

Increased phase shifts between fat and water occur creating image artifacts so complete fat 

suppression is required to eliminate this. This can be eliminated using a frequency selective 

fat suppression pulse (SPIR/SPAIR) with volume shimming. Air or soft tissue interfaces can 

create non-uniformity of fat suppression; therefore air within the vowel can be minimised by 

proper placement of volume shim box as above.  
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Figure 2.12. MRI scout images in the transverse (left) and sagittal (right) plane used for 

voxel placement of STEAM localized MRS (red box). 

 The two main methods used for single-voxel spectroscopy are point resolved spectroscopy 

(PRESS) (Ordridge et al. 1985) or stimulated-echo acquisition mode (STEAM) (Frahm et al. 

1989). PRESS uses a 90-180-180 pulse sequence with long echo time, allowing for better 

visualisation of metabolites with long T1 relaxation times. The STEAM method on the other 

hand consists of a shorter echo time and lower signal yield compared to PRESS. 

The magnitude-based approach is perhaps the most commonly used MR approach for liver 

fat assessment currently. Two gradient echos are acquired, one at an echo time (TE) in which 

the water peak and dominant fat peak are out of phase and one at a TE in which two peaks are 

‘in’ phase. The TEs corresponding to in phase and out of phase (IOP) depend on the field 

strength. The MRI signal strength used in this study was 3 Tesla (3T).  

MRS fat quantification techniques are shown to be safe, non-invasive and have high intra-

individual reproducibility in repeated measurements. However it relies on overall volume 

fraction of lipids in liver parenchyma whereas quantification from liver biopsies is taken from 

percentage of hepatocytes that show distinct fat droplets. There may thus be a difference in 

reported percentage values of steatosis between 
1
H MRS and histological analysis. 
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There is not as yet a clinically-defined cut-off value for normal vs abnormal levels of hepatic 

fat. A large MR spectroscopy study involving over 2000 participants of the Dallas Heart 

Study defined a 95
th

 percentile cut-off of 5.56% fat-fraction as abnormal based on a subset of 

345 patients with no identifiable risk factors for hepatic steatosis (Szczepaniak, Nurenberg et 

al. 2005). Indeed cut-off values may be modified slightly in the future when fat fractions are 

related to histological samples or clinical outcomes. Nevertheless based on current fat 

fraction cut-off values derived from the study above (~5%) the accuracy (bias) and precision 

(standard deviation) of a quantitative fat content biomarker must be smaller than 5-6% to 

provide a reliable diagnosis (Reeder, Cruite et al. 2011). 

The MRI scanner may also not be suitable for people suffering claustrophobia, having orbital 

metallic implants, pacemakers or metallic heart valves. Although metallic implants generally 

do not pose safety risks, spinal fusion metallic plants or knee implants for example may 

distort images and affect quality of liver fat quantification. 
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Figure 2.13: Single voxel MR spectrum of vegetable oil at 3.0T demonstrates the spectral 

complexity of fat. Triglycerides such as those in human liver fat have at least 6 identifiable 

peaks at clinical field strengths, similar to those shown in this figure. Methods such as IOP 

imaging and chemical shift based water-fat separation methods that model fat as a single 

NMR peak at -434Hz (-217Hz at 1.5T) will inaccurately estimate the concentration of fat 

within tissue if all peaks are not included in signal measurements. The frequencies that are 

shown present the chemical shifts of the different peaks at 3.0T relative to water (Reeder et 

al. 2011). 

 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3002753_nihms-250182-f0008.jpg
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Figure 2.14. STEAM localized 
1
H MRS with water suppression (TE=20ms) at 3T acquired 

from a 20x20x20mm voxel within the right lobe of the liver of one subject (9 averages in one 

breath hold). The spectrum shows high resolution of multiple fat peaks allowing easy peak 

fitting quantification. Diagram courtesy of Dr Stephen Bawding, School of Physics,  

University of Nottingham. 

2.2.4.5 Other methods for quantifying liver fat 

Liver biopsy and direct histological analysis of tissue samples are currently the gold standard 

for quantifying intrahepatic lipid content. However this method is invasive, relatively 

expensive compared to imaging methods and presents risks in otherwise healthy subjects 

(Bravo et al. 2001) so may be inappropriate for use in research or longitudinal studies. 

Biopsy is also subject to sampling variability as it evaluates a small portion (0.05cm
3
) of the 

liver (800-1000cm
3
) (Ratziu, Charlotte et al. 2005) and the distribution of fat throughout liver 

may be non-uniform.   In this respect MRI/MRS provide a non-invasive means of measuring 

liver fat content. Compared with ultrasound and CT, it is capable of detecting small amounts 

of intrahepatic lipid content. Longo et al. 1993 described how H-MRS of liver parenchyma 

was well-correlated with data from CT studies and liver biopsies.  
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Ultrasound is one of the most common modalities of imaging to evaluate hepatic steatosis; it 

is non-invasive, costs less, and easily available. Liver fat content is evaluated indirectly based 

on qualitative sonographic features such as liver echogenicity, echotexture, vessel visibility 

and beam attenuation. The use of ultrasound is operator and machine-dependent and thus has 

limited repeatability and reproducibility. It would be an inappropriate tool to use in the 

HFHC study (Chapter 4), as the use of ultrasound in overweight or obese subjects is 

challenging due to impaired beam penetration and limited liver visualisation. The positive 

predictive value for detection of hepatic steatosis is only 62-77% (Graif, Yanuka et al. 2000; 

Saadeh, Younossi et al. 2002). 

Unlike ultrasound, CT evaluates hepatic steatosis indirectly based on hepatic X-ray 

attenuation that can be measured objectively and with high precision (Saadeh et al. 2002, 

(Kodama, Ng et al. 2007). Other factors such as iron, copper, glycogen and fibrosis and 

oedema can affect CT attenuation values resulting in errors in fat quantification and low 

sensitivity for mild to moderate steatosis. CT also relies on ionising radiation that will be 

appropriate for use in children or repeated monitoring of liver fat in adults (Fazel, Krumholz 

et al. 2009). The inherent variability in attenuation values across CT scanners manufactured 

by different vendors also exists (Birnbaum, Hindman et al. 2007).  

2.2.4.6 Proton magnetic resonance spectroscopy (
1
H MRS) of muscle 

Besides liver, MRS of muscle was also determined. Within muscle, triglyceride is stored 

either intra (IMCL) or extra-myocellular (EMCL). The main proton signal from muscle is 

from water. Following water suppression the main peak seen on sprectroscopy is lipid, and 

EMCL and IMCL are closely opposed but can be separately identified. Unlike the liver, 

movement due to respiration is not an issue, so subjects are not required to carry out breath-

holds during scanning. The reproducibility using this method for identifying IMCL is 
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acceptable with a coefficient of variation of 13% using 1.5 T scanner (Torriani, Thomas et al. 

2005).  

2.2.5 Skeletal muscle biopsy samples 

The following methods were used for studies 1, 3 and 4. 

2.2.5.1 Determining total muscle carnitine content 

Muscle samples obtained by biopsy were immediately frozen in isopentane then stored in 

liquid nitrogen. Muscle was then dissected free of visible blood and connective tissue, 

pulverised and used for the determination of free-, acetyl- and long-chain acyl-carnitine 

content (Cederblad et al. 1990). Total muscle carnitine was calculated as the sum of these 

carnitine moieties. Long-chain acyl-CoA content was determined from the same extract as 

long-chain acylcarnitine using a modified version of the radioenzymatic method of Cederblad 

et al. (1990). 

Freeze-dried powdered muscle was extracted with 0.5mM perchloric acid in 1mM Na2 

EDTA and neutralised with 2.1M KHCO3. 

2.2.5.2 Acetyl-coA assay 

Using a standard assay kit (Sigma-Aldrich), free CoA was quenched then Acetyl CoA is 

converted to CoA. The CoA was reacted to form NADH which interacts with PicoProbe to 

generate fluorescence (Ex=535/Em=587 nm). Briefly, tissue samples for measurement were 

deproteinised using perchloric acid/KOH protocol. The homogenate was spun at 10000g and 

neutralised with KHO3 and put on ice for 5 minutes. Acetyl CoA standard curves were 

generated by diluting Acetyl CoA Standards whilst background free CoASH and succ-CoA in 

samples were corrected for by adding 10µl of CoASH Quencher to each standard, sample and 

background samples to quench free CoA. 2µl of Quench remover (ie NEM) was then added 
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and incubated for 5 mins at room temperature. CoA conversion was carried out by making up 

50µl of reaction mix for all the wells, and incubated at 37°C for 10 minutes. Fluorescence 

using Ex/Em =535/589nm with a plate reader was carried out. Background values and correct 

Acetyl-CoA values for each sample were determined and a standard curve was plotted where 

Acetyl-CoA amounts in the sample wells were obtained.  

Acetyl CoA concentrations in the test samples: 

C = Ay/Sv (pmol/μl; or nmol/ml; or μM) 

Where: Ay is the amount of Acetyl CoA (pmol) in the sample from the standard curve. 

Sv is the sample volume (μl) added to the sample well. 

2.2.5.3 Determination of 2DG in muscle 

 Frozen muscle (30–40 mg) was powdered under liquid nitrogen, and transferred to 70% 

ethanol. The sample was vortex mixed and then centrifuged at 5,000g for 10 min. The 

resultant supernatant was used for 2-deoxyglucose-6-phosphate (2DG6P) analysis using a 

commercial kit (Cosmo Bio Ltd, Tokyo). 2DG accumulates in muscle as 2DG6P and is 

oxidised by the introduction of glucose-6 phosphate dehydrogenase (G6PDH), resulting in 

NADPH where it was quantified at 420 nm using a recycling amplification enzymatic-

photometric system (Saito K and Minokoshi Y et al. 2011).  

2.2.5.4 Electron Microscopy of muscle 

Muscle samples were first fixed in 1% osmium tetroxide, then dehydrated in ethanol and 

embedded in Spurr’s resin (25ml Araldite CY212 resin, 15ml Agar 100 resin, 55ml DDSA, 

2ml Dibutylphthalate and 1.5ml DMP 30). Thin sections were cut using an ultramicrotome, 

placed on Cu/Pd grids and stained for 5 min in uranyl acetate followed by 2 min in lead 
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acetate. Longitudinal images were visualized using a transmission electron microscope at a 

magnification of x4200. Approximately 40 micrographs from at least four different muscle 

fibres were taken at random and sequentially by an operator blinded to subject age, with 

around half of the images containing a SSL region. Images were analysed in a blinded 

manner described by Crane et al. 2009 using ImageJ (NIH) to determine percentage IMCL 

per fibre area, lipid droplet size, total number of lipid droplets per square micrometer of 

tissue and percentage IMCL area density. 

2.2.5.5 Lipid metabolites 

Quantification of intramuscular DAGs and ceramides was performed using high-performance 

liquid chromatography (HPLC) tandem mass spectroscopy. Tissue homogenates were 

fortified with internal standards and extracted into a one-phase neutral organic solvent 

system, evaporated and reconstituted in methanol. Quantitative analysis was performed in a 

positive multiple-reaction-monitoring mode, based on calibration curves generated by adding 

to an artificial matrix known amounts of target analytes, synthetic standards and an equal 

amount of internal standard. DAG and ceramide levels were normalized to total protein 

levels. For skeletal muscle DAG and ceramide analyses, 50 ng internal standard (1,3[d5]-15:0 

DAG) was added to 5 mg freeze-dried muscle powder, total muscle lipids were extracted in 

CHCl3:MeOH:H2O (26) and the most abundant DAG (diC16:0, C16:0/C18:1, diC18:1) and 

ceramide (C16:0, C18:0, C18:1, C20:0, C24:1, C24:0) species were quantified using 

LCMS/MS. (Blachnio-Zabielska A et al. 2012, Blachnio-Zabielska A et al. 2013). Briefly, 

chromatographic separation was performed on a C8 MOS-1 Hypersil column (2.1 x 100 mm; 

3.0 µm, Thermo Scientific) at a flow rate of 0.2 ml/min, using a binary gradient (90-99% 

solvent B; 0-20 mins) with 1.5 mM ammonium formate, 0.1% formic acid in water as solvent 

A and 2 mM ammonium formate, 0.15% formic acid in methanol as solvent B. DAG and 

ceramides were monitored in positive electrospray ionisation mode (Quattro Ultima triple 
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quad) as their [M+NH4]
+
 and [M-H2O]

+ 
adducts, respectively. Peak areas (MassLynx 4.0, 

Micromass Ltd, UK) normalised to the internal standard were converted to absolute 

concentrations using standard curves constructed for each species undergoing the full 

extraction procedure.  

 

2.2.5.6 Skeletal muscle oxidative capacity 

Freeze-dried muscle was dissected free of visible blood and connective tissue, pulverised and 

used for the determination of muscle free carnitine, acetylcarnitine and long-chain 

acylcarnitine using the radioenzymatic method described previously by Cederblad (1990). 

Approximately 20 mg of wet muscle tissue was used to determine maximal CPT1 activity 

using the forward radioisotope assay (McGarry JDM et al. 1983). Briefly, muscle was 

homogenised in 50 mm Tris/HCl buffer (pH 7.5) and immediately used to determine 

malonyl-CoA (10 μm)-sensitive [14C]palmitoylcarnitine production from 100 μm palmitoyl-

CoA, 1 mm L-carnitine and 0.05 μCi l-[14C]carnitine, which was normalised to total protein 

content using the Bradford assay.  

Muscle phosphocreatine (PCr), lactate and glycogen were determined on freeze-dried muscle 

using the spectrophotometric method of Harris (1974). Muscle total creatine content was 

calculated as the sum of free creatine and PCr. In addition, maximal citrate synthase activity 

was determined spectrophotometrically on whole muscle homogenates based on the methods 

of Opie & Newsholme (Opie et al. 1967) and Zammit & Newsholme (1976) and expressed as 

mmol/min/ (kg wet muscle). 
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CHAPTER 3: STUDY 1 

Comparing skeletal muscle lipid content, fat metabolism and insulin sensitivity in older 

vs. young healthy men  

This chapter presents data comparing skeletal muscle lipid and metabolism at rest and during 

light-intensity exercise in healthy older and young men. The same older individuals 

participated in a further study to examine the effects of carnitine supplementation on skeletal 

muscle metabolism and insulin sensitivity, the results of which are presented in Chapter 6. 

3.1 Introduction 

 

It is established that insulin resistance increases with age but the proposed factors implicated 

in the decline of insulin sensitivity in ageing remains equivocal. Whilst it has been proposed 

that age influences insulin sensitivity independent of changes in body composition and 

physical activity (Shimokata et al. 1991), there is a growing body of evidence to suggest that 

increasing insulin resistance is closely related to increased adiposity (visceral fat) and 

sarcopenia (reduced muscle mass, strength and function), both closely associated with ageing 

(Evans and Campbell. 1993, Ferrannini et al. 1996, Imbeault et al. 2003). Age-related decline 

in glucose tolerance in population studies were also shown to be closely correlated with 

leisure-time activity (Wang et al. 1989).  When age-related variables such as adiposity, 

dietary habits and physical activity were controlled for, the degree of correlation were 

reduced (Zavaroni et al. 1986, Zamboni et al. 1997), suggesting that elevation of glucose and 

insulin levels in ageing may be due to environmental factors. Moreover it has been shown 

that insulin resistance is not an obligatory finding in ageing as healthy centenarians have been 

demonstrated to have preserved insulin action compared to aged subjects (Barbieri et al. 
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2011). Thus ageing per se does not always appear to cause insulin resistance (Kohrt et al. 

1993, Amati et al. 2009, Karakelides et al. 2010). 

Elevated triglyceride levels in muscle consistently correlate with models of insulin resistance. 

Increased IMCL has been found in patients with T2DM (Falholt et al. 1988) and in cross-

sectional studies of healthy humans, insulin resistance correlates most closely with IMCL 

compared to percentage body fat, BMI or age (Stein et al. 1997). Moreover, lipid metabolites 

associated with IMCL such as acyl-coA, diacylglycerol (DAG) and ceramide could cause 

insulin resistance in skeletal muscle by activating key proteins that antagonise insulin-

responsive metabolic and signalling pathways (Savage et al. 2007). Compared to young, 

IMCL content is increased by up to 40% in older people as seen on 
1
H Nuclear Magnetic 

Resonance (
1
HNMR) spectroscopy (Petersen et al. 2007). As alluded to in the introduction 

chapter of this thesis, the accumulation of IMCL may be caused by the mismatch between 

lipid supply and reduction in proportional fat oxidation in ageing (Nair 2005) and not 

necessarily associated with insulin resistance. Indeed, studies on the causal relationship 

between skeletal muscle lipid accumulation and insulin resistance are inconclusive. 

Goodpaster’s  proposal of the ‘athlete’s paradox’ described highly-trained endurance athletes 

who possessed high muscle oxidative capacity and increased insulin sensitivity despite 

increased muscle lipid content (Goodpaster et al. 2001). He speculated that it was not the 

accumulation of lipid in muscle per se but an individual’s muscle’s capacity for lipid 

oxidation that influenced development of insulin resistance.  Indeed inhibition of 

mitochondrial carnitine-palmitoyl-transferase-1 (CPT-1) fatty acid oxidation by R –isomer of 

ethyl-2- [6-(4-chlorophenoxy) hexyl]-oxirane-2-carboxylate (etoximir) in rats elicited a 

reduction in whole-body insulin-mediated glucose disposal and endogenous glucose 

production (Dobbins et al. 2001), indicating the importance of fatty acid oxidation (or lack 

thereof) in the development of insulin resistance. Factors implicated in diminished fat 
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capacity in the elderly include increased fat mass (Nagy et al. 1996, Toth et al. 1996, 

Levadoux et al. 2011), reduction in skeletal muscle oxidative enzyme activity (Houmard et 

al. 1985, Petersen et al. 2007) and reduction in physical activity levels (Sial et al. 1996). Fat 

oxidation rates during sleep and over a 24- hour period of free activity were lower in older 

compared to young individuals regardless of activity levels (Levadoux et al. 2011). 

Moderate-intensity exercise in older people has been shown to elicit a 35% lower fat 

oxidation rate compared to younger subjects exercising at the same absolute and relative 

intensities, presumably caused by altered skeletal muscle metabolism in ageing as whole 

body lipolysis and plasma FFA availability were not-rate limiting (Sial et al. 1996).  

With regards to exercise metabolism, other than impaired fatty acid metabolism the few 

studies investigating the effects of exercise in older individuals showed modified lactate and 

glycogen kinetics following exercise, but these studies were carried out in highly trained or 

master athletes and were investigated at maximal oxygen uptake (VO2 max) (Masse-Biron et 

al. 1992).  The changes seen in the ability of ageing skeletal muscle to respond to exercise 

may be due to loss of muscle mass, decreased muscle oxidative enzyme activity and 

capillarisation or reduced physical activity and training with ageing (Rofers and Evans 1993).  

Why there is an age-related decline in fat oxidation resulting in IMCL accumulation and 

insulin resistance cannot be entirely explained by a decline in physical activity or availability 

of free fatty acid during exercise. Animal studies show that the rate of fatty acid oxidation in 

perfused working hearts was lower in aged compared to young (Abu-Erreish et al. 1977). As 

an inverse relationship exists between insulin sensitivity and triglyceride accumulation in 

muscle (Johannesen et al. 2012), the capacity of fat oxidation in aged muscle may be of 

critical importance to development of metabolic disease in ageing.  

IMCL-derived fatty acid oxidation during exercise and how this affects lipid content and 

glucose uptake in muscle in older people have also not been investigated in detail. Moreover, 
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distinct pools of IMCL droplets within the intermyofibrillar (IMF) and subsarcolemmal 

(SSL) regions of the muscle cell have been identified (Nielsen et al. 2010; Crane et al. 2010, 

Chomentowski et al. 2011  Jonkers et al. 2012;), but their contribution to IMCL oxidation 

and utilisation during exercise has not been elucidated. A 3-fold higher volume of lipid 

droplets in the SSL region has been identified in people with T2DM compared to obese and 

high-endurance athletes (Nielsen et al. 2010). SSL lipid droplet accumulation in particular 

have been implicated in the development of insulin resistance, perhaps as a result of lipid 

droplet metabolites on insulin action, due to its proximity to muscle fibre nuclei and 

signalling pathways of the sarcolemma via DAG and ceramides (Coen and Goodpaster 2012). 

Moreover, change in the number of lipid droplets post-exercise in SSL and IMF differ but 

have only been investigated in healthy middle-aged sedentary normal-weight, (Malenfant et 

al. 2001a and b, He et al. 2004; Li et al. 2014) overweight (Malenfant et al. 2001, Li et al. 

2014), T2DM (Nielsen et al. 2010) and endurance-trained older subjects (van Loon et al. 

2003).   

As body composition and physical activity changes with age it is important to 

examine if and how these factors, rather than inherent ageing per se, affect insulin sensitivity, 

skeletal muscle substrate metabolism and utilisation in healthy older vs. healthy young men. 

Moreover, no studies to date have characterised skeletal muscle fat metabolism during 

exercise in older healthy people with skeletal muscle insulin sensitivity. This study compared 

body composition, substrate metabolism and skeletal muscle lipid accumulation during rest 

and light-intensity exercise and insulin sensitivity in older and young healthy men with the 

premise that these parameters are influenced by body composition, rather than ageing. It was 

also hypothesised that lipid accumulation in ageing is caused by impaired IMCL oxidation 

during exercise.  
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3.2 Methods 

3.2.1 Human Participants 

Seven old lean (69.7±0.9 years, body mass 70.3±2.4 kg), 7 old overweight (68.6±0.8 years, 

body mass 86.3±1.8 kg) and 7 young (21.1±0.9 years, body mass 74.4±4.0 kg) healthy males 

were recruited to the study. All participants underwent medical screening, blood testing and 

gave informed consent as described in the common methods section (Chapter 2). Subjects 

were excluded if they smoked, had diabetes or other metabolic disorders, cardiovascular 

disease, blood disorders or abnormal blood tests. 

3.2.2 Pre-experimental tests  

The incremental maximal oxygen consumption (VO2 max) test was performed prior to the 

experimental visits to determine the workload or intensity equivalent to 50%VO2 max that the 

participants were required to cycle at during the exercise visits. This low intensity exercise 

model was chosen as fat oxidation would be expected to be maximal (Romijn et al. 1993, 

Achten 2004), where in vivo mitochondrial function would be challenged and could be 

assessed, and previous studies have suggested age-related differences (Sial et al. 1996). 

Participants attended for two experimental visits separated by at least a week, as described 

below.  

3.2.3 Experimental Visits 

The first experimental visit involved a resting 3-hour hyperinsulinaemic euglycaemic clamp 

with infusion of 2DG, a glucose analogue to determine skeletal muscle insulin sensitivity; 

whereas the following visit involved the fatty acid tracer, [U-
13

C] palmitate infusion and 

exercising at 50% of VO2 max for one hour to measure fat oxidation and metabolism in 

muscle during light-intensity exercise. 
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3.2.3.1 Hyperinsulinaemic euglycaemic clamp visit 

Participants arrived at the David Greenfield MRC/ARUK Centre for Musculoskeletal 

Ageing Research laboratory at 0800 after an overnight fast. A DEXA scan (Lunar Prodigy, 

GE Healthcare, US) was performed to assess body composition. They then rested semi-

supine on a bed while cannulae were inserted retrograde into a superficial vein on the back 

of the hand for arterialised blood sampling and forearm veins for insulin, glucose and 2DG 

infusions. The hand was placed in a hand-heated box throughout the experiment to allow for 

arterialised blood sampling. A 3-hour hyperinsulinaemic euglycaemic clamp at 60 mU m
-2

 

min
-1

 was carried out to assess insulin sensitivity. 2DG was infused at a rate of 6mg kg
-1

h
-1

 

at the same time. Blood glucose concentrations during the clamp were determined at 5 min 

intervals using an autoanalyser (Yellow Springs Instrument YSI, US). Arterialised venous 

blood was also obtained at t= 0 and every 30 min throughout the clamp and centrifuged at 

1000g at 4°C for 10 min, and stored at -80
◦
C until subsequent analysis for serum insulin and 

plasma 2DG. Indirect calorimetry was performed before and during steady state of the 

hyperinsulinaemic euglycaemic clamp (2 hours after start of clamp) using a GEM (Gas 

Exchange Measurement, GEMNutrition Ltd, Cheshire, UK) ventilated hood system. Samples 

for serum insulin were placed in aliquots and frozen at a minimum of -20
◦
C and measured 

using a solid-phase 
125

I radioimmunoassay using standard insulin kits (Milipore Human 

Insulin Assay; Merck Millipore). Muscle biopsy samples using the technique described by 

Bergstrom were obtained from the vastus lateralis muscle of each subject at rest before and 

immediately after the clamp to determine incorporation of muscle 2DG. 2DG is a glucose 

analogue and is regarded a robust surrogate marker of glucose uptake by muscle 

(Yamamoto et al. 2009). Post-absorptively, total muscle 2DG accumulates in a linear 

fashion, and exercise, a known stimulus of skeletal muscle glucose uptake, significantly 

and consistently increases muscle 2DG uptake.   The linear accumulation of 2DG 
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suggests that 2DG is neither stimulating (through a “mass effect”) nor inhibiting 

(through hexokinase inhibition) its own uptake. It closely resembles glucose in the 

characteristics of its transport but is metabolised only to the 6-phosphate derivative, 

2DG6P. It is therefore effectively trapped within skeletal muscle where its concentration 

(and that of 2DG) can be determined as a function of glucose uptake, assuming 2DG 

uptake to be representative of all hexose uptake.  

 

3.2.3.2 Exercise Visit 

At least a week after the resting study visit, participants reported to the laboratory and rested 

semi-supine on a bed while a cannula was inserted retrograde into a superficial vein for 

arterialised blood sampling and the other into a forearm vein for infusion of 

[U-
13

C] palmitate (99% enriched (Cambridge Isotope Laboratories, Andover, MA, USA) at a 

concentration of 0.19mg kg
-1

 h 
-1 

for 2 hours. Breath samples were collected via one-way 

valve bags and introduced into breath tubes (BD Biosciences) for subsequent 
13

CO2 

enrichment analysis before the start of the infusion and every hour of the resting period. 

Plasma samples for palmitate tracer and FFAs were collected hourly during resting. At the 

end of the second hour, percutaneous biopsy sampling from the vastus lateralis muscle was 

performed before participants went on to cycle on the ergometer at 50% VO2 max equivalent 

workload. The [U-
13

C] palmitate concentration was increased to 0.28 mg kg
-1

 hr
-1
 at the onset of 

exercise for 1 hour. Blood plasma for FFAs, palmitate tracer and breath samples for 

13
CO2 were obtained every 10 minutes. During the last 10 minutes of exercise, indirect 

calorimetry was determined (Quark CPET system, Cosmed, Italy). A muscle biopsy was 

again taken at the end of the 1 hour exercise. 

 

 



123 
 

 

Figure 3.1: Schematic diagram on the experimental visits. Protocol A –Resting visit and 

Protocol B- Exercise visit  

 

3.2.4 Sample collection and analysis 

All DEXA scans were analysed by a single operator to avoid inter-operator variability. The 

scans were analysed for trunk, leg and arm composition using standardised regions 

conforming to specifications.  Blood samples were collected in tubes containing 

ethylenediaminetetraacetic acid (EDTA) and centrifuged at 1000g at 4°C for 10 min. Plasma 

aliquots were subsequently stored at -80
◦
C until analysis. Blood serum and plasma were 

collected at baseline and every 30 minutes during the clamp, allowed to clot and then 

centrifuged (1400 RCF at 4
◦
C for 10 mins) for subsequent storage at -80°C until use for 
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determination of insulin concentrations and 2DG glucose tracer respectively. Muscle samples 

were snapped frozen in isopentane and stored in liquid nitrogen, and subsequently analysed 

for 2DG content.  

3.2.5 Palmitate tracer analysis 

Palmitate tracer is extracted from plasma after addition of a stable isotope internal standard to 

allow quantification of concentration, purified by thin layer chromatography and derivatised 

to their methyl esters. Isotopic enrichment of palmitate is then determined by gas 

chromatography mass spectrometry (GCMS). This method is superior to older methods of 

tracing FFAs, such as calorimetry and enzymatic assays. It provides an accurate way of 

identifying individual and total FFA concentrations observed during an insulin infusion and is 

specific in determining tracer enrichment. Relatively large amounts of tracer and albumin 

were previously required to allow detection. Infusion rates can now be reduced with the 

introduction of combustion isotope ratio mass spectrometry where 
13

CO2 is measured. Of the 

FFA tracers, palmitate, oleate and linoleate provide estimates of total FFA flux that are within 

15% of actual values. Continuous palmitate infusion allows determination of regional kinetics 

in tissues.  

  

3.2.6 Electron Microscopy analysis 

Lipid and mitochondrial analyses were determined using a computerised image analysis 

system (Image-J), by an operator blinded to subject and age following criteria set to 

identifying lipid and mitochondria (Crane et al. 2013).  Lipid droplets and mitochondrial 

fragments were circled and converted to actual size using a calibration grid. Skeletal muscle 

samples were first fixed in 1% osmium tetroxide, then dehydrated in ethanol and embedded 

in Spurr’s resin. Thin sections were cut using an ultramicrotome, placed on copper/palladium 
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(Cu/Pd) grids and stained for 5 minutes in uranyl acetate followed by 2 minutes in lead 

acetate. 40 longitudinal images were visualised using a transmission electron microscope at a 

magnification of x4200. Two micrographs from four different muscle fibres were taken at 

random and sequentially by an operator blinded to subject age. Images were taken from the 

SSL region adjacent to the nucleus with most of the image containing the intermyofibrillar 

area. The images were photographed using a 1-s exposure time and digitised using a white 

light illuminator. Values are reported as mean individual IMCL or mitochondrial size, total 

number of IMCL droplets or mitochondria per square micron of tissue and percentage IMCL 

or mitochondrial area density.  

 

Figure 3.2: Electron micrograph (x4200) of a vastus lateralis muscle cell depicting IMF and 

SSL lipid droplets. 

3.2.7 Insulin sensitivity and skeletal muscle 2DG uptake  

Insulin sensitivity was measured as the rate of insulin-stimulated glucose disposal (Rd) 

during a 3hour hyperinsulinaemic (60mU m
-2

min
-1

) euglycaemic clamp at the same time as 

infusion of the stable tracer isotope 2DG. The Matsuda’s insulin sensitivity index was also 

SSL 

IMF 
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determined from steady state of plasma glucose and serum insulin.  Frozen muscle (30–40 

mg) was powdered under liquid nitrogen, and transferred to 70% ethanol. The sample was 

vortex mixed and then centrifuged at 5000g for 10 minutes. The resultant supernatant was 

used for 2DG/2DG6P analyses using a 2DG uptake measurement kit (Cosmo Bio Ltd, 

Tokyo). Briefly 2DG accumulates in muscle as 2DG6P and is oxidised by the introduction of 

glucose-6 phosphate dehydrogenase (G6PDH), resulting in NADPH where it was quantified 

at 420 nm using a recycling amplification enzymatic-photometric system (Saito K and 

Minokoshi Y et al. 2011).  For determination of plasma 2DG, 100uL of plasma was aliquoted 

and mixed with a standard 10ul of fluorodeoxyglucose (FDG). 1 ml of 100% ice cold ethanol 

is added to each tube and placed in ice/fridge for 20mins then spun for 2 minutes at 10000 

rpm. The supernatant is dried completely in the Techne
®
 block heater at 90

◦
C for 10minutes. 

100uL of oxime (20mg hydroxylamine HCL per 1ml pyridine) is added to each tube, vortex-

mixed and incubated at 75
◦
C for 30 minutes in the oven. After cooling at room temperature, 

70uL of BSTFA is mixed and incubated for 30 minutes at 70
◦
C. The samples were then run 

on gas chromatography mass spectroscopy (GCMS), and the first major doublet peak area 

(2DG) and second major doublet peak area of FDG standard (elutes closely after second 2DG 

peak) are recorded.  

3.2.8 Analysis of lipid metabolites DAG and ceramide 

Quantification of intramuscular DAGs and ceramides was performed using high-performance 

liquid chromatography (HPLC) tandem mass spectroscopy. Tissue homogenates were 

fortified with internal standards and extracted into a one-phase neutral organic solvent 

system, evaporated and reconstituted in methanol. Quantitative analysis was performed in a 

positive multiple-reaction-monitoring mode, based on calibration curves generated by adding 

to an artificial matrix known amounts of target analytes, synthetic standards and an equal 

amount of internal standard. DAG and ceramide levels were normalized to total protein 
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levels. For skeletal muscle DAG and ceramide analyses, 50 ng internal standard (1,3[d5]-15:0 

DAG) was added to 5 mg freeze-dried muscle powder, total muscle lipids were extracted in 

CHCl3:MeOH:H2O (Folch et al. 1957) and the most abundant DAG (diC16:0, C16:0/C18:1, 

diC18:1) and ceramide (C16:0, C18:0, C18:1, C20:0, C24:1, C24:0) species were quantified 

using LCMS/MS (Blachnio-Zabielska et al. 2012,2013). Briefly, chromatographic separation 

was performed on a MOS-1 Hypersil  C8 column (2.1 x 100 mm; 3 µm); Thermo Scientific  

at a flow rate of 0.2 ml/min, using a binary gradient (90-99% solvent B; 0-20 mins) with 1.5 

mM ammonium formate, 0.1% formic acid in water as solvent A and 2 mM ammonium 

formate, 0.15% formic acid in methanol as solvent B. DAG and ceramides were monitored in 

positive electrospray ionisation mode (Quattro Ultima triple quad) as their [M+NH4]
+
 and 

[M-H2O]
+ 

adducts, respectively. Peak areas (MassLynx 4.0, Micromass Ltd, UK) normalised 

to the internal standard were converted to absolute concentrations using standard curves 

constructed for each species undergoing the full extraction procedure.  

 

3.2.9 Determination of skeletal muscle metabolites 

 

Freeze-dried muscle was dissected free of visible blood and connective tissue, pulverised and 

used for the determination of  muscle free carnitine, acetylcarnitine and long-chain 

acylcarnitine using the radioenzymatic method described previously by Cederblad (Cederblad 

et al. 1990). Approximately 20 mg of wet muscle tissue was used to determine maximal 

CPT-1 activity using the forward radioisotope assay (McGarry et al. 1983). Briefly, muscle 

was homogenised in 50 mm Tris/HCl buffer (pH 7.5) and immediately used to determine 

malonyl-CoA (10 μm)-sensitive [14C] palmitoylcarnitine production from 100 μm palmitoyl-

CoA, 1 mm L-carnitine and 0.05 μCi l-[14C]carnitine, which was normalised to total protein 

content using the Bradford assay.  
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Muscle phosphocreatine (Pcr), lactate and glycogen were determined on freeze-dried muscle 

using the spectrophotometric method of Harris (Harris et al. 1974). Muscle total creatine 

content was calculated as the sum of free creatine and PCr. In addition, maximal citrate 

synthase activity was determined spectrophotometrically on whole muscle homogenates 

based on the methods of Opie & Newsholme (1967) and  Zammit & Newsholme (1976) and 

expressed as mmol min
−1

 (kg wet muscle)
−1

. 

3.2.10 Calculations 

Total fat and carbohydrate oxidation rates were calculated using the non-protein respiratory 

quotient (Frayn 1983) and described in detail in the common methods section of this 

thesis. 

Fat oxidation rate =1.695 x VO2 + 1.701 x VCO2 g/min 

Carbohydrate oxidation rate = 4.585 x VCO2 -3.226 x VO2 g/min 

EE = 15.9 x VO2 + 5.2 x VCO2 J/min 

 

Where VO2 and VCO2 are expressed as litres per min and oxidation rates as grams per 

minute. 

Breath and plasma enrichments are expressed as the tracer/tracee ratio (TTR);  

TTR = (
13

C/
12

C)sa - (
13

C/
12

C)bk 

where sa denotes the sample and bk the background value. 
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The rate of appearance (Ra) and rate of disappearance (Rd) of palmitate was calculated using 

the single-pool non steady- state Steele equations (1959) adapted for stable isotope 

methodology as described by Wolfe & Jahoor 1990. 

Ra = F – V [(C2 + C1)/2][(E2 – E1)/(t2-t1)] 

(E2 + E1)/2 

Rd = Ra –V(C2-C1) 

t2-t1 

 

where F denotes the infusion rate (μmol kg
-1

 min
-1

), V is the distribution volume for palmitate 

(40 ml kg
-1
), C1 and C2 are the palmitate concentration (mmol l

-1
) at times 1 (t1) and 2 (t2), 

respectively, and E1 and E2 are the plasma palmitate enrichments (TTR) at times t1 and t2, 

respectively. 
13

CO2 production (Pr
13

CO2; mol min
-1

) from the infused palmitate tracer was 

calculated as: 

Pr
13

CO2 = (TTRCO2
 
X VCO2)/(k) 

where TTRCO2 is the breath 
13

C/
12

C ratio at a given time point, k is the volume of 1 mol of 

CO2 (22.4 l mol
-1

). 

Plasma palmitate oxidation (Rox; mol min
-1

) can subsequently be calculated as: 

Rox palmitate = Rd palmitate x (Pr
13

CO2/F x 16) 

where Rd palmitate is the rate of disappearance of palmitate (mol min
-1

), F is the palmitate 

infusion rate (mol min 
-1

) and 16 is the number of carbon atoms in palmitate. Total plasma 

FFA oxidation was calculated by dividing palmitate oxidation rate by the fractional 

contribution of plasma palmitate to total plasma FFA concentration. 

