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ABSTRACT20

Numerous processes, past and present, have given rise to lateral and vertical variation21

in the soil and to its individual properties such as its salinity and electrical22

conductivity. The resulting patterns of variation are complex and appear to comprise23

both random and deterministic components. The latter dominates vertically as24

trends in most soil profiles, and in the situation we describe it is prominent in the25

horizontal plane, too. Describing this variation requires flexible choice of covariance26

function. The processes of model estimation and prediction by kriging in three27

dimensions are similar to those in two dimensions. The extra complexity of the28

three-dimensional variation requires practitioners to appreciate fully the assumptions29

that their choices of model imply and to establish ways of testing the validity of these30

assumptions. We have examined several covariance functions more commonly used to31

describe simultaneously variation in space and time and adapted them to model32

three-dimensional variation in soil. We have applied these covariance functions to33

model the variation in salinity in reclaimed land in the Yangtze delta of China where34

the apparent electrical conductivity (ECa) has been measured at numerous points35

down to 1.1 m. The models take into account random and deterministic components36

in both the horizontal and vertical dimensions. The most suitable mixed model was37

then used to krige the ECa on a fine grid from which three-dimensional diagrams of38

the salinity are displayed.39

40

1. Introduction41

It is now common practice to use geostatistical methods to model the horizontal42

variation of soil properties and to predict values at unvisited sites by some form of43

kriging (Webster and Oliver, 2007). In many instances one can treat the variation as44

the outcomes of intrinsically stationary correlated random processes and model the45
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variation satisfactorily with one or other of the popular authorized variogram46

functions. The random variation may be isotropic, so that one may disregard47

direction. Alternatively where the spatial correlation evidently varies with changes in48

direction one can often treat the anisotropy as geometric and elaborate the model in49

the form of a geometric anisotropic variogram function. Such a function permits the50

distance parameter(s) in the model to vary according to direction. If the variogram is51

bounded its sill is the same in all directions.52

In three dimensions this assumption of a constant sill is much less likely to be53

appropriate for soil. The processes such as differential weathering, leaching and54

fluctuating ground water which lead to vertical variation differ substantially from the55

earth surface processes that act horizontally and on quite different spatial scales.56

This can lead to quite different horizontal and vertical sill variances, even after the57

removal of any trend components. More complex variograms or spatial covariance58

functions are required.59

An analogous problem occurs when we model the variation of a property in both60

space and time, and several spatio-temporal correlation functions have been proposed61

(De Cesare et al., 2001; Kyriakidis et al., 1999).62

In this paper we demonstrate that such functions can be used to represent the63

three-dimensional variation of a soil property, namely the soil’s apparent electrical64

conductivity (ECa) which is commonly used as a proxy for soil salinity. We do so65

with sample data on ECa recorded in an ongoing investigation into the salinity in the66

Yangtze delta (Li et al., 2013; 2015).67

2. The setting68

The land in the coastal zone of Zhejiang Province south of China’s Hangzhou69

Gulf of the Yangtze delta is formed of recent marine and fluvial deposits. Huge70

quantities of sediment are deposited in the delta each year, and as the delta builds so71

more of it can be empoldered and claimed for agriculture, in particular, for paddy72

rice. Rice will not grow well, if at all, in salty soil, however. Farmers, therefore, wish73
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to be sure before they plant their rice that salt will not impair its growth. Farmers74

therefore wish to know that the soil is effectively free of salt before they attempt to75

grow the crop. They want accurate estimates of the soil’s salinity, both laterally from76

place to place within their new fields and down the profile because the rice plants are77

susceptible to salt in the root zone from the surface to at least 1 m. Ideally they78

would like three-dimensional maps of the salinity in their fields.79

One can now monitor the soil’s salinity using electromagnetic induction80

equipment such as the Geonics EM31 and EM38 instruments (McNeill, 1980). These81

devices measure the ECa of the soil, which is closely related to the soil’s salinity. The82

