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Abstract 25 

The parameter uncertainty of process-based models has received little attention in 26 

climate change impact studies. This paper aims to integrate parameter uncertainty 27 

into simulations of climate change impacts on forest net primary productivity (NPP). 28 

We used either prior (uncalibrated) or posterior (calibrated using Bayesian 29 

calibration) parameter variations to express parameter uncertainty. We assessed the 30 

effect of parameter uncertainty on projections of the process-based model 4C in Scots 31 

pine (Pinus sylvestris) stands under climate change. We compared the uncertainty 32 

induced by differences between climate models with the uncertainty induced by 33 

parameter variability and climate models together. This paper shows that the 34 

uncertainty of simulated changes in NPP induced by climate model and parameter 35 

uncertainty is substantially higher than the uncertainty of NPP changes induced by 36 

climate model uncertainty alone. It however also highlights that the direction of NPP 37 

change is mostly consistent between the simulations using the standard parameter 38 

setting of 4C and the majority of the simulations including parameter uncertainty. 39 

Climate change impact studies that do not consider parameter uncertainty may be 40 

appropriate for projecting directions of change but not for quantifying the exact 41 

degree of change. Moreover, models that were calibrated to data may not much show 42 

reduced output uncertainty under climate change if parameter combinations are 43 

selected that are particularly climate sensitive. Our findings are highly relevant 44 

because most climate change impact studies do not integrate parameter uncertainty 45 
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and may thus be over- or underestimating climate change impacts on forest 46 

ecosystems. 47 

 48 

Keywords: 4C; Bayesian calibration; climate models; Europe; Monte Carlo analysis; 49 

National Forest Inventory data 50 

 51 
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1. Introduction 52 

Process-based models are widely used to assess the impacts of climate change on 53 

forest ecosystems because they are constructed to represent forest processes under 54 

non-analogues conditions such as the ones expected under future climate change 55 

(Fontes et al. 2010; Reyer 2015). However, their results depend on the reliability of 56 

the input data (input uncertainty), the representation or the lacking of processes 57 

(structural uncertainty) and the uncertainty about model parameter values (parameter 58 

uncertainty). All these uncertainties need to be accounted for when interpreting the 59 

results of model simulations (Lindner et al. 2014). 60 

In many cases parameter values of process-based models are uncertain since they are 61 

derived from few and very specific ecophysiological measurements and observations 62 

(Mäkelä et al. 2000). This leads to considerable parameter uncertainty especially if a 63 

model is applied to sites across the distribution range of a tree species in which 64 

phenotypic and genotypic variation prevail. For example, carbon balance models 65 

from stand-scale forest growth models (e.g. Mäkelä 1986) to dynamic global 66 

vegetation models (e.g. Sitch et al. 2003) often include the pipe model (Shinozaki et 67 

al. 1964). These models assume that the leaf to sapwood area ratio is constant for a 68 

particular species or plant functional type. However, empirical studies show that this 69 

ratio varies with climate (Mencuccini and Grace 1995), stand density and site fertility 70 

(Berninger et al. 2005; Espinosa-Bancalari et al. 1987; Long and Smith 1988; Pothier 71 

and Margolis 1991). If this variation is included in a model, it influences the model 72 

results by altering the allocation of net primary productivity to the stem (Berninger 73 
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and Nikinmaa 1997). While the effects of input uncertainty and of structural 74 

uncertainty have been partly addressed elsewhere (e.g. Medlyn et al. 2011; Reyer et 75 

al. 2014) and although there are methods that use widely available data sources to 76 

address uncertain parameter values (Hartig et al. 2012; van Oijen et al. 2005; van 77 

Oijen & Thompson 2010; van Oijen et al. 2013), so far parameter uncertainty has 78 

received less attention in climate change impact studies. 79 

Therefore, the objectives of this paper are (1) to combine an analysis of parameter 80 

uncertainty with simulations of climate change impacts on forest productivity and (2) 81 

to compare the effects of input uncertainty arising from several climate models with 82 

the combined effects of both climate model input uncertainty and parameter 83 

uncertainty. We used Bayesian calibration with a Markov Chain Monte Carlo 84 

algorithm to assess the effects of parameter uncertainty on the projections of the 85 

process-based forest model 4C in Scots pine (Pinus sylvestris) stands under climate 86 

change in Austria, Belgium, Estonia and Finland. More specifically, we calibrated the 87 

model parameters of 4C in two different ways: for each country separately and for all 88 

countries simultaneously. Thereby two types of parameter distribution were derived: 89 

country-specific (calibrated on the stands available in the country) and generic 90 

(calibrated on the stands available from all four countries). These distributions were 91 

used to test whether calibration improved the model predictions in comparison to the 92 

standard, uncalibrated parameter set. We assessed the prior (before calibration) and 93 

posterior (after calibration) model output uncertainty for past conditions. Finally, we 94 

compared the uncertainty of net primary productivity (NPP), height and diameter at 95 
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breast height (DBH) projections induced by using climate data from several climate 96 

models including the uncertainty induced by parameter variations with the 97 

uncertainty of NPP projections under climate change excluding parameter variations. 98 