The contribution of plasma FFA oxidation to total fat oxidation was determined by assuming 

that the molecular mass of triglyceride is 860gmol
-1

 and every TG molecule contains three 
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fatty acids. The contribution of other fat sources was hence calculated by subtracting plasma 

FFA oxidation from total fat oxidation. 

Insulin sensitivity during the clamp was calculated using the equation 

SIClamp = M/(G × ΔI) 

where M is normalized for G (steady-state blood glucose concentration;mmol
-1
) and ΔI 

(difference between fasting and steady-state plasma insulin concentrations, mUl-1). 

 

5.2.11 Power Calculations 

The repeated measures coefficient of variation for the insulin clamp technique is 10%; 

therefore a 15-20% difference in insulin sensitivity should be able to be detected in 7 

participants. Therefore the aim was to recruit 10 volunteers for each group (older lean, older 

overweight and young lean) to allow for a 30% dropout. Both older lean and overweight 

volunteers were subsequently investigated for the effects of carnitine on muscle metabolism 

and insulin sensitivity (Chapter 6).   

3.2.12 Statistical analysis 

Values presented in text, tables and figures are expressed as mean ± the standard error of 

mean (s.e.m). Analyses were performed using the statistical program (GraphPad Prism 6.0, 

GraphPad Software Inc, USA) to detect differences between the three groups at rest using a 

one-way ANOVA and within and between groups during exercise using a two-way ANOVA 

(time and treatment factors). When a significant effect was observed, Tukey’s and Sidak’s 

post-hoc test was performed, respectively, to identify individual differences. Statistical 

significance was set at P<0.05. 
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3.3 Results 

3.3.1 Participant Characteristics 

10 participants for each group were initially recruited (20 older and 10 young); however there 

were a total of 6 and 3 drop-outs from the older and young groups respectively, due to several 

reasons (Appendix 1).  Table 3.1 shows characteristics of study participants.  Body mass, 

body mass index (BMI) and lean body mass (LBM) were not different in older lean and 

young groups at baseline. When total body fat mass was divided into regions, older 

overweight (OO) had higher mean BMI and body mass, greater trunk, arm and leg fat mass 

compared with older lean (OL) and young lean (YL) participants (Figure 3.1). HOMA-IR 

was also greater in OO than OL (P<0.001). Both OO and OL were well-matched in terms of 

age and both absolute (ml/min) and relative (ml/kg LBM/min) VO2max. OO and OL 

achieved lower absolute and relative VO2max and corresponding 50%VO2max workloads 

compared to YL. Self-reported habitual physical activities were similar between the young 

and older lean participants and lower in older overweight compared to older lean (P<0.001).   
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Table 3.1: Characteristics of Participants 

 Young lean Old lean Old overweight 

n 7 7 7 

Age (y) 21.5 ± 1.0 69.7 ± 0.9
+++

 68.6 ± 0.8
***

 

Statin use (n) 0 3 4 

Body mass (kg) 71.8±3.6 70.3±2.4 86.3±1.8
***,†††

 

BMI (kg/m
2
) 22.4 ± 0.7 24.0 ± 0.6 29.0 ± 0.7

***,†††
 

Fat free mass (kg) 55.9 ± 3.2 51.3 ± 1.5 55.6 ± 1.9 

Arm lean mass (kg) 7.6 ± 0.4 6.7 ± 0.3 7.4 ± 0.3 

Leg lean mass (kg) 21.8 ± 0.4 18.3 ± 0.6 19.6 ± 0.7 

Trunk fat mass (kg) 4.6 ± 0.8 7.2 ± 1.1 16.0 ± 0.8
***,†††

 

Arm fat (kg) 0.9 ± 0.1 1.5 ± 0.2 2.6 ± 0.3
***,†††

 

Leg fat (kg) 4.7 ± 0.4 4.9 ± 0.4 7.4 ± 0.6
†
 

Fasting glucose (mmol/L) 4.5±0.1 4.7±0.1 5.0±0.1
*
 

Fasting insulin (mIU/L) 10.6±1.4 7.4±1.6 12.6±1.2
†
 

HOMA IR 2.14 ± 0.32 1.60 ± 0.36 2.81 ± 0.25
†††

 

VO2max (l/min) 3.19 ± 0.19 2.26 ± 0.15
+++

 2.19 ± 0.13
***

 

VO2max (ml/kg LBM/min) 57.4 ± 2.4 43.8 ± 1.9
+++

 39.9 ± 1.5
***

 

Workload at 50% VO2max 

(W) 

93.0 ± 5.9 55.9 ± 5.8
+++

 46.3 ± 6.7
***

 

Heart rate at 50% VO2max 

(beats/min) 

137 ± 2 102 ± 7
+++

 102 ± 6
***

 

Physical activity frequency 

(occasions/week)  

3.5 ± 0.5  5.1 ±  1.2 1.8 ± 0.7
†††

 

Incremental shuttle walk test 

(ISWT) (m) 

 622.9±16.1 498.6±23.2
†††
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One-Way ANOVA with Tukey post-hoc test apart from unpaired t-test for ISWT 

All values (n=7) are means ± standard error of mean (SEM).*P<0.05, ***P<0.001, Old overweight 

different to corresponding Young lean value. 
†
P<0.05, 

†††
P<0.001, Old overweight different to 

corresponding Old lean value. 
+++

P<0.001, Old lean different to corresponding Young lean value. 

 

 

 

Figure 3.3: Insulin sensitivity index of young lean (n=7), old lean (n=7) and old overweight 

(n=7). 
+
P<0.05 different to Old lean value, **P<0.01 different toYoung lean value.    
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Figure 3.4: Steady state glucose disposal rates during the resting hyperinsulinaemic 60mu m
-

2
min

-1
 euglycaemic clamp in Young lean (n=7), Old lean (n=7) and Old overweight (n=7) 

participants. *P<0.05 different to Young lean value. 

 

Figure 3.5: Steady state serum insulin concentrations during the hyperinsulinaemic 60mu m
-

2
min

-1
 euglycaemic clamp in Young lean (n=7), Old lean (n=7) and Old overweight (n=7) 

participants. 
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Figure 3.6: 2DG6P uptake in skeletal muscle during steady state of the hyperinsulinaemic 

60mum
-2

min
-1

 euglycaemic clamp in Young lean (n=7), Old lean (n=7) and Old overweight 

(n=7) participants. **P<0.01 different to Young lean value. 

 

 

 

Figure 3.7: Plasma 2DG during the resting 3hr hyperinsulinaemic 60mu m
-2

min
-1

 

euglycaemic clamp in young lean (n=7), old lean (n=7) and old overweight (n=7) 

participants. *P<0.05, ** P<0.01, Old overweight different to corresponding Young lean 

value. 
+
P<0.05, 

++
P<0.01, Old overweight different to corresponding Old lean value.  
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Figure 3.8: Resting energy expenditure pre and post insulin during the 3 hr 

hyperinsulinaemic 60mu m
-2

min
-1

 euglycaemic clamp in Young lean (n=7), Old lean (n=7) 

and Old overweight (n=7) participants. *P<0.05, Old overweight different to corresponding 

Young lean value. ^P<0.05, ^^P<0.01, different to corresponding pre-insulin values.  

 

Figure 3.9: Relative contribution of carbohydrate (COX) and fat (FOX) oxidation rates to 

total resting energy expenditure during the 3 hr hyperinsulinaemic 60mu m
-2

min
-1

 

euglycaemic clamp in Young lean (n=7), Old lean (n=7) and Old overweight (n=7). 
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3.3.2 Insulin sensitivity 

Fasting glucose was greater in OO (5.0±0.1 mmol/L; P<0.05) than YL (4.5±0.1 mmol/L; 

P<0.05), with a trend of this being greater than OL (4.7±0.1 mmol/L; P=0.07), Table 3.1.  

Whilst there was no difference in fasting insulin concentrations between OO (12.6±1.2 

mIU/L) and YL (10.6±1.4 mIU/L), OO had greater fasting insulin concentration than OL 

(7.4±1.6 mIU/L; P<0.05), Table 3.1. 

Matsuda’s Insulin Sensitivity Index (SI) was similar between YL (0.13±0.01) and OL 

(0.11±0.01; P<0.05) and both groups in turn have greater SI than OO (0.07±0.01; P<0.01 in 

YL, P<0.05 in OL); Figure 3.3.  

Insulin sensitivity as determined from glucose disposal rates via the 3 hr hyperinsulinaemic 

60mU m
-2

min
-1

 euglycemic clamp at rest in OO was lower than OL and YL (41.6 ± 5.3 µmol 

kg lbm
-1

 min
-1

 vs. 57.8 ± 5.9 µmol kg lbm
-1

min
-1

; P<0.05 and 65.2 ± 5.6 µmol kg lbm
-1

min
-1

, 

P<0.01; respectively), Figure 3.4. 

Steady-state mean serum insulin levels during the clamp did not differ between groups; 

Figure 3.5. The accumulation of 2DG6P in skeletal muscle was greater by two-fold in YL 

compared with OO during the glucose clamp (91.2 vs. 38.2 µmol kg
-1

 wet muscle; P<0.01) 

but not different in OL; Figure 3.6 

Steady –state mean plasma 2DG concentrations during the 3 hr insulin clamp were greater in 

OO compared to OL and YL (72.6 ± 2.2 vs. 50.0 ± 1.9 and 48.8 ± 2.2 µmolL
-1

; P<0.05) 

respectively; Figure 3.7. 

Insulin stimulated energy expenditure increased at rest from 94.0 to 105.0 J kg lbm
-1

min
-1

 

(P<0.05) and from 90.5 to 102.4 J kg lbm
-1

min
-1

 (P<0.01) in YL and OL respectively, but not 

in OO; Figure 3.8.  However there was no difference in the relative contribution of 
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carbohydrate (COX) and fat (FOX) oxidation rates to total resting energy expenditure during 

the 3 hr hyperinsulinaemic 60mu m
-2

min
-1

 euglycaemic clamp; Figure 3.9. 

3.3.3 Muscle Phenotype  

3.3.3.1 IMCL volume and droplets in the SSL and IMF regions  

At rest the percentage area of SSL region of skeletal muscle covered by lipid droplets in OO 

was almost 3-fold greater compared with YL (4.29 ± 1.23% vs. 1.43 ± 0.19%; P<0.05) and 

there was a tendency for a 2- fold greater percentage area covered by lipid in OO than OL 

(4.29 ± 1.23 vs. 1.99 ± 0.45%; P=0.06) respectively (Figure 3.10). SSL lipid area in OO was 

also greater than YL (P<0.01) and OL (P<0.05) post-exercise, predominantly due to a 25% 

increase in mean SSL lipid size (Figure 3.11). In contrast there was no difference in the 

percentage area of IMF fibre covered by droplets between groups; Figure 3.12. The 

percentage of IMF fibre area covered by lipid droplet during exercise decreased by 40% in 

YL (0.05; Figure 3.13). Average IMF LD size was 45% greater in OO compared to OL and 

YL post-exercise (both P<0.01; Figure 3.14).  

 

3.3.3.2 Post-exercise skeletal muscle lipid content 

Post exercise the percentage area of SSL covered by lipid droplets in OO was almost 3-fold 

compared with YL (5.06 ± 0.96 vs. 1.26 ± 0.27%; P<0.01) respectively and more than 2-fold 

compared with OL (5.06 ± 0.96 vs. 2.05 ± 0.26%; P<0.05); Figure 3.10. This was associated 

with an increase in lipid droplet size in OO (0.40 ± 0.06 to 0.50 ± 0.07 µm
2
; P<0.05) but not 

in OL or YL; Figure 3.11. A decrease in the percentage of IMF area covered by droplets was 

seen after exercise in YL (0.65 ± 0.11 to 0.40 ± 0.09%; P<0.05) but not in OL or OO; Figure 
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3.12. A reduction in droplet number in OO was seen (23.1 ± 3.8 to 16.7 ± 2.7; P<0.05). 

Average droplet size remained unchanged post-exercise across the groups; Figure 3.13.  

 

 

Figure 3.10: SSL lipid droplet % fibre area in young lean (n=7), old lean (n=7) and old 

overweight (n=7) pre and post-exercise. *P<0.05, ** P<0.01, Old overweight different to 

corresponding Young lean value. 
†
P<0.05, Old overweight different to corresponding Old 

lean value. ^P<0.05, different to corresponding pre exercise value. 
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Figure 3.11: Average SSL lipid droplet size per fibre area in young lean (n=7), old lean 

(n=7) and old overweight (n=7) pre and post-exercise. ** P<0.01, Old overweight different to 

corresponding Young lean value. 
†
P<0.05, 

††
P<0.01, Old overweight different to 

corresponding Old lean value.  
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Figure 3.12: Intramyofibrillar lipid droplet percentage fibre area in Young lean (n=7), Old 

lean (n=7) and Old overweight (n=7) pre and post-exercise. ^P<0.05, different to 

corresponding pre exercise value. 
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Figure 3.13: Average intramyofibrillar lipid droplet size per fibre area in Young lean (n=7), 

old lean (n=7) and Old overweight (n=7) pre and post-exercise. *P<0.05 different from 

corresponding values in Young lean and Old lean values. 

3.3.3.3 Skeletal muscle lipid metabolites 

There was no difference in skeletal muscle DAG species apart from diC18:1, which was 

greater in OO compared to OL and YL (42.6 ± 3.3 vs. 29.8 ± 4.2 and 29.4 ± 3.0 ug mg
-1

 

protein; P<0.05) respectively; Figure 3.14. There was also no difference in the skeletal 

muscle ceramide content with the exception of C20:0, which was greater in OO compared to 

YL (0.49 ± 0.03 vs. 0.31 ± 0.02ug mg
-1

 protein; P<0.01); Figure 3.15. DAG and ceramide 

analyses were carried out in only 7 OO vs. 5 OL and YL participants who had sufficient 

muscle samples for analyses.  
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Figure 3.14: DAG species of resting skeletal muscle in Young lean (n=5), Old lean (n=5) and 

Old overweight (n=7). *P<0.05 vs. Young lean, 
† 

P<0.05 vs. Old lean. 

 

Figure 3.15: Ceramide species of resting skeletal muscle in young lean (n=5), old lean (n=5) 

and old overweight (n=7). *P< 0.05 vs. corresponding young lean values. 
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3.3.3.4 Citrate synthase (CS) and CPT-1 activity 

There was a trend of lower CS activity in OO compared to OL (96.8 vs. 125.2 mmol
-1

mg 

protein min
-1

; P=0.08) respectively. There was no difference in CPT-1 activity (1.84 ± 0.19, 

2.05 ± 0.12 and 2.58 ± 0.28 % of CS activity, respectively) between YL, OL and OO, 

respectively; Figures 3.16A and B. 

 

Figures 3.16A and B: Citrate synthase and CPT activity analyses from muscle of Young lean 

(n=7), Old lean (n=7) and Old overweight (n=7).  

 

3.3.4 Exercise fuel metabolism  

There was no difference in the relative contribution of total fat to total energy expenditure 

during exercise at 50% VO2max between OO, OL and YL (40.0 ± 4.6 vs. 42.4 ± 3.1 and 43.9 

± 7%, respectively; Figure 3.17). Other fat oxidation (IMCL) was greater in YL (199.0 ± 

36.4J kg lbm
-1

 min
-1

) compared to OL and OO (76.7±13.9 and 73.8 ± 13.1 J/kg lbm min
-1

; 

P<0.05) respectively. Energy expenditure was greater in YL compared to OL and OO 
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(622.2±37.7 vs. 498.0±32.4 and 439.2±41.1 J kg lbm
-1

 min
-1

; P<0.05) respectively. There was no 

difference in the relative contribution of carbohydrate oxidation during exercise at 50% VO2 max 

between groups. The difference between plasma fatty acid rate of disappearance and 

oxidation rates was also not different between OO, OL and YL (8.01 ± 1.62, 7.30 ± 1. 17 and 

4.97 ± 1.02 µmol kg lbm
-1

min
-1

) respectively; Figure 3.18A. Similarly there was no 

difference in palmitate oxidation rates across the groups, 1.34±0.21, 2.16±0.29 and 2.06±0.49 

µmol/kg/min in OO, OL and YL respectively; Figure 3.18B.    

 

3.3.5 Exercise IMCL utilisation   

The relative contribution of IMCL to total fat oxidation in OO and OL was lower than that of 

YL (45.0 ± 7.9 and 38.7 ± 7.7 vs. 71.9 ± 3.3% respectively; P<0.01 Figure 3.17). 

 

Figure 3.17: Total energy expenditure and relative contribution of fat and other fat (IMCL) 

to energy expenditure during 1 hour 50% VO2 max exercise in young lean (n=7), Old lean 

(n=7) and Old overweight (n=7). **P<0.01 vs.corresponding Young lean values (total energy 

expenditure). 
++

 P<0.01 vs. corresponding Young lean values (other fat).   
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Figures 3.18A and B: Plasma FFA rate of disappearance (Rd) and contribution of fat 

oxidation (A) and palmitate oxidation (B) during 1 hr exercise at 50%VO2 max in Young 

lean (n=7), Old lean (n=7) and Old overweight (n=7).  

3.3.6 Exercise systemic metabolism  

From similar baseline concentrations, plasma noradrenaline rose to a similar steady-state in 

OL and OO throughout 1 hr of exercise, and was around 1.5-fold greater than the steady-state 

concentration achieved in YL (both P<0.05 respectively; Figure 3.19). There was no 

difference in plasma adrenaline between groups at baseline, however at steady state OL and 

YL have greater levels than OO (0.79 ± 0.23 and 0.74 ± 0.10 nmol/L vs. 0.58 ± 0.16, P<0.05; 

respectively, Figure 3.20).  

Steady state plasma FFA concentrations were greater in the older group (both OO and OL) 

compared to YL, P<0.05; Figure 3.21. Blood lactate concentrations initially increased in the 

first 10 minutes of exercise (0.71 ± 0.06 to 1.50 ± 0.29, 0.97 ± 0.13 to 2.05 ± 0.31, and 0.87 ± 

0.09 to 1.73 ± 0.28 mmol/L in OL, OO and YL respectively. During steady state, plasma 

lactate concentration in OO was greater than of OL and YL, P<0.05; Figure 3.22). 
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Figure 3.19: Plasma noradrenaline during 1 hr exercise at 50%VO2 max in young lean (n=7), 

old lean (n=7) and old overweight n=7). ** P<0.01, Old overweight different to 

corresponding Young lean value. 
+
P<0.05, 

++
P<0.01, Old lean different to corresponding 

Young lean value. 

 

Figure 3.20: Plasma adrenaline during 1 hr exercise at 50%VO2 max in Young lean (n=7), 

Old lean (n=7) and Old overweight (n=7) 
ф
P<0.05, Old overweight different to corresponding 

Old lean value. *P<0.05, Old overweight different to corresponding Young lean.   



148 
 

 

Figure 3.21: Plasma FFA concentrations during 1 hr exercise at 50%VO2 max in Young lean 

(n=7), Old lean (n=7) and Old overweight (n=7). **P<0.05 in Old lean compared to 

corresponding old overweight values, ^^P<0.05 in Young lean compared to corresponding 

old overweight values. 

 

 

Figure 3.22: Plasma lactate during 1 hr 50%VO2 max exercise in Young lean (n=7), Old lean 

(n=7) and Old overweight (n=7), *P<0.05 Young lean and Old lean compared to 

corresponding Old overweight values.   
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3.3.7 Exercise muscle metabolism 

OO had the lowest resting skeletal muscle glycogen content compared to OL and YL (235.7 

± 22.6 vs. 329.7 ± 29.3 and 316.5 ± 22.9 mmol kgdm
-1

; P<0.05) respectively, Figure 3.23. 

There was a trend of an increase in skeletal muscle glycogen content in YL post exercise 

(231.8 ± 37.8 to 316.5 ± 22.9 mmol kgdm
-1

, P=0.09. There were no differences post-exercise 

in OL and OO (288.6 ± 48.3 to 329.7 ± 29.3 and 228.6 ± 42.0 to 235.7±22.6 mmol kgdm
-1

) 

respectively.  

Skeletal muscle acetylcarnitine content increased in YL and OL post-exercise (YL 1.7 ± 0.4 

to 4.8 ± 1.1; P<0.05, OL 1.0 ± 0.2 to 7.5 ± 1.5 mmol kgdm
-1

; P<0.01, respectively) Figure 

3.24. 

Skeletal muscle Pcr content was lower in OO compared to OL and YL at rest (60.1±5.1 vs. 

75.4 ± 2.4; *P<0.05 and 75.5 ± 2.6 mmol kgdm
-1

; 
†
P<0.05) respectively and this was also 

seen post-exercise (58.9 ± 5.4 vs. 73.7 ± 4.2, *P<0.05 and 77.6 ± 3.7 mmol kgdm
-1

; 
†
P<0.05) 

respectively, Figure 3.25.  

Skeletal muscle lactate content more than doubled in OO (4.6±1.1 to 11.1 ± 1.3 mmol kgdm
-

1
; P<0.05) post-exercise compared to corresponding value pre-exercise, Figure 3.26. 
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Figure 3.23: Skeletal muscle glycogen content pre- and post-exercise at 50%VO2 max in 

young lean (n=7), old lean (n=7) and old overweight (n=7).  

 

Figure 3.24: Skeletal muscle acetylcarnitine content pre and post exercise at 50%VO2 max in 

young lean (n=7), old lean (n=7) and old overweight (n=7). ^P<0.05, ^^^ P<0.001 vs. 

corresponding pre-exercise values.  
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Figure 3.25: Skeletal muscle phosphocreatinine content pre and post exercise at 50% VO2 

max in young lean (n=7), old lean (n=7) and old overweight (n=7). *P<0.05, Old overweight 

different to corresponding Young lean value. †P<0.05, Old overweight different to 

corresponding Old lean value.  

 

Figure 3.26: Skeletal muscle lactate content pre and post exercise at 50% VO2 max in young 

lean (n=7), old lean (n=7) and old overweight (n=7). ^P<0.05 vs. corresponding pre exercise 

value.  
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Table 3.4: Summary of differences between young lean, old lean and old overweight healthy 

males pre-intervention (Week 0). 

 Young lean 

(n=7) 

Old lean 

 (n=7) 

Old overweight  

(n=7) 

Body fat Low Low High 

BMI Low Low High 

VO2 max High Low Low 

Physical activity levels (based 

on  self-reported activity levels) 

Moderate to 

high 

Moderate to high Low to moderate 

EE upon insulin stimulation at 

rest 

Increased Increased Unchanged 

Relative contribution of total fat 

oxidation to EE during light-

intensity exercise 

Similar Similar Similar 

Relative fatty acid oxidation 

rates during light-intensity 

exercise 

 Lower compared to 

young lean  

Lower compared to 

young lean 

IMCL utilisation during exercise  Lower compared to 

young lean 

Lower compared to 

young lean 

SSL Lipid accumulation post-

exercise 

Unchanged Unchanged Increased 

IMF Lipid accumulation post-

exercise 

Decreased Unchanged Unchanged 
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3.4 Discussion  

 

Ageing may be influenced by various factors in its association with a decline in insulin 

sensitivity. This study demonstrated differences in body composition, VO2 max, substrate 

oxidation at rest and exercise, skeletal muscle metabolism and lipid content between the older 

and young groups. Self-reported physical habitual activities were similar between young and 

old lean, but lower in old overweight groups. This study supports the notion that skeletal 

muscle insulin sensitivity is reduced in older people compared to young, with greater insulin 

resistance in the older overweight compared to older and young lean, and is associated with 

reduced IMCL utilisation during light-intensity exercise. This suggests a discordant reduction 

in muscle fat oxidation, as FFA availability and uptake were not limiting, resulting in an 

increase in muscle lipid accumulation particularly in the SSL region of muscle in older 

overweight people.  This is not entirely due to age per se, but associated with accumulation of 

fat mass and possibly activity levels. Skeletal muscle insulin resistance also appears to be 

associated with lipid accumulation in the SSL region. This is the first study to directly 

investigate whether IMCL oxidation is impaired during exercise in older insulin resistant 

individuals, taking into account other factors such as adiposity and physical activity. 

 

3.4.1 Body composition 

When body composition was differentiated into overweight (BMI≥26) and lean (BMI≤25), a 

difference was seen in older individuals and thus they were separated post-hoc into groups of 

older lean and older overweight.  It is well documented that changes in body composition, 

often without concomitant changes in body weight and BMI occur as part of the normal 

biology of aging (St-Onge 2005). Fat mass increases and fat-free mass decreases (Cohn et al. 
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1980, Flynn et al. 1989) in line with features of sarcopenic obesity (Prado et al. 2008) seen in 

ageing. The average male aged 65-70 has 12 kg less lean body mass than at age 25 (Forbes 

and Reina 1970). Over a 2 year follow-up study in older men, there were significant losses in 

leg muscle mass and appendicular skeletal muscle mass, calculated as the sum of arm and leg 

fat-free soft tissue (Zamboni, Zoico et al. 2003). This may be as a result of a general decline 

in physical activity with ageing, however over a three year-period, a mild but significant 

decline in muscle mass and body fat accumulation were seen in healthy old participants 

despite leisure time physical activity (Raguso 2006). Computed tomography of muscles show 

that after the age of 30, there is a decrease in cross-sectional area of the thigh and density 

associated with increased intramuscular fat (Borkan et al. 1983). Although the exact 

underlying cause is not known, it would appear that there may be other mechanisms 

including physical inactivity that promotes accumulation of lipid and/or reduction in fat 

oxidation with ageing. Moreover, this study has shown reduced insulin sensitivity levels in 

older overweight compared to older and young lean subjects. Older overweight subjects also 

reported lower physical activity time per week.  

3.4.2 Maximal oxygen consumption (VO2 max) 

Older partipants recruited to the study achieved lower maximal oxygen consumption (VO2 

max) than young participants during the incremental exhaustive exercise test regardless of 

body composition or physical activity levels. This study demonstrated around a 40% 

difference in mean VO2 max levels between older and young in concert with evidence 

supporting a 10% per decade decline in VO2 max in men and women (Heath et al. 1981) 

irrespective of activity level (Hawkins and Wiswell 2003). This age-related decline may be 

due to adaptations of the body to cardiovascular (reduction in maximal heart rate) and body 

composition changes (lean body mass reduction) (Hawkins and Wiswell 2003) and decrease 

in vigorous physical activity (Rosen, Sorkin et al. 1998).    
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In a longitudinal study based on the Baltimore Longitudinal study in ageing (Flegg and 

Laketta 1988), peak VO2 max decelerated with each increasing decade particularly after the 

age of 70. Although greater levels of habitual physical activity increase the absolute peak 

V̇O2 at any age, this does not appear to prevent the accelerated decline with advancing age. 

Functional capacity as assessed by ISWT in this study revealed a distinct difference between 

older lean and older overweight with shorter distances walked by overweight men. This 

demonstrates that ageing per se does not influence functional capacity as much as adiposity 

or body composition. 

 

3.4.3 Insulin sensitivity  

A modest increase in mean fasting plasma glucose of 1mg/dL (0.1mmol/L) is seen per decade 

(Davidson 1979). Using the hyperinsulinaemic euglycaemic clamp in the present study there 

was a significant difference (p<0.01) in glucose disposal rates between older and young 

participants. A significant difference in fasting insulin sensitivity index was also seen 

between older and young participants (higher fasting glucose but similar fasting serum insulin 

levels). When divided into older overweight, older lean and young lean, insulin sensitivity 

index was lowest in the older overweight, followed by older lean and young lean. Although 

there are numerous studies on ageing and insulin resistance, there are not as many studies 

cited in literature that have primarily evaluated and compared glucose disposal rates in older 

and young healthy volunteers using the hyperinsulinaemic euglycaemic clamp, and even 

fewer have examined the difference on older participants based on body composition. Older 

volunteers were shown to have 30% lower mean glucose disposal rates compared to young 

despite similar serum insulin levels at steady state. In line with the development of sarcopenic 

obesity in ageing, it is unclear if the increasing glucose intolerance in aging is caused by an 



156 
 

age-related decline in muscle mass or fat regional distribution, or indeed whether the 

increasing insulin resistance in ageing contributes to functional decline of muscle. The insulin 

infusion or glucose disposal rates were based on lean body mass in all groups. One of the 

more pertinent studies utilising the insulin clamp showed that glucose disposal rates were 

significantly decreased by 30-35% in the elderly group compared with the non-elderly group 

at all steady state plasma glucose concentrations at a fixed insulin concentration
 
(Fukagawa, 

Minaker et al. 1988). However body composition was not analysed in greater detail. The 

authors concluded that the reduced insulin sensitivity was due to a reduction in the maximal 

capacity of glucose utilization with aging. Glucose and protein homeostatic responses to 

different insulin infusion rates during a euglycaemic clamp showed lower glucose disposal 

rates adjusted for lean body mass in elderly men compared to young at all infusion rates apart 

from the highest rate (400mU/m
2
/min)(Krebs and Roden 2005). The effect of non-insulin-

mediated glucose disposal (which is responsible for the majority of basal glucose uptake) was 

examined in old versus young healthy men using a euglycaemic clamp and showed a 

significantly lower glucose disposal in older men at baseline (Meneilly, Elahi et al. 1989) 

This may translate to why fasting glucose increases with age.   

Another plausible cause for the observed reduced glucose disposal rates in older people could 

be explained by skeletal muscle insulin resistance, as this increase with age through the 

accumulation of IMCL and associated metabolites and altered muscle mitochondria. Skeletal 

muscle acts as a pool for insulin-mediated glucose uptake so it would be reasonable to 

hypothesise that perturbations to muscle such as changes seen with ageing would affect 

glucose uptake and thus insulin sensitivity. Indeed skeletal muscle uptake of 2DG was 

greatest in young, followed by old lean and old overweight.  
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3.4.4 Substrate oxidation at rest under fasting and insulin-stimulated conditions 

At rest and under fasting conditions there was no significant difference between older and 

younger volunteers with regards to carbohydrate and fat oxidation rates and respiratory 

exchange ratios (RER). There was a trend towards increased energy expenditure in the 

younger group when expressed per kg lean mass. Upon insulin stimulation, carbohydrate 

oxidation rates increased significantly and a trend towards a rise in RER was seen in younger 

participants. A trend towards an increase in carbohydrate oxidation was seen in the older 

group whilst no changes were seen in fat oxidation rates, RER and energy expenditure.  

The effect of insulin on carbohydrate oxidation at baseline was significant in younger 

participants compared to older participants, with younger individuals achieving a relative 

13% increase in carbohydrate oxidation compared to older individuals. Studies examining 

substrate oxidation in ageing tended to focus on the effects of diet and physical 

activity.(Davy, Horton et al. 2001; Melanson, Donahoo et al. 2007). Of the few pertinent   

studies concerning fat oxidation in the fasting state, some have shown a decline (Calles-

Escandon et al. 1995) and an increase in fat oxidation with ageing (Bonadonna et al. 1994). 

A possible reason for the inconsistencies may lie with the influence of body composition. 

Melanson et al. 1997 observed no significant effects of age per se on fasting fat oxidation, but 

a significant negative effect of body fat was seen when the best-fitting regression multiple 

analysis was applied. Others supporting this observation have shown low basal fat oxidation 

rates in older obese individuals and that oxidation rates are altered with changes in body 

composition (Wohl, Girman et al. 2004). In the post-prandial state, lower fat oxidation rates 

were seen in elderly women following a moderately large meal (Melanson et al. 1998). The 

blunted response of energy expenditure to insulin stimulation observed in older participants 

in this study is in concordance with data seen in that of T2DM (van de Weijer, Sparks et al. 

2013). In insulin resistant individuals, capacity to increase skeletal and whole body glucose 
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oxidation and storage during the clamp is impaired with little or no change in respiratory 

quotient (RQ) (van de weiger 2013, Rowe, Minaker et al. 1983; Kelley and Mandarino 2000).  

The lower mean glucose disposal rates and impaired substrate utilization upon insulin 

stimulation in older overweight participants shown in this study imply that insulin sensitivity 

is impaired in overweight and obese individuals. As skeletal muscle accounts for the majority 

of insulin-mediated disposal of glucose (under hyperinsulinaemic clamp conditions) (De 

Fronzo et al. 2009), perturbations to this tissue may aggravate insulin resistance. 

Mitochondrial abnormalities impair lipid oxidation and consequently increase lipid 

accumulation in  muscle (Boden, Chen et al. 1994). This imbalance further impairs insulin 

signalling and increases lipotoxic intermediates leading to a decline in glucose uptake in 

muscle (Randle et al. 1963, Defronzo 2004, Kashap et al. 2003, Schrauwen et al. 2010). 

Impaired in vivo mitochondrial function has also been shown to be the single most important 

predictor of basal RER, in contrast insulin-stimulated RER was largely influenced by glucose 

disposal rate suggesting that mitochondrial capacity mainly affects basal substrate utilization 

but does not necessarily impact on skeletal muscle to switch substrates.  

 

3.4.5 Skeletal muscle lipid 

Studies of the role of IMCL subcellular fractions and distribution of important muscle 

determinants of insulin sensitivity such as lipid, mitochondria, glycogen and nuclei are 

extremely limited. Post-exercise, the overweight and older lean participants in the present 

study showed a 3-fold and a trend towards a 2-fold accumulation of lipid in the SSL region of 

muscle, respectively. Greater IMCL accumulation in this region in older people during 

exercise has been attributed to a need for rapid energy source in conditions of continuous 

supply of lipid (Skovbo et al. 2008). If unaccompanied by a concomitant rise in fat oxidative 
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capacity, as seen in conditions of insulin resistance this may result in a surplus and thus 

overspill of lipid in muscle. In a pertinent study evaluating lipid content of skeletal muscle in 

ageing, older men exhibited larger number of IMCL droplets in total muscle area, greater 

IMCL content in the SSL region, lower number of mitochondria, and reduced number of lipid 

droplets in contact with mitochondria at rest (Blaak and Wagenmakers 2002). The findings in 

this study also reflect that seen in people with T2DM who showed a 3- fold higher volume of 

lipid in the subsarcolemmal region and similar volume density of IMF lipids in the pre-

training state compared with BMI-matched control subjects and highly endurance-trained 

subjects. Endurance exercise halved lipid content in the SSL region but no differences in IMF 

lipids among groups were found (Nielsen et al. 2010). One of the novel findings of the 

present study is that lipid was found to accumulate to a greater extent in the SSL regions of 

muscle in older people, albeit older overweight during light-intensity exercise and this is 

likely as a result of blunting of IMCL oxidation capacity. Figure 3.8A shows reduced relative 

IMCL (other fat) to total fat oxidation during exercise in older overweight compared to older 

lean and young subjects. This was despite similar self-reported activity levels. Over a period 

of time this may affect skeletal muscle insulin sensitivity as a result of increasing IMCL 

stores (Krssak et al. 1999, Pan et al. 1997).  In healthy young individuals, IMCL depots have 

been shown to decrease in response to acute exercise (Nielsen et al. 2000), but very little is 

known of the effects of exercise on IMCL depots in older individuals. Lipid flux in the SSL 

regions appears to depend on the degree of uptake and oxidation of fat as aerobic training 

decreased SSL content of people with T2DM by almost two-fold, approaching levels 

observed in normal healthy controls (Ritov et al. 2005). Moreover there was a strong inverse 

relationship between pre-training levels of SSL lipid and insulin sensitivity in these subjects. 

Taken together this demonstrates an abnormality of SSL lipid accumulation in T2DM, and 
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this could also be an important factor contributing to the regulation of skeletal muscle insulin 

sensitivity in otherwise healthy older people.  

Compartmentalisation of muscle into distinct regions has further enabled examination of 

physiological differences between IMF and SSL content including the localisation of key 

proteins involved in the insulin signalling pathways and metabolism. Changes in 

mitochondrial content (Ritov et al. 2005, Happelar et al. 2003), GLUT-4 vesicle translocation 

(Lauritzan et al. 2008) and glycogen metabolism (Marchand et al. 2007) appear to be 

location-dependent in response to stimuli such as endurance training (Marchand et al. 2007) 

and diets (Lauritzan et al. 2008). Likewise it could also be that there is a predilection for 

particular lipid intermediates such as DAG or ceramide species to accumulate in the SSL 

region, so causing a deleterious effect on insulin signalling pathways. However studies on the 

effect of lipid metabolites on insulin sensitivity are limited and have yielded inconsistent 

findings and not many have investigated its effect on insulin sensitivity in older people. 

Whilst lipid infusion studies have provided insights into IMCL accumulation and its effect on 

insulin-signalling pathways (Hoy et al. 2009), others have shown that it may not be IMCL 

per se affecting insulin sensitivity but  increased lipid metabolites (DAGs, acyl-coA, 

ceramides) causing insulin resistance (Adamas et al. 2004, Moro et al. 2009, Coen et al. 

2010).  This study did not show a difference in total DAG or ceramide content between old 

and young, pre and post exercise, but DAG species C18:1 and ceramide species C20:0 were 

elevated in the older overweight. The significance of this is uncertain and may not entirely 

explain the difference in insulin-sensitivity in older overweight, older lean and young. In 

contrast to other studies showing either higher total intramyocellular DAG content or low 

ceramide content associated with higher insulin sensitive muscle (Dube et al. 2011), total 

DAG content in the present study was comparable between the groups despite greater glucose 

disposal rates in young subjects. This could be because that only certain DAG moieties are 
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associated with insulin sensitivity or that DAG and ceramide are not the primary 

determinants of lipid metabolites that cause insulin resistance in old muscle. This is in accord 

with other studies where similar ceramide content were seen regardless of differing insulin 

sensitivities of obese, lean and endurance trained subjects. Aerobic capacity did not appear to 

influence muscle ceramide content in these groups (Pan et al. 1997).  