EM38 is especially useful in that it can measure the ECa to approximately 1.5 m83

depth from the surface. One can use it therefore to obtain measures of the soil’s84

salinity throughout the root zone of the rice without having to dig or bore into the85

soil to take samples.86

In an earlier paper (Li et al., 2013) we described the Tikhonov regularization for87

converting the instrumental responses of the EM38 to ECa at ten depths in the soil in88

a 2.2-ha field that had been empoldered in 1996. We then modelled the89

three-dimensional variation in ECa as a series of correlated two-dimensional90

regionalized variables, one variable for each of the ten depths down to 1.1 m, and91

kriged the ECa on a fine grid at those depths. We displayed the kriged predictions as92

a series of maps of EC, and built from the bottom upwards a three-dimensional block93

diagram. Since measurements from different depths were treated as different94

variables, discontinuities were evident in the predicted vertical profiles and ECa could95

not be predicted at depths where it was not measured.96

The results revealed a trend in salinity across the field. In a second paper (Li et97

al., 2105), for which we had many more measurements in the topsoil, we were able to98

treat the data as the outcome of a linear mixed model (LMM) comprising both a99

fixed effect of the trend and a random residual from it and to estimate the100

parameters of the model by residual maximum likelihood (reml). Then by universal101
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kriging we predicted the salinity at the nodes of a fine grid for mapping.102

Figure 7 of the paper by Li et al. (2013) also showed what appeared to be a103

general increase in salinity with increasing depth. In an independent study in an104

adjacent field the authors found that in five of the nine profiles they measured there105

was indeed a steady increase in conductivity.106

Our aim now is to model the full three-dimensional variation in salinity, taking107

into account both the lateral and vertical trends, and to use whatever models we fit108

to predict the salinity in the three dimensions by kriging.109

3. The data110

The field has an area of approximately 2.2 ha. The electrical conductivity of soil,111

recorded as ECa, was measured with a Geonics EM38 conductivity meter at 56 nodes,112

approximately on a 20 m × 20 m grid (Figure 1).113

At each position, the readings were made using EM38 instruments with the coil114

configured both horizontally and vertically. The first ECa measurements were made115

on the ground surface to provide values of the soils ECa to theoretical depths of 0.75116

and 1.5 m, respectively. Then, the EM38 instrument was raised in increments of 0.1117

m and readings were taken up to 0.6 m. Further readings were taken at heights of118

0.75, 0.9, 1.1, 1.2 and 1.5 m above the surface. The linear model described by119

Borchers et al. (1997) was applied to this set of measurements to estimate ECa at ten120

depths, namely 0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.675, 0.825, 0.95 and 1.05 m, by121

second-order Tikhonov regularization. The diameters of the white circles in Figure 1122

are proportional to the mean ECa across all ten depths. These values of ECa and123

their spatial coordinates comprise the data for our study. We use the following124

notation in referring them.125

We denote by the vector z of length n the full set of n = 560 observations from126

ns = 56 sites at nd = 10 depths. We denote the spatial coordinates at which the127

observations were made by x ≡ {x, y, d} in which x and y are the two lateral128

dimensions and d is depth.129
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We draw attention here to two features of the data, displayed in Figure 2, and to130

the nature of the problem. Figure 2 shows (a) that there is a gradually increasing131

trend in ECa with increasing depth and (b) that the variance is not constant; the132

standard deviation is fairly constant down to 55 cm, but increases thereafter down133

the profile. With these preliminary results in mind we nevertheless, proceed in stages,134

as follows.135

4. The general model136

We assume that the observed ECa can be represented by a linear mixed model137

(LMM):138

z = Mβ + u . (1)

As above, z denotes the vector of the n = 560 observations. In addition M is the139

design matrix of the fixed effects; β is the parameter vector for those effects and u is140

the vector of random effects which are realizations of a multivariate Gaussian random141

process with mean zero and covariance matrix C.142

In the two-dimensional LMM of Li et al. (2015) for salinity in the top 10 cm of143

soil the best-fitting model had a quadratic spatial trend in the fixed effects (i.e. the144

columns of the M matrix were 1s, x, y, x2, y2 and xy, as displayed in Figure 1), and145

an isotropic two-dimensional spatial covariance function, C(h), in which h is a lag in146

horizontal distance only. Our aim here is to extend that model to describe147

quantitatively the variation in three dimensions. We might succeed by including148

depth, d, in the fixed effects or by estimating a covariance matrix that is a function of149

the three-dimensional lag vector separating the pairs of observations (i.e. C = C(h, v)150

for vertical lag v), or a combination of the two. We itemize some of the possible151

extended models in the appendix below.152

The parameters of our covariance functions could be estimated by the153

method-of-moments (Webster and Oliver, 2007). In this approach, point estimates of154

the expected squared differences between pairs of observations are calculated for155
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several lags. Then the model parameters are selected such that there is a good match156

between the point estimates and the fitted covariance function. We previously used157

the method-of-moments to estimate our model which treated the ECa measurements158

from different depths as a series of correlated two-dimensional regionalized variables159