99 
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2. Material and Methods 100 

a. Overview of methodology 101 

This study builds upon a model comparison study where national forest inventory 102 

(NFI) data were used to calibrate forest models of different complexity (van Oijen et 103 

al. 2013). Van Oijen et al. (2013) calibrated parameter distributions of six models 104 

with Bayesian calibration techniques. They used either country-specific data from 105 

two NFI plots in each country (thus generating country-specific posterior parameter 106 

distributions) or a generic dataset consisting of the data of all the available NFI plots 107 

for that study (i.e. eight plots from four countries, leading to a generic posterior 108 

parameter distribution). Including also uncalibrated (i.e. prior) parameter 109 

distributions, they aimed to determine whether the models predicted the data of a 110 

third plot (a permanent sampling plot, PSP) in each country better without calibration 111 

or with the country-specific or the generic calibration. For more details on and formal 112 

descriptions of Bayesian calibration and applications with forest process-based 113 

models see van Oijen et al. (2005; 2013). 114 

Here, we first compared the simulation results of the prior, the country-specific 115 

posterior and the generic posterior parameter distributions of the 4C model with the 116 

PSP data of van Oijen et al. (2013) to assess the influence of the country-specific and 117 

generic calibration datasets in more detail. Secondly, we ran the 4C model with its 118 

standard parameters and with climate change pathways from three regional climate 119 

models to assess the uncertainty of NPP projections induced by different climate 120 

models. Thirdly, we compared this climate model-induced uncertainty in NPP 121 
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projections with the uncertainty induced by climate model and parameter 122 

uncertainties together. For the climate change simulations, we also studied the 123 

influence of continuous CO2-fertilization as (i.e. increasing CO2-concentraions 124 

according to the A1B emission pathway) opposed to an acclimation of photosynthesis 125 

to 20th century CO2-levels (i.e. fixed at 350ppm). Fig. 1 provides a schematic 126 

overview of the methodology. 127 

 128 

b. Data 129 

We used data from four European countries where Scots pine is part of commercial 130 

forestry, namely Austria (A), Belgium (B), Estonia (E) and Finland (F) (Table 1). In 131 

each country, we used two plots from national forest inventories (NFI, e.g. referred to 132 

as A1 and A2) and one PSP (e.g. referred to as A3) (Table 1). NFIs are usually 133 

carried out to assess forest resources over large spatial scales by systematic sampling 134 

and only measuring a few key variables while PSP are typically established in a few 135 

typical forests only but therefore monitored with much greater effort. In Estonia, no 136 

NFI plots but three PSPs were available. Hence for the first two of them the data were 137 

prepared as if originating from NFI to assure consistency with the other countries. For 138 

each stand, we initialized the forest model 4C (see below) with the stand data of the 139 

first available observation. The management of all stands was mimicked in 4C by 140 

removing trees following a thinning-from-above management strategy until the 141 

measured tree number was reached. Further descriptions of the stand, climate and soil 142 
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data we used for the validation and calibration runs can be found in van Oijen et al. 143 

(2013). 144 

For the climate change simulations we used the same soil and stand data but also 145 

modeled past climate data to ensure compatibility between past and future model 146 

simulations. We prepared data from three Regional Climate Models (RCMs) driven 147 

by three different General Circulation Models (GCMs) using the A1B emission 148 

scenario (Nakicenovic et al. 2000). The RCM/GCM combinations were 149 

CCLM/ECHAM5, HadRM3/HadCM3 and HIRHAM3/Arpège. The data of the latter 150 

two RCM/GCM combinations originated from the ENSEMBLES project (van der 151 

Linden and Mitchell 2009) while the CCLM/ECHAM5 data were from 152 

Lautenschlager et al. (2009) (henceforth we refer to the RCM/GCM combinations 153 

simply as RCMs). We bias-corrected and interpolated the simulated climate data to 154 

the sites by calculating a monthly mean model bias (absolute difference for 155 

temperature and relative for precipitation), adding (for temperature) or multiplying 156 

(for precipitation) this bias to/with daily simulated climate of past and future and 157 

interpolating the climate to the plots accounting for altitudinal dependencies of the 158 

climatic variables using a digital elevation model and external‐drift‐Kriging as 159 

described in Reyer et al. (2014). Table 2 shows the changes in temperature and 160 

precipitation featured in each climate model and at each plot. 161 

 162 

c. The model 4C 163 
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The model 4C (‘FORESEE’ - Forest Ecosystems in a Changing Environment; 164 

http://www.pik-potsdam.de/4c/) describes forest development under changing 165 

environmental conditions (Bugmann et al. 1997; Lasch et al. 2005). Processes are 166 

modeled on the tree- and stand-level describing ecosystem carbon and water 167 

balances, leaf area index and forest structure. Establishment, growth, competition for 168 

light, water and nutrients and mortality of tree cohorts are modeled spatially implicit 169 

on a patch on which horizontal homogeneity is assumed. The soil sub-model 170 

describes temperature and water, carbon and nitrogen dynamics in different soil 171 

layers.  172 

Photosynthesis is modelled as a function of environmental influences (temperature, 173 

water and nitrogen availability, radiation and CO2) modified from Haxeltine and 174 