As fatty acid availability or beta-adrenergic stimulation in both older lean and overweight 

subjects were not limiting the reduction in skeletal muscle fat oxidation may be the result of 

an age-related decline in the capacity of skeletal muscle to oxidize fatty acids at the expense 

of lipid being diverted to greater lipid storage in muscle. Factors implicated with this decline 

include diminished content of muscle oxidative enzymes and capacity, possible 

adrenergically-mediated reduced activation of fatty acid transport, increased glycolytic flux 

inhibiting fatty acid transport into mitochondria (van Loon et al. 2005) and reduction in the 

number and skeletal muscle content of mitochondria (Crane et al. 2010, Blaak et al. 2000). 

This may, over time have a deleterious effect on muscle mass and metabolism, leading to a 

progressive decline in muscle metabolite function. These changes may eventually contribute 

to the development of a decline in muscle mass, strength and increase in body fat content in 

line with sarcopenia and skeletal muscle insulin resistance. Endogenous carbohydrate 

oxidation rates during the 50% VO2 max exercise were not dissimilar between the groups. 

However during exercise, there was little muscle glycogen use and a trend towards an 

increase in muscle lactate accumulation post exercise in older overweight subjects. Other 

skeletal muscle metabolites such as muscle total creatine, acetylcarnitine and PCr were 

lowest in the older overweight. Muscle oxidative capacity as measured by citrate synthase 

activity also tended to be lower in muscle of the older overweight, although there was no 

difference in CPT-1 and CPT-2 activity. 
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3.4.6 Substrate oxidation during light-intensity exercise 

No difference in relative contribution of total fat to total energy expenditure during exercise 

at 50% VO2 max was seen between the groups, however the relative contribution of 

intramyocellular to total fat utilisation in older overweight men was lower than that of older 

lean and young men despite increased FFA availability (Figure 3.9) and greater 

catecholamine response compared to young (Figure 3.10A). The relative contribution of 

plasma FFA availability to oxidation was also lower in older individuals. Taken together, this 

suggests that IMCL and plasma oxidation are impaired in older individuals despite greater 

availability.  

The impaired total fat oxidation to energy expenditure in older people are consistent with 

findings of others. These studies did not however compare body composition and IMCL 

oxidation during exercise between participants in detail. Although fatty acid oxidation was 

lower in older compared to young healthy males during exercise performed at a similar 

relative intensity (56% of maximal VO2 max)(Sial and Coggan 1996) the rate of appearance 

(Ra) of FFA was found to be lower in older subjects.  Higher catecholamine concentration 

levels in response to exercise and meals appear to promote FFA availability (Coggan and 

Spina 1997) leading to increased 24 hour fat oxidation (Melanson 2007). Older people appear 

to have a blunted lipolytic response to FFA availability and beta-adrenergic stimulation 

(Blaak 2000), and muscle lipid are insensitive to catecholamines (Galbo et al. 1975). In this 

study, although plasma FFA Rd in older individuals was at a level that was even higher than 

in the young, the relative IMCL utilisation to total fat oxidation during exercise was lower. 

The present finding of reduced fat oxidation between old and young during exercise is in 

concert with Sial et al who examined substrate utilisation during exercise performed at 

absolute and relative intensities (Sial et al. 1996). In line with findings from the present study 

FFA availability and lipolysis were not limiting. In fact greater fatty acid flux was seen in 



163 
 

older subjects.This suggests that although fatty acid uptake can be increased, the ability to 

utilise IMCL through some unknown mechanism is impaired with ageing. This could perhaps 

be related to altered skeletal muscle metabolism.  Although no difference was seen in plasma 

fatty acid oxidation, the difference between plasma rate of disappearance and oxidation (rate 

of storage) in older subjects in this study was significant implying greater ectopic fat 

deposition, presumably in muscle; as fat serves as the primary fuel in skeletal muscle 

metabolism during low to moderate intensity exercise (Romijn 1993). It could be that healthy 

individuals muscle appear to possess the ‘flexibility’ or ability to adapt to increased fat 

delivery by  improving fat oxidation or increasing mitochondrial oxidative capacity during 

exercise training, facilitating the oxidation of fat over carbohydrate ,whereas the opposite is 

seen in insulin-resistant states.   

3.4.7 Exercise metabolism 

There is little disagreement with the major metabolic effects observed after endurance 

exercise in older people even at submaximal VO2max. These are slower utilisation of muscle 

glycogen and blood glucose, greater reliance on fat over carbohydrate oxidation and less 

lactate production during exercise at a given intensity. Skeletal muscle metabolic response  to 

exercise appear to decline with age and are thought to be due to a reduction in the number of 

mitochondria , muscle oxidative capacity, increased IMCL , increased fat mass and decline in 

physical exercise with ageing (Holloszy and Coyle 1984). However endurance and resistance 

training appear to minimise these changes. The results of the present study mostly support the 

findings of others, in particular a greater accumulation of muscle lactate and less glycogen 

utilisation during exercise in older healthy men compared to young subjects. In particular 

glycogenolysis was lowest in older overweight participants. Muscle PCr and total creatine 

were also lower in older overweight compared to young subjects.   
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The older overweight participants in this study were noted to have lower CS levels compared 

to older lean, and there was no difference between older lean and young participants. The 

mitochondrial respiratory capacity of skeletal muscle as measured by citrate synthase activity 

have been found by some to be no different in older or young individuals (Orlander et al. 

1978, Larsson et al. 1978, Grimby et al. 1982). In contrast, Essen-Gustavsson and Borges 

1986, Coggan et al. 1993 and Meredith et al. 1989 showed  lower CS activity levels in older 

compared to young individuals. This difference in findings may be because the early 

Scandinavian studies were confounded by physical activity  levels of subjects whereas the 

latter studies were in truly sedentary individuals. Thus it is unclear from these studies if 

ageing per se or the influence of physical activity affects the respiratory capacity of skeletal 

muscle.  

3.4.8 Underlying mechanisms  

Several mechanisms may explain the observed inability of old overweight men to oxidise 

excess FFA Rd.  Individuals predisposed to familial longevity were shown to have lower 

IMCL content and increased peripheral insulin sensitivity regardless of physical activity and 

body composition (Wijsman et al. 2012) and endurance-trained young lean subjects also 

accumulate IMCL (Goodpaster 2001). This suggests that in these individuals, either FFA 

levels were not elevated and/or fatty acid oxidation was not impaired. Whilst mitochondrial 

activity and function were not assessed in Wijsman’s study, muscle oxidative capacity was 

shown to be greater in insulin-sensitive endurance-trained athletes despite higher IMCL 

content (Wijsman 2012).   Compared with young, IMCL content was increased by up to 40%, 

and reduction in mitochondrial oxidative and phosphorylation activity was seen in older 

people through 
1
H Nuclear Magnetic Resonance Spectroscopy (

1
HNMRS)  (Petersen 2003) . 

However, although participants were matched in body composition habitual activity levels 

were not considered. These studies point towards impaired mitochondrial function as a cause 
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of impaired fatty acid oxidation and insulin resistance in older people. Findings elucidated 

from this study show that impairment of  IMCL oxidation and subsequent skeletal muscle 

insulin resistance may be due to perturbations to mitochondrial content and function in 

overweight or obesity as there was a trend towards lower CS, CPT-1, relative contribution of 

fat to total energy expenditure or muscle metabolic response to exercise. Although this may 

explain the difference in older overweight participants in the present study, fatty acid 

oxidation impairment is more likely as a consequence of greater FFA Rd relative to energy 

expenditure. This study has shown greater lipid accumulation in SSL region of older 

overweight as a result of impaired IMCL oxidation, whilst no difference was seen in older 

lean and young. This is in contrast to others (Crane et al. 2010) who have shown greater SSL 

lipid accumulation in older individuals irrespective of body composition, implying that age is 

a predictor of IMCL content. The difference may be because older participants in Cranes’ 

study were not matched for physical activity.   

 

3.4.9 Conclusion 

In conclusion, this study demonstrates that several parameters change with age, such as 

increased truncal fat mass, increased levels of fasting glucose, decreased VO2 max, impaired 

skeletal muscle insulin sensitivity and fat oxidation rates during light-intensity exercise, 

compared to young. However differences in body composition and habitual physical activity 

appear to have a greater  influence on skeletal muscle insulin sensitivity and lipid 

accummulation. Further, lipid droplet accumulation in the subsarcolemmal region of  muscle 

of older overweight could further explain a cause for the development of insulin resistance in 

older insulin resistant people as this is the site of insulin action. The greater FFA availability 

in old (both lean and overweight) and noradrenaline concentrations during exercise suggest 

an exaggerated response that develops with ageing per se.  Future studies should focus further 
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on unraveling the mechanisms involved at the SSL region of muscle in healthy older people 

and compare this with people with diabetes. Certain micronutrients shown to increase fat 

oxidation should be investigated to see if this could improve insulin sensitivity. This will be 

tested and discussed in Chapter 5. Figure 3.11 illustrates the interplay between adiposity, 

reduced physical activity and skeletal mucle insulin resistance and T2DM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: The relationship between impaired IMCL oxidation and adiposity in promoting 

skeletal muscle insulin resistance. 
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Chapter 4: STUDY 2  

Investigating the effects of an acute increase in lipid availability on insulin and amino 

acid stimulated protein metabolism. 

 

4.1 Introduction 

 

Anabolic resistance or the inability of skeletal muscle to synthesise new protein in response 

to anabolic stimuli such as amino acid ingestion or exercise has been implicated in muscle 

loss seen in ageing (Volpi, Mittendorfer et al. 2000; Cuthbertson, Smith et al. 2005), 

sarcopenia (Rasmussen, Fujita et al. 2006), insulin resistance, critical illness (Rennie 2009) 

and lipotoxicity. The issues concerning anabolic resistance have gathered momentum in 

recent years in line with recognition of increasing muscle loss and strength with ageing, and 

its impact on the older population as a main contributor to disability, risk of falls and quality 

of life (Evans 1995; Melton, Khosla et al. 2000). Furthermore as there is a strong association 

between anabolic resistance and insulin resistance, examining the underlying mechanisms 

involved can provide important insights into elucidating the protein and insulin signalling 

pathways affected. 

4.1.1 Insulin stimulated protein metabolism 

Insulin is widely described as a potent stimulus for muscle protein anabolism, indeed 

hyperinsulinaemia can increase muscle protein synthesis particularly when muscle amino 

acid availability is also increased (Bennet, Connacher et al. 1990). However insulin has been 

regarded to have a permissive rather than a modulatory role in MPS, and it is the availability 

of amino acids rather than insulin that appears to regulate rate of protein synthesis 

(Cuthbertson et al. 2005). 
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Insulin induces protein synthesis by activating translational factors and increasing cellular 

ribosomes mediated primarily through phosphoinositide 3-kinase and activation of protein 

kinase B. This allows for overall activation of protein synthesis through its regulation of 

mammalian target of rapamycin (mTOR) and 4E-BP1, both of which are mainly involved in 

synthesis of protein (Proud 2006). mTOR complex 1 also targets and activates kinases such 

as S6K1 that ultimately results in ribosomal biogenesis and translation. This has been 

discussed in detail in chapter 1. 

 

Figure 1 from (Haran, Rivas et al. 2012). Anabolic stimuli (amino acids, growth factors (insulin, 

IGF-1), and exercise (not shown) act through the mTOR and Akt signalling pathways. mTORC1 is 

involved in the phosphorylation and activation of S6K1 and phosphorylation and inactivation of 4E-

BP1, resulting in ribosome biogenesis, increase in translational efficiency, and heightened MPS. The 

energy sensor AMPK inhibits this pathway, and is active when the AMP/ATP ratio is high. Growth 

factor stimulates activation of the PI3K pathway as well as mTORC2; both eventually activate Akt, 
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which can inhibit stress signalling and apoptosis through inactivation of FOXO1/O3 transcription 

factors. Akt also plays a role in carbohydrate metabolism.  

P- phosphorylation, activation or inactivation; PI3k- phosphoinositide 3 kinase; Akt-protein 

kinase B; FOXO- forkhead protein box O; AMPK -AMP-activated kinase; 4E-BP1- eIF4E-

binding protein 1; S6K1- S6 kinase 1 

 

4.1.2 Lipid excess and anabolic resistance 

Diet-induced obesity, a major risk factor in the development of insulin resistance, was found 

to cause reduced skeletal MPS in mice (Anderson, Gilge et al. 2008). There was also an 

association between impaired protein metabolism and reduced post-absorptive protein 

turnover in obese individuals (Guillet, Delcourt et al. 2009). Although there exists 

compelling evidence to link obesity and reduced protein metabolism, the underlying 

mechanisms to explain this association are not clear. Increased activation of mTOR pathway 

and its downstream effectors have been implicated as contributors to insulin resistance 

stemming from obesity (Le Bacquer, Petroulakis et al. 2007).   

Increased basal expression of proinflammatory mediators such as NFκB, TNFα and IL-6 in 

older people (possibly due to increased fat accumulation in ageing) inhibits muscle anabolism 

by interfering with mTOR signalling (Cuthbertson et al. 2005). The same mediators are 

associated with lipid accumulation in non-fatty tissue sites.  

Accumulation of lipids, in particular sphingolipids are well-known to interfere with insulin-

signalling pathways thereby contributing to the development of insulin resistance (Hannun et 

al. 2002; Summers et al. 2005). Similarly lipids such as ceramides cause diminished amino 

acid availability and reduced phosphorylation of translational regulators downstream of 
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mTOR in vitro. Ceramides can activate protein phosphatase 2A which targets and inhibits 

Akt and S6K1 by dephosphorylation (Hannun et al. 2002). 

Other than ceramides, triglycerides are also thought to be detrimental to anabolic signalling in 

skeletal muscle.  Age-induced intramuscular triglyceride infiltration is associated with an 

increase in several lipogenic regulators including sterol regulatory element-binding protein, 

fatty acid synthase, acetyl CoA carboxylase, and stearoyl CoA desaturase. It has been 

demonstrated that AMPK activation and concentration are heightened in aged skeletal 

muscle, even in animals that were subjected to anabolic stimulus in the form of chronic 

muscle overload (Hannun et al. 2002).  This would suggest that intramuscular lipid 

accumulation, especially triglycerides blunts anabolic signalling pathways. 

 

4.1.3 Increasing lipid availability to induce insulin resistance 

The studies described so far have been performed in chronic settings of obesity and insulin 

resistance; however other contributing factors such as physical activity and diet may 

influence anabolic sensitivity to amino acids. Under these conditions it is difficult to 

determine the effects of insulin resistance per se on the mechanisms involved in protein 

turnover. The effect of excess lipid on insulin and amino acid stimulated skeletal muscle 

protein synthesis and the associated signalling pathways in vivo in humans is important but 

not frequently studied.  

Intravenous infusion of a lipid emulsion with heparin is used to elevate free fatty acid 

availability to allow investigation of the acute effects of lipid-induced insulin resistance on 

insulin signalling pathways and its subsequent impairments in glucose uptake, storage and 

oxidation (Boden, Jadali et al. 1991; Chokkalingam et al. 2007). Several studies have shown 
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that increasing free fatty acid acutely via this method had little effect on muscle protein 

synthesis and actually improved net muscle protein balance by inhibiting protein breakdown 

in a dose dependent manner (Ferrannini, Barrett et al. 1986; Tessari, Nissen et al. 1986; 

Wicklmayr, Rett et al. 1987; Gormsen, Gjedsted et al. 2008; Katsanos, Aarsland et al. 2009). 

In particular the study by Katsanos et al. observed no effect on the normal muscle protein 

synthetic response to ingestion of essential amino acids during a 13.5 hour intravenous lipid 

infusion.  

This present study examined the effect of acutely elevating fatty acid availability to a 

concentration found to induce insulin resistance, on muscle signalling and protein synthetic 

response to amino acid ingestion in the presence of steady-state circulating insulin 

concentration in humans. The study also aimed to elucidate the protein signalling pathway 

involved in altered protein metabolism under these conditions. 

4.2 Methods 

Seven healthy males (23.0 ± 0.8 yrs, body mass 78.5 ± 3.8 kg, BMI 24.5 ± 0.9 kg/m
2
 

participated in the study. 

They presented to the laboratory fasted and abstained from strenuous exercise for the 

previous 48 hours. In a rested supine position,  cannulae were inserted into veins for 

arterialised-venous blood sampling, infusion of insulin, 20% dextrose and [-ring
2
H5] 

phenylalanine (Cambridge Isotopes Limited, Cambridge,MA, USA) and the contralateral 

forearm for infusion of a lipid emulsion (Intralipid; Fresenuis Kabi,Germany) or 0.9% saline. 

On each visit a 7 hour [ring-
2
H5 ]-phenylalanine infusion (0.5/kg/hr) was performed in 

combination with 10% Intralipid (Lipid) or saline (Control) at a rate of 100mls/hr. Heparin 

sodium was also infused at a rate of 600U hr
-1

 to elevate plasma non-esterified fatty acid 

availability. After a 4 hours basal period, a 21 g bolus of amino acids (except phenylalanine 
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and tyrosine; Tyrosidon, SHS International Ltd, UK) was administered in a 440mls solution 

via a nasogastric tube to avoid issues with palatability. This amount of amino acids was 

selected to provide 10 grams of essential amino acids including 2.3 grams of leucine. This 

dose was determined as sufficient to provide a robust stimulation of muscle protein synthesis 

rates in young men under normal conditions (Cuthbertson et al. 2005). At the same time, a 3 

hour hyperinsulinaemic euglycaemic clamp was carried out at a rate of 50mUm
-2

min
-1

 (fed 

period). This rate was chosen as it was previously demonstrated to suppress endogenous 

hepatic glucose production under insulin resistant conditions known to alter substrate 

metabolism (Chokkalingam et al. 2007; Soeters, Sauerwein et al. 2009). The variable glucose 

infusion rate required to maintain euglycaemia was equivalent to peripheral glucose disposal 

and therefore peripheral insulin sensitivity.   

4.2.1 Sample collection and analysis 

Arterialised-venous blood was obtained at t=0, 1.5 hr and every 30 minutes thereafter. 

Plasma was treated with tetrahydrolipostatin (THL) and analysed for NEFA as described in 

the common methods chapter. Plasma separated from EGTA treated blood was analysed for 

insulin concentration by ELISA. After deproteinisation on ice with dry 5-sulfosalicylic acid 

the same plasma was used to analyse phenylalanine and leucine concentrations and 

enrichment by GC-MS after derivatisation with tert-butyl dimethylsilyl (TBDMS) as 

described (Gorissen, Burd et al. 2014). Muscle samples were obtained from the vastus 

lateralis muscle using the Bergstrom needle biopsy technique. Samples were analysed for 

intracellular tissue free phenylalanine enrichments in the similar manner as the plasma 

samples. Amino acids were purified from the remaining pellet as described previously and 

used to determine the phenylalanine enrichments in mixed muscle protein GCMS. Total 

muscle protein homogenates were extracted from another muscle sample portion obtained at 

t= 4 and 7 hr by homogenisation in a HEPES phosphatase buffer in the presence of protease 
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and phosphatase inhibitors. The total muscle protein content of total and phosphorylated Akt, 

mTOR and 4E-BP1 were determined by western blot analysis and normalised to alpha actin 

to control for loading. A further third sample was analysed for activation status of the 

pyruvate dehydrogenase complex. 

 

4.2.2 Calculations 

Fractional rate of mixed muscle protein synthesis (FSR) was calculated by dividing the 

increment in enrichment in protein bound [ring-
2
H5 ]-phenylalanine by the enrichment of the 

precursor. Plasma and muscle free phenylalanine enrichments were used to provide an 

estimate of the lower and higher boundaries of true FSR respectively. The formula used was: 

                                      FSR  =  ∆Ep     x   t      x  100 

       Eprecursor   

Where ∆Ep is the delta increment of protein bound [
2
H5] phenylalanine during incorporation 

periods, Eprecursor is the enrichment of the precursor used during the time period for amino 

acid incorporation determination, and t denotes the time duration (hr) between biopsies. The 

equation is multiplied by 100 to express FSR as percentage per hour.  

4.2.3 Statistics 

A two-way ANOVA was performed to detect differences within and between treatment 

groups for all measures described. When a significant effect was observed, a Student’s t-test 

with Bonferroni correction was performed to locate differences. Statistical difference was 

declared at P<0.05. All values presented in texts and figures represent mean ± the standard 

error of mean s.e.m. 
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4.3 Results 

4.3.1 Insulin resistance of glucose metabolism 

Lipid with heparin infusion caused an elevation of steady-state plasma NEFA concentrations 

throughout the basal period compared to Control (P< 0.001; Figure 1A). Plasma NEFA 

concentrations were suppressed (P<0.001) by insulin and amino acid administration to a 

similar degree (delta 0.38±0.01 vs. 0.39±0.01 mmol l
-1

; Figure 1A) such that steady-state 

NEFA concentration remained greater in lipid throughout the fed period (P<0.001; Figure 

1A) where it was maintained at a fasting concentration. Steady state plasma insulin 

concentrations were similar between the two groups during the fed period (104 ± 5 vs 99 ± 3 

mU l
-1

, respectively; Figure 1B). However, despite this similar circulating insulin 

concentration, there was a 19.9 ± 6.2% lower average glucose disposal during the final hour 

of the fed period in Lipid compared to control (**P<0.01; Figure 1C) and a 56±12% lower 

PDCa by the end of the fed period at 7 hrs (*P<0.05;Figure 1D). 
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Figure 1A: Plasma NEFA concentration before (Basal 1.5-4 h) and after (Fed 4-7 h) the 

administration of 21 g of amino acids and a 3 hr euglycaemic hyperinsulinaemic (100 mU/L) 

clamp during 7 hr intravenous infusion of saline (Control; black circles) or 10% Intralipid 

(Lipid; white circles) at a rate of 100 ml/hr. Values represent means ± SEM. 
†††

 P<0.001, 

Lipid significantly different from corresponding Control value. *** P<0.001, Control and 

Lipid during Fed significantly different from corresponding Basal steady-state. 
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Figure 1B: Serum insulin concentration before (Basal 1.5-4 h) and after (Fed 4-7 h) the 

administration of 21 g of amino acids and a 3 hr euglycaemic hyperinsulinaemic (100 

mU/L) clamp during 7 hr intravenous infusion of saline (Control; black squares) or 10% 

Intralipid (Lipid; black circles) at a rate of 100 ml/h. Values represent means ± SEM.  
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Figure 1C: Whole-body glucose disposal after (Fed 4-7 hr) the administration of 21 g of 

amino acids and during the 3 hr euglycaemic hyperinsulinaemic (~100 mU/L) clamp during 7 

hr intravenous infusion of saline (Control; white circles) or 10% Intralipid (Lipid; black 

circles) at a rate of 100 ml/hr. Values represent means ± SEM. ** P<0.01, Lipid significantly 

different from corresponding Control value. 
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Figure 1D:  PDCa before (Basal 1.5-4 h) and after (Fed 4-7 h) the administration of 21 g of 

amino acids and a 3 h euglycaemic hyperinsulinaemic (100 mU/L) clamp during 7 hr 

intravenous infusion of saline (white bars) or 10% Intralipid (Lipid; black bars) at a rate of 

100 ml/hr. Values represent means ± SEM. *P<0.05, Lipid significantly different from 

corresponding Control value.  

 

4.3.2 Amino acid metabolism 

No effect was seen during the basal period following lipid infusion on plasma leucine or 

phenylalanine concentrations compared to control which were both maintained at fasting 

concentrations throughout (Figure 2A and 2B). Similarly plasma phenylalanine enrichments 

remained at the same steady state levels in Lipid and control (Figure 2C) resulting in the 

same phenylalanine Ra (46.6±1.8 vs. 48.2 ±2.7 µmolkg
-1

min
-1

) in lipid and control 

respectively. Insulin and amino acid administration resulted in a similar peak in plasma 
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leucine concentration in Lipid and control after 30 minutes of the fed period (P<0.001; Figure 

2A). However insulin and amino acid administration caused a steady decline in plasma 

phenylalanine concentration during control such that it was 49± 3% lower during the final 

hour of the fed period compared to basal (P<0.001; Figure 2B). The degree of reduction in 

plasma phenylalanine concentration in response to insulin and amino acid administration was 

greater in Lipid (65± 3%; P<0.001) when compared to control, such that the steady-state 

phenylalanine concentrations were lower (P<0.001; Figure 2B). However, this did not result 

in greater enrichment during the final hour of the fed period in lipid compared to control 

(Figure 2C) or a difference in whole body phenylalanine Ra (28.9 ± 1.0 vs. 32.9±1.6 µmol 

kg/min) in lipid and control respectively. 

 

Figure 2A: Plasma leucine before (Basal 1.5-4 hr) and after (AA + Insulin) the 

administration of 21 g of amino acids and a 3 hr euglycaemic hyperinsulinaemic (~100 

mU/L) clamp during 7 hr intravenous infusion of saline (Control) or 10% Intralipid (Lipid) at 
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a rate of 100 ml/h. Values represent means ± SEM. *** P<0.001, Control and Lipid during 

AA + Insulin significantly different from corresponding basal values. 

 

Figure 2B: Plasma phenylalanine concentration before (Basal 1.5-4 h) and after (AA + 

Insulin) the administration of 21 g of amino acids and a 3 hr euglycaemic hyperinsulinaemic 

(~100 mU/l) clamp during 7 hr intravenous infusion of saline (Control) or 10% Intralipid 

(Lipid) at a rate of 100 ml/h. Values represent means ± SEM. 
+++

 P<0.001, Lipid significantly 

lower corresponding Control value. *** P<0.001, Control and Lipid during AA + Insulin 

significantly different from corresponding basal values. 
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Figure 2C: Plasma phenylalanine enrichment before (Basal 1.5-4 h) and after (AA + Insulin) 

the administration of 21 g of amino acids and a 3 hr euglycaemic hyperinsulinaemic (~100 

mU/l) clamp during 7 hr intravenous infusion of saline (Control) or 10% Intralipid (Lipid) at 

a rate of 100 ml/h. Values represent means ± SEM. *** P<0.001, Control and Lipid during 

AA + Insulin significantly different from corresponding basal values. 

There was no effect of lipid infusion on basal mixed muscle FSR compared to control  

calculated using muscle free (Figure 3A) phenylalanine enrichment as the precursor pool. 

However whereas mixed muscle FSR increased from the basal to fed period in control, it did 

not respond to insulin and amino acid administration in lipid such that it was significantly 

lower than Control (P<0.05; Figure 3A).There were no significant differences between lipid 

and control in the plasma (9.4±0.3 vs 8.6±0.5 mole percent excess (MPE), respectively or 

muscle free (9.4±0.3 vs.8.6±0.5 MPE, respectively) precursor pools following insulin and 

amino acid administration. 
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Figure 3: Skeletal muscle mixed protein fraction synthetic rate (FSR) calculated from 

skeletal muscle [-ring
2
H5]phenylalanine precursor pools before (Basal) and after (AA + 

Insulin) the administration of 21 g of amino acids and a 3 hr euglycaemic hyperinsulinaemic  

(~100 mU/L) clamp during 7 hr intravenous infusion of saline (Control; white bars) or 10% 

Intralipid (Lipid; black bars) at a rate of 100 ml/h. Values represent means ± SEM. 
+
 P<0.05, 

Lipid significantly lower than corresponding Control value. * P<0.05, AA + Insulin 

significantly greater from corresponding basal values. 

4.3.3 Associated signalling pathways 

Lipid infusion did not affect the phosphorylation status of Akt, mTOR or 4E-BP1 compared 

to control during the basal period. Insulin and amino acid administration increased the 

phosphorylation of Akt (P<0.05; Figure 4A), mTOR (P<0.01; Figure 4B) and 4E-BP1 

(P<0.01; Figure 4C) by 1.9, 1.7 and 2.9-fold respectively compared to basal in control. 

However whereas insulin and amino acid administration also increased mTOR 

phosphorylation by 1.5 fold from basal in Lipid (P<0.05; Figure 4B) the 1.8 fold increased in 

Akt phosphorylation was not significantly different (P>0.05; Figure 4A). Furthermore lipid 
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infusion had no effect on 4EBP1 phosphorylation at all such that it was less than half that of 

control at the end of the fed period (P<0.01; Figure 4C).  

 

Figure 4A: Skeletal muscle Akt serine 473 phosphorylation before (Basal) and after (Fed) 

the administration of 21 g of amino acids and a 3 hr euglycaemic hyperinsulinaemic (100 

mU/L) clamp during 7 h intravenous infusion of saline (Control; white bars) or 10% 

Intralipid (Lipid; black bars) at a rate of 100 ml/h. Values represent means ± SEM. * P<0.05, 

Fed significantly greater from corresponding Basal values. 
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Figure 4B: Skeletal muscle mTOR serine 2448 phosphorylation before (Basal) and after 

(Fed) the administration of 21 g of amino acids and a 3 hr euglycaemic hyperinsulinaemic 

(100 mU/L) clamp during 7 h intravenous infusion of saline (Control; white bars) or 10% 

Intralipid (Lipid; black bars) at a rate of 100 ml/h. Values represent means ± SEM. ** 

P<0.01, * P<0.05, Fed significantly greater from corresponding Basal values. 
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Figure 4C 

Figure 4: Skeletal muscle 4E-BP1 threonine 37/46 phosphorylation before (Basal) and after 

(Fed) the administration of 21 g of amino acids and a 3 hr euglycaemic hyperinsulinaemic 

(100 mU/L) clamp during 7 h intravenous infusion of saline (Control; white bars) or 10% 

Intralipid (Lipid; black bars) at a rate of 100 ml/h. Values represent means ± SEM. †† 

P<0.01, Lipid significantly lower than corresponding Control value. *** P<0.001, Fed 

significantly greater from corresponding Basal values. 
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4.4 Discussion 

Anabolic resistance has been associated with ageing, insulin resistance and sarcopenia. 

Mechanisms underlying perturbations to anabolic signalling pathways are increasingly 

studied and unravelled. However, confounding factors such as physical inactivity (commoner 

with ageing) or obesity and diet (insulin resistance and ageing) may distract from establishing 

the cause of anabolic resistance per se. Therefore, the aim of this study was to examine the 

effect of acutely elevating fatty acid availability so as to induce insulin resistance of glucose 

metabolism on skeletal muscle signalling and protein synthesis in response to amino acid 

ingestion in the presence of a controlled, steady-state circulating insulin concentration. Under 

these conditions the present study showed that the insulin resistance observed following 

intravenous lipid infusion was associated with the inability of skeletal muscle to increase 

protein synthesis in response to insulin and amino acid administration ie anabolic resistance. 

This appeared to be partly mediated through the repression of translation initiation at the level 

of 4E-BP1. 

The association between insulin resistance and anabolic resistance has long been established 

and observed in animal models. Genetically obese, insulin-resistant rats exhibited decreased 

muscle protein synthesis in response to nutritional (Dunn and Hartsook 1980; Shargill, 

Ohshima et al. 1984; Chan, Hansen et al. 1985) and exercise stimuli (Friedman, Lemon et al. 

1990). Diet-induced obesity in mice (Anderson, Gilge et al. 2008) and rats (Masgrau, 

Mishellany-Dutour et al. 2012)  was shown to impair the activation of skeletal muscle protein 

synthesis in response to feeding, particularly in glycolytic muscle where there was chronic 

lipid infiltration (Masgrau et al. 2012).  

Whole body protein anabolic response to hyperinsulinaemia and hyperaminoacidaemia is 

blunted in obese women compared to lean (Chevalier, Marliss et al. 2005), and skeletal 
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muscle protein synthesis in response to insulin and amino acids appears to be negatively-

correlated to whole body fat mass in humans (Guillet, Delcourt et al. 2009). However the 

contribution of excess lipid and insulin resistance to anabolic resistance is unlikely to be 

determined from these studies as confounding factors such as physical inactivity or diet can 

also induce anabolic resistance (Friedman et al. 1990, Wall, Snijders et al. 2013). This study 

has demonstrated that an increase in fat availability or lipid-induced insulin resistance per se 

can induce protein synthesis resistance in response to insulin and amino acid ingestion 

independent of confounding factors. 

The ingestion of 21 grams of amino acids containing 10 g of essential amino acids including 

2.3g of leucine increased mixed muscle protein synthesis by 60% over 3 hours post-prandial, 

in concert with other studies (Cuthbertson et al. 2005; Luzi, Castellino et al. 1996). In the 

presence of elevated lipid availability this response was completely suppressed (Figure 3). In 

contrast, the study by Kotsanos et al. 2009 showed no blunting of the 50% increase in muscle 

protein synthesis in response to 7 g of essential amino acids, despite higher doses of lipid 

(nearly 4 times the dose of lipid used in this study). This may be because the lipid infused in 

Kotsanos’s study (20% Liposyn at 90 ml/h for 13.5 hr) had an insulin secretagogue effect 

resulting in a 4-fold higher circulating insulin concentration before and after amino acid 

ingestion compared to saline infusion. This level of insulin concentration could overcome any 

effect of insulin resistance on amino acid metabolism. When insulin was maintained at 

steady-state concentration above that known to physiologically stimulate muscle protein 

anabolism, in both the lipid and control arms of the present study, the lipid infusion resulted 

in a lower muscle protein synthetic rate in response to amino acid ingestion compared to 

control. This suggests that lipid per se can induce anabolic resistance of amino acid 

metabolism. Lipid infusion also reduced insulin stimulated peripheral glucose disposal and 

skeletal muscle PDC activation in the present study by 20 and 50% respectively, in concert 
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with studies administering a similar dose of lipid infusion (Stephens, Mendis et al. 2014) 

reflecting insulin resistance at the level of skeletal muscle. This raises the pertinent question 

as to whether a similar pathway in muscle exists that may cause lipid-induced insulin 

resistance and anabolic resistance.  

This and previous studies (Greenhaff, Karagounis et al. 2008) have shown that insulin and 

amino acid administration per se increased phosphorylation of skeletal muscle Akt, mTOR 

and 4E-BP1. However, despite causing impaired glucose uptake and protein synthesis, lipid 

infusion in this study did not appear to impair the phosphorylation of Akt or mTOR. This 

lack of effect on Akt phosphorylation has been reported before (Kruszynska, Worrall et al. 

2002) and may explain why there was no inhibitory effect of lipid infusion on 

phosphorylation of mTOR, a key regulator of protein synthesis and substrate for Akt. A 

major finding from this study was that lipid completely suppressed the ability of insulin and 

amino acid administration to phosphorylate 4EBP-1, which is normally essential to allow 

active eIF4F complex and translation initiation to occur. This indicates that an intracellular-

signalling defect causing lipid-induced anabolic resistance independent of the Akt-mTOR 

axis exists, but the exact mechanisms are not known. It may be that there is an alternative 

insulin or amino acid sensitive protein synthesis pathway that is impaired with lipid. It is also 

possible that the acute inhibition of protein synthesis in response to elevated NEFA is 

independent of insulin resistance.  As seen in this study, there was no effect of lipid on 

protein synthesis under basal conditions in the absence of insulin stimulation emphasising the 

importance of insulin availability in protein synthesis. Ceramide lipids have been 

demonstrated to impair amino acid-stimulated protein synthesis in L6 cells at the level of 

translation initiation as well as insulin-stimulated amino acid uptake via an independent 

mechanism from ceramide-induced insulin resistance of glucose uptake (Lang 2006). 
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Although muscle protein breakdown was not assessed, there was no effect of lipid on whole-

body protein breakdown (phenylalanine Ra) during the basal or fed period of the present 

study. These findings suggest that muscle loss occurring in conditions of elevated lipid 

availability and insulin resistance is likely due to reductions in the ability to synthesise 

muscle protein in response to anabolic stimuli, rather than accelerated muscle protein 

breakdown (Rennie, 2009; Wall et al., 2013).  

4.5 Conclusion       

This study has demonstrated that insulin resistance via increased lipid availability can induce 

anabolic resistance of skeletal muscle protein synthesis in humans in response to amino acid 

ingestion under steady state hyperinsulinaemic conditions without affecting post-absorptive 

muscle protein synthesis. This impairment appears to be located downstream of the Akt-

mTOR signalling pathway at the level of translation initiation, as phosphorylation of 4E-BP1 

in response to feeding was completely suppressed. Future studies should examine the effects 

of insulin resistance in overweight/obesity from long-term fat overfeeding and ageing on 

skeletal MPS.  
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Chapter 5: STUDY 3 

Investigating the effects of fat and carbohydrate overfeeding on liver fat and insulin 

sensitivity. 

5.1 Introduction 

One of the more pertinent issues of the 21
st
 century concerns the challenge of tackling 

growing obesity rates.  In 2014, more than 1.9 billion adults were overweight. Of these over 

600 million were obese (World Health Organisation, WHO). Current estimates are a 33% 

increase in obesity prevalence and a 130% increase in severe obesity prevalence over the next 

two decades (Finkelstein 2012). As the obesity rates escalate so will the number of people 

with insulin resistance and hence T2DM and related metabolic disease. This is clearly a huge 

public health concern.  

Ethan Sims’ well-known study of overfeeding prison inmates in Vermont (Sims et al. 

1970) sparked interest in examining the effects of overfeeding nutrients on human 

metabolism. His study primarily investigated changes in adipose tissue as a result of 

overfeeding and will perhaps never be replicated (in-mates were overfed for up to 200 days 

until they gained up to 25% excess of their initial body weight), but has provided insight and 

impetus to others in exploring metabolic adaptability and changes in response to increased 

energy intake and expenditure. 

