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Abstract 

This study aimed to evaluate the degree of Phaseolus vulgaris L. (bean) leaf tissue injury 

caused by tropospheric ozone. To validate O3 symptoms at the microscopic level, Evans blue 

staining together with an image processing method for the removal of distortions and 

calculation of dead leaf areas was applied. Net photosynthetic rate (PN), stomatal conductance 

(gs) and intercellular CO2 concentration (Ci) were determined to evaluate leaf physiological 

responses to ozone. It was found that both resistant and sensitive varieties of bean were 

damaged by ozone; however, the size of necrotic and partially destroyed leaf area in the 

sensitive genotype (S156) was bigger (1.18%, 2.18%) than in the resistant genotype (R123), 

i.e. 0.02% and 0.50%. Values of net photosynthetic rates were lower in the sensitive genotype 

in ambient air conditions, than in the resistant genotype in ambient air conditions (Table 1). 

We further found that there was a correlation between physiological and anatomical injuries; 

net photosynthetic rate (PN) was negatively correlated with percentage of necrotic area of both 

genotypes, while stomatal conductance (gs), intercellular CO2 concentration (Ci) were 

positively correlated with percentage of necrotic tissue of both genotypes. Moreover, visible 

injures in both genotypes were positively correlated with percentage of anatomical injures. In 
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conclusion, the presented combinations of morphological, anatomical and physiological 

markers allowed differential diagnosis of ozone injury. 

 

Key words: tropospheric ozone, leaf injuries, image analysis, photosynthetic activity 

  

Introduction 

 

Tropospheric ozone is a widespread concern in the northern and southern hemisphere causing 

injury in numerous species which belong to different families of angio- and gymnosperms 

(Ashmore, 2004, Carvalheiro et al., 2013). The mechanism of oxidative stress in plants caused 

by ozone is based on its reactions with cell wall and membrane components and, as a result, 

production of reactive oxygen species (ROS) is observed (Pennell et al., 1997, Rao et al., 

2000). If there is a huge amount of ROS in the apoplast, the latter one is supersensitive and 

responses causing fast, local cell deaths which appear as necrotic spots on leaf surfaces; in 

trees and herbs species, i.e. Quercus ilex, Nicotiana tabacum (Facuda, 2000, Gratani et al., 

2000, Bandurska et al., 2009, Borowiak et al., 2010). Visible leaf injuries are widely used for 

determination the level of tropospheric ozone in many countries. Biomonitoring is a 

supplement of technical monitoring for further evaluation the negative effect of ozone to 

natural vegetation, crops as well as on tress (Klumpp et al. 2006). Moreover, bioindicators can 

be exposed in many locations which are not available for automatic equipment. Early necrotic 

changes, i.e. in Populus alba, Nicotiana tabacum, can be discovered using microscopic 

methods (Günthardt-Goerg et al. 2000, Vollenweider et al., 2003, Fares et al., 2006, Borowiak 

et al., 2010). Employing various dye factors, such as trypan blue, Evans blue (in Hordeum 

vulgare) (Huang et al., 1986), it is possible to observe certain stages of necrotic leisure 

creation caused by loss of cell membrane integrity at the leaf cell level using a light 

microscope. This dye is removed from living cells but penetrates cells with damaged 

membranes, dyeing them into an intense blue colour (Faoro and Iriti, 2005). Using a light 

microscope, we can observe varying intensity of colouring proportional to the degree of leaf 

cell membrane decomposition (Koegh et al., 1980). The existence of leaf damages invisible to 

the naked eye can be used as a useful tool to detect impacts in plants which are more resistant 

to ozone.  

The main reason for the negative effect of ozone on plants concerns changes in proper 

functioning of the photosynthetic system. Most investigations are conducted in controlled or 

semi-controlled ozone conditions. However, these investigations revealed various and 

http://www.sciencedirect.com/science/article/pii/S0269749102004128#BIB27
http://www.sciencedirect.com/science/article/pii/S0269749102004128#BIB27
http://www.sciencedirect.com/science/article/pii/S0269749102004128#BIB27
http://www.sciencedirect.com/science/article/pii/S0269749102004128#BIB27
http://www.sciencedirect.com/science/article/pii/S0269749102004128#BIB31
http://www.sciencedirect.com/science/article/pii/S0269749102004128#BIB31
http://www.sciencedirect.com/science/article/pii/S0269749102004128#BIB31
http://link.springer.com/search?facet-author=%22C.+-N.+Huang%22
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interesting results. One of them was that stomatal closure as the first result of an ozone effect 

on plants resulting in a decrease of the net photosynthetic rate in Populus tremulus, Phaseolus 

vulgaris, Liriodendron chinense (Matyssek et al. 1993, Leipner et al., 2001, Zhang et al., 

2010). Oksanen (2003a) suggested that ozone tolerance variability was related with the 

response of stomata. Hence, stomatal opening is treated as a very important regulator of ozone 

uptake by plants (Paoletti and Grulke, 2005, Heath, 2008, Mills et al., 2011). Novak et al. 