Prentice (1996). Elevated CO2 increases the internal partial pressure of CO2 which 175 

increases light-use efficiency and gross assimilation and reduces stomatal 176 

conductance and the potential transpiration water demand thus increasing water-use 177 

efficiency. Water stress (described in Reyer et al. 2010) and nutrient limitations 178 

reduce assimilation. Respiration is a constant fraction of annual GPP (Landsberg and 179 

Waring 1997). The resulting NPP is allocated to different tree organs according to the 180 

pipe model (Shinozaki et al. 1964), the functional balance (Davidson 1969), height 181 

growth depending on foliage mass and light availability and a rise in bole height if 182 

the photosynthetic production of the lowermost branches drops below compensation 183 

of the sum their respiratory losses and senescence fluxes. 184 

http://www.pik-potsdam.de/4c/
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Temperature affects photosynthesis, growing season length, evapotranspiration which 185 

determines water demand and thus drought stress, and mineralization/decomposition 186 

and hence nutrient availability. Precipitation determines the soil water content and 187 

hence the water availability for uptake by trees. 188 

The water balance is calculated from potential evapotranspiration depending on 189 

temperature, relative humidity, solar radiation according to Turc/Ivanov (Dyck and 190 

Peschke 1995), interception and percolation transport of water in the multi-layered 191 

soil is calculated (Grote and Suckow 1998). Root uptake is determined by the 192 

transpiration demand of all trees and the plant available water. 193 

4C requires meteorological driving forces at daily resolution as well as a soil and a 194 

forest stand description for the model initialization. During initialization, the 195 

observed basal area and age of the stand are matched. Each of its currently 13 tree 196 

species, is represented by a set of 45 species-specific parameter values. These 197 

parameter values originate from literature, aggregated datasets and expert assessment 198 

and are henceforth referred to as the ‘standard parameter’ values (Table ESM1). A 199 

more detailed description of 4C, recent model applications as well as a model 200 

validation can be found in Reyer et al. (2010; 2014). 201 

For all the Bayesian calibration and Monte Carlo simulation experiments, we 202 

interfaced 4C to the generic and model-independent simulation environment SimEnv 203 

(Flechsig et al. 2013). 204 

 205 

d. Evaluation and comparison of calibration datasets 206 
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We constructed two different prior (i.e. uncalibrated) parameter distributions from 207 

independent marginal distributions for the individual model parameters. In the first 208 

one, each parameter was assumed to be uniformly distributed between 50% and 209 

150% of its standard value in 4C (Table ESM1). This ±50% range of parameter 210 

values reflects a large uncertainty about parameter values across the broad variety of 211 

geographic distribution, stands, sites and climates considered in this study. In the 212 

second one, each parameter was assumed to be normally distributed with the 213 

distributions being truncated based on the literature and data that was used to define 214 

the standard parameters (Table ESM2). This second prior parameter distribution 215 

reflects the ‘most plausible prior’ and was introduced to test the influence of the more 216 

arbitrary ±50% range of parameter values of a uniform prior on model output 217 

uncertainty.  218 

Using Monte Carlo simulations with Latin hypercube sampling, we then sampled 219 

1000 parameter vectors from the prior parameter distributions and ran 4C for each 220 

parameter vector with the measured soil, stand, management and climate data for 221 

each PSP-site (codes A3, B3, E3, F3 in Table 1). The simulations were run for the 222 

time period between the first and the last available data point. This yielded 1000 223 

simulation results that express the prior model output uncertainty under current 224 

climate.  225 

The prior parameter distributions were then updated during the country-specific and 226 

generic calibrations using NFI data (codes A1, A2, B1, B2, E1, E2, F1, F2 in Table 1) 227 

and Bayesian calibration using a Markov-Chain Monte Carlo algorithm (see ESM2 228 
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for details). This resulted in four country-specific and one generic posterior parameter 229 

distribution. For the ‘most plausible prior’ we only performed the generic calibration 230 

and the country-specific calibration for F3 (referred to as F3*) but not for the other 231 

sites because the F3 site has the longest record of test data. From each of the posterior 232 

parameter distributions we sampled another 1000 parameter vectors and ran 4C with 233 

each parameter vector with the measured soil, stand, management and climate data of 234 

each PSP (codes A3, B3, E3, F3 in Table 1) which had not been used for calibration 235 

for a period from the first to the last available data point.  236 

The results of these 1000 simulations express the country-specific and generic 237 

posterior model output uncertainty respectively under current climate. From the 238 

country-specific and generic posterior parameter distribution, we also derived the 239 

maximum a posteriori estimate (MAP), which is the most probable parameter vector 240 