A chronic positive energy balance is clearly the primary driver of obesity, but there 

may be an additional effect of dietary composition on weight gain and insulin resistance. 

Overconsumption of high energy nutrients such as fat and a sedentary lifestyle not only 

results in expansion of adipose tissue (Guilherme et al. 2008) but may also lead to fat 

accumulation in non-adipose tissues (visceral fat) such as skeletal muscle, liver and heart 
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(Bachmann et al. 2001; Schrauwen-Hinderling et al. 2005; van Herpen et al. 2011). 

Moreover, insulin resistance is not always accompanied by increased adiposity, such as in 

people with highly-active antiretroviral therapy (HAART), a condition characterised by 

insulin resistance, lack of subcutaneous tissue and increased liver fat (Yki-Jarvinen 2005). 

Mechanisms by which visceral fat is thought to modulate insulin action include increased 

portal release of FFAs (Bjorntorp P, 1990; Williamson JR et al. 1966) and abnormal 

expression and secretion of fat-derived peptides such as leptin and TNF-α (Hotamisligil et al. 

1996).  

Skeletal and hepatic insulin resistance occur following excess overfeeding (Wang et al. 

2001), whilst insulin sensitivity is enhanced following energy restriction (Kelley et al. 1993) 

and weight loss (McAuley et al. 2006), indicating that energy excess promotes adiposity and 

insulin resistance. Conversely, dietary composition, rather than total energy intake and body 

mass have been shown to have a significant influence on insulin sensitivity (Salans et al. 

1974; Krishnan et al. 2007; Villegas et al. 2007). This is also exemplified in the San Luis 

Valley Diabetes Study, where high total and saturated fat intake were shown to increase 

insulin resistance independent of weight, physical or sedentary lifestyles in a non-diabetes 

population (Marshall et al. 1997).   

Diets high in either fat or carbohydrate have been shown to be associated with 

development of insulin resistance, increased hepatic glucose production and T2DM (Marshall 

et al. 1991; Pereira et al. 1997; Schulze et al. 2004). The associated studies were presented in 

chapter 1. The issue of whether macronutrient consumption has a secondary influence on 

liver fat and insulin sensitivity remains contentious.  Is it the total energy consumption or 

individual macronutrients that are the real protagonists in the development of increased fat 

mass and insulin resistance? Are there differential effects of dietary carbohydrate or fat on 
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liver fat and insulin sensitivity? These questions provided impetus to the objectives of this 

study.    

5.2 Aims 

The present study compared the effect of high-fat versus high-carbohydrate hyperenergetic 

feeding on liver fat content and whole body and liver insulin sensitivity in healthy overweight 

participants. The primary objective was to test the hypothesis that a diet in excess of energy 

(+25%) will increase intrahepatic lipid (IHL) content and thus hepatic insulin resistance. The 

study further explored the hypothesis that a hyperenergetic high-fat diet (+25% energy in the 

form of fat) will increase IHL content, IMCL and thus hepatic and skeletal muscle resistance 

to a greater degree than a hyperenergetic high-carbohydrate diet (+25% excess energy in 

form of carbohydrate) as a result of an inability to increase resting energy expenditure.  

Given that the effect of high energy overfeeding is seen within 7 days in the majority of 

previous studies, it seemed likely that 2 weeks of 25% excess energy high fat or carbohydrate 

diets would be sufficient to produce effects on liver fat and insulin sensitivity. Overweight or 

obese healthy participants were recruited as they were more likely to have an initial degree of 

elevated liver fat and insulin resistance compared to healthy lean participants which is then 

more likely to be altered by dietary change.  

Based on studies seen in the current literature this is the first study to provide a 

comprehensive assessment of the effects of either hyperenergetic high fat or high 

carbohydrate on liver fat, whole body and peripheral insulin sensitivity (liver), lipid and liver 

metabolism.  
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5.3 Methods 

5.3.1 Participants 

24 healthy overweight/obese male participants were initially screened and consented to 

participating in the study according to the Declaration of Helsinki. Anyone who drank 

excessive alcohol (>28 units per week) or had elevated LFTs (AST or ALT three times above 

the upper range of normal) were excluded from participation. Participants completed a three 

day diet diary and International Physical Assessment Questionnaire (IPAQ) to determine 

their estimated daily total energy expenditure. They then consumed an isoenergetic diet 

meeting their usual total energy expenditure for a week before attending their first 

experimental visit. 

5.3.2 Experimental Visit 

Volunteers fasted from 2200 before the morning of the visit and first attended the Sir Peter 

Mansfield MR Centre, University Park, University of Nottingham at 0800 for scanning of 

their liver, abdominal subcutaneous tissue and thigh muscle. They then attended the 

MRC/ARUK David Greenfield Human Physiology Unit where they were weighed and 

underwent anthropometric assessments (callipers and bioelectric impedance analysis). At the 

start of the experimental study volunteers rested in a semi-supine position while cannulae 

were inserted into a superficial dorsal hand vein for arterialized-venous blood sampling and 

in both forearm veins for insulin, glucose and stable isotope infusions. Baseline blood was 

taken to measure liver transaminases, lactate, uric acid, beta-hydroxybutyrate, 

adipocytokines, inflammatory cytokines, lipid profile and free fatty acids. A 4.5 hour primed 

(4mg/kg) continuous infusion of [6, 6 
2
H2] glucose (40µg/kg/min) was infused from the start 

of the study to measure hepatic glucose production and thus assess hepatic insulin sensitivity. 
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Blood samples were taken every hour for the first 2 hours and every 30mins for the last 2.5 

hours to determine plasma [6,6
2
H2] glucose to allow subsequent calculation of endogenous 

hepatic production of glucose. Further blood samples were taken every 30 minutes for 

measurement of insulin and glucagon, and every 1 hour for measurement of C-peptide, 

plasma lipids, FFAs, lactate, uric acid, β-OHB, adipocytokines, CRP, IL-6 and TNF-α.  

After 2 hours of tracer infusion, the hyperinsulinaemic (30mu/m
2
/min) euglycaemic clamp 

was commenced for 2.5 hours. This rate of insulin infusion was chosen based on a previous 

study investigating the effects of either high fructose or glucose on hepatic insulin sensitivity 

(Johnston et al. 2013), where it was shown that this dose of insulin will partly but not 

completely suppress hepatic glucose output.  

Respiratory exchange measurements (oxygen consumption and carbon dioxide production) 

were recorded using a ventilated hood attached to a metabolic cart for 15 minutes at baseline, 

before the insulin clamp and 2.5 hours from the start of the clamp in order to indirectly 

calculate REE and RER to determine whole body carbohydrate and lipid oxidation rates. 
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Figure 5.1: Schematic design of High Fat High Carbohydrate (HFHC) protocol 
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5.3.3 Energy requirements 

Estimated energy intake for each subject was calculated using the Oxford (Henry-modified) 

equation. This method was chosen over the Schofield and Mifflin-St Jeor prediction 

equations for a number of reasons. The Schofield equation has been found to overestimate 

BMR in several populations (Henry C, 2005), and although this overestimate is small (<5%), 

the Oxford equation has been most vigorously tested and its use has been recommended by 

the Scientific Advisory Committee on Nutrition (SACN) (Dietary reference values for 

energy, SACN 2011) to predict estimated energy requirements in healthy populations. The 

use of the modified Henry equation is warranted particularly in the current growing 

population of overweight and obesity, where other prediction equations may underestimate 

energy requirements. Resting energy expenditure (REE) is influenced by body composition, 

thus in overweight people equations of REE may not give a true estimate. Although the 

Mifflin-Jeor equation appears to predict REE better than other equations in obese subjects 

(Frankenfield et al. 2003; Dobratz et al. 2007; Weijz et al. 2008 and 2010; de Oliviera et al. 

2012), values may deviate > 10% in as much as 30% of obese (Madden 2014).  Other than 

REE, the variation of physical activity may also influence and impact on TEE. TEE may be 

estimated by multiplying the REE with the physical activity level (PAL) which itself may be 

determined from population reference data (SACN 2011) or by individual assessment. The 

UK reference for PAL in adults is 1.63 (SACN 2011), assuming >60% of the population are 

overweight or obese and who participate in typical activity levels.    
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Henry Equation 

Males 

Age 18-30: REE (kcal/d) = 16.0W + 545  

Age 30–60: REE (kcal/d) = 14.2W + 593 

Where REE is in kcal/day and W denotes weight in kg 

Estimated TEE = REE estimated using the Henry Equation X PAL (1.63)  

5.3.4 Dietary plan 

24 healthy but overweight/obese (BMI 26-37 kg/m
2
) males aged 18-55 initially went on a 7 

day isoenergetic diet matched to the individual’s predicted TEE calculated using the Henry 

Equation (Henry 2005) and PAL questionnaire. They were then randomized to two groups, 

each of which received a high energy (+25% energy excess) diet with either high fat (HF - 

48-50% fat, 37% carbohydrate CHO, 13%-15% protein) or high-carbohydrate (HC - 24-26%-

28% fat, 59%-61% CHO and 13-15% protein) for  2 weeks before returning for the second 

experimental protocol visit. The HC group received extra carbohydrate in the form of a 

maltodextrin drink daily such that they were supplemented with an extra 25% excess energy 

daily. Similarly the HF group received 25% excess calories in the form of double cream that 

could be ingested with their desserts in the evening. Participants were also requested to 

complete a 3 day diet diary to determine actual total energy consumed per day and patterns of 

food consumption. This was done using “Microdiet” (Downlee Systems Ltd), a nutrient 

analysis software programme designed to analyse and calculate nutrient totals and 

contribution to meals designed for the study. An example of the contribution of energy from 

the nutrients for a calculated TEE as calculated using “Microdiet” can be found in the 

appendices section. 
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5.3.5 Example menu (See appendices) 

Menus were developed for each day for the 3 weeks with input by a dietitian. Breakfast 

consisted of cereals that were weighed (50 grams) at the physiology lab and provided to 

participants prior to the start of each week of the study. Skimmed milk powder (weight pre-

determined to balance protein contribution) was also measured and distributed to volunteers 

prior to the study. The rest of the food on the menu was delivered by a commercial 

supermarket one or two days prior to the start of the week of feeding.   

5.3.6 Measurable endpoints/statistical power of the study 

The primary endpoint of the study was liver fat content. Hepatic and peripheral insulin 

sensitivity (through deuterated glucose and glucose disposal during clamps respectively) was 

also examined. The repeated measures coefficient of variation for the insulin clamp technique 

is 10%. Based on isoenergetic high-fat feeding studies it was predicted that there would be a 

greater than 20% difference in glucose disposal from the high fat versus high carbohydrate 

diet. 8-10 participants would give an 80% chance of detecting a difference in insulin 

resistance equivalent of 1 standard deviation for that variable at p value <0.05. 12 participants 

for each group (HCHF or HCHC) were therefore recruited to allow for dropouts of 2-4 

participants per group. 

5.4 Results 

5.4.1 Participant demographics 

A total of 24 male White Europeans were recruited to the study, and randomised to either the 

high-fat (HF) or high carbohydrate (HC)-fed groups (12 per group). One subject from the 

high fat group did not complete his second hyperinsulinaemic euglycaemic clamp visit, 

therefore evaluations of peripheral insulin sensitivity and other metabolic data after the 2 
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week intervention period were performed on 11 participants in the HF group and 12 in the 

HC group. 
1
H MRS and MRI abdomen was only performed in 22 participants, 12 from the 

HF group, and 10 from the HC group. The 2 participants from the HC group were excluded 

due to contraindications to MRI (See Appendices section).   

All participants were overweight or obese with a mean body mass index of 30.6 ± 0.6 kg/m
2
 

ranging from 26.2 to 37.3 kg/m
2
. Percentage body fat as calculated using skin-fold thickness 

and the SIRI formula averaged 33.7%, ranging 22.9-42.0%. The participants were well-

matched in all parameters (see Table 5.1) bar skinfold thickness of biceps, and mean 

estimated TEE was 3200 kcal/day.    

5.4.2. Baseline Anthropometrics 

Table 5.1. Participant anthropometrics 

 Total (n=23) High Fat 

(n=11) 

High 

Carbohydrate 

(n=12) 

P value 

Age (years) 40.6 ± 1.6 39.1 ± 2.1 42.3 ± 2.4 0.34 

Weight (kg) 98.9 ± 2.0 100.2 ± 3.0 97.2 ± 2.6 0.51 

BMI (kg/m
2
) 30.6 ± 0.6 30.7 ± 0.9 30.1 ± 0.9 0.88 

Hip circumference (cm) 105.8 ±1.0 106.1 ± 1.5 105.4 ± 1.5 0.78 

Waist circumference (cm) 105.8 ± 1.4 105.5 ± 2.2 105.9 ± 1.8 0.79 

Waist > 102cm (n 

participants) 

16/23 8/11 8/12 0.70 
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Waist to hip ratio 0.99±0.01 0.99±0.01 1.00±0.01 0.45 

Fat (kg) 24 ± 1.2 25.0 ± 2.0 22.7 ± 1.4 0.37 

Lean (kg) 74.7 ± 1.4 74.8 ± 1.8 74.5 ± 2.3 0.93 

Biceps (mm) 8.5 ± 0.6 9.9 ± 0.8 6.9 ± 0.5 <0.01 

Triceps skinfold 

thickness(mm) 

17.3 ± 1.6 18.0 ± 2.2 16.5 ± 2.5 0.66 

Subscapular skinfold 

thickness(mm) 

26.5 ± 3.1 30.4 ± 5.3 21.7 ± 2.2 0.18 

Iliac crest skinfold 

thickness(mm) 

15.5 ± 1.0 16.3 ± 1.5 14.5 ± 1.1 0.37 

Abdominal skinfold 

thickness (mm) 

36.4 ± 1.4 37.5 ± 2.2 35.1 ± 1.8 0.43 

Bio-Impedance Analysis 

(BIA) 

 (% Fat) 

 

33.7 36.2 31.1 0.08 
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5.4.3 Baseline MRI of abdomen 

Table 5.2. Visceral and subcutaneous abdominal tissue 

 Total (n=22) High fat (n=12) High carbohydrate 

(n=10) 

P value 

Visceral 

abdominal tissue 

(VAT) volume (ml) 

1080.4±130 949.9 ±149.8 1223.9±115.1 0.17 

Abdominal volume 

(ml) 

7171.9±262.8 6998.7±273.1 7362.4±292.1 0.37 

Subcutaneous 

abdominal tissue 

(SAT) (ml) 

2759.3±154.7 2745.6±238.1 2775.7±199.1 0.95 

Ratio 

(VAT/Abdominal 

volume) 

0.15±0.01 0.13±0.02 0.16±0.01 0.15 

Ratio (VAT) / 

(SAT) 

0.28±0.02 0.25±0.03 0.30±0.02 0.24 
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5.4.4 Intrahepatic-cellular lipid (IHCL) 

 

Figure 5.2: Percentage liver fat fraction at 0 weeks and following overfeeding 25% excess 

energy of diets high in carbohydrate (n=10 subjects) and fat (n=11 subjects) at 2 weeks. 

*P<0.05 from 0 weeks. 
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Figure 5.3: Absolute liver fat fractions (%) in the high fat (n=11) and high carbohydrate 

groups (n=10) at 0 weeks and following 2 weeks of 25% excess energy of either high fat of 

high carbohydrate. *P < 0.05 from 0 weeks. 

Of the 21 participants who had MRI scan of their liver, 7/21 had fatty liver (defined as >5.6% 

liver fat content (Szczepaniak et al. 2005) (4 from HF, 3 from HC) at baseline. No difference 

in liver fat was seen in both groups following the 7 days of isoenergetic diet. Following 2 

weeks of excess energy feeding, 12/25 had fatty liver (6 participants from each group, 7 with 

pre-existing fatty liver) and there was an overall 34% increase in liver fat fraction in the 

whole group from 6.4 ±1.5 to 8.6 ± 1.6% (P<0.05). There was no difference in baseline liver 

fat fractions between the high fat vs. high carbohydrate groups (6.1±2.1 vs.7.4 ± 2.4%). After 

2 weeks, liver fat fractions increased to 7.8±1.8% and 11.0±2.7% in the high fat and high 

carbohydrate groups respectively. There was a significant increase of 49% in liver fat fraction 

at 2 weeks in the high carbohydrate group (+3.5±1.5%; P<0.05) compared to the high fat 
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group (+1.7 ± 0.8%). No difference in changes between the high fat and carbohydrate groups 

were seen (P=0.3). 

5.4.5 Hepatic insulin sensitivity 

5.4.5.1 Fasted and post-prandial hepatic glucose production 

Table 4.3 Hepatic glucose production (mg/kg/min) fasted and steady state of 

hyperinsulinaemic (30mu/m
2
/min) euglycaemic clamp at 0 weeks and after 2 weeks of high 

fat or high carbohydrate overfeeding. 

  Whole group 

n=18 

High Fat 

n=10 

High 

carbohydrate 

n=8 

P value 

Difference 

between 

groups  

Baseline 

mg/kg/min 

Fasted  2.27±0.14 2.22±0.18 2.35±0.19  

0.4 Steady state 

insulin 

1.02±0.24 0.83±0.15 1.25±0.51 

2 weeks 

mg/kg/min 

Fasted 2.18±0.08 2.26±0.38 2.08±0.10 0.5 

Steady state 

insulin 

0.96±0.21 0.73±0.33 1.25±0.22 

 

Rates of fasting hepatic glucose production remained unaltered in the whole group after 2 

weeks of overfeeding 25% excess energy. There was no difference in fasted rates between the 

fat and carbohydrate overfeeding groups after 2 weeks (Table 4.3). In the whole group, 

hepatic glucose production was suppressed by 55% and 56% by the end of the clamp at 

baseline and following 2 weeks of overfeeding respectively. There was no difference in 
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hepatic glucose production suppression rates at baseline and after 2 weeks of fat overfeeding 

(62% vs. 68%), whereas hepatic glucose production was suppressed by 47% and 40% at 

baseline and after 2 weeks of carbohydrate feeding.  

5.4.6 Baseline insulin sensitivity 

Table 5.4: Baseline measurement of insulin sensitivity  

 Total 

n=22 

High Fat 

n=10 

High 

Carbohydrate 

n=12 

Difference 

between 

groups 

GDR (µmol/kg 

mass/min) 

25.0±1.7 26.1±2.7 24.2±2.3 0.6 

Fasting Glucose 

(mmol/L) 

4.4±0.1 4.6±0.1 4.2±0.1 0.01 

Fasting Insulin  

(mU/L) 

11.7±1.2 11.6±1.5 11.8±1.8 0.9 

HOMA-IR 2.1±0.2 2.2±0.4 2.1±0.2 0.3 

C-peptide 

(ng/mL) 

0.83±0.09 0.82±0.12 0.84±0.14 0.9 

Insulin/C-peptide 

ratio 

0.0021±0.0002 0.002±0.0003 0.002±0.0002 0.39 

Glucagon 

(pg/ml) 

112.6±6.2 105.1±9.0 119.5±7.9 0.25 
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5.4.7 Baseline lipid, liver and inflammatory markers 

Table 5.5: Baseline lipid, liver and inflammatory markers 

 Total 

n=21 

High fat 

n=10 

High 

carbohydrate 

n=11 

Difference 

between groups 

FFA (mmol/L) 0.50±0.03 0.46±0.05 0.53±0.05 0.27 

Cholesterol (mmol/L) 5.0±0.2 5.1±0.3 5.0±0.3 0.8 

HDL(mmol/L) 1.01±0.04 1.01±0.04 1.01±0.05 1.0 

LDL(mmol/L) 3.39±0.21 3.46±0.29 3.32±0.28 0.74 

Apolipoprotein A1 (g/L) 1.11±0.03 1.09±0.04 1.14±0.06 0.7 

Apolipoprotein B (g/L) 1.02±0.06 0.96±0.09 1.05±0.07 0.8 

AST (U/L) 24.3±1.7 21.6±1.5 26.8±2.6 0.1 

ALT (U/L) 15.6±1.9 14.2±2.2 16.9±2.9 0.47 

TAG (mmol/L) 1.37±0.11 1.26±0.15 1.47±0.16 0.34 

CRP (mg/L) 2.28±0.69 2.27±0.9 2.29±0.93 0.99 

IL-6 (pg/mL) 4.9±1.7 6.6±3.1 3.3±1.4 0.3 

Lactate (mmol/L) 1.1±0.1 0.9±0.1 1.2±0.1 0.22 

TNF-α (pg/mL) 6.6±2.4 8.6 ±4.3 4.7±2.3 0.4 
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5.4.8 Effect of high fat or carbohydrate overfeeding after 2 weeks 

Table 5.6: Insulin sensitivity and lipid, liver and inflammatory markers at baseline and after 2 weeks of high fat and high carbohydrate 

diets. (Where specifically indicated, total n=22, high fat n=10 and high carbohydrate n=12). *P<0.05; **P<0.01; ^P= 0.07; 
†
P=0.09 

compared to week 0. 

 Total 

n=22 

High Fat 

n=10 

High Carbohydrate 

n=12 

Differential 

effects 

P value 

 0 weeks 2 weeks 0 weeks 2 weeks 0 weeks 2 weeks  

GDR µmol/kg mass/min)  25.0±1.7 23.7±1.9 26.1±2.7 24.5±2.3 24.2±3.0 23.1±2.9 0.59 

M Value (mg/kg 

mass/min)  

4.51±0.31 4.44±0.37 4.70±0.48 4.89±0.51 4.35±0.40 4.08±0.52 0.38 

Fasting Glucose 

(mmol/L) 

4.4±0.1 4.5±0.1 4.6±0.1 4.5±0.1 4.2±0.1 4.5±0.1 0.04 
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Fasting Insulin (mU/L) 10.2±0.9 10.5±1.1 10.4±1.7 10.8±2.4 10.0±0.8 10.2±0.5 0.85 

HOMA-IR  2.0±0.2 2.1±0.2 2.2±0.4 2.2±0.5 1.9±0.2 2.0±0.1 0.49 

C-peptide (ng/ml) 0.83±0.09 0.83±0.11 0.82±0.13 0.84±0.16 0.84±0.14 0.82±0.17 0.78 

Insulin/C-peptide ratio 0.002±0.0002 0.002±0.0003 0.002±0.0003 0.002±0.0005 0.002±0.0002 0.002±0.0002 0.31 

Glucagon (pg/ml)n=21 114.3±5.9 108.9±6.4 105.1±9.4 110.5±14.1 119.5±7.9 114.5±9.4 0.48 

FFA (mmol/L) 0.50±0.03 0.44±0.03 0.46±0.05 0.45±0.03 0.53±0.05 0.43±0.05^ 0.65 

Leptin (ng/mL) 9.9±1.0 11.5±1.7* 9.1±1.1 10.0±1.1 10.6±1.6 12.8±2.1^ 0.49 

Cholesterol  (mmol/L) 5.0±0.2 5.1±0.2 5.0±0.3 5.2±0.3 5.0±0.3 5.1±0.3 0.8 

HDL (mmol/L) 1.01±0.03 1.01±0.05 1.02±0.04 1.09±0.07 1.01±0.05 0.96±0.05 0.3 

LDL (mmol/L) 3.3±0.2 3.5±0.2 3.3±0.3 3.5±0.3 3.3±0.3 3.5±0.3 0.5 

Apolipoprotein A1 (g/L) 1.10±0.03 1.18±0.02** 1.09±0.04 1.22±0.03* 1.14±0.06 1.17±0.04** 0.79 
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Apolipoprotein B(g/L) 1.01±0.06 1.08±0.05** 1.00±0.09 1.10±0.09* 1.03±0.07 1.07±0.06** 0.98 

AST (U/L) 24.3±1.7 26.7±2.4 21.6±1.5 22.5±1.7 26.8±2.6 30.5±3.9 0.2 

ALT (U/L) 15.6±1.9 17.7±1.5 14.2±2.2 15.7±2.2 16.9±2.9 19.5±2.0 0.3 

TAG (mmol/L) 1.37±0.11 1.72±0.16* 1.23±0.15 1.47±0.16 1.47±0.16 1.95±0.25* 0.49 

CRP (mg/L) 2.3±0.7 1.9±0.4 2.3±0.9 1.6±0.4 2.1±0.9 2.0±0.7 0.91 

IL-6 (pg/mL) 4.6±1.5 4.7±1.2 6.6±3.1 6.8±2.3 3.1±1.3 3.0±0.9 0.9 

Lactate (mmol/L) 1.07±0.07 1.22±0.09* 0.98±0.10 1.05±0.08 1.15±0.09 1.37±0.13
†
 0.08 

TNF-α (pg/mL) 6.6±2.4 7.3±2.5^ 8.6±4.3 9.4±4.5 4.4±2.2 5.0±2.4
†
 0.38 

Uric acid 350.5±14.6 348.1±14.1 331.5±21.4 333.3±15.9 369.5±21.4 362.8±25.0 0.24 

β-OH butyrate n=21 0.18±0.02 0.17±0.02 0.15±0.03 0.18±0.02 0.21±0.03 0.17±0.04 0.38 
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Markers of insulin sensitivity in the high carbohydrate and high fat-fed groups at baseline 

were matched apart from fasting glucose. There were no changes in fasting plasma glucose, 

serum insulin, glucagon, glucose disposal rates, HOMA-IR or adipose tissue-IR following 2 

weeks of energy excess. There were also no differential effects between dietary groups at 2 

weeks. 

5.4.9 Lipid, liver and inflammatory markers 

Lipid profile, liver function and inflammatory markers were well-matched between the two 

groups at baseline. Fasting TAG increased in the whole group following 2 weeks of excess 

energy intake. This was particularly noted in the carbohydrate-fed group where TAG 

increased by 23% from week 0. Fasting liver enzymes (AST, ALT), total, high density 

lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol did not change following 2 

weeks of excess energy in the HF and HC diets.  After 2 weeks of energy excess, there were 

increases in Apolipoproteins A (Apo A) and B1 (Apo B1) in the whole group, but this was 

only significant in the HF group. Fasting serum leptin increased following 2 weeks of excess 

overfeeding and a trend was seen (P=0.07) after consumption of a high carbohydrate diet. 

Plasma lactate and TNF-α increased in the group as a whole after 2 weeks of excess energy, 

with a trend of an increase seen with both (P=0.09) in the high carbohydrate fed group. No 

difference was seen with the systemic inflammatory markers CRP and IL-6, uric acid and 

beta-hydroxybutyrate across the groups.  
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5.4.10    Plasma measurements during the hyperinsulinaemic euglycaemic clamp  

5.4.10.1 Insulin 

 

 

Figure 5.4: Serum insulin before and during the hyperinsulinaemic (30mu/m
2
/min) 

euglycaemic clamp 

In the first 2 hours of the study (pre-insulin), fasting serum insulin averaged 11.8mU/L. 

During the hyperinsulinaemic euglycaemic clamp, serum insulin rose to and plateaued at 

59mU/L for the following 2.5 hours.  
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5.4.10.2 Free fatty acids  

 

Figure 5.5: Serum FFA before and during the hyperinsulinaemic (30mu/m
2
/min) 

euglycaemic clamp 

 

During the 2 hours pre-insulin, whole group fasting FFA concentrations averaged 0.50 ± 0.03 

mmol L
-1

 at baseline with no difference after 2 weeks of overfeeding at 0.44±0.03 mmol L
-1

. 

Post-insulin, FFA levels were suppressed at 0.06±0.01 and 0.07±0.01mmolL
-1

 at baseline and 

after 2 weeks respectively. There were no differential effects of carbohydrate and fat 

overfeeding on FFA levels.    
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5.4.11 Indirect Calorimetry 

Table 5.7: Indirect calorimetry fasted and at steady-state insulin at 0 weeks and after 2 weeks of high carbohydrate or fat. 

Data from only 7 and 11 participants from the high fat and high carbohydrate groups respectively were obtained due to technical/incomplete data 

retrieval. *P<0.05 different from fasting values, week 0 

 High Fat n=7 High Carbohydrate n=11 

 Week 0 

(Fasting) 

Week 0 

Post-clamp 

Week 2 

Fasting 

Week 2 

Post-

clamp 

Week 0 

Fasting 

Week 0 

Post-clamp 

Week 2 

Fasting 

Week 2 

Post-clamp 

Cox (J/kg/min) 6.6 ± 1.1 17.6±4.4* 8.4± 2.4 14.3±2.9 7.2±2.1 12.0±4.2 10.1±4.1 18.6±2.8 

Fox(J/kg/min) 62.6 ± 3.2 52±5.7 58.8±3.3 50.9±2.7 54.5±2.8 49.3±3.6 52.1±4.6 43.6±2.3 

EE(J/kg/min) 69.2 ± 2.9 68.8±2.5 66.6±1.8 64.6±1.7 61.8±1.3 62.3± 1.7 61.3±1.6 62.1±0.9 

RER 0.73±0.01 0.78±0.02 0.77±0.02 0.78±0.02 0.74±0.01 0.76±0.02 0.75±0.02 0.78±0.01 
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Carbohydrate oxidation at rest increased post-insulin in the high fat group at 2 weeks. No 

significant changes in carbohydrate or fat oxidation, EE and RER were seen after 2 weeks of 

either fat or carbohydrate overfeeding.  

5.4.12 Intramyocellular and extramyocellular lipid content 

 

Figure 5.7: Intramyocellular (IMCL) and extramyocellular lipid (EMCL) fractions using 

magnetic resonance spectroscopy at 0 weeks and after 2 weeks of fat and carbohydrate 

(CHO) overfeeding. 
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5.4.12.1 Intramyocellular Lipid (IMCL) 

IMCL did not change from baseline after 2 weeks of fat or carbohydrate overfeeding, nor 

were there differences between the dietary groups. 

5.4.12.2 Extra-myocellular lipid (EMCL) 

There were no significant changes in EMCL with either diet (Figure 5.7). 

5.4.13 Intervention outcomes 

5.4.13.1 Tolerability/Side-effects 

There were no study participant drop-outs. The reasons for incomplete study visits are 

outlined below (Table 5.8). 

No major side-effects from consuming the meals during the overfeeding period were reported 

by participants. Minor side-effects reported included headache (likely secondary to caffeine 

or fluid restriction in one participant in the HC group), nausea and vomiting 2 hours after 

completing the hyperinsulinaemic clamp visit (may be secondary to increased food intake 

post-clamp), constipation (subject in HC group possibly secondary to changes in dietary 

intake), bloating and fullness (subject in HC group secondary to increased intake in addition 

to carbohydrate drink). These effects were self-limiting and did not last beyond the period of 

overfeeding. No major complications from the cannulation, blood-taking or scanning were 

reported; any concerns were brought up by participants and communicated to the study 

investigator and resolved completely.  
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Table 5.8: Participants excluded from MRI/MRS liver and muscle 

Subject ID Group Reason 

10 High fat Did not complete second visit of insulin 

clamp as problems with cannulation and 

subject was not keen to proceed further 

8 High carbohydrate Did not have MRI /MRS as deemed 

unsafe to have magnetic imaging given 

participant’s job working with steel and 

risk of exposure of metal fragments in 

eyes 

23 High carbohydrate Did not have MRI/MRS because of a 

metallic implant in subjects’ spine-this 

would have interfered with MR signalling 

and data interpretation over abdominal 

area. 
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5.5 Discussion 

5.5.1 Effects of overfeeding on liver fat content  

2 weeks of high energy feeding increased percentage liver fat content from baseline in the 

group as a whole, but no difference in liver fat content between HF and HC groups were 

seen. There was an increase in liver fat by 3.52 ± 1.45% from baseline in the HC-fed group. 

This is consistent with several studies (Ngo Sock et al. 2010, Sobrecases 2010, van Herpen et 

al. 2011, Sevastianova et al. 2013, Westerbacka 2005) but contradicts others (Le et al. 2006, 

Silbernagel et al. 2011). The studies involving carbohydrate feeding and which did not 

observe increased liver fat content were conducted in lean people (Le et al. 2006 and 

Silbernagel et al. 2011). In the present study, overweight or obese males were recruited as 

they are likely to have an initial degree of liver fat and insulin resistance compared to healthy 

lean participants. They are therefore likely to have a greater predisposition to metabolic 

perturbations from dietary change, compared to leaner people.     

5.5.2 Effect of hyperenergetic high carbohydrate and high fat diets on hepatic glucose 

production 

Although overfeeding with 25% excess energy increased liver fat content it did not affect 

hepatic insulin sensitivity or insulin suppression on hepatic glucose production over a 2 week 

period. However the scatter of hepatic glucose production data (standard deviation) is notable 

so the possibility of a type 2 statistical error should be considered.      

5.5.3 Effects of hyperenergetic high carbohydrate and high fat diets on insulin 

sensitivity 

2 weeks of excess energy of either carbohydrate or fat did not result in changes to whole-

body insulin sensitivity as measured by the hyperinsulinaemic–euglycaemic clamp. This may 
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be the result of several factors.  It may be that there is indeed no influence of either diet on 

insulin sensitivity. In a recent study involving overweight participants over a 12 week period 

of consuming a high energy high fructose diet, there was a trend for decreased hepatic insulin 

sensitivity, increased fasting glucose and insulin; however this did not result in whole-body 

insulin resistance (Tappy et al 2015). Stanhope et al (2009) however showed changes in 

hepatic insulin sensitivity and liver fat content following a similar period of fructose 

overfeeding. Changes in whole-body insulin sensitivity may not be appreciable until 

participants gained significant weight. In this study neither weight gain nor a significant 

increase in RER were seen using indirect calorimetry. A recent study (Boden et al. 2015) 

involved overfeeding healthy males with a 6000 kcal/day typical Western diet (50% CHO, 

35% fat and 15% protein) for 1 week. Participants gained weight (+3.5kg), had raised insulin 

levels and developed insulin resistance (increased HOMA-IR). It may also be that early 

changes at a cellular level that alter insulin signalling may occur before manifesting as whole 

body insulin sensitivity, as seen in the study by Adochio et al. 2009. This was not assessed in 

the present study but calls for further investigation in future studies.  It has also been 

suggested that there may be differences in how individuals respond to overnutrition based on 

their baseline insulin sensitivity (Adochio et al. 2009). In that study there was significant 

heterogeneity in baseline measures of insulin sensitivity (M-value: 7.68 to 17.71 mg/kg 

FFM/min).       

5.5.4 Effects of hyperenergetic high carbohydrate and high fat diets on FFA, lipids and 

liver enzymes 

The accumulation of fat in the liver is recognised as a major contributor to metabolic disease 

(Marchesini et al. 2001). It has been postulated that when fatty acids exceed the liver’s 

capacity to secrete or oxidise excess fat, these are stored as triglycerides. Net retention of 

triglycerides is the pre-requisite for development of NAFLD (Yki-Jarvinen, 2013). At 
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baseline, triglycerides, liver enzymes, cholesterol, HDL, LDL, Apolipoprotein A1 (HDL) and 

B (non-HDL) did not differ between the two groups. Subsequently following 2 weeks of 25% 

excess energy, triacylglyceride levels increased by 24% overall, with a greater effect seen in 

the high-carbohydrate fed group.  Apolipoprotein A1 and B increased in the group after 2 

weeks of overfeeding with significance in the high-fat group but without concomitant rise in 

total cholesterol, HDL or LDL. Contrary to Stanhope’s study (Stanhope et al. 2011), fasting 

Apolipoproteins A1 and B were increased to a greater degree (p<0.01) following 2 weeks of 

overfeeding in the high fat-fed participants.  High triglyceride levels are commonly seen in 

consumption of high-carbohydrate diets, from fatty acids generated from DNL that drive 

hepatic triglyceride overproduction (Nestel et al. 1998, Boberg et al. 1972). Similar effects 

are seen in other studies of high carbohydrate, low fat studies (Parks et al. 1999, Purkins 

2004). Parks utilised a whole-food, high-fibre diet as opposed to others using liquid forms of 

high carbohydrate or diets high in mono or disaccharides. This study used carbohydrates in 

the form of maltodextrin (a form of soluble polysaccharide produced from starch through 

partial hydrolysis), which has been used successfully as a carbohydrate supplement in other 

human studies (Teunissen–Beekman et al. 2013, Detko 2013).  Schwartz et al. 2013 showed 

that consumption of a high-fat, low-carbohydrate diet for 5 days did not affect plasma TAG 

concentrations, however after 5 days of low-fat, high-carbohydrate diet there was a 

significant 1.5-fold increase in plasma TAG concentrations.  The major mechanism proposed 

for raised TAG as a result of high-carbohydrate feeding observed from Parks’s study was 

reduced clearance of VLDL-TAG from plasma as opposed to increased secretion as 

determined from plasma palmitate kinetics. It would also appear that the type of carbohydrate 

(simple vs complex) influences fatty acid synthesis, production and clearance rate. Simple 

sugars are more effective than complex carbohydrate in stimulating DNL (Hudgins et 

al.1996).  Barter and Nestel 1973 showed that the majority of VLDL-fatty acids were not 
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derived from NEFA in obese individuals but that elevated BMI correlates with lower 

contributions of plasma NEFA to VLDL-lipid. Many studies have established previously that 

high-carbohydrate diets increase TAG concentrations (Nagle et al. 2009). In addition to 

confirming these findings, data from this study, as well as those of others (Schwarz et al. 

2003, Nagle et al. 2009), support the hypothesis that hepatic DNL contributes to this process. 