(2005) expanded this opinion to stomata acting as factors responsible for plant sensitivity to 

tropospheric ozone. Furthermore, Guidi et al. (2001) suggested that stomatal closure could be 

treated as part of the mechanism preventing further ozone injury in internal tissues. However, 

some investigators failed to find any correlation between stomatal closure and net 

photosynthetic decrease (Flagler et al., 1994, Paoletti et al., 2007). Lombardozzi et al. (2012) 

suggested that differences in the photosynthetic response might be due to non-stomatal 

factors, potentially driven by either photosystem oxidation, limiting energy of RuBP 

regeneration, or decreased efficiency of Rubisco due to direct enzyme oxidation or reduced 

CO2 transport to the enzymes. Vahisalu et al. (2010) found that the ozone effect on plants was 

connected with rapid, but short-term gs decrease. It seems that there are still many 

uncertainties concerning ozone effects on plant responses; even in controlled conditions, 

investigators found variable plant responses to ozone. Hence, it would be extremely important 

to evaluate plant responses in ambient air conditions for a variety of plant parameters. 

Previous studies on photosynthetic plant responses in ambient air revealed that they were 

related with levels of ozone concentrations during the duration of the experiment. If ozone 

concentrations were lower, plants responded quite differently and reached even higher PN 

levels in locations with higher ozone concentrations. On the other hand, the experiment 

conducted in another growing season revealed a decrease of PN, especially in places with 

higher ozone concentrations. Moreover, the response was different for various plant species 

Borowiak (2013a, 2014). Hayes et al. (2007) also reported a range of responses of plant 

species to ozone.  

Plant cell responses can affect other plant features, such as morphological parameters directly 

influencing their economic value. It was previously noted that ozone affects plant 

morphological parameters of many plant species, such as reduced leaf size in tree species 

(Dizengremel, 2001, Oksanen, 2003b, Riikonen et al., 2004, Riikonen et al., 2010), reduced leaf 

area and plant height of cotton plants (Zouzoulas et al., 2009), decreased leaf area ratio as well as 
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specific leaf area in soybean (Morgan et al., 2003), and reduced plant height in cucumber 

(Agrawal et al., 1993) and chickpea (Welfare et al., 2002). Our previous investigations on the 

cumulative ozone effect on plant morphology revealed that the more ozone-resistant tobacco 

cultivar showed higher mean plant growth and leaf growth than the ozone-sensitive one 

throughout the experimental period. However, at the exposure sites the ozone-sensitive cultivar 

showed plant growth similar to or higher than both cultivars of the controls, especially at the 

forest site where ozone concentrations were higher. This suggests a plant defense against 

reduction of leaf assimilation area (i.e. against leaf necrosis) (Borowiak, 2013b). It was also 

suggested that ozone can even accelerate plant growth due to faster creation of generative plant 

parts and faster seed production (Borowiak and Wujeska, 2012, Borowiak, 2013b). 

We aimed to improve the knowledge about bean (Phaseolus vulgaris L.) response to ozone, 

describing and comparing the microscopic damages in leaves with and without visible 

symptoms exposed to controlled O3. The presented investigations are a combination of the 

physiological, morphological and anatomical markers, which allows to a full diagnosis of 

invisible lesions detectable by microscope observations, especially in the early stages of the 

symptomatic progression and relation them to visible parameters. For this purpose an accurate 

estimation of the degree of death leaf tissue (mesophilic dead cells) image processing method 

was applied and subsequently for distortion removal and calculation of dead leaf areas. The 

obtained results were referred to the identified morphological and physiological changes (net 

photosynthesis rate, stomatal conductance, intercellular CO2 concentration) of two genotypes 

of bean (ozone-sensitive S156 and ozone–resistant R123) under exposure to tropospheric 

ozone. 