(van Oijen et al. 2005). 241 

To assess how the simulations fitted the observed stand data and which calibration 242 

dataset improved the predictions the most, we compared observed and simulated 243 

mean tree height and DBH for each plot. DBH and mean height were chosen since 244 

these are commonly reported variables in forest science. We calculated the 245 

Normalized Root Mean Square Error (NMRSE, see ESM1), based on the whole 246 

distribution (i.e. calculated as an average across the samples from the probability 247 

distributions) (van Oijen et al. 2013). 248 

 249 

e. Influence of climate model and parameter uncertainty 250 
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For the climate change simulations, we ran 4C with the 1000 prior, country-specific 251 

posterior and generic posterior parameter vectors as well as with the standard 252 

parameter values (in case of the prior) and the MAPs (in case of the posterior 253 

simulations) at each of the four PSPs in the four countries using the measured stand, 254 

management and soil data for 30 years of climatic data from the three climate models 255 

for the periods 1971-2000 and 2061-2090. We calculated the change in the mean NPP 256 

and the height and DBH of the last simulation year for the period 2061-2090 257 

compared to the period 1971-2000. To test the sensitivity of our results to the choice 258 

of the parameter uncertainty range of ±50%, we also repeated the prior simulations 259 

assuming a smaller uncertainty of initial parameter values of ±25% variation.  260 

Although the changes in climate are driven by an increase in atmospheric CO2 261 

according to the A1B storyline (see section ‘data’), the long-term effect of increasing 262 

CO2 concentrations on forests is unclear (Körner 2006; Reyer et al. 2015). Therefore, 263 

in our simulations we made two assumptions about CO2 concentrations and the 264 

persistence of its effects on photosynthesis: Firstly, we ran all simulations with 265 

increasing CO2 concentrations according to the A1B emission scenario (i.e. persisting 266 

stimulation of photosynthesis by CO2, hence the upper margin of CO2-effects) and 267 

secondly we kept CO2 concentration constant at 350ppm (i.e. an acclimation of 268 

photosynthesis to CO2 at 350ppm, hence the lower margin of CO2-effects) (see Reyer 269 

et al. (2014) or Medlyn et al. 2011 for a more thorough discussion of CO2-effects in 270 

forest models).  271 
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Our simulation design resulted in a total of 192 192 simulation runs (three RCMs x 272 

two time periods x four stands x two assumptions about CO2 x four parameter 273 

distributions based on two priors and two posteriors x 1001 parameter vectors). To 274 

assess the uncertainties induced by the ensemble of climate models and by parameter 275 

uncertainty, we considered the results of the simulations with standard parameter 276 

values, the MAPs and of the full range of simulations with prior, country-specific 277 

posterior and generic posterior parameter distributions. 278 

 279 

3. Results 280 

a. Bayesian calibration 281 

Table 3 shows that even without calibration, 4C simulates height and DBH with 282 

reasonably low NRSME except for site F3. As expected, the calibration improves the 283 

model results as expressed by a lower NRMSE at all sites and for both diameter and 284 

height. The results of the generic calibration fit the data best (with the exception of 285 

height at E3) but generally the NRMSE for both calibration datasets are similar. The 286 

Bayesian calibration also reduced output uncertainty for both the country-specific and 287 

generic calibration. In most cases both the posterior mean as well as the MAP provide 288 

better fit to the data than the standard parameter run and the output range is much 289 

smaller than for prior simulations (see Fig. 2 and Fig ESM1 for an example for F3 290 

and F3* respectively). Interestingly, the output uncertainty for height is smaller when 291 

considering F3 compared to F3* while the opposite is true for DBH. For F3*, the 292 

maximum values for height and DBH are also further reduced in comparison to F3 293 
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but some of the parameter combinations found for F3* lead to a die-off of trees while 294 

this is not the case under F3. For most marginal parameter distributions the posterior 295 

standard deviation was 1-2% less than the prior standard deviation. Parameter 296 

correlations were small and exceeded correlations of 0.4 in only one case. A full list 297 

of all prior and posterior parameter estimates is available in Table ESM2-3. 298 

 299 

b. Influence of climate change on NPP projections 300 

Across the four plots used in this study and across the three climate models, climate 301 

change leads to NPP changes ranging from -9 to 29% during the period 2061-2090 302 

relative to 1971-2000 under an acclimation of CO2-effects (Fig. ESM2). In the two 303 

Central European locations (Austria and Belgium) the responses are mostly small but 304 

negative, while in the two Northern European locations (Estonia and Finland) the 305 

responses are positive. Under persistent CO2-effects, climate change always leads to 306 

positive NPP changes ranging from 11 to 78% across the four plots (Fig. ESM2). 307 

 308 

c. Influence of climate change and parameter uncertainty on NPP 309 

projections 310 

When parameter uncertainty is included in the climate change simulations under an 311 

acclimation of CO2-effects, the range of possible NPP changes increases across all 312 

sites, varying from -21 to 62% for the prior assuming ±25% uncertainty ranges, from 313 