When normoinsulinaemic and hyperinsulinaemic participants consume a low-fat, high-

carbohydrate diet with more than half of the carbohydrate in the form of simple sugars, in 

particular fructose, hepatic DNL, plasma and liver TAG concentrations are increased. The 

underlying mechanisms for increased TAG following high carbohydrate intake include 

overproduction or reduced clearance of TAG from plasma (Parks et al. 1999). Previous 

studies have shown that carbohydrate rather than energy cause the significant increase in 

triglycerides. In concert with other studies (Purkins et al. 2004) there was no effect on 

cholesterol levels, and may be because the diets were not maintained for an adequate period 

of time.  

Contrary to studies exhibiting significant effects of diets on liver enzymes, this study 

did not show an effect of the high fat nor high carbohydrate diets on the transaminases AST 

and ALT. Purkins et al. 2004 showed that 9 days of high energy (doubling of energy 

requirements) high carbohydrate diet caused marked increases in transaminases compared to 

isoenergetic high fat diet. A clear relationship to the number of days on the diet was also 

seen, demonstrating the importance of the carbohydrate component rather than high energy 

content as a major determinant on liver enzymes. Porkos and Van Itallie (1983) showed that 

it was the surplus of energy and high sucrose which contributed to the rise in transaminases. 

However the difference between these studies and the present study is the increased amounts 

of surplus energy provided in previous studies fed more than a week, and reflects the greater 

effect of increased energy and weight gain on liver enzymes.  
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No difference in the contribution of fatty acids to liver and VLDL-TG from differing sources 

such as systemic NEFA, DNL, or diet was found in the study by Donnelly et al. 2005. 

However incorporation of 
13

C tracer from the test meal into liver showed (through MRS) that 

this occurred more rapidly and to a greater extent in diet-controlled T2DM compared with 

age and BMI-matched controls. This may be that the rapid fluxes of fat into and out of liver 

protects the body from excessive plasma TAG fluxes in the immediate post-prandial period. 

Another possible explanation is that the buffering capacity of adipose tissue in insulin 

resistance is impaired leading to overspill into liver and accumulation of TAG. Previous 

studies have either shown an increase (Stanhope et al 2009), no increase (isocaloric diet of 

high fructose) or normal levels of triglycerides in normal weight and obese individuals. In 

Bravo’s study (2013), change in triglyceride levels correlated with a change in weight, BMI 

and fat mass, with no correlation to change in total energy intake or sugar intake or an effect 

on liver and muscle fat.   

5.5.5 Effect of hyperenergetic HF and HC intake on inflammatory markers and 

adipokines 

Low-grade inflammation is frequently observed in obese adults, which has been proposed as 

a potential cause of increased risk for T2DM and cardiovascular disease (Emanuela 2012). 

The present study showed that excess energy consumption increased TNF-α in the whole 

group. There was also a tendency for TNF-α to increase after carbohydrate overfeeding 

compared to the high fat-fed group. No effect of the diets on IL-6 or CRP was seen amongst 

groups. Several studies of carbohydrate and glucose loading have shown an effect on 

increasing inflammatory markers (Kasim-Karakas 2006). Intravenous glucose administration 

increased concentrations of inflammatory markers IL-6 and TNF-α (Esposito et al. 2002). 

Direct correlations between carbohydrate overfeeding and IL-6 and CRP were seen and 

attributed to increased oxidative stress, triacylglycerol production in the liver causing hepatic 
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steatosis (Solga et al. 2004; Kerner et al. 2005). The CRP and IL-6 production in this study 

did not change contrary to the studies above. The adipokine leptin, produced by adipose 

tissue is a mediator of energy balance and is elevated in the obese (Klok et al. 2007).  Leptin 

concentrations in both high-fat and carbohydrate-fed groups in this study increased after 2 

weeks of energy excess as expected. 2-8 weeks overfeeding increased adipocyte leptin 

expression and circulating leptin in healthy human subjects (Kolaczynski et al. 1996, Levine 

et al. 1999).  A trend for increased levels was seen in the high-carbohydrate group. However 

this did not correspond to an increase in energy expenditure. High-fat meals are shown to 

lower 24-hour circulating leptin levels relative to high-carbohydrate meals (Havel 1999).    

5.5.6 Effects of overfeeding on IMCL  

IMCL is an early marker for the development of insulin resistance (Schrauwen-Hinderling, 

Hesselink et al. 2006). An increased IMCL content is the result of either increased circulating 

fatty acid delivery or reduced oxidation, possibly mediated through intermediary metabolites 

of triglycerides (Machann, Haring et al. 2004). This study, consistent with several other 

overfeeding studies has failed to show muscle fat accumulation. This appears to occur in 

studies of less than 10 weeks duration. Maersk et al. (2012) showed that liver fat and muscle 

fat accumulation increased over 6 months and it may well be that intramuscular fat 

accumulates long after liver fat accumulation. In concert with the absence of changes seen in 

intra-abdominal and subcutaneous fat mass seen in Westerbacka’s  study  (2005) and this 

present study suggest that the liver may be the first organ to store excess fatty acids.  

5.5.7 Effects of overfeeding on EMCL 

The extra-myocellular lipid (EMCL) content was measured as part of the process of 

determining IMCL content. EMCL is ectopic lipid stored within adipocytes which are 

interspersed between muscle fibres and reflects total body adiposity (Machann, Haring et al. 
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2004). EMCL was unlikely to change as there were no changes in weight or adiposity in this 

study. 

5.5.8 Study limitations 

5.5.8.1 Participants and anthropometrics 

Participants divided into the two groups were well-matched at baseline apart from a 

difference in skinfold biceps thickness; this did not appear to influence overall percentage 

total body fat calculated using the Siri formula. Moreover, despite the tendency towards a 

difference in percentage body fat between both groups there was no evidence to suggest that 

this impacted on study outcomes as no difference was seen in metabolic measures at baseline.  

Although baseline measurements of anthropometric, metabolic, and insulin clamp were 

obtained from all 24 participants, data from the insulin clamp were only possible from 10 vs 

12 participants in the high fat and high carbohydrate groups after the 2 week intervention 

period, respectively. This was due to a subject not completing the post 2 week intervention 

insulin clamp, and another where there was a technical issue with the insulin pump and thus 

data from the clamp study were likely unreliable. 
1
H MRS of the liver and muscle were 

performed in a total of 22 participants, 12 in the HF group and 10 in the HC group. The 2 

participants from the HC group did not proceed for scanning as they had contraindications to 

MRI. Participants were recruited through mailshots sent locally and advertisements in the 

local newspaper.  Only White European males were recruited to exclude variations in liver fat 

content at baseline that may be associated with ethnicity and that may confound results. 

Browning et al. reported a significant difference in the incidence of hepatic steatosis 

depending on ethnic origin from the multi-ethnic Dallas population Heart Study (Browning et 

al. 2004). Furthermore there were differences in intra-abdominal fat accumulation, insulin 

resistance, and lipid metabolism (Guerrero et al. 2009). Another study showed that a high 
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energy high fat diet rapidly induced insulin resistance in healthy South Asians compared to 

White European men (Bakker et al. 2014). 

5.5.8.2 Study design 

Some issues of this study will need to be given cautious consideration prior to the 

interpretation of the data obtained. As with human nutritional studies, factors such as 

compliance, subject phenotype, total number of participants, environmental control and diets 

prescribed and when these are taken during the day may influence outcomes and data 

interpretation.  

The variability of baseline liver fat may have also affected overall liver fat accumulation and 

hepatic glucose production post-intervention, thus a greater number of participants should be 

considered in future studies to reduce the scatter. Compliance will also need to be considered 

as a major contributor particularly in the outpatient/community setting. Although participants 

were requested to note down any failure to consume the food provided, it is difficult to 

entirely control total dietary intake and changes in activity in the absence of a controlled 

environment.  Markers of overfeeding include weight gain, change in TAG levels and fasting 

carbohydrate oxidation rates. 25% excess energy in the form of either carbohydrate or fat 

after 2 weeks was expected to increase weight in participants. Contrary to expectations, this 

only occurred in half of the participants. 6 of 11 and 6 of 12 participants gained weight in the 

high-fat and high-carbohydrate groups respectively. However triacylglycerols increased after 

2 weeks of overfeeding in the whole group (16/24), more so in the HC group (9/12) 

indicating a degree of overfeeding success. However no changes in fasting carbohydrate and 

fat oxidation rates were seen at 2 weeks compared to baseline.   

The relatively small change in weight and individual variation in the deposition of fat during 

overfeeding may have contributed to the variation of weight after 2 weeks. Sims’ overfeeding 
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study showed large variations in weight gain amongst subjects despite being fed similar 

amounts of energy (Sims et al. 1978). Nonetheless, overall little or no weight gain was seen 

in this study and may have been a result of several factors. Underreporting of dietary intake, 

changes to activity levels, concerns with weight gain and even errors with weight 

measurement may have influenced the apparent lack of weight gain in this study’s subjects. 

The absence of changes seen in intra-abdominal and SC fat mass seen in Westerbacka’s study 

(2005) and this present study suggest that the liver may be the first organ to store excess fatty 

acids. Although this postulation cannot yet be substantiated by other studies as similar 

experiments are relatively scarce, this finding parallels that seen in animal studies. Rats fed a 

high fat diet had increased hepatic triglycerides that induced hepatic insulin resistance but not 

muscle insulin resistance. No changes in weight or SC fat were seen (Samuel et al. 2004).  

Carbohydrate and lipid oxidation rates, and FFAs remained unchanged after 2 weeks and 

these findings were also seen in studies of Westerbacka et al. 2005 and Bischop et al. 2001.   

Although most of the participants in this study had baseline IHCL values at >95
th

 percentile 

for the general population (>5.6%; Szczepaniak et al. 2005), data generated from this 

relatively small study with generally healthy but overweight males may not be truly 

representative of the disease pathology seen in the population at risk of NAFLD. The 

overfeeding period was relatively short considering a median follow up of 3 weeks for other 

high energy studies (see Chapter 1, Table 1.1) and thus may not have been long enough for 

an appreciable effect to be seen in liver or muscle. However based on current studies 

observed in literature, 2 weeks have, in the majority of cases, been found to produce effects 

on liver and muscle fat.  Assessing fatty liver via liver biopsies was also not utilised, however 

this method is invasive and poses a greater risk of complications and will not appeal to many 

subjects.  A liver biopsy is also primarily used in clinical practice for diagnostic purposes and 

is unable to measure liver fat content to the degree of detail as MRS can. Finally to eliminate 
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any possible effects of the isoenergetic diet on baseline liver fat and exclude subjects with 

low liver fat content, subjects should have undergone baseline MRI of their liver before the 

isoenergetic feeding period, however this was not feasible from a logistics point of view. 

Participants resting metabolic rate should also be ideally quantified using indirect calorimetry 

to estimate energy requirements when developing their diets. As with most nutrition and 

feeding studies total compliance with food intake and activity levels may not have been 

strictly controlled in free-living conditions. Ideally studies such as this should be undertaken 

under controlled laboratory environment; however this is not always feasible, requires 

intensive research staffing levels and deviates from studying individuals in their normal 

environment.     

5.6 Conclusion 

In conclusion, this study has shown that 25% excess energy intake over a 2-week period can 

increase liver fat content but there was no differential effect between the overfed 

carbohydrate and high fat groups. There was no effect on IMCL for both groups. The 

metabolic effects of moderate excess energy consumption per se are therefore greater than 

any differential effects of fat vs. carbohydrate overfeeding. Although liver fat increased from 

baseline in the high carbohydrate arm, 2 weeks of overfeeding did not affect hepatic or whole 

body insulin insensitivity. There was no significant liver fat accumulation following high-fat 

overfeeding. Future studies should investigate the effects of high fat vs. high carbohydrate on 

liver fat and skeletal muscle in people with pre-diabetes or impaired glucose tolerance (IGT), 

and examine further the underlying mechanisms of the association between macronutrients 

and insulin sensitivity.   
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Chapter 6: STUDY 4 

Investigating the effect of carnitine on fatty acid oxidation and insulin sensitivity in 

older healthy males. 

 

6.1 Introduction 

 

As alluded to in chapter 3, IMCL oxidation during exercise is impaired in older compared to 

young individuals, albeit these are overweight subjects. Therefore one of the underlying 

factors affecting insulin sensitivity in the elderly may be reduced fat oxidation capacity.  

Improving understanding in mechanisms involved in ageing, fatty acid oxidation, insulin 

resistance and strategies to improve insulin sensitivity in this age group is clearly warranted. 

Energy restriction and weight loss have been shown to reduce insulin and glucose 

concentrations (Wing, Blair et al. 1994) whereas increasing physical activity is clearly of 

benefit to reducing the risk of insulin resistance in ageing (Mayer-Davis, D'Agostino et al. 

1998; Castaneda, Layne et al. 2002). In particular exercise training studies involving older 

individuals appear to improve basal fat oxidation and mitochondrial content and function 

suggesting an increase in IMCL utilisation (Solomon, Sistrun et al. 2008). However many of 

these training sessions involve exercising at moderate to high intensities (>60% VO2 max) for 

many hours per week that may prove unrealistic for the majority of older individuals. 

Moreover, the benefits of energy restriction in older individuals will need to be weighed 

against quality of life concerns. For example, individuals subjected to long-term energy 

restriction encountered issues such as reduction in bone mineral density, muscle mass, and 

lethargy (Speakman and Hambly 2007). In later stages of life particularly in frail individuals 

with sarcopenia, energy restriction may even be counterproductive. 
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Taking all the above into consideration strategies to improve IMCL utilisation and thereby 

insulin sensitivity in older individuals whilst ensuring an attainable and realistic regimen are 

ideal.  

6.1.2 Rationale behind the hypothesis that carnitine improves insulin sensitivity 

Carnitine’s primary role in regulating fatty acid metabolism raises prospects that the 

availability of this quaternary ammonium compound in skeletal muscle could be manipulated 

to improve insulin sensitivity (Stephens et al. 2007).  

Carnitine (3-hydroxy-4-N-trimetyl-aminobutyric acid) has been found to play a central role in 

mitochondria specifically in fatty acid oxidation. Carnitine facilitates transport of long-chain 

fatty acids into mitochondria for subsequent beta-oxidation under the influence of the rate-

limiting carnitine-palmitoyltransferase 1 (CPT-1) reaction (Fritz et al. 1959). It is also 

involved in buffering excess acyl-coA by shuttling these (as acylcarnitines) and other 

shortened chained products out of the mitochondria formed during conditions of increased 

pyruvate dehydrogenase complex (PDC) flux such as high intensity exercise. As intracellular 

accumulation of acyl-coA derivatives have been implicated in the development of insulin 

resistance it is thought that carnitine supplementation might overcome this. A reduction in 

muscle lactate content following carnitine infusion and hyperinsulinaemia was associated 

with decreased pyruvate dehydrogenase activity and increase glycogen synthesis, suggesting 

a carnitine- mediated increase in fat oxidation (Stephens et al. 2006, Mingrone et al 1999). 

Indeed it has been shown that carnitine deficiency is associated with insulin resistance, 

diabetes (Tamamogullari et al. 1999), ageing and obesity (Noland et al. 2009).  Carnitine 

improved insulin-stimulated glucose disposal in mice with genetically and diet-induced 

diabetes (Power, Hulver et al. 2007). In human studies involving acute intravenous carnitine 

administration in combination with euglycaemic insulin clamp, whole body glucose disposal 
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improved in normal healthy participants (Mingrone 1999) and in individuals with T2DM 

(Capaldo et al. 1991, Mingrone 1999).  

When combined with a beverage containing large quantities of carbohydrate, oral carnitine 

supplementation in young healthy humans increased muscle total carnitine content and 

resulted in a significant switch from carbohydrate to fat oxidation, reduction in muscle 

glycogen utilisation and PDC inactivation during low intensity exercise. The increased fatty 

acid oxidation was thought to prevent accumulation of fat mass, enhance energy expenditure 

and exercise performance and upregulate expression of genes related to fat metabolism and 

insulin signalling (Wall et al. 2011, Stephens et al. 2013). The rationale behind ingesting oral 

carnitine and a carbohydrate supplement lies with several studies that have successfully 

demonstrated increment of total carnitine in plasma and muscle in subjects when serum 

insulin levels were elevated. Studies involving carnitine supplementation have shown a 

significant increment and maintenance in total muscle carnitine with carbohydrate 

supplement compared to those without (Wall et al. 2011, Stephens et al. 2013). The 

underlying mechanism could be explained by the premise that carnitine uptake is insulin-

mediated. Under conditions where insulin and carnitine levels are elevated, muscle OCTN2 

(skeletal muscle carnitine transporter protein) expression and sarcolemmal Na
+
/K

+
 ATPase 

pump activity are increased. Na-coupled carnitine transport is thus augmented by its action of 

stimulating intracellular Na flux (Stephens et al. 2006). 

Research outcomes thus far strongly suggest that carnitine supplementation can increase fat 

oxidation and it is further reasonable to speculate that carnitine can influence insulin 

sensitivity by promoting fat oxidation rates, prevent accumulation of intramuscular lipid and 

its intermediate metabolites from interfering with insulin signalling pathways.  
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Figure 6.1: Carnitine’s role in fatty acid metabolism. Carnitine transports long-chain acyl 

groups from fatty acids into the mitochondrial matrix by the rate-limiting Carnitine 

Palmitoyltransferase 1 (CPT1) located on the outer mitochondrial membrane. Acylcarnitine is 

shuttled inside by carnitine-acylcarnitine translocase (CACT), and then converted to acyl 

CoA by carnitine acyltransferase II (CPT II). Long chain acyl-CoA subsequently undergoes 

beta-oxidation before being fed into the TCA cycle. 

 

6.2 Aims of Study 

The aim of this study was to examine if muscle total carnitine content of older people could 

be increased over a 24-week period via ingestion of daily oral L- carnitine in combination 

with an insulinogenic beverage and twice weekly 1 hour light-intensity exercise. The study 

also aimed to determine the effects of increasing skeletal muscle carnitine content on body 

composition, substrate oxidation utilisation during rest and exercise and whole body glucose 

disposal in older healthy people. 
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It was hypothesised that skeletal muscle total carnitine (TC) is reduced in older compared to 

younger healthy men and that chronic L-carnitine in combination with light intensity exercise 

(as maximal fat oxidation rates are elicited at this intensity (Romijn et al. 1993) in older 

healthy male volunteers can increase skeletal muscle TC to a similar degree seen in studies 

involving carnitine supplementation to young volunteers. It was also postulated that 

increasing skeletal muscle carnitine content and improving fat metabolism during light-

intensity exercise in older people would improve insulin sensitivity in older people.  

Whilst previous studies of carnitine supplementation in young volunteers utilised beverages 

high in carbohydrate to augment the effects of carnitine, this study used a beverage lower in 

carbohydrate content but with additional protein to avoid the detrimental effects of high 

carbohydrate overfeeding in older participants whilst maintaining an insulin response.    

6.3 Methods 

6.3.1. Human participants and ethical approval: 

Fourteen healthy males (69.1±0.6 years, body mass 78.2 ±2.7kg) were recruited to the study. 

All participants underwent medical screening and blood testing and gave informed consent as 

described in the common methods section (Chapter 2).  

The incremental maximal oxygen consumption (VO2 max) test was performed to determine 

the workload or intensity participants were cycling equivalent to 50%VO2 max. Participants 

completed a health related quality of life (QoL) questionnaire (Short Form-36 SF36v2™),  

incremental shuttle walk test (ISWT) and experimental visits at the start and end of the study. 

Participants were then randomised in a double-blinded manner to two groups ingesting either 

4.5 grams of L-carnitine-L tartrate (Carnipure, Lonza) (CARN) or 4.5 grams placebo (CON) 

in combination with an insulinogenic beverage (44.4 g carbohydrate, 13.4 g protein; 220mls 
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Ensure Plus Milkshake, Abbott, Illinois, USA) daily and completed a supervised twice 

weekly one hour bout of low-intensity exercise at 50% VO2 max for a total of 24 weeks. 

6.3.2 Protocol  

 

6.3.2.1 Resting visit 

Participants arrived at the MRC/ARUK Centre for Musculoskeletal Ageing Research 

laboratory at 0800 after an overnight fast. A dual energy x-ray absorptiometry (DEXA) scan 

(Lunar Prodigy, GE Healthcare, US) was performed to assess body composition. They rested 

semi-supine on a bed while cannulae were inserted retrograde into a superficial vein on the 

back of the hand for arterialized blood sampling and forearm veins for insulin, glucose and 

2DG infusions. The hand was then placed in a hand-heated box throughout the experiment 

to allow for arterialised blood sampling (Gallen & Macdonald, 1990). A 3 hour 

hyperinsulinaemic euglycaemic clamp at 60 mU kg lean mass 
-1

 min
-1

 was carried out to 

assess insulin sensitivity. 2DG was infused at a rate of 6mg kg
-1

hr
-1

 at the same time. Blood 

glucose concentrations during the clamp were determined using an autoanalyser (Yellow 

Springs Instrument YSI, US). Indirect calorimetry was performed before and during steady 

state of the hyperinsulinaemic euglycaemic clamp (90 mins from start of clamp) using GEM 

(Gas Exchange Measurement, GEMNutrition Ltd, Cheshire, UK). Muscle biopsy samples 

using the technique described by Bergstrom were obtained from the vastus lateralis of each 

participant at rest before and immediately after the clamp to determine total muscle 

carnitine content.  

6.3.2.2 Exercise Visit 

At least a week after the resting study visit, participants reported to the laboratory and rested 

semi-supine on a bed while cannulae were inserted retrograde into a superficial hand vein 

for arterialised blood sampling and into a forearm vein for infusion of  [U-
13

C] palmitate, at 
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a concentration of 0.19mg kg
-1

 hr 
-1

for 2 hours. Breath samples were collected via one-way 

valve bags and introduced into breath tubes for subsequent 
13

CO2 enrichment analysis 

before the start of the infusion and every hour of the resting period. Plasma samples for 

palmitate tracer and FFAs were collected hourly during resting. At the end of the second 

hour, percutaneous biopsy from the vastus lateralis muscle was performed before 

participants went on to cycle on the ergometer at 50% VO2 max equivalent workload.  The 

[U-
13

C] palmitate infusion concentration was increased to 0.28 mg kg
-1
 hr

-1
 at the onset of 

exercise. Blood plasma for FFAs, palmitate tracer and breath samples for 
13

CO2 were 

obtained every 10 mins. During the last 10 mins of exercise, indirect calorimetry was 

determined Quark CPET system, Cosmed, Italy). A muscle biopsy of the vastus lateralis 

was taken at the end of the 1 hour exercise. 

Preparation of [U-
13

C] palmitate (99% enriched; Cambridge Isotope Laboratories, Andover, 

MA, USA) involved dissolving the palmitate in heated sterile water and passed through a 0.2 

μm filter into 4.5 % warmed (55°C) human serum albumin to obtain a palmitate to albumin 

ratio of approximately 3:1 (1.94:0.64 µmol l
-1

) . The solution was allowed to cool to room 

temperature. Prior to infusion, sodium [
13

C] bicarbonate at 0.06375mg kg
-1

 was injected as a 

bolus to prime the bicarbonate pool (Sidossis et al.1996). 
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Figure 6.2a: Schematic overview of protocol 

 

Figure 6.2b:  A –Resting visit involved 3 hr hyperinsulinaemic clamp and 2DG infusion, B-

Exercise visit involved a 3 hr palmitate tracer infusion and 1 hr cycling at 50% VO2 max. 
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6.3.3 Sample collection and analysis 

All DEXA scans were analysed by a single operator to avoid inter-operator variability. The 

scans were analysed for trunk, leg and arm composition using standardized regions 

conforming to specifications.  Blood samples were collected in tubes containing EDTA and 

centrifuged at 1000g at 4°C for 10 mins. Plasma aliquots were subsequently stored at -80
◦
C 

until analysis. Blood serum and plasma were collected at baseline and every 30 minutes 

during the clamp, allowed to clot and then centrifuged (1400 RCF at 4°C for 10 mins) for 

subsequent storage at -80°C until use for determination of insulin concentrations and 2DG 

tracer respectively.  

Biopsied muscle samples were immediately snap frozen in liquid nitrogen after the biopsy, 

freeze-dried and stored at -80°C. Muscle was dissected free of visible blood and connective 

tissue, powdered and used to determine muscle free carnitine, acetylcarnitine and long-chain 

acylcarnitine using the radioenzymatic method previously described by Cederblad and 

Lindstedt (Cederblad and Lindstedt 1972).   

6.3.4 Calculations 

Total fat and carbohydrate oxidation rates were calculated using the non-protein respiratory 

quotient (Frayn 1983). 

Fat oxidation rate = 1.695 VO2  X 1.701 VCO2 g/min 

Carbohydrate oxidation rate = 4.585 x VCO2-3.226 x VO2 g/min 

EE = 15.9 x VO2 + 5.2 x VCO2 J/min 

Where VO2 and VCO2 are expressed as litres per min and oxidation rates as grams per 

minute. 

Breath and plasma enrichments are expressed as the tracer/tracee ratio (TTR);  

TTR = (
13

C/
12

C)sa - (
13

C/
12

C)bk 

where sa denotes the sample and bk the background value. 
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The rate of appearance (Ra) and rate of disappearance (Rd) of palmitate was calculated using 

the single-pool non steady- state Steele equations adapted for stable isotope methodology as 

described by Wolfe & Jahoor 2006. 

 

Ra =  F – V[(C2 + C1)/2][(E2 – E1)/(t2-t1)] 

(E2-E1)/2 

        Rd = Ra – V (C2-C1) 

t2-t1 

where F denotes the infusion rate (μmol kg
-1

 min
-1

), V is the distribution volume for palmitate 

(40 ml kg
-1
), C1 and C2 are the palmitate concentration (mmol l

-1
) at times 1 (t1) and 2 (t2), 

respectively, and E1 and E2 are the plasma palmitate enrichments (TTR) at times t1 and t2, 

respectively. 
13

CO2 production (Pr
13

CO2; mol min
-1

) from the infused palmitate tracer was 

calculated as: 

Pr
13

CO2 = (TTRCO2
 x
 VCO2) 

where TTRCO2 is the breath 
13

C/
12

C ratio at a given time point, k is the volume of 1 mol of 

CO2 (22.4 l mol
-1

). 

Plasma palmitate oxidation (Rox; mol min
-1

) can subsequently be calculated as: 

Rox palmitate = Rd palmitate x (Pr
13

CO2/F x 16) 

where Rd palmitate is the rate of disappearance of palmitate (mol min
-1

), F is the palmitate 

infusion rate (mol min
-1

) and 16 is the number of carbon atoms in palmitate. Total plasma 

FFA oxidation was calculated by dividing palmitate oxidation rate by the fractional 

contribution of plasma palmitate to total plasma FFA concentration. 

The contribution of plasma FFA oxidation to total fat oxidation was determined by assuming 
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that the molecular mass of triglyceride is 860 gmol
-1

 and every TG molecules contain three 

fatty acids. 

The contribution of other fat sources was hence calculated by subtracting plasma FFA 

oxidation from total fat oxidation. 

Insulin sensitivity index clamp was calculated using the equation SIClamp = M/(G × ΔI) 

where M is normalized for G (steady-state blood glucose concentration;mmol 
-1
) and ΔI 

(difference between fasting and steady-state plasma insulin concentrations,mUl-1). 

 

6.3.5 Power calculations 

From previous studies on increasing muscle total carnitine content (Wall et al. 2011, 

Stephens et al. 2013) a 20% difference in muscle total carnitine was expected to be seen in 

older and young participants and following 24 weeks of L-carnitine feeding a difference 

should be able to be detected in 7 older participants with a power of 80% at 5% significance 

level on a paired t-test basis. The repeated measures coefficient of variation for the insulin 

clamp technique is 10%, therefore a 15-20% difference in insulin sensitivity should be able to 

be detected in 7 participants. Therefore we aimed to recruit 10 volunteers for each group 

(Carnitine and Control) to allow for a 30% dropout.  

6.3.6 Statistical analysis 

Values presented in text, tables and figures are expressed as mean ± the standard error of 

mean (S.E.M). The level of significance for statistical tests was set at P < 0.05 and analyses 

were performed using the statistical package Graphpad Prism version 6.0.  Differences within 

and between groups were analysed using two-way ANOVA for repeated measures (time and 

treatment effects). When a significant time or treatment effect was observed post-hoc analysis 

using Sidak’s multiple comparison test was performed to identify individual differences. 
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6.4 Results 

Table 6.1: Participant characteristics at 0 and 24 weeks in the control (CON) (ingesting 4.5g 

placebo and insulinogenic beverage 44.4g CHO and 13.8g protein) and carnitine (CARN) 

groups (ingesting 4.5g L-carnitine L-tartrate and insulinogenic beverage 44.4g CHO and 

13.8g protein) in conjunction with twice weekly 1 hour exercise performed at VO2max 50% 

workload. 

 

Parameters Range CON (n=7) CARN (n=7) 

0 weeks 12 weeks 0 weeks 12 weeks 

Age (years) 65-73 68.4±1.0  69.9±0.6  

Body mass (kg) 60.2-

92.5 

77.6±3.7 79.6±3.0 78.9±4.0 78.1±3.6 

BMI (kgm
-2

) 21.2-

32.6 

25.7±1.2 26.5±1.0 27.2±1.2 27.1±1.2 

Lean body mass (kg) 42.7-

59.1 

49.4±1.0 49.3±0.8 51.3±2.3 50.6±2.1 

Fat mass (kg) 6.1-33 20.1±3.6 22.0±2.8 19.4±2.2 19.3±2.0 

Fasting Glucose (mmol
-1

) 4.2-5.6 4.7±0.1 4.8±0.2 5.0±0.1 4.7±0.2
 

Fasting Insulin (mIUL
-1

) 2.2-

18.1 

10.6±1.6 12.0±3.0 9.5±1.9 7.9±1.6 

VO2 max (ml kg
-1

min
-1

) 34.9-

49.6 

41.2±1.9  41.9±1.9  

Workload at 50% VO2 

max (W) 

22-75 53.7±5.7 53.7±5.7 48.4±7.1 48.4±7.1 

ISWT (m) 420-

690 

558.6±36.

1 

555.7±33.9 562.9±27.9 588.6±17.9 

SF36v2™score (%)  89.0 89.6 86.0 87.4 
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6.4.1 Muscle total carnitine content 

 

Figure 6.3: Skeletal muscle total carnitine content in control and carnitine groups at baseline 

and at 24 weeks. All values are expressed as means ± s.e.m. * P<0.05, 
+ 

P<0.05 

Skeletal muscle TC content at baseline were 17.5± 1.5 and 21.1± 1.3 mmol kg
-1

 dm in the 

control and carnitine groups respectively. These baseline values and skeletal muscle TC 

content at 24 weeks are presented in Figure 6.3. There were no differences between or 

within groups at baseline. After 24 weeks muscle TC was 38% greater in the carnitine 

group compared to control (24.5 ± 1.3 vs 17.5±1.5 mmolkg
-1

dm; *P<0.01).There was a 

16% increase in muscle TC from baseline (21.1 ± 1.3 to 24.5 ± 1.3 mmolkg
-1

dm; 
+
P<0.05) in 

the carnitine group, whilst skeletal muscle TC remained unchanged in the control group 

(17.5±1.5 to 17.8±1.5 mmolkg
-1

 dm). 
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6.4.2 Subsarcolemmal and intermyofibrillar lipid 

 

 

 

 

Figure 6.4. Subsarcolemmal (SSL) and intramyofibrillar (IMF) lipid droplet (% fibre area) 

pre and post exercise at 0 weeks and after 24 weeks of placebo (Control) or carnitine 

supplement (Carnitine) 
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SSL lipid content was not different pre and post-exercise in both the control and carnitine 

groups at baseline; 3.1 ± 0.9 vs.3.3±0.8 % fibre area pre and post-exercise 

respectively(Control), and  3.4 ± 1.1 vs. 4.1 ± 1.0% fibre area pre and post-exercise 

respectively (Carnitine). At 24 weeks,  SSL lipid content did not decrease post exercise in 

both the control and carnitine groups; 3.9±1.0 to 2.4±0.6 % fibre area in control compared to 

carnitine; 3.3±1.0 to 2.6±0.5% fibre area.  IMF lipid content was  comparable pre and post 

exercise in the control and carnitine groups at 0 weeks; 0.79±0.11 vs.0.72 ± 0.18 % fibre area 

pre and post-exercise respectively (Control), and  0.61±0.09 vs.0.41 ± 0.06% fibre area pre 

and post-exercise respectively (Carnitine). After 24 weeks, there was a tendency for IMF 

lipid content to reduce post-exercise (0.86±0.23 to 0.44±0,11%; P=0.1) in the carnitine group 

whilst no changes were seen in the control group (0.87±0.20 to 0.71±0.15% fibre area) pre 

and post-exercise respectively.  
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6.4.3 Exercise substrate utilisation 

 

Figure 6.6: Contribution of fat (plasma FFA, black bar; other fat, striped bar)  and 

carbohydrate (white bar) to energy expenditure during exercise at 50% VO2max in control 

(Con) and Carnitine (Carn) groups before and after 24 weeks. All values are described as 

means ± s.e.m. **P<0.01, fat oxidation greater than 0 weeks. 

 

There was no difference in the relative contribution of fat to total energy expenditure during 

exercise (Fig 6.6) at baseline in both groups, and at baseline and 24 weeks in the control 

group.  

However, exercise at 50% VO2 max and carnitine supplementation after 24 weeks were 

associated with a 21% (P<0.01; Fig 6.6) increase in total fat oxidation during exercise (181.1 

± 15.0 to 220.4 ± 19.6 J/kg lean mass/min), despite no change in plasma fatty acid Rd or 

oxidation (7.1 ± 1.3 vs. 7.3 ± 1.0 µmol/kg/min at 0 and 24 weeks respectively). Exercise at 

50% VO2 max alone did not alter carbohydrate or fat oxidation rates of older people in the 

control group. 
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6.4.4 Exercise metabolism 

 

 

Figure 6.7: Plasma lactate during rest (first 120 minutes) and exercise at 50%VO2 max (last 

60 minutes) of participants in the carnitine group (n=7) at baseline (Carn V1) and after 24 

weeks (Carn V2) of once daily 4.5 grams L-carnitine-L tartrate and insulinogenic beverage 

and twice weekly 1 hour cycling at 50%VO2 max. 
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Figure 6.8: Muscle lactate concentrations pre and post-exercise in control (Con; n=7) and 

carnitine (Carn; n=7) groups at 0 and 24 weeks.*P<0.01 from pre-exercise at 0 weeks. 

 

 

Figure 6.9: Muscle glycogen concentrations pre and post exercise in control (Con; n=7) and 

carnitine (Carn; n=7) groups at 0 and 24 weeks. *P< 0.05 from pre-exercise at 0 weeks. 
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Figure 6.10A 

 

Figure 6.10B 

Figures 6.10A and B: Sympathetic activity (noradrenaline and adrenaline concentrations) at 

rest for first 120 mins and exercise at 50% VO2 max for the final 60 minutes at 0 and after 24 

weeks in carnitine and control groups. 
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At steady state (last 10 minutes of an hour of cycling at 50% VO2 max), plasma lactate 

concentrations in the control group were lower compared to baseline after 24 weeks (delta 

mean of 0.38 mmol/l; 1.57±0.23 compared with 1.19±0.15mmol/L). This was lower in the 

carnitine group (delta mean 0.59 mmol/L; 1.69±0.39 compared with 1.10±0.18mmol/L).  

Skeletal muscle lactate concentration tended to increase post-exercise in the carnitine but not 

in the control group at 0 weeks (4.4 ± 1.1 to 11.6 ± 4.2mmol/L; P=0.07 and 4.1 ± 0.8 to 7.5 ± 

1.5 mmol/L) respectively. The effect appeared to be obliterated in the carnitine group post-

exercise after 24 weeks (6.9±1.1 to 6.7±1.3 mmol/L) as opposed to a tendency to an increase,   

3.6 ± 0.8 to 7.8 ± 2.2 mmol/L; P=0.09 in the control group. 

After 24 weeks, the degree of muscle glycogen depletion was significant in both carnitine and 

control groups (295±27.5 to 216.9 ± 20.8 mmol/kg dm and 311±50.3 to 197.8 ± 43.4 

mmol/kg dm) respectively.  

Sympathoadrenal activity represented by noradrenaline and adrenaline concentrations 

remained similar during exercise before and after 24 weeks in the carnitine and control 

groups; Figure 5.10A and B. 
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6.11 Insulin sensitivity 

 

 

Figure 6.11: Glucose disposal rates (GDR) of participants ingesting either 4.5 g L-carnitine 

L-tartrate (CARN ) or 4.5 g placebo (CON) with insulinogenic beverage (44.4g CHO, 13.6g 

protein)and twice-weekly 1 hr cycling at 50%VO2 max at 0 and 24 weeks. 

 

Figure 6.12: Muscle 2DG uptake in control and carnitine groups at baseline and 24 weeks 
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There was no difference in glucose disposal rates of participants randomised to the Carnitine 

and Control groups at baseline (51.2 ± 7.5 vs 48.3±4.9 µmol kg
-1

 lean mass min
-1

). After 24 

weeks of treatment, no difference in mean glucose disposal rates were seen in both groups 

48.9 ± 5.9 and 46.6 ± 6.5µmol kg
-1

 lean mass min
-1

 respectively; Figure 6.11. Similarly there 

was no difference in 2DG uptake in muscle between Carnitine and Control at baseline and at 

24 weeks; Figure 6.12. Muscle 2DG uptake was 44.3 and 43.7 mmol.kgdw
-1

.min
-1 

in the 

control group and 48.2 and 51.0 mmol.kgdw-1.min-1 in the carnitine group at 0 and 24 weeks 

respectively.   
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6.6 Substrate oxidation at rest under fasted and insulin-stimulated conditions  

Table 6.13: Carbohydrate and fat oxidation rates, respiratory exchange ratio (RER) and energy expenditure in control (n=5) and carnitine groups 

(n=6) during the resting hyperinsulinaemic 60mu m
-2

min
-1

 euglycaemic clamp. *P<0.05 compared to pre-insulin values 
ф
 p=0.06 compared to 

pre- insulin values. 