 

Material and methods 

 

Experimental design 

Well-known ozone-sensitive (S156) and ozone-resistant (R123) genotypes of Phaseolus 

vulgaris L. (bean) were used in this study. Genotypes were selected at the USDA-ARS Plant 

Science Unit field site near Raleigh, North Carolina, USA. The bean lines were developed 

from a genetic cross reported by Dick Reinert (described in Reinert and Eason (2000)). 

Individual sensitive (S) and tolerant (R) lines were identified, the S156 and R123 lines were 

selected, and then tested in a bioindicator experiment reported in Burkey et al. (2005). Plants 

were cultivated in the greenhouse for four weeks and then transferred to two exposure sites: 
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greenhouse (control conditions RK - resistant genotype in control conditions and SK – 

sensitive genotype in control conditions) and a suburban site - located 10 kilometers north of 

Poznań (N 52.486092, E 16.889669) (RE – resistant genotype in ambient air conditions and 

SE - sensitive genotype in ambient air conditions). Sites were chosen according to an 

Experimental Protocol, and were 200 meters away from main roads and 50 meters away from 

buildings (ICP Vegetation, 2012). Each site contained three samples from each cultivar in 1.5 

L pots, filled with standard soil mixture, fertilized once with a slow release NAWOMIX 

fertilizer. Plants were continuously watered by fibre wicks placed in pots and trays with 

water.  

Every 7th day (from 18.08.2014 to 24.09.2014) the degree of leaf injury, morphological 

parameters and gas exchange parameters were measured. In addition, material for leaf tissue 

anatomical analyses was also collected from each plant.  

Ozone concentrations are given in AOT 40 units, a measurement standard adopted by the 

European Union. AOT 40 is the accumulated ozone concentration over a threshold of 40 ppb, 

the critical threshold for plants and ecosystems under Polish regulations, measured here 

between 8 a.m. and 8 p.m. It is useful for presenting cumulative ozone effects on plants 

during the growing season. The AOT 40 here presented was calculated based on Provincial 

Environmental Agency Monitoring station located nearby exposure site. The critical dose was 

evaluated for every week of experiment. For better understanding the plant response some 

meteorological data are here also presented and analysed, such as air temperature and 

humidity.  

 

Physiological study, visible injuries and morphological parameters 

The handheld photosynthetic system CI 340aa (CID Bioscience Inc., Camas, USA) was used 

to measure net photosynthetic rate (PN), stomatal conductance (gs) and intercellular CO2 

concentration (Ci). To achieve comparable results of measurements, constant conditions in the 

leaf chamber were maintained: CO2 inflow concentration (390 µmol (CO2) mol-1), 

photosynthetic photon flux density (PPFD) 1000 µmol (photon) m-2s-1, chamber temperature 

23°C and relative humidity 50±3%. Investigations were conducted during midday light 

conditions, between 10 a.m. and 3 p.m. 

Weekly measurements of leaf length/width growth of each trifoliate were made, according to 

the Ozone Experimental Protocol (ICP Vegetation, 2012), and the number of flowers, pods, 
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leaves with 1-5%, 5-25%, >25% damaged surface were measured. Subsequently, the 

correlation between the results of these observations and necrotic area was calculated. 

 

Microscopic analysis 

Samples of leaf tissue (without visible injury and with small, medium and large injures) were 

taken from both Phaseolus vulgaris genotypes. Twenty four leaf discs (20 mm in diameter) 

were randomly cut with a scalpel. In order to assess cell necrosis, a modified histo-

cytochemical method of Faoro and Iriti (2005) was used. Leaf discs were boiled for 1 minute 

in methanol to remove chlorophyll and rinsed with distilled water. The prepared samples were 

then boiled for 1 minute in a mixture of: glycerol, phenol, lactic acid and distilled water 

containing 0.02 g/100 ml Evans Blue, prepared directly before use. After the staining process, 

samples were refrigerated overnight. Using Evan’s blue, it was possible to observe in a light 

microscope individual stages of necrotic changes in leaf tissues. This type of staining is 

frequently applied to identify cells which lost integrity of cell membranes (Baker and Mock, 

1994; Faoro and Iriti, 2009). The dye is removed from live cells but it enters and remains in 

cells with damaged membranes, staining them into intense blue color. Staining intensity, 

which is proportional to the degree of leaf cell membrane damage, is visible under a light 

microscope.   