-48 to 136% for the prior assuming ±50% uncertainty ranges and from -46 to 141% 314 

and -45 to 231% for the posterior generic and the posterior country-specific model 315 
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output distribution respectively, but the median changes remain comparable (Fig. 316 

ESM2). The F3* simulations show very similar ranges of results but slightly less 317 

negative NPP changes. The two different assumptions about parameter uncertainty, 318 

namely ±50% and ±25%, do not lead to large differences in median and the lower and 319 

the upper quartiles of NPP change. However, fewer extreme NPP changes are found 320 

under a parameter uncertainty of ±25%. There is no large difference between 321 

calibrated and uncalibrated (assuming ±50% parameter uncertainty) model output 322 

distributions but overall, the posterior model output uncertainty is slightly larger than 323 

the prior model output uncertainty.  324 

Under persistent CO2-effects, the range of possible NPP changes is much larger and 325 

mostly positive, varying from 0 to 147% for the prior assuming ±25% uncertainty 326 

ranges, from -35 to 478% for the prior assuming ±50% uncertainty ranges and from -327 

36 to 489% and -15 to 539% for the posterior generic and the posterior country-328 

specific model output distribution respectively, but again the median changes and the 329 

lower and upper quartiles remain comparable (Fig. ESM2). The F3* simulations 330 

show very similar ranges of results but slightly less negative NPP changes. Under 331 

persistent CO2-effects, also the difference between ±50% and ±25% prior parameter 332 

uncertainty is less pronounced for E3 and F3. 333 

Fig. 3 and 4 show the relative NPP changes at each of the four plots used in this study 334 

split up per regional climate model. In most cases, the NPP change induced by the 335 

standard parameter vector is close to the median and the MAP of the distribution of 336 

NPP change induced by parameter uncertainty. The largest deviations of the medians 337 
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and MAPs of NPP change compared to the NPP change of the standard parameter 338 

simulations occur under persistent CO2-effects at the E3 site. The medians, lower and 339 

upper quartiles and interquartile ranges of the prior assuming 50% uncertainty ranges 340 

and the posterior model output distributions are similar for the same RCM. They 341 

differ however between the different RCMs. While the median of the prior assuming 342 

25% uncertainty ranges is similar to the medians of the other output distributions, its 343 

lower and upper quartiles and interquartile ranges are, with the exception of E3, much 344 

smaller than for the other output distributions. These general patterns are consistent 345 

between the simulations featuring different assumptions about CO2 although 346 

persistent CO2-effects lead to much larger values and ranges. 347 

The results for height and DBH mainly mirror the NPP results but are characterized 348 

by slightly lower negative relative changes for the CCLM RCM (Fig. ESM3-8). 349 

 350 

4. Discussion 351 

a. Evaluation and comparison of calibration datasets 352 

This paper shows that calibration of model parameters with even small amounts of 353 

NFI data helped to reduce the NRMSE of height and diameter predictions of a 354 

parameter-rich, process-based forest model driven with observed climate (Table 3). In 355 

a recent model comparison study using the same data, 4C was identified as the most 356 

plausible model for simulating height and DBH after calibration (van Oijen et al. 357 

2013). Despite the low number of data points used for calibration and our 358 

assumptions about the prior parameter distribution (see discussion below), our 359 
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findings supports evidence from other studies that Bayesian methods combined with 360 

NFI data improve model parameterizations (Mäkelä et al. 2012; van Oijen et al. 361 

2013). Although the generic posterior parameter distribution yielded mostly lower 362 

NRMSE values than the country-specific posterior parameter distribution, there were 363 

no large differences between the two methods. This is noteworthy since the country-364 

specific posterior parameter distribution included fewer data points. Thus, the 365 

advantage of having more data points in the generic calibration was partly 366 

compensated for by having only country-specific data points in the country-specific 367 

calibration. This shows that process-based models can actually be calibrated to 368 

represent local conditions but as well for larger regions if enough calibration data is 369 

available. Given that process-based models are increasingly designed for the latter 370 

and that more and more data for model calibration is becoming available, we see 371 

good prospect for further improving our understanding of parameter uncertainty at 372 

larger scales. Further studies are needed to determine at which level of data 373 

availability a generic calibration would perform better than a country-specific 374 

calibration and should consider testing the difference of using regional prior 375 

parameter information as opposed to generic priors used here. 376 

 377 

b. Influence of climate model and parameter uncertainty 378 

This paper highlights that the uncertainty about changes in NPP induced by climate 379 

model and parameter uncertainty can be substantially higher than the uncertainty 380 

about NPP changes induced by climate models alone. While this is a trivial statement 381 
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as such, it means that model-based projections of climate change-induced changes in 382 

NPP and their implications for carbon cycling and forest growth may be more 383 

uncertain than previously thought. Our findings partly rely on the assumption that the 384 

climate change uncertainty induced by the three climate models and the prior 385 

parameter uncertainty are realistic and hence can be compared. 386 

It is also important to note that some parameter values may in reality be more, others 387 

less variable than the parameter variations we assumed here. Especially, the 388 

truncation of the normally distributed parameters (for the F3*) simulations seems to 389 

be too wide given that certain parameter combinations lead to stand decline (Figure 390 