(Li et al., 2013). In our later paper, however, which looked specifically at160

two-dimensional variation (Li et al., 2015), we found that better validation statistics161

resulted from models estimated by likelihood-based methods. This finding was not162

unexpected because the method-of-moments requires several subjective decisions. In163

particular, the practitioner must decide what lag bins to use and how to the allocate164

pairs of observations among them, and he or she must choose a suitable criterion to165

identify the best fitting model. Also, the method-of-moments does not account for166

the correlation between the different point estimates. In contrast, likelihood-based167

estimators estimate model parameters according to a statistical criterion that168

accounts fully for the correlations among the data.169

Therefore, we estimate each model by maximum likelihood (ML) and compare170

the suitabilities of the models by calculating the Akaike Information Criterion (AIC):171

AIC = 2k − 2 lnL , (2)

where L is the likelihood and k is the number of parameters in the model (Akaike,172

1973). The preferred model is the one with the smallest AIC; we consider it the best173

compromise between quality of fit to the data and the model’s complexity (number of174

parameters).175

We have cross-validated the models by the leave-one-out method and calculated176

the standardized prediction errors:177

θi =

(
zi − Ẑi

)2
σ2
K(i)

, (3)

where zi is the observation at site i, Ẑi is the kriged prediction at site i when zi is178

excluded from the kriging predictor, and σ2
K(i) is the corresponding kriging variance.179

If the errors are normally distributed then the θi will be a realization of a180
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standardized chi-squared distribution with one degree of freedom. The mean of the181

θi, say, θ̄, and usually reported as the mean squared deviation ratio (MSDR), then182

has expectation 1.0, and the median of θi, θ̃ or medSDR, has the expected value183

0.455 for a standard chi-squared distribution.184

We follow Li et al. (2015) and assume a quadratic horizontal spatial trend in the185

fixed effects. We add a linear trend with d which reflects the observed relationship186

between ECa and d (Fig. 2). We compare various covariance functions. In the187

discussion below we denote authorized covariance functions of (i) horizontal lag, (ii)188

vertical lag and (iii) horizontal and vertical lag by CH, CV and CHV respectively.189

Our initial covariance model is a second-order stationary Matérn function190

(Matérn, 1960; Marchant and Lark, 2007):191

C (h, v) = c1

{
1

2ν−1
Γ (ν)

(√
h2 + v2

a

)ν

Kν

(√
h2 + v2

a

)}
for
√
h2 + v2 > 0,

C (h, v) = c0 for
√
h2 + v2 = 0 , (4)

where c0 is the nugget variance, c1 is the sill variance of the correlated structure, a is192

a spatial parameter, ν is a smoothness parameter, Kν is a modified Bessel function of193

the second kind of order ν (Abramowitz and Stegun, 1972) and Γ is the gamma194

function.195

Though this isotropic model is our starting point, we recognize that it is highly196

unlikely to be optimal, for that would imply identical covariance functions for the197

horizontal and vertical dimensions. The variation is almost certain to be anisotropic.198

Anisotropy is commonly accommodated in covariance functions via an affine199

transformation:200

C (h, v) = CHV

(√
h2 + αv2

)
. (5)