 

Image analysis 

The input data were the leaf surface color images recorded with the digital camera 

(Canon A640) mounted on the binocular microscope eyepiece. Pictures were taken of all 

microscopic preparations and were magnified 40 and 200 times. The analyzed surfaces 

covered the area of 1 cm2 for images enlarged 40 times, and the area of 0.5 cm2 for images 

enlarged 200 times. The aim of image processing was to extract regions (segmentation), in 

which the tissue was completely destroyed, partially destroyed and or still alive, and to 

calculate their area. 

The aim of image processing was also to remove noise in the form of incompletely 

discolored vascular bundles. An example image is shown in Fig. 1, in which the deep blue and 

blue portions are areas of dead tissue (necrosis) and the green parts are incompletely 

discolored vascular bundles (image noise). In order to remove noise, a threshold was used in 

the RGB color space; however, satisfactory results were not obtained, because together with 
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the noise, part of the relevant information was removed. A better solution was to transform 

images from RGB to CIE Lab color space (Hoffmann, 2003) and apply a threshold in this 

space. CIE Lab space separates the luminance (L component) from the chrominance (a and b) 

(Fig. 2). Mathematical transformation formulas from RGB to CIE Lab can be found, e.g. in 

the OpenCV Manual (The OpenCV Reference Manual 2014) and a detailed description in the 

work of Hoffmann, (2003). Using a threshold in this space allows for effective removal of 

noise from incompletely stained leaf (Fig. 3). Next, proportions of the area consisting of 

partially destroyed and necrotic tissue were calculated for each surface.  

After the segmentation process, when only damaged areas of tissue were visible on the image, 

boundaries between areas of cells completely and partially dead were experimentally 

determined (Fig. 6). The surface area of each one was then determined. Image processing was 

carried out using software written in C ++ developed by the authors using OpenCV library. 

The program is available on line at: 

https://www.dropbox.com/s/4n4z6jwgr2q1zwv/CDA.zip?dl=0. The method is also less 

sensitive to local lighting conditions during image acquisition. 

 

Statistical analysis 

Descriptive statistics were calculated (arithmetic average, standard deviation, 

minimum and maximum). In order to determine statistical significance of average values of 

traits of the samples in question, the factor variance ANOVA F-statistics was used. To 

investigate the correlation between injury assessments by eye and the amount of necrosis and 

between anatomical and physiological parameters, Pearson correlation coefficients were 

calculated. Statistical analysis were made using STATISTICA 10 for Windows software (Stat 

Soft, Inc. 2014).  

 

Results  
 

Gas exchange and morphological parameters 

An AOT 40 critical value of ozone concentrations calculated for each one week period during 

plant exposure ranged from 43 to 304 ppm h. The highest air temperature was recorded in the 

second week of experiment, while the lowest in the third. The air relative humidity was higher 

in the last two weeks experiment (Table 1). The results showed variability in plant response to 

tropospheric ozone, depending on their genotypes. Mean values of net photosynthetic rates 
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(PN) in exposed individuals of the sensitive genotype were significant smaller, amounting to 

PN = 9.43-12.98 µmol(CO2) m
-2 s-1, than those observed in the case of the resistant genotype - 

PN = 9.57-15.35 µmol(CO2) m-2 s-1. On the other hand, no significant differences were 

recorded between the examined genotypes with regard to the intercellular CO2 concentrations 

(Ci) and stomatal conductance (gs) (Table 1). 

Morphological examinations revealed more visible injuries on leaves of the sensitive 

genotypes caused by tropospheric ozone; furthermore, growth and size of leaves were much 

smaller than in resistant ones (Fig. 4). There was no significant difference for the effect of 

ozone between the examined genotypes with respect to the number of flowers and pods.  

 

Image analysis based on microscopic images 

After 28 days of experiment, dead cells in leaf tissues of both ozone sensitive and 

resistant beans were stained from dark to light blue, depending on the stage of cell membrane 

degradation (Figs 1, 5). Measurements of injures visible on microscopic preparations stained 

with Evan’s blue demonstrated that the size of partially destroyed area damaged by ozone 

(green color in Fig. 6) and necrotic areas (red color in Fig. 6) in the case of the sensitive 

genotype (SE) was bigger and amounted respectively 2.18% and 1.18%, while in the resistant 

genotype (RE), partially destroyed area and necrotic area reached 0.5% and 0.02% 

respectively (Fig. 6, 7). The degree of necrotic changes of the measured parameters within 

individual genotypes varied.  