ESM1). Similarly, the higher NRSME values for height in the F3* simulations as 391 

opposed to the F3 simulations (Table 3) are possibly related to the larger parameter 392 

ranges assumed for key parameters governing carbon allocation to height growth and 393 

light extinction in the F3* simulations (pfext and pnus in Table ESM2). Also, the 394 

distribution of the prior may differ from a uniform or normal distribution. While 395 

using another distribution may decrease uncertainty (Wramneby et al. 2008), here we 396 

took examples of assuming 1) a simple uniform distribution and the same relative 397 

uncertainty for each parameter and 2) a normal distribution with parameter mean and 398 

truncation derived from the original literature and data used to parameterize 4C as a 399 

first attempt to account for parameter uncertainty. The variation around the standard 400 

parameter as well as the shape of the prior parameter distribution could be further 401 

refined in future studies by gathering information of possible parameter values from 402 

traits-databases (e.g. Kattge et al. 2011).  403 
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The large prior uncertainties however also mean that, if several species would be 404 

considered, as is usually done in climate change impact studies (e.g. Reyer et al. 405 

2014), species-specific parameter uncertainty ranges may overlap. This may 406 

complicate risk assessments for individual tree species or for the competition of tree 407 

species (Wramneby et al. 2008) and highlights the need for the use of existing data 408 

assimilation techniques such as in this study or in van Oijen et al. (2013) with more 409 

data (i.e. longer time series, more sites) to improve species-specific parameterizations 410 

of process-based models, handle more complex forest structures and/or even derive 411 

regional, sub-species level parameterizations. Especially, data from a wider array of 412 

sources could help to directly constrain the wider range of processes encapsulated in 413 

process-based models. 414 

To test how sensitive our prior model output uncertainties are to the assumption of 415 

±50% parameter variation, we included results from the Monte Carlo simulations 416 

without calibration assuming only ±25% variation around the standard value and the 417 

calibrations including ‘the most plausible prior’ using normally distributed parameter 418 

ranges taken from the literature and data available for model parametrization. In the 419 

former case, the uncertainties about the NPP changes due to the choice of climate 420 

model and parameter uncertainty were reduced (Fig. ESM2). However, they were still 421 

considerably larger than the variability in NPP changes induced by the climate 422 

models alone. When considering the simulations with the ‘most plausible prior’, 423 

model output uncertainty was not much different from the ±50% parameter 424 

uncertainty runs. This result is not surprising given that the ‘most plausible prior’ 425 
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contains ranges larger than ±50% for some parameters or information availability was 426 

low so that values had to be kept at a ±50% range (Table ESM2). Thus, our results 427 

are qualitatively robust across a large range of assumed parameter uncertainties.  428 

A restriction of our study is that we build the prior from independent marginal 429 

distributions. While this is a natural starting point when information is scarce it is 430 

likely that some of the parameter combinations which lead to very extreme results in 431 

our simulations may not be realistic (c.f. Wramneby et al. 2008), but without 432 

additional data no parameter combinations could be excluded at this stage. Moreover, 433 

our study was not very dependent on the prior since we analyzed output uncertainty 434 

by posterior distributions. Even our simulations using the posterior parameter 435 

distributions (hence after including data) show a wide range of possible productivity 436 

changes despite very unrealistic parameter combinations having been eliminated by 437 

the calibration procedure. It is however important to note that the calibration was 438 

done for past climates measured at the specific study sites and that the climate model 439 

data differ from measured data even for the past and after a bias correction and 440 

interpolation (c.f. Reyer et al. 2014). Thus, calibrated parameters are not necessarily 441 

fully realistic under climate change.  442 

Another important assumption of our study is that the climate models we have chosen 443 

adequately represent uncertainty about possible climate change. The projections of 444 

the RCMs used here range from 1.5 to 4.5°C warming and from -16 to 15% changes 445 

in precipitation between the different stands (Table 2) which is well in line with the 446 

range of projections by the IPCC for Europe for a similar period (IPCC 2007). Even 447 
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though using a wider range of climate scenarios would certainly encapsulate stronger 448 

climate changes and hence lead to stronger NPP changes, a recent study with the 4C 449 

model found that these are rarely lager than 45% or smaller than -15% in the 450 

countries covered here (Reyer et al. 2014). Even though these results were found for a 451 

different set of forest in the respective countries, the changes seem substantially 452 

smaller than the changes induced by parameter uncertainty and climate change in our 453 

study. Thus uncertainty in climate input introduced by the three RCMs seems wide 454 

enough to be compared with the uncertainty induced by the variation of parameter 455 

values. It is noteworthy that the input uncertainty induced by the different climate 456 

models alone already leads to a variation in NPP changes from 3 to 29% in the most 457 

extreme case of E3.  458 

The influence of model structural uncertainty can also increase the range of climate 459 

model-induced uncertainty (but also in the simulations including parameter 460 

uncertainty) as exemplified by our two different but very influential assumptions 461 

about the persistence of CO2-effects on photosynthesis and water use. While this is an 462 

attempt to assess model structural uncertainty regarding the influence of CO2, it does 463 

not fully account for the true range of structural uncertainty since the actual model 464 

formulation of how CO2 affects photosynthesis in 4C remains unchanged. This can be 465 

better tested by driving structurally diverse models with the same data (e.g. 466 