 Control (n=5) Carnitine (n=6) 

 0 weeks 24 weeks 0 weeks  24 weeks 

 Pre-Insulin Post-Insulin Pre-Insulin Post- 

Insulin 

Pre- 

Insulin 

Post- 

Insulin 

Pre- 

Insulin 

Post- 

Insulin 

Carbohydrate 

Oxidation 

(J/kg/lbm/min) 

46.5±8.1 44.8±11.7 63.8±8.4 84.8±4.5 57.0±6.1 70.5±6.6 51.8±2.6 67.8±3.1* 

Fat Oxidation 

(J/kg lbm/min) 

42.0 ±7.3 49.7±9.4 34.0±9.9 17.4±3.4
 

32.7 ±7.3 23.0±4.1 44.1±3.8 30.4±2.9
ф 

RER 0.85±0.03 0.83±0.03 0.91±0.03 0.94±0.01
 

0.89±0.02 0.92±0.01 0.86±0.01 0.90±0.01*
 

Energy 

Expenditure 

(J/kg lbm/min) 

88.5±4.4 94.5±8.2 97.8±8.2 100.2±5.6 89.8±3.2 93.5±3.1 95.9±2.0 98.2±1.5 
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At rest, carbohydrate oxidation rates increased by 31% upon insulin stimulation at 24 weeks 

in the carnitine group whilst there was a trend for a reduction in fat oxidation rates (44.1±3.8 

to 30.4 ± 2.9 J kg lean body mass 
-1

 min
-1 

, P=0.06 ). Accordingly, an increase in respiratory 

exchange ratio (RER) after 24 weeks was seen during the insulin clamp in the carnitine group 

(0.86±0.01 to 0.90±0.01, P<0.05). There were no associated changes in basal fasted oxidation 

rates. No changes in fasted or fed states were seen in the control group (Figure 6.13).  

 

6.4.7 Body composition 

  

Figure 6.14: Fat mass (kg).Trunk (black bars), leg (grey bars) and arm (opened bars) fat 

mass before (0) and 24 weeks after once daily oral ingestion of either 4.5 grams placebo 

(Control)and insulinogenic beverage ( n=7) or 4.5 grams l-carnitine-l-tartrate  (Carnitine) and 

insulinogenic beverage (n=7). All values are means ±SEM. 
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After 24 weeks of twice weekly 1 hour cycling at 50% VO2 max, no difference was seen in 

body mass, BMI, lean body mass or fat mass and fasting plasma glucose in both Carnitine 

and Control groups.  

6.4.8 Incremental shuttle walk test 

The ISWT did not differ in both groups at baseline and after 24 weeks.  

6.4.9 SF36v2 

Table 6.2: SF 36v2™ Health Questionnaire Scores (%) completed by participants in 

carnitine (n=6) and control (n=6) at week 0 and week 24. NS non-significant 

 

 

 

 

 

 

 

 

 

SF36v2 scores only improved in the functional physical role domain in the carnitine group 

after 24 weeks. 

 

 

Health domains  Control  Carnitine 

 Week 0 Week 24 Week 0 Week 24 p value 

Physical function 95.8 94.3 90.8 95.0 NS 

Physical role 

functioning 95.8 96.4 79.2 90.6 

P<0.001 

Emotional role 

functioning 98.6 98.8 95.8 91.7 

NS 

Vitality 75.0 76.8 75.0 77.1 NS 

Mental Health 80.8 83.6 88.3 88.3 NS 

Social functioning 97.9 98.2 97.9 97.9 NS 

Bodily Pain 89.2 90.7 85.4 82.5 NS 

General Health 79.2 77.9 75.8 75.8 NS 
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6.5 Discussion 

 

As demonstrated in Chapter 3, older people exhibited lower fatty acid oxidation (most likely 

secondary to impaired IMCL utilisation) during light-intensity exercise and reduced glucose 

disposal rates compared to young. This study proposed that ingestion of carnitine with an 

insulinogenic beverage may improve fatty acid oxidation rates in older people and that this 

may translate to improving insulin sensitivity and body composition in this age group. A 

major finding from this study was that a 16% increase in muscle total carnitine improved 

total fatty acid oxidation, in particular IMCL oxidation. The improvement in IMCL oxidation 

however did not affect insulin sensitivity or body composition in older individuals. The 

ability of carnitine to improve fatty acid oxidation in older people during low-intensity 

exercise is advantageous as it demonstrates that fatty acid oxidation in older people can 

improve without undertaking high-intensity exercise or training many times per week that 

may prove unrealistic and unattainable in the majority of the older population. Previously 12 

weeks of aerobic training at 75%VO2 max 5 days per week was shown to improve IMCL and 

insulin sensitivity in older, obese and sedentary individuals (Pruchnic et al. 2004). 

This study is the first to show that total muscle carnitine content can be successfully 

increased in older healthy men after 24 weeks of oral carnitine ingestion in combination with 

an insulinogenic supplement. In previous studies, an increment in total muscle carnitine was 

only observed following intravenous infusion of carnitine and oral carbohydrate 

supplementation (Stephens et al. 2006) and more recently via oral ingestion of L-carnitine in 

young healthy recreational athletes (Wall et al. 2011,Stepehens et al. 2013). It would appear 

that the daily insulinogenic beverage in this study was effective in elevating insulin to levels 

that facilitated uptake of carnitine into muscle, in concert with previous studies of carnitine 

supplementation (Stephens et al. 2006, Wall et al. 2011, Stephens et al. 2013). A total of 80 g 
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of carbohydrate supplement  twice daily was required to increase retention and facilitate 

uptake of carnitine in muscle (Wall et al. 2011) but this may prove deleterious and cause a 

positive energy balance and fat mass accumulation in older individuals, as observed with the 

control group in the study by Stephens et al. 2013. Therefore, a compromise of 44.4 g of 

carbohydrate and addition of 13.8 g of protein, which can stimulate a modest rise in insulin 

secretion without increasing blood glucose levels (Krekozski et al. 1986), was considered and 

proved successful in retaining total carnitine content in muscle. 

Although there is considerable research examining carnitine status in populations these 

tended to be measurements of blood and urine, whilst those of muscle were mostly carried 

out in younger individuals (Carlin et al. 1986, Harris et al. 1987, Janssen et al. 1989, Arenas 

et al.1991). Of the few examining muscle carnitine levels, regression data by Costell et al. 

(1989) indicated an inverse relationship between age and carnitine levels in healthy humans 

and mice. Whereas skeletal muscle free carnitine levels increased from adolescence to 

adulthood in rats, levels then tended to decline with advancing age. The underlying cause of 

why carnitine levels are reduced in ageing is not entirely known but low carnitine levels have 

been associated with insulin resistance (Noland et al. 2009), which in turn is associated with 

increasing age. Reduced free carnitine levels in muscle were found to be a feature in rat 

models of insulin resistance including ageing (Bernard et al. 2008). Previous studies reported 

baseline mean levels of 20-25 mmol kg dm
-1

 in young healthy individuals (Wall et al. 2011, 

Stephens et al. 2013) but there are limited studies examining total carnitine content in muscle 

of older human volunteers. In concert with this study, Starling et al. (1995) showed that 

resting free and total muscle carnitine were similar in older vs. younger people (20.3 ± 0.9 vs 

21.6 ± 0.7 and 26.1±0.9 vs 26.4 ± 0.6 mmol kgdm
-1

) respectively. However the older 

volunteers in Starling’s study had an age range lower than the present study (47.6 ± 8.8 

vs.69.2±0.6 years respectively).  
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Having demonstrated that skeletal muscle total carnitine content can be successfully 

increased after 24 weeks supplementation in healthy older people, another major finding from 

this study was that carnitine increased fat oxidation (most likely IMCL) during low-intensity 

exercise. The ability of carnitine loading to promote fatty acid oxidative capacity in humans 

has been shown before in young healthy individuals (Stephens et al. 2013, Wall et al. 2011). 

This may be the result of adaptations leading to diversion of carbohydrate oxidation towards 

storage and favouring fat oxidation, and is likely to occur because carnitine is rate-limiting to 

CPT-1.  

Carnitine appeared to improve muscle metabolism during exercise as muscle lactate did not 

increase post exercise compared to baseline. Indeed, in a previous study by Stephens et al 

(2006), muscle lactate content reduced following L-carnitine infusion at rest and was 

associated with blunting of PDC activity. However contrary to findings from the same study 

and a study by Wall et al (2011) (whereby carnitine reduced muscle glycolysis and increased 

glycogen storage in muscle at rest and during exercise in young healthy people, respectively, 

there appeared to be greater glycogen utilisation during exercise not only in the control group 

but also in the carnitine-fed group.Therefore oral supplementation of carnitine for 6 months 

does not appear to have an effect on reducing muscle glycogen utilisation in older people.  

The notion that carnitine may influence insulin sensitivity stem from observations that insulin 

resistant states are often associated with lower (~25%) carnitine concentrations 

(Tamamogullari et al. 1999) and carnitine supplementation improved glucose homeostasis in 

healthy (Galloway 2011) and insulin-resistant humans (Rahbar et al. 2005). Perturbations in 

muscle mitochondrial fuel metabolism in animal models of glucose intolerance including 

incomplete fatty acid oxidation as a result of carnitine insufficiency were reversed by 

administration of oral carnitine and further improved whole body glucose tolerance 

(Mingrone et al. 1999). Indeed low rates of fatty acid oxidation due to decreased function of 
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CPT-1 involved in the carnitine shuttle in mitochondria is associated with insulin resistance, 

possibly caused by accumulation of IMCL intermediates that interfere with insulin signalling 

(Dobbins et al. 2011). Human studies examining the effect of carnitine supplementation on 

glucose disposal or insulin sensitivity are limited and mostly involved acute intravenous 

administration of L-carnitine. These studies demonstrated that L-carnitine infusion during the 

hyperinsulinaemic euglycaemic clamp in insulin-resistant individuals with diabetes increased 

peripheral glucose disposal (Capaldo 2005), whole body glucose disposal and glucose 

oxidation (Mingrone et al. 1999). A bolus of L-carnitine was also shown to increase glucose 

disposal, carbohydrate oxidation and respiratory quotient in people with T2DM by means of 

the intravenous glucose tolerance test (analysed via the minimal model technique). Insulin 

sensitivity index remained unchanged (De Gaetano et al. 1999). It is worth pointing out that 

these studies involved adults aged less than 60 years of age and that carnitine was 

administered intravenously.  

Despite an increase in the ability to utilise IMCL, increasing muscle total carnitine and fat 

oxidation in older healthy males in this study did not appear to affect skeletal muscle insulin 

sensitivity as demonstrated by unchanged glucose disposal rates and 2DG uptake in skeletal 

muscle at 24 weeks. Fasting plasma glucose concentrations were however reduced after 24 

weeks of ingesting carnitine. Exercise at 50% VO2 max twice weekly for an hour did not 

affect fat oxidation or insulin sensitivity in the control group. Whereas other studies have 

showed an improvement in markers of insulin sensitivity (fasting insulin, HOMA-IR) 

(Pruchnic et al., 2004) and via the insulin-glucose clamp (Goodpaster 2003), these were most 

likely exercise training-induced effects of exercise up to 75% VO2 max (Hughes et al. 

1995,Cox et al. 1999) or vigorous endurance exercise training (Kirwan et al. 1993).  

This study further showed that under insulin-stimulated conditions fat oxidation rates at rest 

in the carnitine group remained unaltered but carbohydrate oxidation rates increased in 
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addition to an increase in resting energy expenditure pre-insulin after 24 weeks of daily 

supplementation with carnitine. Oral supplementation of carnitine may have improved the 

metabolic flexibility of switching substrates in response to insulin.  Besides carnitine’s main 

involvement with mitochondrial transport and subsequent beta-oxidation of long-chain fatty 

acids it also functions to sequester and export inhibitory acetyl-coenzyme A units as acetyl 

carnitine, which favours glucose oxidation (McGarry and Brown 1997).  

Taken together the findings indicate that although increasing the bioavailability of carnitine 

was able to improve beta-oxidation particularly during low-intensity exercise, this may not 

have reached levels sufficient to affect whole body glucose disposal.  

There was a tendency for SSL lipid droplets to reduce post exercise at 24 weeks in the control 

group indicating perhaps an exercise training effect. Lipid droplets in the IMF region tended 

to reduce post exercise in the carnitine group. As demonstrated in study 1 (Chapter 3), lipid 

was seen to accumulate to a greater extent in the SSL regions of muscle of older overweight 

participants during light-intensity exercise and this was attributed to blunting of IMCL 

oxidation capacity. However despite an improvement in fatty acid oxidation in the carnitine 

group, and comparable body fat mass, there was less of a reduction of percentage lipid 

droplet accumulation within the SSL region of muscle post-exercise compared to control. The 

significance of this cannot be entirely reconciled without further examination of the lipid 

moieties involved and reasons for the difference in the degree of accumulation. However 

carnitine appeared to prevent the accumulation of IMF lipid during light-intensity exercise, 

perhaps indicating a role for carnitine on this distinct pool. Again the significance of this is 

unknown, and the lipid moieties involved should be examined further.  No changes in body 

composition were seen in both the carnitine and control groups after 24 weeks of ingesting 

either carnitine or placebo in combination with daily supplement of 220mls of an 

insulinogenic beverage (44.4 grams and 13.8g protein) equating to 330kcals extra energy. In 
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a study involving carnitine and insulinogenic beverage in young healthy volunteers, fat mass 

accrual was prevented with oral supplementation of carnitine (Stephens et al. 2013). The 

investigators postulated that ingesting carnitine may have obviated the effect of increased 

energy intake from the carbohydrate supplement by increased fuel utilisation during exercise. 

Lean mass was also similar in both groups at 24 weeks. It may be that a longer period of 

carnitine loading and sustainability of exercise may be required to see significant changes in 

body composition in older individuals, for this to occur individuals may have to train for 

longer and at higher activity levels as the Wall et al. (2011) and Stephens et al. (2013) studies 

used triathletes who were regularly training at higher exercise intensities. 24 weeks of light-

intensity exercise twice weekly (control group) also did not appear to improve lean nor fat 

mass. Nevertheless fat oxidation in volunteers in this study increased despite exercising at the 

same exercise intensities before and after carnitine.  

No changes were seen with regards to the incremental shuttle walk test (which is an indicator 

of VO2 peak) in both groups although there was a perceived improvement in the physical 

functioning role in the carnitine group at 24 weeks. The incremental shuttle walk test (ISWT) 

is a reproducible, standardised exercise test originally developed to evaluate functional 

capacity in patients with chronic progressive obstructive disease (Singh et al. 1992) and later 

validated for use in other chronic diseases (ATS Committee on Proficiency Standards for 

Clinical Pulmonary Function Laboratories). When compared to the few studies examining the 

ISWT in older healthy individuals the mean distance walked (560 ± 22 m) in this study was 

comparable to distance walked in a study by Jurgensen et al. (2011) (508 ±160m, mean age 

58± 10 yrs ) and Lee et al. (2005) (440m (range 360-520m, mean age 61 ± 10 yrs). However 

Dyer et al. (2002) reported a much lower mean distance walked in much older subjects 

(243±21m, age range 70-85) indicating the negative correlation of age with ISWT that may 

be influenced by gradual reduction in muscle mass, strength and maximal oxygen uptake in 
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parallel with ageing (Fleg et al.1998, Evans et al. 1993). This corresponds with the lower 

maximal oxygen uptake (VO2 max) seen in older volunteers in this study compared to 

younger healthy controls. No difference was seen after 24 weeks in mean distance walked in 

both groups in this study, although participants in the carnitine group walked an average 

25.7m further than at 0 weeks.  

The overall SF36v2 scores did not differ between participants in the carnitine and control 

groups at baseline, participants in the carnitine group on average scored better in the physical 

role functioning health domain. The improvement was related to an increase in the ability to 

accomplish more and having less difficulties and limitations with work and daily activities of 

living (Users Manual SF36v2TM, QualityMetric, Lincoln USA).  

 

6.6 Conclusions  

    In conclusion, this study has shown for the first time that oral carnitine supplementation 

taken with an insulinogenic beverage for 6 months can increase skeletal muscle total carnitine 

content in older healthy humans. The increased carnitine availability promoted fatty acid 

oxidation during low-intensity exercise, presumably from IMCL.  Perhaps a longer period of 

carnitine feeding and exercise is required to appreciate an improvement in insulin sensitivity, 

or an underlying mechanism that resists the increased fatty acid oxidation from translating to 

increasing insulin sensitivity is yet unknown, and remains to be elucidated. Future studies 

should also control for confounding factors such as habitual activity and dietary intake in 

participants, as these may also impact on the overall effect on insulin sensitivity. Finally as 

carnitine has been shown to improve glucose tolerance in insulin-resistant states other than 

ageing, the role of carnitine supplementation in overweight/obese individuals and T2DM 

should also be explored. 
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Chapter 7: Final Summary and Discussion 

 

Two major pertinent issues affecting the 21
st
 century are the growing ageing 

population and overweight and obesity rates. Over 10 million people in the UK are aged 65 

and above, with numbers expected to almost double by 2050. By then obesity is predicted to 

affect 60% of adult men, 50% of adult women and 25% of children (Foresight 2007).  In line 

with this, the number of people with diabetes is expected to more than double worldwide 

(Wild et al. 2004) as a result of the ageing population, with the largest rise in people aged 65 

and over.  Clearly these numbers pose major public health concerns and hugely impact on 

healthcare costs. A key issue of the 2015 Parliament was once more focussed on addressing 

the growing social and economic impact of ageing and related chronic conditions on 

healthcare and social systems in the UK (www.parliament.uk / business/ publications/ 

research/ key-issues-parliament-2015). Over 10 billion pounds annually are spent on 

management of T2DM. The growing literature on studies related to insulin resistance is 

testament that this issue is significant and strategies to improve insulin sensitivity are 

warranted. Efforts to tackle these problems are clearly still hampered by outstanding issues 

concerning nutrition and insulin resistance.  

The studies presented in this thesis set out to explore these important issues; in particular the 

effects of overfeeding macronutrients and of specific micronutrient supplementation on 

insulin sensitivity, and sought to investigate the influence of age and overweight/obesity on 

insulin sensitivity in healthy people. The general literature on these subjects is inconclusive 

on several questions that the studies have endeavoured to answer: 

1) Does ageing per se cause insulin resistance, or are there other factors associated with 

ageing that contributes to the decline in insulin sensitivity? 

http://www.parliament.uk/
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2) As ageing is associated with insulin resistance and sarcopenia, is there an effect of reduced 

insulin sensitivity on muscle protein metabolism and what are the underlying mechanisms? 

3) Is increased liver fat content and perturbations to carbohydrate and fat metabolism due to 

energy excess or is it macronutrient specific? 

4) Can micronutrients that are specific to influencing fatty acid metabolism, ie fat oxidation,   

impact on improving impaired fat utilisation and insulin sensitivity particularly in the elderly? 

With the emergence of increased obesity rates and the ageing population, there is growing 

interest as to whether it is age, physical inactivity or body composition per se that affects 

insulin sensitivity in older healthy people. This question was explored in the first study 

(Chapter 3), where fat metabolism, insulin sensitivity and skeletal muscle metabolism were 

compared in old and young healthy men. It was proposed that it is factors associated with 

ageing and not ageing per se that contributes to the decline in insulin sensitivity. Ageing and 

insulin resistance is also associated with sarcopenia, a significant risk factor of disability in 

the ageing population. It was also demonstrated in Chapter 3 that older overweight and less 

insulin-sensitive men have lower functional capacity as demonstrated with the Incremental 

shuttle walk test (ISWT), a feature of sarcopenia or inactivity. The following chapter 

(Chapter 4) presented results from examining the effect of insulin resistance, induced by 

acutely elevating lipid concentrations in young healthy men, on MPS, providing insight to the 

likely mechanisms involved in perturbed MPS and insulin sensitivity.  Besides physical 

inactivity, diets are clearly a driver in the development of central obesity, visceral fat and 

hence insulin resistance. The third study (Chapter 5) thus investigated to what extent liver fat 

and hepatic insulin sensitivity were affected by 2 weeks of increased energy intake of fat, and 

how this compared to high carbohydrate feeding with the premise that liver fat accumulation 

and hepatic insulin resistance are energy, rather than macronutrient -mediated. Novel 
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strategies are therefore warranted in addressing the growing rates of obesity and insulin 

resistance. The final study (Chapter 6) aimed to investigate the effects of carnitine 

supplementation on skeletal muscle fat metabolism and insulin sensitivity in older healthy 

men. The main findings are chapter specific and were summarised within the chapters 

themselves.  This section will amalgamate the empirical findings and discuss further research 

required to further increase our understanding of current issues.     

Ageing is associated with metabolic perturbations, exacerbated by increasing visceral 

fat, skeletal muscle lipid accumulation, sarcopenia and reduced insulin sensitivity. However 

there is mounting evidence including findings from this thesis to suggest that it is not age per 

se but body composition and physical inactivity that affects insulin sensitivity and skeletal 

muscle metabolism. As revealed from data presented in chapter 3, older healthy men have 

greater predisposition to lipid accumulation, reduced fat metabolism and insulin resistance, 

and these appear to be largely influenced by body fat and to a certain extent, physical 

inactivity. The general impression of the current literature is that although ageing is often 

implicated in perturbations to metabolism and insulin sensitivity, it would appear that it is 

mostly factors associated with ageing such as increasing adiposity, reduced lipid utilisation 

and impaired metabolism and a sedentary state that increases insulin resistance. More often 

than not, studies involving older groups and investigating insulin sensitivity do not control for 

these factors that may influence results. The findings from this thesis assert the importance 

and influence of adiposity and habitual physical activity on skeletal muscle insulin 

sensitivity. Thus, people do not necessarily develop insulin resistance simply because they 

are ‘growing older’, but this is likely to be due to development of obesity, accumulation of 

IMCL and associated reduction in physical activity with ageing. Therefore strategies should 

be targeted at encouraging increased activity, a healthy balanced diet and therapies to prevent 

accumulation of excess fat; visceral or skeletal. The findings would also fit with the general 
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consensus that increased adiposity, liver fat deposition and IMCL accumulation all 

predispose to a decline in insulin sensitivity and hepatic metabolism. Along the line of 

physical inactivity and insulin resistance is the increasing incidence of sarcopenia, a decline 

in muscle mass and functional capacity. A stark difference between the ISWT of the older 

lean and overweight older men was observed in Chapter 3 and as Chapter 4 demonstrated, 

insulin resistance led to perturbations of MPS in response to amino acid ingestion under 

hyperinsulinaemic euglycaemic conditions, associated with an impairment of signalling 

located downstream of the Akt-mTOR signalling pathway at the level of translation initiation. 

Closely associated with increasing overweight and obesity rates, controversy surrounding 

energy excess vs. macronutrient influence on fat accumulation and insulin resistance persists 

but provides strong impetus to research, even dominating headlines in social media in recent 

years.  With various conflicting information on which is worse, carbohydrate, fat or energy 

excess the ultimate conclusions are not so clear-cut thus dividing public and indeed research 

community opinions alike. Newspaper headlines such as ‘Butter is NOT bad for you’ and 

‘Saturated fat is ok after all’ are likely to confuse and lead to increased consumption of 

processed foods high in fat. On the other hand, replacing saturated fat with refined 

carbohydrates would also have potentially negative side-effects. The studies in this thesis 

were designed to examine the effects of modulating macronutrients on liver and muscle fat, 

metabolism and insulin sensitivity. The general consensus generated from current research 

appears to indicate that energy excess leading to overweight or obesity is associated with 

insulin resistance. Although the effect of high fat diets on insulin resistance is inconclusive, 

carbohydrate excess, in particular fructose has been shown to promote insulin resistance 

(Stanhope et al 2009). The effects of high fat vs high carbohydrate diets are scarce so no 

definitive conclusion have been ascertained. The study presented in this thesis showed that 2 

weeks of energy excess per se caused a  significant increase in liver fat content and fasting 



263 
 

plasma TAGs, most likely due to the process of DNL when overfed with a diet high in 

carbohydrate, with a (borderline) greater increase of liver fat from baseline compared to the 

high-fat fed group. Whilst the findings of this study support the notion that energy excess can 

increase liver fat content in 2 weeks the results did not show a significant differential effect 

between carbohydrate and fat overfeeding. Carbohydrate excess appears to increase liver fat 

from baseline, with a trend seen following fat overfeeding. Nevertheless, the change in 

metabolites normally associated with liver fat accumulation appears to indicate a greater 

deleterious effect of high carbohydrate intake on liver fat, whereas high fat contributed to a 

rise in ApoB (thought to be a contributor to cardiovascular risk) and ApoA1 (perhaps as an 

indicator of the liver’s response to the rise in ApoB concentrations). Contrary to expectations, 

the increase in liver fat did not lead to a difference in hepatic or whole body insulin resistance 

as a consequence of energy excess or manipulation of carbohydrate or fat content. This is 

similar to outcomes seen in the study by Johnston et al (2013), whereby diets high in glucose 

and fructose increased liver fat content but did not affect hepatic insulin resistance. Several 

reasons could explain this outcome. It could be that 25% excess energy of fat and 

carbohydrate for 2 weeks is insufficient to increase insulin resistance. Stanhope et al (2009) 

shown that a 10 week 25% excess energy diet in the form of fructose-sweetened beverages 

increased DNL and visceral adiposity, resulting in dyslipidaemia and reduced insulin 

sensitivity in overweight/obese healthy humans.  Perhaps given a longer period of time, 

chronic ingestion of nutrients whether in excess of carbohydrate or fat may eventually lead to 

hepatic and skeletal muscle insulin resistance. A greater feeding stimulus may therefore be 

required to appreciate the effects of a short-term moderate dietary excess that correlates with 

insulin resistance. The ingestion of diets with greater energy excess than that used in this 

study have been investigated (Westerbacka et al. 2005, Le et al. 2009, Horton et al., Brons et 

al. 2011, Sevastionova et al. 2012). Whilst some of these studies showed significant effects 
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with liver fat or insulin sensitivity, it should be borne in mind that these diets may not be 

entirely representative of typical intakes in the general population. Diets in this study were 

designed to be realistic and simulate that of which might be consumed under habitual 

circumstances in the present population. Furthermore, the ethical concerns relating to 

prolonged or excessive overfeeding in humans would preclude studies involving excessive or 

prolonged dietary intakes.      

      Acknowledging the studies in the current literature and indeed from findings of studies 

undertaken for this thesis, the increasing prevalence of overweight, obesity and insulin 

resistance either from overnutrition or as a consequence of factors that accompany ageing 

warrant strategies to overcome these problems. This would include novel use of nutrients that 

may modulate metabolism, energy expenditure and insulin sensitivity. Dietary restriction, 

weight loss and exercise have been advocated in concerted efforts to improve insulin 

sensitivity in older people, and yet the number of elderly people with insulin resistance 

continues to rise. Realising that physical inactivity declines and adiposity increases with age, 

increased resources and focus have been placed in encouraging the older generation to 

exercise and eat healthier. Although training and exercise programmes are clearly beneficial 

in promoting weight loss, cardiorespiratory fitness and even insulin sensitivity in older 

people, in most cases, these regimens can be difficult for most to sustain. Various nutrients 

have been shown to improve insulin sensitivity but studies are limited and contradictory. 

Carnitine has been shown to increase the relative contribution of muscle fat oxidation to total 

fat oxidation during light intensity exercise in older people (Chapter 5), and appears to exert 

positive effects on skeletal muscle metabolism and metabolites. Older healthy people retained 

skeletal muscle total carnitine, however contrary to expectations ingestion of carnitine for 6 

months did not improve skeletal muscle insulin sensitivity. There was a tendency for the 

accumulation of lipid to decrease post-exercise in both control and carnitine-fed groups, 
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indicating that exercise, even at low-intensities can reduce the accumulation of lipid in 

muscle, but more importantly increase fatty acid oxidation in the carnitine group. It may be 

that a longer period, greater amount of carnitine or other ways of increasing the 

bioavailability of carnitine are required to appreciate a robust effect, or that there are still 

underlying mechanisms involved in ageing muscle not yet explored.  Nevertheless the 

findings show promise and future studies to extend on data are warranted, including 

investigation into the use of carnitine in overweight and people with pre-diabetes.    
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Figure 7.1: Tricycle hypothesis; amalgamation of Taylor’s twin cycle hypothesis (Taylor 2008) and the skeletal muscle cycle.  
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  Findings from the overfeeding study stress the importance of the deleterious effects of 

a positive energy balance on liver fat content and metabolism. Skeletal muscle lipid 

accumulation contributes to insulin resistance in ageing as seen in the study comparing young 

vs. older subjects. To reconcile the twin cycle hypothesis of Taylor (who acknowledges 

muscle insulin resistance as a factor implicated in development of T2DM), and De Fronzo’s 

postulation of skeletal muscle resistance as an important contributor to T2DM, a combined 

three cycle (tricycle) hypothesis is proposed (Figure 7.1). In addition to the twin cycle 

hypothesis that chronic energy excess leads to accumulation of liver fat with eventual spill-

over into the pancreas, over time, (ageing and continuous ingestion of energy excess) 

accumulation of skeletal muscle lipid could overwhelm the capacity of muscle to oxidise 

fatty acids. Ageing, reduced physical activity and decline in skeletal muscle mitochondrial 

content can all lead to muscle insulin resistance and contribute to a reduction in skeletal 

muscle glucose uptake and thus increased insulin secretion. Indeed this would presumably 

also occur in younger people who are in chronic positive energy balance. Considerably more 

studies in future should explore the effects of chronic nutrient overfeeding on hepatic and 

skeletal muscle insulin sensitivity, adipose tissue and pancreatic fat concurrently to further 

understand the interplay between these tissues and of which precedes the other. This would 

conceivably influence targeted strategies in the prevention of insulin resistance in at-risk 

groups of the population. For example strategies to reduce lipid delivery (particularly during 

exercise) and improve adipose tissue function, such as the use of acipimox (Daniele 2014) 

and pioglitazone (Bajaj et al. 2003), and further examination of the use of carnitine are  

justified. This should be in conjunction with the continued emphasis on ‘eating less, 

exercising more’.          
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7.1 Study limitations 

Several limitations to studies undertaken in this study are acknowledged. The major 

limitations of the high fat vs. high carbohydrate study was that it was not a cross-over design 

and did not involve an isoenergetic-fed control group per se; rather the participants presented 

as their own controls having completed an isoenergetic diet prior to embarking on the overfed 

period. On the other hand a cross-over study may pose issues with compliance and retention 

of participants for longer periods of overfeeding.  Body composition was assessed using body 

impedance analysis and subcutaneous fat analyses. 
1
H MRS of liver and skeletal muscle was 

also not performed at the beginning of the isoenergetic period. This would ascertain baseline 

liver and muscle fat, but the isoenergetic diet was not designed to provide excess energy so it 

has to be assumed liver fat remained the same during that period. Utilising indirect 

calorimetry at baseline would have been ideal for assessing energy expenditure and 

requirements as opposed to estimating basal metabolic rate and energy intake using diet 

diaries and energy equations. The study was also performed exclusively in male White 

European men and not under strict controlled conditions, thus activity levels were not 

controlled for and may be a confounding factor.  The intervention was relatively short and so 

the possible effects of a longer dietary regimen cannot be excluded, however this will need to 

be balanced between practicality, adherence to dietary regimen and ethics. Power calculations 

were made for the primary outcome measures but not for the secondary outcomes.  

Several limitations in the carnitine study are also acknowledged.  Diets and day to day 

habitual activities of participants were not controlled for so may have influenced outcomes of 

the study. On the other hand, this represents the use of carnitine within a habitual setting. 

Compliance may have been an issue; however participants attended over 75% of their twice 

weekly cycling sessions at the laboratory and regular measurements of serum carnitine levels 

were undertaken.      
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7.2   Future directions 

There is certainly still a lot of scope for increasing our understanding and exploration in the 

effects of nutrients and ageing on insulin sensitivity.  

The observations and findings of studies undertaken have unraveled several questions that 

warrant further investigation and should be addressed in the future: 

 

1) Explore the underlying mechanisms and insulin pathways contributing to the accumulation 

of lipid in specific regions of skeletal muscle in older vs. young people. Why does 

subsarcolemmal lipid accumulation mostly occur in muscle of overweight/obese and older 

people and how does it affect insulin sensitivity? Importantly, are there ways to avert or slow 

down this phenomenon? 

2) Further investigate the role of physical activity and body composition including the 

contribution of subcutaneous fat/visceral fat in pre-diabetes or T2DM on skeletal muscle lipid 

and metabolism. 

3) Explore the effects of high fat vs high carbohydrate on liver fat and skeletal muscle in 

people with pre-diabetes or impaired glucose tolerance (IGT). 

4) To further investigate in detail the effects of the type of carbohydrate (polysaccharide vs 

monosaccharides) and fat (PUFA vs MUFA and saturated) on insulin sensitivity.  

5) To not only investigate the effects of diet on liver fat but further determine if participants 

are genetically insulin sensitive or resistant. Investigating pancreatic fat via MRI/
1
H MRS 

would also be beneficial to further understand the cross talk between fatty liver, pancreatic fat 

cells and inflammation that may accentuate beta-cell dysfunction. 

6) Investigating the interplay of effects of diets on muscle, liver, pancreas and adipocytes in 

elucidating the pathogenesis of insulin resistance.    
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7) Investigate the effects of intravenous vs oral carnitine in older and younger subjects, older 

lean and overweight/obese, controlling for habitual physical activity and diets.  

8) Exploration of gene expressions of insulin signalling pathways and fat metabolism in 

carnitine-fed subjects. 

9) Examine skeletal muscle protein synthesis of older healthy people in response to lipid-

induced insulin resistance and whether this can be improved with carnitine supplementation. 

 

 

 

 

 

 

  

  

   

 

 

 

 

 

 

 

 



271 
 

References 

 

Abdul-Ghani MA, Tripathy D, DeFronzo RA. Contributions of beta-cell dysfunction and 

insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting 

glucose. Diabetes Care 2006; 29:1130–1139 

Abu-Erreish GM, Neely JR, Whitmer JT, Whitman V, Sanadi DR. Fatty acid oxidation by 

isolated perfused working hearts of aged rats. Am J Physiol Endocrinol Metab Gastrointest 

Physiol 1977; 233:E258–E262 

Adams JM, Pratipanawatr T, Berria R et al. Ceramide content is increased in skeletal muscle 

from obese-insulin resistant humans. Diabetes 2004; 53:25-31. 

Adochio RL, Leitner JW, Gray K, Draznin B, Cornier MA. Early responses of insulin to 

signaling to high-carbohydrate and high-fat overfeeding. Nutr Metab (Lond). 2009; 28: 6:37. 

Alberti G, Zimmet P, Shaw J. The metabolic syndrome, a new worldwide definition. Lancet 

2005; 366(9491):1059 – 1062. 

Amati F, Dube J, Alvarez-Carnero E et al. Skeletal muscle triglycerides, diacylglycerols, and 

ceramides in insulin resistance. Another paradox in endurance-trained athletes? Diabetes 

2011. 60(10):2588-2597.  

Amati F, Dube J et al. Physical inactivity and obesity underlie the insulin resistance of aging.  

Diabetes Care 2009; 32(8):1547-1549. 

American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes 

Care 2007; 30(Suppl 1): S42–S47 



272 
 

Anderson RA, Cheng N, Bryden NA, et al. Elevated intakes of supplemental chromium 

improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes 1997; 46: 

1786-1791. 

Anderson RA, Polansky MM, Bryden NA, Canary JJ. Supplemental-chromium effects on 

glucose, insulin, glucagon, and urinary chromium losses in subjects consuming controlled 

low-chromium diets. Am J Clin Nutr 1991; 54:909-916. 

Anuradha CV, Balakrishnan SD. Taurine attenuates hypertension and improves insulin 

sensitivity in the fructose-fed rat, an animal model of insulin resistance. Can J Physiol 

Pharmacol 1999; 77:749-754. 

Astrand I.  Aerobic work capacity in men and women with special reference to age. Acta 

Physiol Scand Suppl 1960; 49(169):1-92. 

Astrand, P. Quantification of exercise capability and evaluation of physical capacity in man. 

Prog Cardiovasc Dis. 1976; 19(1): 51-67. 

Avogaro P, Crepaldi G. Essential hyperlipidemia, obesity and diabetes. Diabetologia 1965; 

1:137 

Bachmann OP, Dahl DB, Brechtel K, Machann J, Haap M, Maier T, et al. Effects of 

intravenous and dietary lipid challenge on intramyocellular lipid content and the relation with 

insulin sensitivity in humans. Diabetes 2001; 50:2579–2584 

Bakker SJL. Brink EJ, de Leeuw PW, Serroyen J, van Baak MA. Blood pressure decreases 

more after high-carbohydrate meals than after high-protein meals in overweight adults with 

elevated blood pressure, but there is no difference after 4 weeks of consuming a 

carbohydrate-rich or protein-rich diet. J Nutr 2013; 143: 1-6. 