Pearson correlation coefficients showed that percentage of necrotic areas of both genotypes 

was negatively correlated with net photosynthetic rate (p=-0.378; r=0.332) and were 

positively correlated with stomatal conductance (p=0.667; r=0.324), intercellular CO2 

concentration (p=0.278; r=0.665)respectively. Furthermore, we found a tendency for a 

positive correlation between percentage of necrotic area and the number of leaves with visible 

symptoms.he data obtained in the course of the performed experiments showed that the scale 

of sustained damages overlapped; both resistant and sensitive plants were damaged by ozone.  

 

Discussion 

Ambient tropospheric ozone concentration were at the level causing visible leaf injuries of the 

ozone-sensitive bean genotype at the exposure site, while both cultivars revealed a small 

amount of injuries in control conditions. The resistant genotype at the exposure site appeared 
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with comparable injuries to both control genotypes. Differences between genotypes were 

mainly observed for PN, where statistically significant (p<0.05) lower levels were observed 

for the ozone-sensitive genotype at the exposure site. As has been previously reported, the 

decrease of PN was not always related to stomatal closure. Nali et al. (2009) reported higher 

stomatal conductance in sensitive white clover biotype in comparison to resistant one. In 

some cases, the stomatal closure was very rapid and short-term, while the response of the 

photosynthetic apparatus was much slower and longer term (Vahisalu et al., 2010). Similar 

results were noted by Feng et al. (2011), when they reported the gs fluctuations during the 

growing season in the case of one winter wheat variety, while another one revealed a 

consistent decrease in gs. Lombardozzi et al. (2012) found a higher decrease of PN than gs. 

However, the stomatal closure can be a defence mechanism against high ozone exposure 

(Heath et al., 2008) and it is possible that in our case, the ozone concentration was not 

sufficiently high to cause stomatal closure, or the effect of PN decrease was caused by other 

factors such as a decrease in the amount and activity of primary carboxylation enzymes 

Rubisco (Fiscus et al. 2005, Francini et al., 2007, Galmés et al. 2013), or the direct effect of 

oxidative stress through other mechanisms, such as suppression of the Calvin cycle (Guidi 

and Degl’lnnocenti, 2008, Heath, 2008). Ozone can reduce the biochemical capacity to fix 

CO2, hence a higher decrease of PN can be noted than of gs. Tropospheric ozone effects on 

photosynthetic activity can influence morphology and crop and fruit plants production by 

reducing growth of plants (Morgan et al., 2003, Biswas et al., 2008, Tresmondi and Alves 

2011). Our investigations confirmed a negative effect of ozone on plant growth for the ozone-

sensitive genotype. Similar results were observed in an experiment with a common bean 

Phaseolus vulgaris “Nerina” conducted several years ago, where direct relations with ozone 

concentrations were observed only for this cultivar, even when low ozone concentrations 

occurred (Borowiak, 2013b, 2014).  

Ozone generation is strongly affected by meteorological conditions (Tarasova et al., 2003). 

The analysis of obtained results of gas exchange parameters did not clearly relate to 

meteorological conditions. There was only possible to find relation between ozone cumulative 

concentrations and air temperature and relative humidity. The lower ozone concentrations 

were related to lower temperature and higher air humidity. High relative humidity is 

connected with the low ozone levels provided by wet ozone deposition on the water droplets 

(Tarasova et al., 2003; Kovać-Andrić et al., 2009, Quansah et al. 2012). 
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Validation based on microscopic studies has numerous advantages, i.ncluding possibilities of 

scaling down from plant tissue responses to cell reactions. Moreover, it can be used for early 

stage detection of injuries invisible for the naked eye (Vollenweider et al., 2003, Moura et al. 

2011). Leaf surface analysis based on their images divided into three areas, is described in the 

work (Faoro and Iriti, 2005). Removing the veins was done "by hand" using an image editor. 

Division of the image into areas was done based on the histogram of the component B (Blue) 

using Adobe Photoshop 6.0. According to research conducted in this study, the assessment of 

cell damage performed only on the basis of the component B of the image is insufficient and 

subject to significant error. We proposed a method of image processing which gives more 

accurate results of leaf surface damage assessment. This method allows to distinguish and 

assess the percentage of damaged tissue, also including partially death areas, which is not 

possible with using the available software for image processing. Moreover, morphological 

and anatomical damages were positively correlated. The results presented here show early 

identification of the extent of tissue degradation of both bean genotypes in the glasshouse as 

well as in exposure conditions. The presented results are very promising, however require 

further validation with other common ozone-sensitive plant species.  