Warszwaski et al. 2013). 467 

Our results reveal one more interesting particularity: Figures 3 and 4 show that the 468 

posterior model output uncertainty (of both the generic and country-specific posterior 469 
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parameter distributions) is sometimes larger than the prior model output uncertainty. 470 

This is counterintuitive since for the simulations using measured climate in the first 471 

part of our analysis, the posterior model output NRMSE was reduced in comparison 472 

to the prior model output NRMSE values. The posterior parameter uncertainty was 473 

slightly reduced as well. This means that forward propagation of posterior parameter 474 

uncertainty to model output uncertainty (of NPP change) leads to increased 475 

uncertainty when comparing the effects of multiple climate models. This could be 476 

because our comparably small calibration dataset might have led to parameter 477 

combinations that were coming from inappropriate regions of the parameter space. 478 

While we cannot fully rule out this possibility, we think that the reduction in posterior 479 

output uncertainty for past conditions, even though not a substantial one, rather points 480 

towards another explanation: the posterior parameter distribution assigns higher 481 

probability to a subregion of parameter space where climate sensitivity is high and 482 

varies much. This is possible because in 4C, NPP is nonlinearly related to the model 483 

parameters and therefore parameter combinations that may not seem to have much 484 

effect under current climatic conditions, may lead to larger output variation under 485 

different climates. We speculate that especially those parameters related to the 486 

photosynthesis model would be particularly sensitive to such effects, because in 4C 487 

NPP is strongly linked to photosynthesis which is itself sensitive to tmeperatures. 488 

This also means that when calibration reduces a model's output uncertainty for 489 

present-day conditions, it does not guarantee that the model's output uncertainty for 490 

future, climatically changed conditions is reduced too.  491 
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 492 

c. Implications for climate change impact studies 493 

This paper shows that – while the absolute magnitude of climate change-induced NPP 494 

changes is highly uncertain if considering parameter uncertainties – the direction of 495 

NPP change is mostly consistent between the simulations using the standard 496 

parameter setting of 4C and the majority of the simulations using the parameter 497 

variation induced by prior or posterior parameter uncertainties (as expressed by the 498 

boxes in Figs 3 and 4 which include 50% of the values). Figs 3 and 4 show that 499 

typically the median of the NPP change due to climate change and parameter 500 

uncertainty mirrors the NPP change induced by climate change alone. Although 501 

projections using the standard parameters of 4C do not take into account parameter 502 

uncertainty, the direction and quality of change (i.e. small or large) are met quite 503 

well. Thus, the standard parameters may be appropriate for projecting directions of 504 

climate change impacts, especially if including some information on input 505 

uncertainty, but not their exact magnitude. This increases the confidence in the 506 

overall pattern of NPP change under climate change found in recent applications of 507 

4C at the European scale (Reyer et al. 2014). However, it is important that for 508 

quantitative assessments of climate change impacts on forests using complex process-509 

based models, parameter uncertainty is considered more thoroughly as it adds 510 

significantly to input uncertainty induced by climate models. Our study also shows 511 

that this can be done either using country-level calibrations or more generic 512 

calibrations as the climate sensitivity of NPP is rather similar for these two different 513 
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calibrations in our study. Given that process-based modelling is often focused on 514 

finding general parameter values that are applicable across the range of a species or 515 

plant functional type , generic calibrations may be favored but further research is 516 

needed to determine when a more localized calibration is to be preferred to a more 517 

generic one. Finally, our findings are highly relevant for climate change impact 518 

assessment because most such studies do not yet integrate parameter uncertainty and 519 

may thus be over- or underestimating impacts on forest ecosystems and may not 520 

provide the full range of uncertainties to decision makers. Integrating more thorough 521 

assessments of different kinds of uncertainties would allow increasing the robustness 522 

of climate change impact studies. 523 
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7. Tables 682 

Table 1 Forest stands used in this study. The data refer to the last measurement at each plot. For more information see van 683 

Oijen et al. (2013). NFI = National Forest Inventory; PSP = Permanent Sampling Plot; DBH = Diameter at Breast Height. 684 

“N observations” indicates how many data points for both height and diameter combined were available from each site and 685 

in brackets the years of the first and last measurement. The first data point was always used for model initialization.  686 

Site code Data type Lat. Long. Age (y) Stem number (ha-1) Height (m) DBH (cm) N observations 

A1 NFI 48.31° 14.79° ~64 526 18.5 32.4 4 (1987-2000) 