Bar RS, Harrison LC, Muggeo M, Gorden P,  Kahn CR and Roth J. Regulation of insulin 

receptors in normal and abnormal physiology in humans. Adv Intern Med. 1979; 24:23-46. 



273 
 

Barbagallo M, Dominguez LJ, Tagliamonte MR, et al. Effects of vitamin E and glutathione 

on glucose metabolism: role of magnesium. Hypertension 1999; 34: 1002-1006 

 

Barbieri M, Rizzo MR, Manzella D, Paolisso G.Age-related insulin resistance: is it an 

obligatory finding? The lesson from healthy centenarians.  Diabetes Metab Res Rev 2001; 

17(1): 19-26. 

 

Barker, DJ. The fetal and infant origins of adult disease. BMJ 1990; 301(6761):1111. 

 

Basu, R, Breda E et al. Mechanisms of the age-associated deterioration in glucose tolerance: 

contribution of alterations in insulin secretion, action, and clearance. Diabetes 2003; 52(7): 

1738-1748. 

Baumgartner RN, Chumlea WC, Roche AF. Bioelectric impedance for body composition. In: 

Pandolf  KB, editor. Exercise and sports sciences reviews. New York: MacMillan; 1990. pp. 

193–224. 

Baumgartner, RN, Wayne SJ et al. Sarcopenic obesity predicts instrumental activities of daily 

living disability in the elderly. Obes Res 2004; 12(12): 1995-2004. 

Bennet WM, Connacher AA, Scrimgeour CM, Jung RT, Rennie MJ. Euglycemic 

hyperinsulinemia augments amino acid uptake by human leg tissues during 

hyperaminoacidemia. Am J Physiol 1990; 259(2 Pt 1):E185-94. 

Bergman, RN, Ider YZ et al. Quantitative estimation of insulin sensitivity. Am J Physiol 

1979; 236(6): E667-677. 

Bergstrom, J. Percutaneous needle biopsy of skeletal muscle in physiological and clinical 

research. Scand J Clin Lab Invest 1979; 35(7): 609-616.  

Bessesen DH. The role of carbohydrates in insulin resistance. J Nutr. 2001; 131(10):2782s-

2786s. 



274 
 

Bhathena SJ, Berlin E, Judd JT, et al. Effects of omega 3 fatty acids and vitamin E on 

hormones involved in carbohydrate and lipid metabolism in men. Am J Clin Nutr 

1991; 54: 684-688. 

Bikman BT, Summers SA. Ceramides as modulators of cellular and whole-body metabolism. 

J Clin Invest 2011; 121:4222–4230 

Birnbaum, BA, Hindman N, et al. Multi-detector row CT attenuation measurements: 

assessment of intra- and interscanner variability with an anthropomorphic body CT phantom. 

Radiology 2007; 242(1):109-119. 

Bisschop PH, de Metz J, Ackermans MT, Endert E, Pijl H, Kuipers F, Meijer AJ, Sauerwein 

HP, Romijn JA. Dietary fat content alters insulin-mediated glucose metabolism in healthy 

men. Am J Clin Nutr 2001 Mar; 73(3):554-9. 

Bjorntorp P. Portal adipose tissue as a generator of risk factors for cardiovascular disease and 

diabetes. Arteriosclerosis.1990;10(4):493-6. 

Blaak, EE, Wagenmakers AJM, Glatz JFC  et al. Plasma  FFA  utilization  and  fatty  acid-

binding  protein  content  are  diminished  in  type  2  diabetic muscle. Am  J  Physiol  

Endocrinol  Metab 2000; 279: E146–E154. 

Blaak E, Wagenmakers A. The fate of [U13C] palmitate extracted by skeletal muscle in 

subjects with type 2 diabetes and control subjects. Diabetes. 2002; 51(3):784-789.  

Blachnio-Zabielska A, Persson X, Koutsari C, Zabielski P and Jensen MD. A liquid 

chromatography/tandem mass spectroscopy method for measuring the invivo incorporation 

ofplasma free fatty acids into intramyocellular ceramides in humans. Rapid Communications 

in Mass Spectroscopy. 2012; 26(9): 1134-1140. 



275 
 

Blachnio-Zabielska A, Zabielski P ,Jensen MD. Intramyocellular diacylglycerol 

concentrations and [U-13C]palmitate isotopic enrichment measured by LC/MS/MS. J Lipid 

Res. 2013; 54(6): 1705-1711. 

Boberg J, Carlson LA, Freyschuss U. Determination of splanchnic secretion rate of plasma 

triglycerides and of total and splanchnic turnover of plasma free fatty acids in man. Eur J 

Clin Invest. 1972; 2: 123–132. 

Boden G, Chen X, Ruiz J, et al. Effects of vanadyl sulfate on carbohydrate and lipid 

metabolism in patients with non-insulin dependent diabetes mellitus. Metabolism. 1996; 

45:1130-1135. 

Boden, G, Chen X et al. Mechanisms of fatty acid-induced inhibition of glucose uptake. J 

Clin Invest 1994; 93(6): 2438-2446. 

Boden G, Homko C, Barrero CA, et al. Excessive caloric intake acutely causes oxidative 

stress, GLUT4 carbonylation, and insulin resistance in healthy men. Sci Transl Med. 2015; 

7(304):304re7. 

Bogardus C, Lillioja S, Howard BV, Reaven G, Mott D. Relationships between insulin 

secretion, insulin action, and fasting plasma glucose concentration in nondiabetic and 

noninsulin-dependent diabetic subjects. J Clin Invest. 1984; 74(4): 1238-46. 

Bogardus C, Lillioja S, Stone K, Mott D.Correlation between muscle glycogen synthase 

activity and in vivo insulin action in man. J Clin Invest 1984; 73:1185–1190 

Bonadonna, RC, Groop L et al. Obesity and insulin resistance in humans: a dose-response 

study. Metabolism 1990; 39(5): 452-459. 

Borg, GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc 1982; 14(5): 

377-381. 



276 
 

Borkman M, Chisholm DJ, Furler SM, et al. Effects of fish oil supplementation on glucose 

and lipid metabolism in NIDDM. Diabetes 1989; 38: 1314-1319. 

Boyce VL, Swinburn BA. The traditional pima indian diet: composition and adaptation for 

use in a dietary intervention study. Diabetes Care 1993; 16(1):369-371. 

Brand-Miller JC and Colagiuri S. The carnivore connection: dietary carbohydrate in the 

evolution of NIDDM.  Diabetologia 1994; 37: 1280–1286. 

Bravo A, Sheth S, Chopra S. Liver Biopsy. New England Journal of Medicine 2001: 344(7): 

495-500. 

Breslow L. Public health aspects of weight control. Am J Public Health Nations Health 1952; 

42(9): 1116-1120. 

Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, Grundy SM, 

Hobbs HH. Prevalence of hepatic steatosis in an urban population in the United States: the 

impact of ethnicity. Hepatology 2004; 40: 1387-1395. 

Bruce CR, Thrush AB, Mertz VA, et al. Endurance training in obese humans improves 

glucose tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content. Am J 

Physiol Endocrinol Metab. 2006; 291:E99–E107 

Brüning JC, Michael MD, Winnay JN et al. A muscle-specific insulin receptor knockout 

exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance.  

Bryhni B. Jenssen TG et al. Oxidative and nonoxidative glucose disposal in elderly vs 

younger men with similar and smaller body mass indices and waist circumferences. 

Metabolism 2005; 54(6): 748-755. 

Bweir S, Al-Jarrah M, Almalty AM et al. Resistance exercise training lowers HbA1c more 

than aerobic training in adults with type 2 diabetes. Diabetol Metab Syndr 2009; 1:27 



277 
 

Caballero B. The global epidemic of obesity: an overview.Epidemiol Rev 2007; 29: 1-5. 

 

Chakraborty A, Koldobskiy MA, Bello NT, Maxwell M, Potter JJ, Juluri KR, Maag D, Kim 

S, Huang AS, Dailey MJ, Saleh M, Snowman AM, Moran TH, Mezey E, Snyder SH. Inositol 

pyrophosphates inhibit Akt signalling, thereby regulating insulin sensitivity and weight gain. 

Cell 2010; 143; 897-910.  

Cheal KL, Abbasi F, Lamendola C, McLaughlin T, Reaven GM and Ford ES. Relationship to 

insulin resistance of the adult treatment panel III diagnostic criteria for identification of the 

metabolic syndrome. Diabetes 2004; 53: 1195–1200. 

Chen H, Sullivan G et al. QUICKI is a useful index of insulin sensitivity in subjects with 

hypertension.  Am J Physiol Endocrinol Metab 2003; 284(4): E804-812. 

Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium 

thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162(1):156-9. 

Chomentowski P, Coen P, Radikova Z, Goodpaster B and Toledo F. Skeletal muscle 

mitochondria in insulin resistance: Differences in intermyofibrillar vs. subsarcolemmal 

subpopulations and relationship to metabolic flexibility. J Clin Endocrinol Metab 2011; 

96(2): 494-503. 

Chokkalingam K, TzinTzas K, Norton L, Jewell K, Macdonald IA, et al. Exercise under 

hyperinsulinaemic conditions increases whole-body glucose disposal without affecting 

glycogen utilisation in type 1 diabetes. Diabetologia; 2007; 50: 414–421 

Chumlea WC and Guo SS.  Bioelectrical impedance and body composition: present status 

and future directions. Nutr Rev. 1994; 52(4): 123-131.  



278 
 

Coen PM, Dube JJ, Amati F et al. Insulin resistance is associated with higher 

intramyocellular triglycerides in type 1 but not type 11 myocytes concomitant with higher 

ceramide content. Diabetes 2010; 59: 80-88. 

Coggan AR, Abduljalil AM, Swanson SC, Earle MS, Farris JW, Mendenhall LA, Robitaille 

PM. Muscle metabolism during exercise in young and older untrained and endurance-trained 

men. J Appl Physiol 1993; 75: 2125–2133 

Crane JD, Devries MC, Safdar A, Hamadeh MJ and Tarnopolsky MA.  The effect of aging on 

human skeletal muscle mitochondrial and intramyocellular lipid ultrastructure. J Gerontol A 

Biol Sci Med Sci 2010. Vol.65A, No.1,119-128. 2): 119-28. 

Cree MG, Newcomer BR, Katsanos CS, Sheffield-Moore M, Chinkes D, Aarsland A, Urban 

R and Wolfe RR. Intramuscular and Liver Triglycerides Are Increased in the Elderly. Journal 

of Clin Endocr and Metab 2004; 89(8): 3864-71. 

Cress ME, Thomas DP et al. Effect of training on VO2max, thigh strength, and muscle 

morphology in septuagenarian women. Med Sci Sports Exerc 1991; 23(6): 752-758. 

Cuthbertson D, Smith K, Babraj J, Leese G, Waddell T, Atherton P, Wackerhage H, Taylor 

PM, Rennie MJ. Anabolic signalling deficits underlie amino acid resistance of wasting, aging 

muscle.FASEB J. 2005; 19(3): 422-4. 

Nagle CA, Klett EL and Coleman RA. Hepatic triacylglycerol accumulation and insulin 

resistance. J Lipid Res 2009; 50(Suppl): S74-S79.  

Davidson, MB. The effect of aging on carbohydrate metabolism: a review of the English 

literature and a practical approach to the diagnosis of diabetes mellitus in the elderly. 

Metabolism 1979; 28(6): 688-705. 



279 
 

Davy KP, Horton T et al. Regulation of macronutrient balance in healthy young and older 

men. Int J Obes Relat Metab Disord 2011; 25(10): 1497-1502. 

Dawber TR, Kannel WB et al. Some factors associated with the development of coronary 

heart disease: six years' follow-up experience in the Framingham study. Am J Public Health 

Nations Health 1959; 49: 1349-1356. 

DeFronzo RA and Tripathy D. Skeletal muscle insulin resistance is the primary defect in 

Type 2 Diabetes. Diabetes Care 2009; 32 (Suppl 2): S157—S163.  

DeFronzo RA. Pathogenesis of type 2 diabetes: metabolic and molecular implications for 

identifying genes. Diabetes Rev 1997;5: 177–269 

DeFronzo, RA. Glucose intolerance and aging. Diabetes Care 1981; 4:493-501.  

DeFronzo, RA, Tobin JD et al. Glucose clamp technique: a method for quantifying insulin 

secretion and resistance. Am J Physiol 1979; 237(3): E214-223. 

Dela F, Helge JW. Insulin resistance and mitochondrial function in skeletal muscle. Int J 

Biochem Cell Biol. 2013; 45(1):11-5. 

Detko E, O'Hara JP, Thelwall PE, Smith FE, Jakovljevic DG, King RF, Trenell MI. Liver and 

muscle glycogen repletion using 13C magnetic resonance spectroscopy following ingestion 

of maltodextrin, galactose, protein and amino acids. Br J Nutr 2013; 14; 110(5): 848-55.  

Diraison F, Moulin P, Beylot M. Contribution of hepatic de novo lipogenesis and 

reesterification of plasma non esterified fatty acids to plasma triglyceride synthesis during 

non-alcoholic fatty liver disease. Diabetes Metab 2003; 29(5): 478-85. 

Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty 

acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver 

disease. J Clin Invest 2005;115(5): 1343-51. 



280 
 

Hua H, Gonzales J, Rude RK. Magnesium transport induced ex-vivo by a pharmacological 

dose of insulin is impaired in non-insulin dependent diabetes mellitus. Magnes Res 1995; 8: 

359-366. 

Dresner A, Laurent D, Marcucci M, Griffin ME, Dufour S, Cline GW, Slezak LA, Andersen 

DK, Hundal RS, Rothman DL, Petersen KF, Shulman GI: Effects of free fatty acids on 

glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 

1999, 103: 253 

Dube JJ, Amati F, Toledo FGS et al. Effects of weight loss and exercise in insulin resistance, 

and intramyocellular triacylglycerol, diacylglycerol and ceramide. Diabetologia 2011; 54(5): 

1147-56. 

Dube JJ, Amati F et al. Exercise-induced alterations in intramyocellular lipids and insulin 

resistance: the athlete's paradox revisited. Am J Physiol Endocrinol Metab 2008; 294(5): 

E882-888. 

Dubowitz V, Sewry CA, Oldfors A. Muscle biopsy : a practical approach. 2013; 4
th

 

Ed.Elsevier. 

Duren DL, Sherwood RJ et al. Body composition methods: comparisons and interpretation. J 

Diabetes Sci Technol 2008; 2(6): 1139-1146. 

Durnin JV and Womersley J. Body fat assessed from total body density and its estimation 

from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br 

J Nutr 1974; 32(1): 77-97. 

Edwards RH, Round JM et al. Needle biopsy of skeletal muscle: a review of 10 years 

experience. Muscle Nerve 1983; 6(9): 676-683. 



281 
 

Edwards RH, Young A et al. Needle biopsy of skeletal muscle in the diagnosis of myopathy 

and the clinical study of muscle function and repair. N Engl J Med 1980; 302(5): 261-271. 

Eibl NL, Kopp HP, Nowak HR, et al. Hypomagnesemia in type II diabetes: effect of a 3- 

month replacement therapy. Diabetes Care 1995; 18:188-192. 

Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, Quagliaro L, 

Ceriello A, Giugliano D. Inflammatory cytokine concentrations are acutely increased by 

hyperglycemia in humans: role of oxidative stress. Circulation 2002; 106(16): 2067-72. 

Essen-Gustavsson B and Borges O. Histochemical and metabolic characteristics of human 

skeletal muscle in relation to age. Acta Physiol Scand 1986; 126(1): 107-14. 

Emanuela F, Grazia M, Marco De R, Paola LM, Giorgio F, and Marco B. Inflammation as a 

Link between Obesity and Metabolic Syndrome. J NutrMetab 2012; 476380-6. 

Fazel R, Krumholz HM et al. Exposure to low-dose ionizing radiation from medical imaging 

procedures. N Engl J Med 2009; 361(9): 849-857. 

Felber JP and Vannotti A. Effect of fat infusion on glucose tolerance and insulin plasma 

levels. Med Exp 1964; 10:153-156. 

Ferrari P, Alleman Y et al. Reproducibility of insulin sensitivity measured by the minimal 

model method. Diabetologia 1991; 34(7): 527-530. 

Finegood, DT, Hramiak IM et al. A modified protocol for estimation of insulin sensitivity 

with the minimal model of glucose kinetics in patients with insulin-dependent diabetes. J Clin 

Endocrinol Metab 1990; 70(6): 1538-1549. 

Fink RI, Kolterman OG et al. Mechanisms of insulin resistance in aging. J Clin Invest 1983; 

71(6): 1523-1535. 



282 
 

Finkelstein EA, Khavjou OA, Thompson H, Trogdon JG, Pan L, Sherry B, Dietz W. Obesity 

and severe obesity forecasts through 2030. Am J Prev Med 2012;42(6): 563-70. 

Fleg, JL and Lakatta EG . Role of muscle loss in the age-associated reduction in VO2 max. J 

Appl Physiol 1985; 65(3): 1147-1151. 

Forbes GB. and Reina JC. Adult lean body mass declines with age: some longitudinal 

observations. Metabolism 1970; 19(9): 653-663. 

Franssila-Kallunki A, Schalin-Jantti C et al. Effect of gender on insulin resistance associated 

with aging. Am J Physiol 1992; 263(4 Pt 1): E780-785. 

Frayn KN. Macronutrient metabolism of adipose tissue at rest and during exercise: a 

methodological viewpoint.  Proc Nutr Soc 1999 Nov; 58(4): 877-86.  

Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl 

Physiol Respir Environ Exerc Physiol 1983; 55(2): 628-634. 

Freychet P, Roth J, and Neville, DM  Jr. Insulin receptors in the liver: specific binding of 

[125I] insulin to the plasma membrane and its relation to insulin bioactivity. Proc NatL Acad. 

Sci USA. 1971; 68: 1833-1837. 

Fritz IB. McEwen B. Effects of carnitine on fatty-acid oxidation by muscle. Science 1959; 

129 (3345): 334-335. 

Fukagawa NK, Minaker KL et al. Glucose and amino acid metabolism in aging man: 

differential effects of insulin. Metabolism 1988; 37(4): 371-377. 

Gallen IW and Macdonald IA. Effect of two methods of hand heating on body temperature, 

forearm blood flow, and deep venous oxygen saturation. Am J Physiol 1990; 259(5 Pt 1): 

E639-643. 



283 
 

Galloway SD, Craig TP, Cleland SJ. Effects of oral L-carnitine supplementation on insulin 

sensitivity indices in response to glucose feeding in lean and overweight/obese males. Amino 

Acids. 2011; 41(2):507-15 

Gastaldelli A, Ferrannini E, Miyazaki Y, Matsuda M, DeFronzo RA. Beta-cell dysfunction 

glucose handling in elderly subjects. Am J Clin Nutr 1992; 55: 1161-1167. 

Goldberger JH, Henry WL et al. Percutaneous needle biopsy of skeletal muscle: technic and 

application.  Am J Surg 1978; 136(3): 410-412. 

Goodpaster BH, Jakicic JM, Winters Carena, Kelley DE. Effects of obesity on substrate 

utilisation during exercise. Obes Res 2002; 10(7): 575-84. 

Goodpaster BH, Krishnaswami S, Resnik H, Kelley DE, Haggerty C, Harris TB, Schwartz 

AV, Kritchevsky S, Newman AB.  Association between regional adipose tissue distribution 

and both type 2 diabetes and impaired glucose tolerance in elderly men and women. Diabetes 

Care 2003; 26: 372–379 

Goodpaster, BH, He J et al. Skeletal muscle lipid content and insulin resistance: evidence for 

a paradox in endurance-trained athletes. J Clin Endocrinol Metab 2001; 86(12): 5755-5761. 

Graif M, Yanuka M et al. Quantitative estimation of attenuation in ultrasound video images: 

correlation with histology in diffuse liver disease. Invest Radiol 2000; 35(5): 319-324. 

Gray DS, Bray GA et al. Effect of obesity on bioelectrical impedance. Am J Clin Nutr 1989; 

50(2): 255-260. 

Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D, Goodyear LJ, Kraegen EW, 

White MF, Shulman GI. Free fatty acid-induced insulin resistance is associated with 

activation of protein kinase C theta and alterations in the insulin signalling cascade. Diabetes 

1999, 48: 1270-1274 



284 
 

Grimby G, Danneskiold-Samsoe B, Hvid K, Saltin B. Morphology and enzymatic capacity in 

arm and leg muscles in 78-81 year old men and women. Acta Physiol Scand 1982; 115:125–

34. 

Guerrero R, Vega GL, Grundy SM, Browning JD. Ethnic Differences in Hepatic Steatosis: 

An insulin resistance paradox? Hepatology 2009; 49(3): 791-801. 

Gulli G, Ferrannini E, Stern M, Haffner S, DeFronzo RA. The metabolic profile of NIDDM 

is fully established in glucose-tolerant offspring of two Mexican-American NIDDM parents. 

Diabetes 1992; 41: 1575–1586. 

Gunal AI, Celiker H, Donder E, Gunal SY. The effect of L-carnitine on insulin resistance in 

hemodialysed patients with chronic renal failure. J Nephrol 1999; 12:38-40. 

Gutniak, M, Grill V et al. Effect of composition of mixed meals--low- versus high-

carbohydrate content--on insulin, glucagon, and somatostatin release in healthy humans and 

in patients with NIDDM.  Diabetes Care 1986; 9(3): 244-249. 

Haffner SM, Valdez RA, Hazuda HP et al. Prospective analysis of the insulin-resistance 

syndrome (syndrome X). Diabetes 1992; 41:715–722 

Halberstam M, Cohen N, Shlimovich P, et al. Oral vanadyl sulfate improves insulin 

sensitivity in NIDDM but not in obese nondiabetic subjects. Diabetes 1996; 45:659-666. 

Harlan, WR, Landis JR et al. Secular trends in body mass in the United States, 1960-1980. 

Am J Epidemiol 1988; 128(5): 1065-1074. 

Harris R, Hultman E, Nordesjo L. Glycogen, glycolytic intermediates and high-energy 

phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest. 

Methods and variance of values. Scand J Clin Lab Invest. 1974;33: 109-120. 



285 
 

Harris, M. I., K. M. Flegal, et al. Prevalence of diabetes, impaired fasting glucose, and 

impaired glucose tolerance in U.S. adults. The Third National Health and Nutrition 

Examination Survey, 1988-1994. Diabetes Care 1988; 21(4): 518-524. 

Havel PJ, Townsend R, Chaump L, Teff K. High-fat meals reduce 24-h circulating leptin 

concentrations in women. Diabetes 1999 Feb; 48(2): 334-41. 

Hawkins, S and Wiswell R. Rate and mechanism of maximal oxygen consumption decline 

with aging: implications for exercise training. Sports Med 2003; 33(12): 877-888. 

Hawley JA and Lessard SJ. Exercise training-induced improvements in insulin action. Acta 

Physiol 2008; 192: 127-135. 

He S, McPhaul C, Li JZ, Garuti R, Kinch L, Grishin NV, Cohen JC, Hobbs HH. A sequence 

variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts 

triglyceride hydrolysis. J Biol Chem 2010; 285: 6706–15. 

Hedley, AA, Ogden CL et al. Prevalence of overweight and obesity among US children, 

adolescents and adults, 1999-2002. JAMA 2004; 291(23): 2847-2850. 

Heller W, Musil HE, Gaebel G et al. Effect of L-carnitine on post-stress metabolism in 

hemodialysed patients with chronic renal failure. J Nephrol 1999; 12:38-40. 

Hermansen L and Saltin B. Oxygen uptake during maximal treadmill and bicycle exercise. J 

Appl Physiol 1969; 26(1): 31-37. 

Hesse FG. A dietary study of the Pima Indian. Am J Clin Nutr 1959; 7: 532-7. 

Himsworth HP. Diabetes mellitus: its differentiation into insulin-sensitive and insulin-

insensitive types. Lancet 1936; 227: 127-130 

Hoehn, KL, Salmon AB et al. Insulin resistance is a cellular antioxidant defense mechanism. 

Proc Natl Acad Sci U S A 2009; 106(42): 17787-92. 



286 
 

Hoeks, J and Schrauwen P. Muscle mitochondria and insulin resistance: a human perspective. 

Trends Endocrinol Metab 2012; 23(9): 444-450. 

Hollenberg M, Ngo LH et al. Treadmill exercise testing in an epidemiologic study of elderly 

subjects. J Gerontol A Biol Sci Med Sci 1998; 53(4): B259-267. 

Hoppeler H, Fluck M. Plasticity of skeletal muscle mitochondria: structure and function. Med 

Sci Sports Exerc 2003; 35: 95– 104. 

Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1- 

mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha  and obesity-

induced insulin resistance. Science 1996; 271: 665–668.   

Hotamisligil GS, Johnson RS, Distel RJ, Ellis R, Papaioannou VE, Spiegelman BM. 

Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the 

adipocyte fatty acid binding protein. Science 1996; 274(5291): 1377-9. 

Hawley and Lessard. Exercise training-induced improvements in insulin action. Acta Physiol 

2008; 192: 127-135. 

Howley ET, Bassett DR, Jr.et al. Criteria for maximal oxygen uptake: review and 

commentary. Med Sci Sports Exerc 1995; 27(9): 1292-1301. 

Hoy AJ, Brandon AE, Turner N et al. Lipid and insulin infusion-induced skeletal muscle 

insulin resistance is likely due to metabolic feedback and not changes in IRS-1, Akt, or 

AS160 phosphorylation. Am J Physiol Endocrinol Metab. 2009; 297: E67-E75.   

Hu F. Globalization of diabetes. The role of diet, lifestyles and genes. Diabetes Care 2011; 

34(6) 1249-1257. 



287 
 

Hua H, Gonzales J, Rude RK. Magnesium transport induced ex vivo by a pharmacological 

dose of insulin is impaired in non-insulin dependent diabetes mellitus. Magnes Res 1995; 8: 

359-366. 

Hübinger A, Knode O, Susanto F, Reinauer H, Gries FA. Effects of the carnitine-

acyltransferase inhibitor etomoxir on insulin sensitivity, energy expenditure and substrate 

oxidation in NIDDM. Horm Metab Res 1997; 29: 436–439 

Hudgins LC, Hellerstein M, Seidman C, Neese R, Diakun J, Hirsch J. Human fatty acid 

synthesis is stimulated by a eucaloric low fat, high carbohydrate diet. J Clin Invest 1996; 97: 

2081–91. 

Ibanez J, Izquierdo M, Arguelles I, et al. Twice-weekly progressive resistance training 

decreases abdominal fat and improves insulin sensitivity in older men with type 2 diabetes. 

Diabetes Care 2005; 28(3): 662–7 

International Diabetes Federation .The IDF consensus worldwide definition of the metabolic 

syndrome. http://www.idf.org/webdata/docs/Metac_syndrome_def.pdf. 

Jacob S, Henriksen EJ, Tritschler HJ, et al. Improvement of insulin-stimulated glucose 

disposal in type 2 diabetes after repeated parenteral administration of thioctic acid. Exp Clin 

Endocrinol Diabetes 1996; 104: 284-288. 

Jensen MD, Haymond MW, Rizza RA, Cryer PE, Miles JM. Influence of body fat 

distribution on free fatty acid metabolism in obesity. J Clin Invest 1989; 83: 1168–1173 

Johannsen DL, Conley KE, Bajpeyi et al. Ectopic lipid accumulation and reduced glucose 

tolerance in elderly adults are accompanied by altered skeletal muscle mitochondrial activity. 

J Clinl Endo Metab 2012; 97(1): 242-250.   

Johnston RD, Stephenson MC, Crossland H, Cordon SM, Palcidi E, Cox EF, Taylor MA, 

Aithal GP, Macdonald IA. No difference between high-fructose and high-glucose diets on 

http://www.idf.org/webdata/docs/Metac_syndrome_def.pdf


288 
 

liver triacylglycerol or biochemistry in healthy overweight men. Gastroenterology 2013; 

145(5): 1016-25. 

Joslin EP. The treatment of diabetes mellitus, Philadelphia. 1935; 294 

Julie A. Marshall, Richard F. Hamman and Judith Baxter. High-Fat, Low-Carbohydrate Diet 

and the Etiology of Non-Insulin-dependent Diabetes Mellitus: The San Luis Valley Diabetes 

Study.  Am J Epidemiol 1991; 134 (6): 590-603 

Kahn C.  The molecular action of insulin action. Ann Rev of Med. 1985. 36 (429-51).  

Kahn CR, Rosenthal AS. Immunologic reactions to insulin: insulin allergy, insulin resistance, 

and the autoimmune insulin syndrome. Diabetes Care 1979; 2(3):283. 

Kahn R, Buse J, Ferrannini E, Stern M. The metabolic syndrome: time for a critical appraisal: 

joint statement from the American Diabetes Association and the European Association for the 

Study of Diabetes. Diabetes Care 2005; 28: 2289-2304 

Kang H, Greenson JK, Omo JT, Chao C, Peterman D, Anderson L, Foess-Wood L, Herbondy 

MA, Conjeevaram HS. Metabolic syndrome is associated with greater histologic severity, 

higher carbohydrate, and lower fat diet in patients with NAFLD. Am J Gastroenterol 2006; 

101: 2247–53. 

Kaplan NM. The deadly quartet. Upper-body obesity, glucose intolerance, 

hypertriglyceridemia and hypertension.  Arch Intern Med 1989; 149:1514–20 

Karianna F. M. Teunissen-Beekman, Janneke Dopheide, Johanna M. Geleijnse, Bakker SJL, 

Brink EJ, de Leeuv PW, Serroyen J and van Baak MA. Differential effects of proteins and 

carbohydrates on post-prandial blood-pressure-related responses. Br J Nutr 2014; 112(4): 

600-8.  

Kasim-Karakas SE, Tsodikov A, Singh U, Jialal I. Responses of inflammatory markers to a 

low-fat, high carbohydrate diet: effects of energy intake. Am J Clin Nutr 2006; 83, 774–779. 



289 
 

Katz, A. Nambi SS et al. Quantitative insulin sensitivity check index: a simple, accurate 

method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab 2000; 85(7): 

2402-2410. 

Kelley, DE and  Mandarino LJ. Fuel selection in human skeletal muscle in insulin resistance: 

a reexamination. Diabetes 2000; 49(5): 677-683. 

Kelley, DE, Goodpaster B et al. Skeletal muscle fatty acid metabolism in association with 

insulin resistance, obesity, and weight loss. Am J Physiol 1999; 277: E1130-1141. 

Kelly T, Yang W et al. Global burden of obesity in 2005 and projections to 2030. Int J Obes 

(Lond). 2008; 32(9): 1431-7. 

Kerner A, Avizohar O, Sella R, Bartha P, Zinder O, Markiewicz W et al. Association 

between elevated liver enzymes and C-reactive protein: possible hepatic contribution to 

systemic inflammation in the metabolic syndrome. Arterioscler Thromb Vasc Biol 2005; 

25(1): 193-7. 

Kimball SR, Farrell PA, Jefferson LS. Invited Review: Role of insulin in translational control 

of protein synthesis in skeletal muscle by amino acids or exercise. J Appl Physiol 2002; 

93(3): 1168-80 

King H & Rewers M for the WHO Ad HOC Diabetes Reporting Committee. Global 

estimates for prevalence of diabetes mellitus and impaired glucose tolerance in adults. 

Diabetes Care 1993; 16: 157-177. 

Kingston, WJ, Livingston JN et al. Enhancement of insulin action after oral glucose 

ingestion. J Clin Invest 1986; 77(4): 1153-1162. 

Klok MD, Jakobsdottir S, Drent ML. The role of leptin and ghrelin in the regulation of food 

intake and body weight in humans: a review. Obesity Reviews 2007; 8: 21-34. 



290 
 

Knowler WC, Bennett PH, Hamman RF, Miller M. Diabetes incidence and prevalence in 

Pima Indians: a 19-fold greater incidence than in Rochester, Minnesota. Am J Epidemiol 

1978; 108(6): 497-505. 

Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan 

DM; Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 

diabetes with lifestyle intervention or metformin. N Engl J Med  2002; 346(6): 393-403. 

Knowler WC, Pettitt DJ, Saad MF, Bennett PH. Diabetes mellitus in the Pima Indians: 

incidence, risk factors and pathogenesis. Diabetes Metab Rev 1990;6(1): 1-27. 

Kodama, Y, Ng CS et al. Comparison of CT methods for determining the fat content of the 

liver. Am J Roentgenol 188(5): 1307-12. 

Kolaczynski, JW, Ohannesian, JP, Considine, RV, Marco, CC & Caro, JF. Response of leptin 

to short-term and prolonged overfeeding in humans. J Clin Endocrinol Metab. 1996; 81: 

4162-5. 

Konrad T, Vicini P, Kusterer K et al. Alpha- Lipoic acid treatment decreases serum lactate 

and pyruvate concentrations and improves glucose effectiveness in lean and obese 

patients with type 2 diabetes. Diabetes Care 1999; 22: 280-7. 

Koopman R, Manders RJ, Zorenc AH et al. A single session of resistance exercise enhances 

insulin sensitivity for at least 24h in healthy men. Eur J Appl Physiol 2005; 94: 180-7.  

Krebs, M and Roden M. Molecular mechanisms of lipid-induced insulin resistance in muscle, 

liver and vasculature. Diabetes Obes Metab. 2005; 7(6): 621-32. 

Krishnan S, Rosenberg L, Singer M, Hu FB, Djousse L, Cupples LA & Palmer JR. Glycemic 

index, glycemic load, and cereal fiber intake and risk of type 2diabetes in US black women. 

Arch Intern Med 2007; 167(21): 2304-9. 



291 
 

Krogh-Madsen R, Plomgaard P, Akerstrom T, Møller K, Schmitz O, Pedersen BK. Effect of 

short-term intralipid infusion on the immune response during low-dose endotoxemia in 

humans. Am J Physiol Endocrinol Metab 2008; 294: E371–E379 

Krssak M, Petersen KF, Dresner A, DiPietro L, Vogel SM,Rothman DL, Shulman GI, Roden 

M. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 

1
H

 
NMR spectroscopy study. Diabetologia 1999; 42: 113– 6. 

Kumashiro N, Erion DM, Zhang D et al. Cellular mechanism of insulin resistance in 

nonalcoholic fatty liver disease. Proc Natl Acad Sci U S A 2011; 108: 16381–5 

Kylin E. Studien uber das Hypertonie-Hyperglyka ‘mie-Hyperurika’ miesyndrom. Zentralbl 

Inn Med 1923; 44: 105–27. 

Lakatta E and Fleg J. Role of muscle loss in the age-associated reduction in VO2 max. J Appl 

Physiol 1988; 65(3): 1147-51. 

Lara-Castro C, Newcomer BR, Rowell, J et al. Effects of Short-Term Very Low Calorie Diet 

on Intramyocellular Lipid and Insulin Sensitivity in Non-diabetics and Type 2 Diabetic 

Patients. Metabolism 2008; 57(1): 1-8.  

Larsson L, Karlsson J. Isometric and dynamic endurance as a function of age and skeletal 

muscle characteristics. Acta Physiol Scand 1978; 104: 129–36. 

Lauritzen HP, Ploug T, Ai H,Donsmark M, Prats C, Galbo H. Denervation and high-fat diet 

reduce insulin signalling in T-tubules in skeletal muscle of living mice. Diabetes 2008; 57: 

13– 23. 

Lavis VR, Williams RH. Lipolytic effects of high concentrations of insulin on isolated fat 

cells. Enhancement of the response to lipolytic hormones. Diabetes 1973 Aug; 22(8): 629-36. 



292 
 

Leˆ KA, Ith M, Kreis R, Faeh D, Bortolotti M, Tran C, Boesch C, Tappy L.  Fructose 

overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with 

and without a family history of type 2 diabetes. Am J Clin Nutr 2009;89: 1760–5. 

Lear SA, Brozic A et al. Exercise stress testing. An overview of current guidelines. Sports 

Med 1999; 27(5): 285-312. 

Lear SA, Humphries KL et al. Visceral adipose tissue accumulation differs according to 

ethnic background: results of the Multicultural Community Health Assessment Trial (M-

CHAT). Am J Clin Nutr 2007; 86(2): 353-359. 

Lebovitz HE. Insulin resistance: definition and consequences. Exp Clin Endocrinol Diabetes 

2001; 109(Suppl 2): S135-S148 

Lee NA, Reasner CA. Beneficial effect of chromium supplementation on serum triglyceride 

levels in NIDDM. Diabetes Care 1994; 17: 1449-52. 

Lessard SJ, Rivas DA, Chen ZP, Bonen A, Febbraio MA, Reeder DW, Kemp, BE, Yaspelkis 

B.B. 3rd & Hawley, JA. Tissue-specific effects of Rosiglitazone and Exercise in the 

treatment of lipid-induced insulin resistance. Diabetes 2007; 56: 1856–1864. 

Levine JA, Eberhardt NL, Jensen MD. Role of non-exercise activity thermogenesis in 

resistance to fat gain in humans.  Science 1999; 283(5399): 212-4. 

Li G, Zhang P, Wang J, Gregg EW, Yang W, Gong Q, Li H, Li H, Jiang Y, An Y, Shuai Y, 

Zhang B, Zhang J, Thompson TJ, Gerzoff RB, Roglic G, Hu Y, Bennett PH. The long-term 

effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention 

Study: a 20-year follow-up study. Lancet 2008; 371(9626): 1783-9 

Liao Y, Kwon S, Shaughnessy S, Wallace P, Hutto A, Jenkins AJ, et al. Critical evaluation of 

adult treatment panel III criteria in identifying insulin resistance with dyslipidemia. Diabetes 

Care 2004; 27: 978–83. 