 

Conclusions 

Implementing image processing into the software developed by the authors made it possible 

to identify early tissue micro-damages both in sensitive and resistant genotypes of Phaseolus 

vulgaris. The method allows to distinguished partially and totally destroyed and necrotic 

areas. Proportions of tissue damage in the sensitive genotype were higher in comparison with 

plants of the resistance genotype. Moreover, a correlation of visible injuries, physiological 

and anatomical injures of Phaseolus vulgaris was found. 
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Table 1. Photosynthesis parameters in ozone-exposed genotypes of Phaseolus vulgaris (net 

photosynthetic rate (PN - µmol(CO2) m
-2

 s
-1), stomatal conductance (gs - µmol (H2O) m-2 s-1), 

intercellular CO2 concentration (Ci µmol (CO2) mol-1) and one-week AOT40 (ppb h), mean 

week air temperature (ºC), air relative humidity (%). Means; n = 6; different letters denote 

significant differences at level p≤0.05 among exposure series and parameters.  

Date 25.08 1.09 

AOT 40 [ppb h ] 52 304 

Air temperature 

[ºC] 19.7 22.0 

Air relative 

humidity [%] 53.4 60.3 

Sample 

PN 

[µmol(CO2) 

m-2 s-1] 

gs  

[µmol (H2O) 

m–2 s–1] 

Ci 

[µmol (CO2) 

mol-1] 

PN 

[µmol(CO2) 

m-2 s-1] 

gs  

[µmol (H2O) 

m–2 s–1] 

Ci 

[µmol (CO2) 

mol-1] 

RK 10.93a 78.99a 
264.83a 

8.47a 44.27a 
108.52a 

SK 14.04b 96.54b 224.66b 14.30c 69.72b 244.71b 

RE 12.82c 124.06c 222.94b 13.62b 108.48c 247.22b 

SE 11.65a 141.16d 256.86c 12.98b 103.85d 243.17b 

       

Date 8.09 15.09 

AOT 40 [ppb h ] 43 104 

Air temperature 

[ºC] 14.6 16.2 

Air relative 

humidity [%] 73.6 74.2 

Sample 

PN 

[µmol(CO2) 

m-2 s-1] 

gs  

[µmol (H2O) 

m–2 s–1] 

Ci 

[µmol (CO2) 

mol-1] 

PN 

[µmol(CO2) 

m-2 s-1] 

gs  

[µmol (H2O) 

m–2 s–1] 

Ci 

[µmol (CO2) 

mol-1] 

RK 13.62a 125.19a 367.46a 13.62a 125.19a 347.15a 

SK 17.26b 112.31b 312.8b 6.52b 72.08b 413.88b 

RE 15.35c 92.39c 275.42c 9.57c 135.84c 355.95a 

SE 9.43d 133.53d 383.8a 12.14a 123.83a 385.33c 

RK - resistant genotype in control conditions, SK – sensitive genotype in control conditions; 

RE – resistant genotype in ambient air conditions, SE - sensitive genotype in ambient air 

conditions  
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Figures 

 

Fig. 1. Visible symptoms in leaf fragments of sensitive genotype (S156) Phaseolus vulgaris,  

dead cells are stained in blue. 

 

 

Fig. 2. CIE Lab color space (Technical Guides). 
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Fig. 3. Segmentation of image in leaf fragments of sensitive genotype (S156) Phaseolus 

vulgaris depicted in Fig. 1. 
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Fig. 4. Mean (± SD; n = 6) values leaves dimensions – leaf width and length growth (SE – 

sensitive genotype in ambient air conditions, SK - sensitive genotype in control conditions, 

RE – resistant genotype in ambient air conditions, RK – resistant genotype in control 

conditions.1- 6 terms of weekly measurements). Different letters denote significant 

differences at level p≤0.05 among exposure series and parameters. 
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Fig. 5. Small amount of dead cells are (stained in blue) in leaf fragments of resistant genotype 

(R123). 

 

 

Fig. 6. Separation of different image areas: red – area totally destroyed, green – area  partially 

destroyed, blue - living tissue. 
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Fig. 7. Mean percentage (±SD) of partially destroyed area (A) and totally destroyed area (B) 

(%) of both genotypes based on image analysis method, (SE – sensitive genotype in ambient 

air conditions, SK - sensitive genotype in control conditions, RE – resistant genotype in 

ambient air conditions, RK – resistant genotype in control conditions). 
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