Here, h and v are the lags in the horizontal and vertical dimensions, which are201

denoted by the subscripts H and V. The parameter α stretches or contracts the202

vertical range of spatial correlation relative to the horizontal range. The model still203

requires us to assume that the sills are identical in the horizontal and vertical204

dimensions, however.205

8



More flexible three-dimensional covariance functions have been devised to206

represent the spatial and temporal variation of properties. These functions are207

reviewed by De Cesare et al. (2001) and Kyriakidis and Journel (1999). The simplest208

space–time models are said to be separable. The spatial correlation is independent of209

the temporal correlation. Separable functions can be formed from the sum or product210

of a spatial and a temporal covariance function. Rouhani and Myers (1990) pointed211

out that the sum sometimes leads to singular kriging equations, and the assumption212

of independent spatial and temporal correlation functions is rather limiting.213

Therefore several non-separable models have been proposed. Two of the most widely214

used (written in terms of horizontal and vertical rather than spatial and temporal215

lags) are the sum metric model:216

C (h, v) = CH (h) + CV (v) + CHV

(√
h2 + αv2

)
. (6)

and the product sum model:217

C (h, v) = CH (h) + CV (v) + kCH (h)CV (v) , (7)

where k > 0 is a parameter. Both of these models permit different sills and distance218

parameters in the horizontal and vertical dimensions, and they account for the219

dependence between the spatial correlations in each dimension.220

All of the models described so far require the assumption that the random effects221

are stationary. This means that the covariances are functions of the lags between222

pairs of points and only of the lags; they do not depend on the specific locations of223

the points. A further complication in our study is that not only is there a trend of224

increasing ECa down the profile but also an increase in the variance—see Fig. 2. This225

increasing variance can be accommodated if the covariance matrix is scaled on both226

sides by a diagonal matrix S. Thus the covariance matrix becomes SCS where the227

elements of the main diagonal of S are a function of location. We refer to this228

function as a scaling function, S(d). Our chosen scaling functions are linear,229

quadratic and cubic polynomials of ln(d) and a discontinuous function where a230
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different scaling value is estimated for each depth. We used polynomials of ln(d)231

rather than polynomials of d because ln(d) had a stronger linear correlation with the232

standard deviation. We thus have LMMs comprising random and fixed effects.233

The AIC, Equation (2), is based on maximum likelihood (ml) estimates of the234

parameters. There is a small bias, however, in ml estimates of variance parameters in235

the presence of fixed effects. So, once we have determined the most suitable model for236

the LMM we re-estimate the parameters by reml. Then we use the empirical best237

linear unbiased predictor (e-blup) or universal kriging predictor (Lark et al., 2006)238

to predict the ECa on a regular three-dimensional grid. The reml estimator239

minimizes the bias, but the residual likelihood cannot be used to calculate the AIC.240

Then we use the empirical best linear unbiased predictor (e-blup) or universal241

kriging predictor (Lark et al., 2006) to predict the ECa on a regular three-dimensional242

grid. There is a small bias in ml estimates of variance parameters in the presence of243

fixed effects. The reml estimator minimizes this bias, but the residual likelihood244

cannot be used to calculate the AIC, Equation (2).245

5. Results246

The summary validation statistics for the model with stationary isotropic random247

effects might be considered acceptable (Table 1). The mean square deviation ratio,248

MSDR, is 1.00, and the medSDR is 0.29.249

Including geometric anisotropy in the models, however, diminishes the AIC250

substantially. There is a further decrease in the negative log-likelihood when the sum251

metric covariance function is used. The additional parameters in this model cause the252

AIC to increase, however. For models with stationary random effects the smallest253

AIC is obtained when the covariance function is a product sum model. The ml254

estimated variogram for this model appears to be consistent with the255

method-of-moments point estimates in all dimensions (Fig. 3). These point estimates,256

however, do not vary with depth. When the horizontal variograms for the separate257

depths are plotted individually the ml model appears to over-estimate the variogram258
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near the surface of the soil and to under-estimate it at greater depths. We also see259

that the MSDR is considerably less than 1 near the surface and considerably greater260

than 1 for great depths (Fig. 5).261

We could overcome some of these shortcomings by using non-stationary262

covariance matrices—see models 5–8 in the appendix. This adaptation led to further263

decreases in the AIC. The smallest AIC was achieved for the model with a unique264

scaling value for each depth, and the cubic polynomial led to the smallest AIC for a265

continuous scaling function. In Figs 4 and 5 we see that the cubic (red) and266

discontinuous (green) scaling functions lead to better fitted horizontal variograms267

across the several depths and that the MSDR for the different depths do not deviate268

so far from 1.0.269

We favour the non-stationary model with a cubic scaling function since this can270

be used to predict ECa and hence soil salinity at any depth, whereas the model with271

discontinuous scaling function is limited to the depths at which soil salinity was272