A2 NFI 48.51° 15.70° ~66 1363 17.7 20.7 4 (1989-2002) 

A3 PSP 48.51° 15.70° 59 690 18.1 23.9 4 (1980-1995) 

B1 NFI 51.28° 5.52° 67 380 18.4 27.1 4 (2000-2004) 

B2 NFI 51.28° 5.52° 66 393 23.2 29.3 4 (2000-2008) 

B3 PSP 51.3° 4.52° 79 362 21.3 31.9 6 (1994-2007) 

E1 PSP* 57.85° 25.92° 70 402 25.0 27.4 6 (2000-2010) 

E2 PSP* 57.98° 25.63° 67 692 24.9 23.7 6 (2000-2010) 

E3 PSP 57.58° 25.28° 73 667 25.6 24.5 6 (2000-2010) 

F1 NFI 61.97° 27.67° 75 899 17.8 19.1 4 (1985-1995) 

F2 NFI 63.83° 24.65° 55 1067 10.1 14.6 4 (1985-1995) 

F3 PSP 61.33° 25.03° 79 1710 21.8 17.0 14 (1948-1997) 

*PSP-data but presented in the format of and used as if originating from NFI data 
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Table 2 Mean annual temperature (T; degree Celsius) and mean annual precipitation sum (P; mm) of the periods 1971-687 

2000 and 2061-2090 for climate models considered in this study. They result from three RCMs forced with the A1B 688 

emission scenario at the four permanent sampling plots (A3, B3, E3, F3) used in this study. 689 

RCM Period T [°C] P [mm] T [°C] P [mm] T [°C] P [mm] T [°C] P [mm] 

  A3 B3 E3 F3 

CCLM 1971-2000 10.0 607 10.5 806 6.1 684 4.4 638 

HadRM3 1971-2000 10.0 643 10.3 873 5.9 729 4.0 689 

HIRHAM3 1971-2000 10.2 584 10.4 832 6.2 713 4.5 675 

CCLM 2061-2090 12.9 605 13.0 852 9.2 787 7.8 718 

HadRM3 2061-2090 14.0 635 13.6 809 10.4 734 8.4 739 

HIRHAM3 2061-2090 11.7 647 12.1 700 8.9 642 8.1 670 
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Table 3 Normalized Root Mean Square Error (NRMSE, c.f. ESM1) from simulations 690 

compared to measured heights and DBHs (Diameter at Breast Height) at four 691 

permanent sampling plots in four European countries without calibration and with 692 

country-specific and generic calibration.  693 

Site Uncalibrated Country-specific calibration Generic calibration 

 Height 

A3 0.29 0.15 0.12 

B3 0.23 0.15 0.09 

E3 0.13 0.12 0.14 

F3 0.52 0.28 0.27 

F3* 0.47 0.43 0.38 

 DBH 

A3 0.23 0.16 0.13 

B3 0.14 0.13 0.08 

E3 0.06 0.06 0.05 

F3 1.00 0.68 0.52 

F3* 0.76 0.57 0.46 
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8. Figures 694 

 695 

Fig. 1 Schematic overview of the methodology and the steps of the analysis (PSP = 696 

Permanent sampling plot; NFI = National Forest Inventory). The grey shaded areas 697 

represent aspects analyzed in this paper 698 
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 699 

Fig. 2 Prior and posterior output uncertainty for height and DBH of the F3 plot. 700 

Posterior output uncertainty is depicted once for the country-specific (“posterior 701 

country”) and generic (“posterior generic”) calibration. 702 
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703 
Fig. 3 Change in net primary productivity (NPP) under climate change for individual climate models under the assumption 704 

of an acclimation of photosynthesis to CO2-effects for four plots in Austria, Belgium, Estonia and Finland (A3-F3, see 705 

Table 1). F3* denotes the simulations assuming the most plausible prior parameter distribution. The data are sorted 706 

according to climate model uncertainty alone (Label ‘Standard parameter’ (i.e. using 4C’s standard parameter set)) and due 707 

to climate model and parameter uncertainty of uncalibrated (two degrees of prior parameter uncertainty, ‘Prior ±50%’ or 708 
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‘Prior ±25%’, respectively) or calibrated (‘Posterior generic’ or ‘Posterior country’) parameter distributions. Please note 709 

that for F3*, ‘Prior ±50%’ actually designates the simulations with the updated prior parameter ranges as described in 710 

Table ESM2. The responses are split up for each climate model. The triangles represent the simulations using the MAP. 711 

See the text for further explanation. The x-axis is cut at 150% for better legibility. The boxplots show the following 712 

information: thick line= median, bottom and top of the box = lower and upper quartiles, whiskers = maximum value or 1.5 713 

times the interquartile range of the data depending on which is smaller. Points = outliers larger than 1.5 times interquartile 714 

range. The dotted line indicates no change715 
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 716 

Fig. 4 Same as Fig. 3 but under the assumption of persistent CO2-effects 717 
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