293 
 

Lim EL, Hollingsworth KG, Aribisala BS et al.  Reversal of type 2 diabetes: normalisation of 

beta cell function in association with decreased pancreas and liver triacylglycerol. 

Diabetologia 2011; 54(10): 2506-14.  

Lima M de L, Cruz T, Pousada JC et al. The effect of magnesium supplementation in 

increasing doses on the control of type 2 diabetes. Diabetes Care 1998; 21: 682-6. 

Lindstrom J, Louheranta A, Mannelin M, Rastas M, Salminen V, Eriksson J, Uusitupa M, 

Tuomehlito J. The Finnish diabetes prevention study (DPS). Lifestyle intervention and 3-year 

results on diet and physcial activity. Diabetes Care 2003; 26: 3230–6. 

Liu L, Shi X, Choi CS et al. Paradoxical coupling of triglyceride synthesis and fatty acid 

oxidation in skeletal muscle overexpressing DGAT1. Diabetes 2009; 58: 2516–24 

Lukaski, HC, Johnson PE et al. Assessment of fat-free mass using bioelectrical impedance 

measurements of the human body. Am J Clin Nutr 1985; 41(4): 810-7. 

Machicao F and Wieland OH. Evidence that the insulin receptor-associated protein kinase 

acts as a phosphatidylinositol kinase. FEBS (Fed. Eur. Biochem. Soc) Lett. 1985; 175: 113-

116. 

Maersk M, Belza A, Stødkilde-Jørgensen H, Ringgaard S, Chabanova E, Thomsen H, 

Pedersen SB, Astrup A, Richelsen B. Sucrose-sweetened beverages increase fat storage in the 

liver, muscle, and visceral fat depot: a 6-mo randomized intervention study. Am J Clin Nutr 

2012; 95(2): 283-9.  

Magkos F, Su X, Bradley D, et al. Intrahepatic diacylglycerol content is associated with 

hepatic insulin resistance in obese subjects. Gastroenterology 2012; 142(7). 

Marchand I, Tarnopolsky M, Adamo KB, Bourgeois JM, Chorneyko K, Graham TE. 

Quantitative assessment of human muscle glycogen granules size and number in subcellular 

locations during recovery from prolonged exercise. J Physiol 2007; 580: 617– 28. 



294 
 

Marchesini G1, Brizi M, Bianchi G, Tomassetti S, Bugianesi E, Lenzi M, McCullough AJ, 

Natale S, Forlani G, Melchionda N. Nonalcoholic fatty liver disease: a feature of the 

metabolic syndrome  Diabetes 2001; 50(8): 1844-50.  

Marshall JA, Lopez TK, Shetterly SM, Morgenstern NE, Baer K, Swenson C, Baron A, 

Baxter J, Hamman RF. Indicators of nutritional risk in a rural elderly Hispanic and non-

Hispanic white population: San Luis Valley Health and Aging Study. J Am Diet Assoc 1999; 

99(3): 315-22. 

Mather KJ, Hunt AE et al. Repeatability characteristics of simple indices of insulin 

resistance: implications for research applications. J Clin Endocrinol Metab 2001; 86(11): 5 

McAuley KA, Smith KJ, Taylor RW, McLay RT, Williams SM, Mann JI. Long-term effects 

of popular dietary approaches on weight loss and features of insulin resistance.  International 

Journal of Obesity 2006; 30: 342–349. 

McCance DR, Pettitt DJ, Hanson RL, Jacobsson LT, Bennett PH, Knowler WC. Glucose, 

insulin concentrations and obesity in childhood and adolescence as predictors of NIDDM. 

Diabetologia 1994; 37: 617–23 

McGarry, JD, Mills, SE, Long, CS & Foster DW. Observations on the affinity for carnitine, 

and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. 

Biochem. J 1983; 214: 21-8. 

Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature 

2007; 449: 819–26 

Melanson, EL, Donahoo WT et al. Changes in 24-h substrate oxidation in older and younger 

men in response to exercise. J Appl Physiol 1985; 103(5): 1576-82. 



295 
 

Meneilly, GS, Elahi D et al. Impairment of noninsulin-mediated glucose disposal in the 

elderly. J Clin Endocrinol Metab 1989; 68(3): 566-71. 

Meredith  CN, Frontera WR, Fisher EC, Hughes VA, Herland JC, Edwards J & EvansWJ. 

Peripheral Effects of Endurance Training in Young and Old Subjects. Journal of Applied 

Physiology 1989: 66: 2844-49.  

Meredith  CN, Frontera WR, Fisher EC, Hughes VA, Herland JC, Edwards J & EvansWJ. 

Peripheral metabolism in patients with non-insulin dependent diabetes mellitus. Metabolism 

1996; 45:1130-5 

Miller DS, Mumford P, Stock MJ. Gluttony. II Thermogenesis in overeating man. Am J Clin 

Nutr 1967; 20: 1223-29.  

Mingrone G, Greco AV, Capristo E, et al. Lcarnitine improves glucose disposal in type 2 

diabetic patients. J American Coll Nutr 1999; 18(1): 77-82. 

Morley, JE. Diabetes and aging: epidemiologic overview. Clin Geriatr Med; 2008; 24(3): 

395-405. 

Moro C, Galgani JE, Luu L et al. Influence of gender, obesity, and muscle lipase activity on 

intramyocellular lipids in sedentary individuals. J Clin Endocrinol Metab 2009; 94: 3440-7. 

Morris, AD, Ueda S et al. The euglycaemic hyperinsulinaemic clamp: an evaluation of 

current methodology. Clin Exp Pharmacol Physiol 1997; 24(7): 513-8. 

Muniyappa, R, Lee S et al. Current approaches for assessing insulin sensitivity and resistance 

in vivo: advantages, limitations, and appropriate usage. Am J Physiol Endocrinol Metab 

2008; 294(1): E15-26. 

Nair, KS. Aging muscle. Am J Clin Nutr 2005; 81(5): 953-63. 



296 
 

Nakaya Y, Minami A, Harada N, et al. Taurine improves insulin sensitivity in the Otsuka 

Long-Evans Tokushima Fatty rat, a model of spontaneous type 2 diabetes. Am J Clin Nutr 

2000; 71(1): 54-58.  

Neel, JV. Diabetes mellitus: a "thrifty" genotype rendered detrimental by "progress"? Am J 

Hum Genet 1962; 14: 353-362. 

Nestel PJ and Barter PJ. Triglyceride clearance during diets rich in carbohydrate or fats. Am J 

Clin Nutr 1973; (26): 241-245 

Neumann RO. Contribution to the study of the variation of daily nutritional requirements 

particularly regarding protein needs. Arch Hyg 1902; 45: 1-87 

Ngo Sock ET, Le KA, Ith M, Kreis R, Boesch C, Tappy L. Effects of a short-term 

overfeeding with fructose or glucose in healthy young males. Br J Nutr 2010; 103: 939–43. 

Nielsen J, Mogensen M, Vind B et.al. Increased subsarcolemmal lipids in type 2 diabetes: 

effect of training on localization of lipids, mitochondria, and glycogen in sedentary human 

skeletal muscle. Am J Physiol End and Metab 2010; 298(3): E706-E713.  

Nobili V, Marcellini M, Marchesini G et al. Intrauterine growth retardation, insulin 

resistance, and nonalcoholic fatty liver disease in children. Diabetes Care 2007; 30: 2638–40 

O’Dea K. Westernisation, insulin resistance and diabetes in Australian aborigines. Med J 

Aust 1991; 155(4): 258-64 

Offenbacher EG, Pi-Sunyer FX. Beneficial effect of chromium-rich yeast on glucose 

tolerance and blood lipids in elderly subjects. Diabetes 1980; 29: 919-25. 

Opie LH and Newsholme EA. The activities of fructose 1,6-diphosphatase, 

phosphofructosekinase and phosphoenolpyruvate carboxykinase in white muscle and red 

muscle. Biochem J 1967; 103(2): 391-399. 



297 
 

Orlander J, Kiessling KH, Larsson  L, Karlsson J, Aniansson A.  Skeletal muscle metabolism 

and ultrastructure in relation to age in sedentary men. Acta Physiologica Scandinavica 1978. 

104(3): 249–61. 

Pan DA, Lillioja S, Kriketos AD, Milner MR, Baur LA, Bogardus C, Jenkins AB, Storlien 

LH. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes 1997; 

46: 983– 88. 

Paolisso G, Sgambato S, Gambardella A, et al. Daily magnesium supplements improve 

glucose handling in elderly subjects. Am J Clin Nutr 1992; 55(6): 1161-7. 

Paolisso G, Tataranni PA, Foley JE, Bogardus C, Howard BV, Ravussin E. A high 

concentration of fasting plasma non-esterified fatty acids is a risk factor for the development 

of NIDDM. Diabetologia 1995; 38: 1213–17 

Parks EJ. Dietary carbohydrate's effects on lipogenesis and the relationship of lipogenesis to 

blood insulin and glucose concentrations. Br J Nutr 2002; 87 Suppl 2(S2): S247-53  

Parks EJ, Krauss RM, Christiansen MP, Neese RA, Hellerstein MK. Effects of a low-fat, 

high-carbohydrate diet on VLDL-triglyceride assembly, production and clearance. J Clin 

Invest 1999; 104:1087–96 

Pateyjohns, IR, Brinkworth GD et al. Comparison of three bioelectrical impedance methods 

with DXA in overweight and obese men. Obesity (Silver Spring) 2006; 14(11): 2064-70. 

Pei D, Jones C et al. Evaluation of octreotide to assess insulin-mediated glucose disposal by 

the insulin suppression test. Diabetologia 1994; 37(8): 843-45. 

Pereira M, Jacobs D, Pins J et al. Effect of whole grains on insulin sensitivity in overweight 

hyperinsulinemic adults. Am J Clin Nutr 2002; 75: 848–55 



298 
 

Perseghin G, Price TB, Petersen KF, Roden M, Cline GW, Gerow K, Rothman DL, Shulman 

GI. Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise 

training in insulin-resistant subjects. N Engl J Med 1996; 335: 1357– 62 

Perseghin G, Scifo P, Danna M, Battezzati A, Benedini S, Meneghini E, Del Maschio A, Luzi 

L. Normal insulin sensitivity and IMCL content in overweight humans are associated with 

higher fasting lipid oxidation. Am J Physiol Endocrinol Metab 2002; 283: E556–E564 

Perseghin G, Lattuada G, De Cobelli F et al. Habitual physical activity is associated with 

intrahepatic fat content in humans. Diabetes Care 2007; 30:683–88 

Petersen, KF, Befroy D et al. 2003.  Mitochondrial dysfunction in the elderly: possible role in 

insulin resistance. Science 2003; 300(5622): 1140-2. 

Petersen KF, Dufour S, Befroy D, Lehrke M, Hendler RE, Shulman GI. Reversal of 

nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate 

weight reduction in patients with type 2 diabetes. Diabetes 2005; 54:603–8 

Petersen KF, Dufour S, Shulman GI. Decreased insulin-stimulated ATP synthesis and 

phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents. PLoS 

Med 2005; 2: e233 

Petersen KF, Dufour S, Savage DB et al. The role of skeletal muscle insulin resistance in the 

pathogenesis of the metabolic syndrome. Proc Natl Acad Sci U S A 2007; 104:12587–12594 

Postic C, Dentin R, Denechaud PD, Girard J.ChREBP, a transcriptional regulator of glucose 

and lipid metabolism. Annu Rev Nutr 2007; 27: 179-92. 

Power, RA, Hulver MW et al. Carnitine revisited: potential use as adjunctive treatment in 

diabetes. Diabetologia 2007; 50(4): 824-832. 



299 
 

Prado, CM, Lieffers JR et al. Prevalence and clinical implications of sarcopenic obesity in 

patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based 

study. Lancet Oncol 2008; 9(7): 629-635. 

Proud CG, Denton RM. Molecular mechanisms for the control of translation by insulin. 

Biochem J. 1997; 328 (Pt 2): 329-41. 

Pruchnic R, Katsiaras A, He J, Kelley DE, Winters C, Goodpaster BH. Exercise training 

increases intramyocellular lipid and oxidative capacity in older adults. Am J Physiol 

Endocrinol Metab 2004; 287: E857-E862 

Purkins L, Love ER, Eve MD, Wooldridge CL, Cowan C, Smart TS, Johnson PJ, Rapeport 

WG. Br J Clin Pharmacol 2004; 57(2): 199-208.  

Radziuk J, Norwich KH, and Vranic M. Experimental validation of measurements of glucose 

turnover in nonsteady state. Am J Physiol Endocrinol Metab Gastrointest Physiol. 1978; 234: 

E84–E93. 

Randle PJ. Regulatory interactions between lipids and carbohydrates: the glucose fatty acid 

cycle after 35 years. Diabetes Metab Rev 1998, 14: 263-83 

Ratziu V, Charlotte F et al. Sampling variability of liver biopsy in nonalcoholic fatty liver 

disease.Gastroenterology 2005;128(7): 1898-1906. 

Ratheiser K, Schneeweiss B, Waldhäusl W et al. Inhibition by etomoxir of carnitine 

palmitoyltransferase I reduces hepatic glucose production and plasma lipids in non-insulin-

dependent diabetes mellitus. Metabolism 1991; 40: 1185–90 

Ravikumar B, Gerrard J, Dalla Man C et al. Pioglitazone decreases fasting and postprandial 

endogenous glucose production in proportion to decrease in hepatic triglyceride content. 

Diabetes 2008; 57: 2288–95  



300 
 

Reaven GM. A Toast to Sir Harold Himsworth. Diabet. Med 2011. 28: 1436-1437 

Reaven GM. Banting Lecure 1988. Role of insulin resistance in human disease. Diabetes. 

1988; 37(12):1595-607 

Reaven GM. Why Syndrome X? From Harold Himsworth to the insulin resistance syndrome. 

Cell Metab 2005; 1: 9-14.  

Reeder SB, Cruite I et al.Quantitative assessment of liver fat with magnetic resonance 

imaging and spectroscopy.  J Magn Reson Imaging 2011; 34(4): 729-49. 

Riales R, Albrink MJ. Effect of chromium chloride supplementation on glucose tolerance and 

serum lipids including high-density lipoprotein of adult men. Am J Clin Nutr 1981; 34(12): 

2670-80. 

Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE. Deficiency of 

subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 2005; 54: 8-14. 

Rivellese AA, Maffettone A, Iovine C, et al. Long-term effects of fish oil on insulin 

resistance and lipoproteins in NIDDM patients with hypertriglyceridaemia. Diabetes Care 

1996; 19(11): 1207-13. 

Rizza RA, Mandarino LJ et al. Dose-response characteristics for effects of insulin on 

production and utilization of glucose in man. Am J Physiol 1981; 240(6): E630-639. 

Roden et al. Mechanism of free-fatty acid induced insulin resistance in humans. J Clin Invest 

1996; 97(12): 2859-65. 

Romijn, JA, Coyle, EF, Sidossis, LS, Gastaldelli, A, Horowitz, JF, Endert, E & Wolfe, RR.  

Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity 

and duration. Am J Physiol 1993; 265, E380–391. 

Root HF. Insulin resistance and bronze diabetes. N Engl J Med. 1929; 201: 201–6. 



301 
 

Rosen, MJ, Sorkin JD et al. Predictors of age-associated decline in maximal aerobic capacity: 

a comparison of four statistical models. J Appl Physiol. 1985; 84(6): 2163-70. 

Ross R, Dagnone D, Jones PJH, Smith H, Paddags A, Hudson R, Janssen I: Reduction in 

obesity and related comorbid conditions after diet-induced weight loss or exercise-induced 

weight loss in men: a randomized controlled trial. Ann Intern Med. 2000; 133: 92–103 

Rothman DL, Magnusson I, Cline G, Gerard D, Kahn CR, Shulman RG, Shulman GI. 

Decreased muscle glucose transport / phosphorylation is an early defect in the pathogenesis 

of non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA 1995; 92: 983–87 

Rothman DL, Shulman RG, Shulman GI. 
31

P nuclear magnetic resonance measurements of 

muscle glucose-6-phosphate. Evidence for reduced insulin-dependent muscle glucose 

transport or phosphorylation activity in non-insulin-dependent diabetes mellitus. J Clin Invest 

1992, 89:1069-75 

Rowe JW, Minaker KL et al. Characterization of the insulin resistance of aging. J Clin Invest  

1983; 71(6): 1581-7. 

Rowley, KG, Bes JD et al. Insulin resistance syndrome in Australian aboriginal people.Clin 

Exp Pharmacol Physiol 1997; 24(9-10): 776-81. 

Rush, EC, Chandu V et al. Prediction of fat-free mass by body impedance analysis in migrant 

Asian Indian men and women: a cross validation study. Int J Obes (Lond). 2006; 30(7): 

1125-31. 

Russell AP, Gastaldi G, Bobbioni-Harsch E et al. Lipid peroxidation in skeletal muscle of 

obese as compared to endurance trained humans: a case of good vs. bad lipids? FEBS Lett 

2003; 551: 104-6. 



302 
 

Saadeh S, Younossi ZM et al. The utility of radiological imaging in nonalcoholic fatty liver 

disease. Gastroenterology 2002; 123(3): 745- 50. 

Salans LB, Bray GA, Cushman SW, Danforth E, Jr, Glennon JA, Horton ES, Sims EA. 

Glucose metabolism and the response to insulin by human adipose tissue in spontaneous and 

experimental obesity. Effects of dietary composition and adipose cell size. J Clin Invest 1974; 

53, 848–56 

Salans LB, Horton ES, Sims E. Experimental obesity in man: cellular character of the adipose 

tissue. J Clin Invest. 1971; 50: 1005-11 

Salazar MR, Carbajal HA, Espeche WG, Dulbecco CA, Aizpurúa M, Marillet AG, 

Echeverria RF, Reaven GF. Relationships among insulin resistance, obesity, diagnosis of the 

metabolic syndrome and cardio-metabolic risk. Diabetes and Vascular Disease Research 

2011; 8: 109-16. 

Sale G J, Yamaguchi F and Kahn FR. Characterization of phosphatidylinositol kinase activity 

associated with the insulin receptor. Eur J Biochem 1986; 155: 345-351. 

Saltiel and Kahn. Insulin signalling and the regulation of glucose and lipid metabolism. 

Nature 2001; 414: 799-806.  

Samuel VT, Liu ZX, Qu X, Elder BD, Bilz S, Befroy D, Romanelli AJ, Shulman GI. 

Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem 

2004; 279: 32345–53. 

Samuel VT, Petersen KF,Shulman GI. Lipid-induced insulin resistance: unravelling the 

mechanism. Lancet 2010; 375:2267–77 

Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing 

links. Cell 2012; 148:852–71 



303 
 

Savage DB, Zhai L, Ravikumar B et al. A prevalent variant in PPP1R3A impairs glycogen 

synthesis and reduces muscle glycogen content in humans and mice [published correction in: 

Plos Med 2008; 5:e246]. PLoS Med 2008; 5:e27 

Savage, DB, Petersen KF et al. Disordered lipid metabolism and the pathogenesis of insulin 

resistance. Physiol Rev 2007; 87(2): 507-20. 

Schrauwen-Hinderling VB, Kooi ME, Hesselink MK, Moonen-Kornips E, Schaart G, 

Mustard KJ, Hardie DG, Saris WH, Nicolay K, Schrauwen P. Intramyocellular lipid content 

and molecular adaptations in response to a 1-week high-fat diet. Obes Res 2005; 13: 2088–94 

Schulz LO, Bennett PH, Ravussin E, Kidd JR, Kidd KK, Esparza J, Valencia ME.. Effects of 

traditional and western environments on prevalence of type 2 diabetes in Pima Indians in 

Mexico and the U.S. Diabetes Care 2006; 29(8): 1866-71 

Schulze MB1, Manson JE, Ludwig DS, Colditz GA, Stampfer MJ, Willett WC, Hu FB. 

Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and 

middle-aged women. JAMA 2004; 292(8): 927-34. 

Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG.: Quantitation of 

muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent 

diabetes by 
13

C nuclear magnetic resonance spectroscopy. N Engl J Med 1990; 322: 223– 8. 

Schutz Y, Kyle UU et al. Fat-free mass index and fat mass index percentiles in Caucasians 

aged 18-98 y. Int J Obes Relat Metab Disord 2002; 26(7): 953-60. 

Schwarz JM, Linfoot P, Dare D, Aghajanian K. Hepatic de novo lipogenesis in 

normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and 

low-fat, high-carbohydrate isoenergetic diets. Am J Clin Nutr 2003; 77:43–50. 



304 
 

Segal KR, Edano A, Abalos A. Effect of exercise training on insulin sensitivity and glucose 

metabolism in lean, obese, and diabetic men. J Appl Physiol. 1991; 71:2402–11 

Sepe A, Tchkonia T et al. Aging and regional differences in fat cell progenitors - a mini-

review. Gerontology 2011; 57(1): 66-75. 

Sevastianova K, Santos A, Kotronen A, Hakkarainen A, Makkonen J, Silander K, Peltonen 

M, Romeo S, Lundbom J, Lundbom N, Olkkonen VM, Gylling H, Fielding BA, Rissanen A, 

Yki-Järvinen H. Effect of short-term carbohydrate overfeeding and long-term weight loss on 

liver fat in overweight humans. Am J Clin Nutr 2012; 96(4): 727-34.   

Shehrir E, Shen S-W, Reaven GM, Farquhar JW. Comparison of impedance to insulin-

mediated glucose uptake in normal and diabetic subjects. J Clin Invest 1970; 49: 2151–2160. 

Shen, SW, Reaven GM et al. Comparison of impedance to insulin-mediated glucose uptake 

in normal subjects and in subjects with latent diabetes. J Clin Invest 1970; 49(12): 2151-60. 

Shepherd P  et al. Mechanisms regulating phosphoinositide 3-kinase signalling in insulin-

sensitive tissues. Acta Physiol Scand 2005. 183; 3-12 . 

Shephard, R J, Allen C et al. The maximum oxygen intake. An international reference 

standard of cardiorespiratory fitness. Bull World Health Organ 1968; 38(5): 757-64. 

Shimokata H, Muller DC, Fleg JL, Sorkin J, Ziemba AW, Andres R. Age as independent 

determinant of glucose tolerance. Diabetes 1991; 40(1): 44-51 

Shulman GI. Increased glucose transport phosphorylation and muscle glycogen synthesis 

after exercise training in insulinresistant subjects.N Engl JMed 1996; 335: 1357–1362 

Sial S, Coggan A, Carroll R, Goodwin J and Klein S. Fat and carbohydrate metabolism 

during exercise in elderly and young subjects. Am J Physiol 1996; 271: E983-E989. 



305 
 

Sidossis LS, Coggan AR, Gastaldelli A, Wolfe RR. A new correction factor for use in tracer 

estimations of plasma fatty acid oxidation. Am J Physiol 1995; 269: E649–E656 

Sierra-Johnson J, Johnson BD, Allison TG, Bailey KR, Schwartz GL and Turner ST. 

Correspondence between the adult treatment panel III criteria for metabolic syndrome and 

insulin resistance. Diabetes Care 2006; 29: 668–72. 

Singh RB, Niaz MA, Rastogi SS, et al. Effect of hydrosoluble coenzyme Q10 on blood 

pressures and insulin resistance in hypertensive patients with coronary artery disease. J Hum 

Hypertens. 1999; 13(3): 203-8. 

Skovbro M, Baranowski M, Skov-Jensen C, Flint A, Dela F, Gorski J, Helge JW. 

Diabetologia 2008; 51(7):1253-60. 

Skrha J, Sindelka G, Kvasnicka J, Hilgertova J. Insulin action and fibrinolysis influenced by 

Vitamin E in obese Type 2 Diabetes Mellitus. Diabetes Res Clin Pract 1999; 44(1): 27-33. 

Sobrecases H, Le KA, Bortolotti M, Schneiter P, Ith M, Kreis R,Boesch C, Tappy L. Effects 

of short-term overfeeding with fructose, fat and fructose plus fat on plasma and hepatic lipids 

in healthy men. Diabetes Metab 2010; 36: 244–6. 

Solga S, Alkhuraishe AR, Clark JM et al. Dietary composition and nonalcoholic fatty liver 

disease. Dig Dis Sci 2004; 49: 1578-83. 

Sookoian S, Pirola CJ. Meta-analysis of the influence of I148M variant of patatin-like 

phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological 

severity of nonalcoholic fatty liver disease. Hepatology 2011; 53: 1883–94. 

Soop, M, Nygren J et al. The hyperinsulinaemic-euglycaemic glucose clamp: reproducibility 

and metabolic effects of prolonged insulin infusion in healthy subjects. Clin Sci (Lond) 2000; 

98(4): 367-74. 



306 
 

Speakman, J. R. and C. Hambly. Starving for life: what animal studies can and cannot tell us 

about the use of caloric restriction to prolong human lifespan. J Nutr 2007; 137(4): 1078-86. 

 

Stanhope KL, Schwarz JM, Keim NL. Consuming fructose-sweetened, not glucose-

sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity 

in overweight/obese humans.J Clin Invest 2009; 119(5): 1322-34.    

Stanhope KL, Bremer AA, Medici V, Nakajima K, Ito Y, Nakano T, Chen G, Fong TH, Lee  

Menorca V, Keim NL, Havel PJ. Consumption of fructose and high fructose corn syrup 

increase postprandial triglycerides, LDL-cholesterol, and apolipoprotein-B in young men and 

women.  J Clin Endocrinol Metab 2011; 96(10): E1596-605.  

Steele R. Influences of glucose loading and of injected insulin on hepatic glucose output. Ann 

N Y Acad Sci 1959; 82: 420-30. 

Stenholm S, Harris TB et al. Sarcopenic obesity: definition, cause and consequences. Curr 

Opin Clin Nutr Metab Care 2008; 11(6): 693-700 

Stephens, FB, Constantin-Teodosiu D et al. Insulin stimulates L-carnitine accumulation in 

human skeletal muscle. FASEB J. 2006; 20(2): 377-9 

St-Onge, M. P. Relationship between body composition changes and changes in physical 

function and metabolic risk factors in aging. Curr Opin Clin Nutr Metab Care 2005; 8(5): 

523-8 

Szczepaniak LS, Nurenberg P et al. Magnetic resonance spectroscopy to measure hepatic 

triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol 

Endocrinol Metab 2005; 288(2): E462-8 



307 
 

Tang JE , Moore DR , Kujbida GW , Tarnopolsky MA , Phillips SM. Ingestion of whey 

hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest 

and following resistance exercise in young men. J Appl Physiol 2009; 107(3): 987-92  

 Taylor R. Pathogenesis of type 2 diabetes: tracing the reverse route from cure to cause. 

Diabetologia 2008; 51:1781–1789 

Taylor R. Type 2 Diabetes. Etiology and reversibility. Diabetes Care 2013; 36(4): 1047-55 

Thiebaud D, Jacot E, DeFronzo RA, Maeder E, Jequier E, Felber JP. The effect of graded 

doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man. 

Diabetes 1982; 31: 957–63 

Thomas VL, Gropper SS. Effect of chromium nicotinic acid supplementation on selected 

cardiovascular risk factors. Biol Trace Elem Res 1996; 55(3): 297-305 

Thomas T, Pfeiffer AF. Foods for the prevention of diabetes: how do they work? Diabetes 

Metab Res Rev. 2012; 28(1): 25-49.  

Tuomilehto J1, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, 

Keinänen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, Uusitupa M; 

Finnish Diabetes Prevention Study Group. Prevention of type 2 diabetes mellitus by changes 

in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001; 344(18): 

1343-50. 

Vague J. La differenciation sexuelle, facteur determinant des formes de l'obesité. Presse Medl 

1947; 53: 339–40. 

van de Weijer, T., L. M. Sparks, et al. Relationships between mitochondrial function and 

metabolic flexibility in type 2 diabetes mellitus. 2013; PLoS ONE 8(2): e51648. 



308 
 

Van Herpen N.A., Schrauwen-Hinderling V.B., Schaart G., Mensink R.P., Schrauwen P. 

Three weeks on a high-fat diet increases intrahepatic lipid accumulation and decreases 

metabolic flexibility in healthy overweight men. J Clin Endocrinol Metab. 2011; 96: E691–

E695. 

van Loon LJ, Manders RJF, Koopman,R et al. Inhibition Of Adipose Tissue Lipolysis 

Increases Intramuscular Lipid Use In Type 2 Diabetes Patients. Diabetologia 2005; 48(10): 

2097-107 

van Loon LJ, Goodpaster BH. Increased intramuscular lipid storage in the insulin-resistant 

and endurance-trained state. Pflugers Arch 2006; 451: 606–616 

Villegas R1, Liu S, Gao YT, Yang G, Li H, Zheng W, Shu XO. Prospective study of dietary 

carbohydrates, glycemic index, glycemic load, and incidence of type 2 diabetes mellitus in 

middle-aged Chinese women. Arch Intern Med. 2007; 167(21): 2310-6. 

Wang J, Obici S, Morgan K, Barzilai N, Feng Z, Rossetti L. Overfeeding rapidly induces 

leptin and insulin resistance.  Diabetes 2001; 50(12): 2786-91. 

Warram JH, Martin BC, Krolewski AS, Soeldner JS, Kahn CR. Slow glucose removal rate 

and hyperinsulinaemia preced the development of type II diabetes in the offspring of diabetic 

parents. Ann Intern Med. 1990; 113(12): 909-15 

Weickert MO. Nutritional modulation of insulin resistance. Scientifica. 2012; Article ID 

424780. 

Westerbacka J, Lammi K, Hakkinen AM, Rissanen A, Salminen I, Aro A, Yki-Jarvinen H. 

Dietary fat content modifies liver fat in overweight nondiabetic subjects. J Clin End ocrinol 

Metab 2005; 90(5): 2804-9. 



309 
 

Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory and 

insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 1999; 104(6): 

787-94. 

White MF and Kahn CR. The Insulin Receptor and Tyrosine Phosphorylation. In The 

Enzymes. 1986 P. D. Boyer and E. G. Krebs, editors. Academic Press, Inc., Orlando, FL 247-

302. 

White MF, Livingston JN, Backer JM, Dull T, Allrich A and Kahn CR. Mutation of the 

insulin receptor at tyrosine 960 inhibits signal transmission but does not affect tyrosine kinase 

activity. Cell 1998; 54(5): 641–9. 

Wijsman CA, van Opstal AM et al. Proton magnetic resonance spectroscopy shows lower 

intramyocellular lipid accumulation in middle-aged subjects predisposed to familial 

longevity. Am J Physiol Endocrinol Metab. 2012; 302(3): E344-348. 

Wild S, Roglic G et al. Global prevalence of diabetes: estimates for the year 2000 and 

projections for 2030. Diabetes Care 2004; 27(5): 1047-53. 

Williamson JR, Kreisberg RA, Felts PW.Mechanism for the stimulation of gluconeogenesis 

by fatty acids in perfused rat liver. Proc Natl Acad Sci USA. 1966; 56(1): 247-54. 

Witard OC,  Jackman SR,  Breen L,  Smith K,  Selby A,Tipton KD. Myofibrillar muscle 

protein synthesis rates subsequent to a meal in response to increasing doses of whey protein 

at rest and after resistance exercise. Am J Clin Nutr 2014; (99): 86-95. 

Wohl, P, Girman P et al. Inflexibility of energy substrate oxidation in type 1 diabetic patients. 

Metabolism. 2004; 53(5): 655-59. 

Wolfe RR and Jahoor F. Recovery of labeled CO2 during the infusion of C-1- vs C-2-labeled 

acetate: implications for tracer studies of substrate oxidation. Am J Clin Nutr 1990; 51(2): 

248-52. 



310 
 

Wolfe RR and Chinkes DL. Isotope tracers in metabolic research: Principles and practice of 

kinetic analysis, 2
nd

 Ed. 2005.Wiley 

Yamamoto N, Ueda M, Sato T, Kawasaki K, Sawada K, Kawabata K and Ashida H. 2011 

UNIT 12.14 Measurement of Glucose Uptake in Cultured Cells. In: Enna, S.J., Eds., Current 

Protocols in Pharmacology, Chapter 12, 11-22.  

Yang W, Lu J et al. Prevalence of diabetes among men and women in China. N Engl J Med 

2010; 362(12): 1090-1101. 

Yang YJ, Youn JH et al. Modified protocols improve insulin sensitivity estimation using the 

minimal model. Am J Physiol 1987; 253(6 Pt 1): E595-602. 

Yki-Jarvinen, H. Liver fat in the pahogenesis of insulin resistance and type 2 diabetes. Dig. 

Dis 2010; 2: 203-9.  

Yki-Jarvinen. Fat in the liver and insulin resistance. Ann Med. 2005; 37(5): 347-56  

Yoon KH, Lee JH et al. Epidemic obesity and type 2 diabetes in Asia. Lancet 2008; 

368(9548): 1681-8. 

Zamboni M, Zoico E et al. Body composition changes in stable-weight elderly subjects: the 

effect of sex. Aging Clin Exp Res 2003; 15(4): 321-7. 

Zamboni M, Mazzali G, Fantin F, Rossi A, Di Francesco V. Sarcopenic obesity: a new 

category of obesity. Nutr Metab Cardiovasc Dis 2008; 18(5): 388-95. 

Zammit VA, Newsholme. The maximum activities of hexokinase, phosphorylase, 

phosphofructokinase, glycerol phosphate dehydrogenases, lactate dehydrogenase, octopine 

dehydrogenase, phosphoenolpyruvate carboxykinase, nucleoside diphosphatekinase, 

glutamate-oxaloacetate transaminase and arginine kinase in relation to carbohydrate 

utilization in muscles from marine invertebrates. Biochem J 1976; 160(3): 447-62. 



311 
 

Zimmet P. Diabesity: A world-wide challenge. Towards a global initiative on gene-

environment interactions in diabetes/obesity in specific populations. European Commission 

Conference 2012 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



312 
 

Appendices 

Breakfast              Weight (g) 

Medium sliced bread 50 

Skimmed milk 1 pint 293 

Flora butter 
 

20 

Cereal 
  

50 

Skimmed milk powder 9 

  
   Lunch 
   Large cornish pasty 

 
227 

Crisps 
  

30 

Peach 
  

100 

  
   Dinner 
   Chicken in white wine with 

mash 450 

Garden Peas 
 

80 

Jelly 
  

175 

  
     
   Snacks 
   Chocolate digestive biscuits 51 

Crisp biscuits   44 

   

Figure 1 :Example food menu 2200 kcals 

Table 1: Example breakdown of energy composition 2200kcal menu 

Nutrient Quantity Energy Percentage 

Protein 90.5 362 16 

Carbohydrate 286 1072.6 49 

Fat 85.6 770.7 35 

    2205.3 100 

        

Composition of 
CHO       

Sugars 71.2 266.9 12.1 

Starch 84.4 316.6 14.4 

        

Composition of 
Fat       

SFA 38 342.1 15.5 

MUFA       

PUFA       
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Table 2: Example breakdown of energy composition of high fat diet  

HF diet       

Nutrient Quantity Energy Percentage 

Protein 90.5 362.3 13.5 

Carbohydrate 286.2 1073.1 40 

Fat 138.7 1248.2 46.5 

    2683.6 100 

        

Composition of 
CHO   267.4 10 

Sugars   316.6 11.8 

Starch       

        

Composition of 
Fat       

SFA   643.5 24 

MUFA       

PUFA       

 

Table 3: Example breakdown of energy composition of high carbohydrate diet  

  

HC Diet       

Nutrient Quantity Energy Percentage 

Protein 90.5 362 13.2 

Carbohydrate 430.4 1614 58.8 

Fat 85.6 770.7 28 

    2746.7 100 

        

Composition of 
CHO       

Sugars   266.9 9.7 

Starch   316.6 11.5 

        

Composition of 
Fat       

SFA 38 342.1 12.5 

MUFA       

PUFA       
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Table 4: Example energy requirements during isoenergetic and 2 week hyperenergetic 

periods 

 TEE 

(kcal) 

Energy 

from 

fat(kcal

/day) 

Energy 

from 

fat (%) 

Energy 

from CHO 

(kcal/day) 

Energy 

from 

CHO 

(%) 

Energy 

from 

protein 

(kcal/day) 

Energy 

from 

protein 

(%) 

Isoenergetic 

period 

2200 800 35 1100 55 300 15 

Hyper- 

energetic 

(+25%)HC 

2750 800 28 1650 60 300 12 

Hyper-

energetic 

(+25%) HF 

2750 1300 46 1125 41 325 13 
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Table 5: Dropouts from Study 4 (Chapter 6) 

 

Participant Age Comments 

2 Older Died due to cholangiocarcinoma 

unrelated to study (Severe Adverse 

Event – SAE) 

5 Older Discontinued following vasovagal 

event post muscle biopsy 

7 Older Developed arrythmia following light-

intensity exercise 

9 Older Discontinued as averse to chronic 

intake of nutritional drink 

14 Older Developed deceleration of heart rate 

during light-intensity exercise 

 

 

16 

Older Developed vasovagal episode during 

light-intensity exercise during study 

visit 

18 Older Decided to discontinue with study  

due to inability to complete exercise 

during study visit 

8 Young Decided to discontinue study after 

painful muscle biopsy 

9 Young Did not return for follow-up study 

visit 

10 Young Did not return for follow-up study 

visit 
 