measured. Figure 6 shows the kriged predictions from this model at several different273

depths. The quadratic horizontal trend and linearly increasing trend in salinity with274

depth are clearly evident.275

6. Discussion276

In many respects the procedures for estimating geostatistical models in277

three-dimensions are the same as those in two-dimensions. The observed278

measurements can be treated as a realization of an LMM. These models can be279

estimated by ml and the suitability of different fixed and random effects structures in280

the model can be compared via the AIC. Also, one can validate these models by281

calculating the MSDR.282

The primary difference in the three-dimensional case is the potential for more283

complex patterns of variation and hence the existence of more ways in which the284

observed data can deviate from the assumed model. When we decide on the structure285

of the LMM we need to look for trends in expected values and variances both286
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horizontally and vertically. We have seen that calculation of the MSDR averaged over287

the entire set of data is insufficient to validate these models. This summary statistic288

can disguise large deviations from the assumed model. Instead it is important that289

we understand the assumptions that our models imply and devise tests of the290

appropriateness of these assumptions. For example, we tested the assumption that291

the random effects were independent of depth by looking individually at the MSDR292

for each depth and we established that this assumption should be relaxed.293

We could identify the best fitting model from our list of candidate models.294

However, the fit was by no means perfect. The medSPE was rather less than 0.45 and295

there were still some depths where the MSDR deviated from 1. This indicates that296

further generalizations of the geostatistical model might be required.297

In Fig 6, the quadratic horizontal trend and linearly increasing trend in salinity298

with depth are clearly evident in the field studied. The predictions vary smoothly in299

both the horizontal and vertical directions. This contrasts with the corresponding300

graphs in Li et al. (2013) where there were discontinuities in the predictions down the301

profile. Those discontinuities resulted from measurements from the different soil302

depths being treated as different variables.303

However, the true value in our statistical model is that we have increased304

confidence that the uncertainty of our predictions has been reliably quantified.305

Therefore farmers can account for this uncertainty when they decide whether or not306

to grow rice. For example, rather than considering the expected ECa it might be307

relevant to explore the risk or probability that the soil salinity exceeds a critical308

threshold at each location. The FAO (1976) suggests that soil salinity equivalent to309

an ECa of 123 mS m−1 is likely to lead to a 25 % reduction in rice yield compared310

with non-saline soil. Since the kriging predictor yields both a prediction of ECa and311

an estimate of the prediction interval at each point in the field we can easily312

determine the probability that this threshold is exceeded (Fig 7). Thus we see that in313

the majority of the field and particularly at depth it is very likely that salinity will314
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lead to loss of yield.315
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Appendix357

Below, we list the parametric functions for the specific forms of the LMM,358

Equation (1), considered in the paper. For all of these models the columns of the359

design matrix for the fixed effects, M, are 1s, x, y, d, x2, y2 and xy. All covariance360

functions are Matérn functions, Equation (4).361

Model 1, isotropic362

S (d) = α0,363

C (h, v) = CHV

(√
h2 + v2

)
.364

Model 2, geometric anisotropic365

S (d) = α0,366

C (h, v) = CHV

(√
h2 + αv2

)
.367

Model 3, Sum metric368

S (d) = α0,369

C (h, v) = CH (h) + CV (v) + CHV

(√
h2 + αv2

)
.370

Model 4, Product sum371

S (d) = α0,372

C (h, v) = CH (h) + CV (v) + kCH (h)CV (v).373

Model 5, Product sum374

S (d) = α0 + α1 ln (d),375

C (h, v) = CH (h) + CV (v) + kCH (h)CV (v).376

Model 6, Product sum377

S (d) = α0 + α1 ln (d) + α2 {ln (d)}2,378

C (h, v) = CH (h) + CV (v) + kCH (h)CV (v).379

Model 7, Product sum380
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S (d) = α0 + α1 ln (d) + α2 {ln (d)}2 + α3 {ln (d)}3,381

C (h, v) = CH (h) + CV (v) + kCH (h)CV (v).382

Model 8, Product sum383

S (d) = αi if d = di,384

C (h, v) = CH (h) + CV (v) + kCH (h)CV (v).385

The di for i = 1, 2, . . . , 10 are the depths at which ECa was observed, and the αi are386

parameters.387
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