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tAbstract: To assess the influence of soil properties and ageing on the availability and toxicity of Zn 

applied as nanoparticles (ZnO NPs) or as Zn
2+

 ions (ZnCl2), three natural soils were individually 

spiked with either ZnO NPs or ZnCl2 and incubated for up to 6 months. Available Zn 

concentrations in soil were measured by pore water extraction (ZnPW), while exposures of 

earthworms (Eisenia andrei) were performed to study Zn bioavailability. ZnPW was lower when Zn 

was applied as nanoparticles than as ionic form, and decreased with increasing soil pH. ZnPW for 

both Zn forms were affected by ageing, but varied among the tested soils, highlighting the influence 

of soil properties. Internal Zn concentration in the earthworms (ZnE) was highest for the soil with 

high organic carbon content (5.4%) and basic pH (7.6) spiked with ZnO NPs, but the same soil 

spiked with ZnCl2 showed the lowest increase in ZnE compared to the control. Survival, weight 

change, and reproduction of the earthworms were affected by both Zn forms, but differences in 

toxicity could not be explained by soil properties or ageing. This shows that ZnO NPs and ZnCl2 

behave differently in soils depending on soil properties and ageing processes, but differences in 

earthworm toxicity remain unexplained. This article is protected by copyright. All rights reserved 
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INTRODUCTION 

The use of nanoparticles (NPs) in a variety of applications has exponentially increased over 

the last 30 years [1]. As a consequence, manufactured NPs are increasingly entering the 

environment [2], but only limited data is available on their potential hazard [3]. The high production 

of NPs as well as their potential for release into the environment, and subsequent effects on 

ecosystem health are becoming a growing concern. A thorough knowledge of the behavior and 

effects of NPs in environmental media is essential for risk assessment [4]. 

Zinc oxide (ZnO) is one of the most commonly used types of metal-based NPs, having the third 

highest annual production volume [5]. ZnO NPs are used in electronics applications, solar panel 

devices, medicine, cosmetics, sunscreens (UV-filters), and applied as antibacterial agents [6]. ZnO 

NPs can enter the environment via waste water at industrial sites or through domestic sewage; and 

by the application of sewage sludge in agriculture they may also end up in soil [7]. 

The distribution, mobility, and bioavailability of Zn in soils are controlled by a range of 

physicochemical characteristics, including the nature and heterogeneity of the soil constituents, the 

surface charge of soil colloids, and variations in soil pH and redox status [8]. The properties of 

nanoscale materials may differ substantially from those of the respective bulk materials [9]. Under 

the influence of soil properties, such as pH and organic matter content, ZnO NPs show a high 

variability in bioavailability and toxicity [10-12]. For assessing their hazard and potential risk in 

soil, it is essential to determine under which conditions and how ZnO NPs exert their 

ecotoxicological effects. Unfortunately, the ecotoxicity studies available show a significant lack of 

characterization of the exposure of soil organisms to ZnO NPs. Once in the soil, complex processes 

can affect NPs, which can act as colloids. NPs may form aggregates or agglomerates, which can 

lead to sedimentation, or may be prone to dissolution and release of free metal ions [13]. Upon 

contact with water, ZnO NPs partially dissolve to Zn ions (Zn
2+

), so their effects may partly be due 

to the soluble forms of Zn [14]. This process may also occur in soil, and it therefore is essential to 



A
c
c
e
p
te
d
P
r
e
p
r
i n

tsubstantiate whether Zn toxicity is produced by the NP forms, as well as the free ions released in 

soil. 

It has been observed that long time periods are required for ionic Zn to reach equilibrium in 

spiked soils, a process called ageing [15]. In soils spiked with ZnO NPs the same processes occur 

[16], while further dissolution to ionic Zn forms means that it may take even longer time to reach 

apparent equilibrium compared to soils directly spiked with ionic Zn. These long-term processes 

have shown to decrease bulk Zn toxicity in soil over time, while ageing also seems to reduce ZnO 

NP toxicity (and bioavailability) in soil, as was shown for springtails by Waalewijn-Kool et al. [17]. 

Hence future ecotoxicity tests with ZnO NPs should focus on their long-term effects in relation to 

their fate and bioavailability [6]. The difference in Zn bioavailability between freshly spiked and 

aged soils may also be explained by major soil properties [18]. 

To assess their potential ecotoxicological risk, metal bioaccumulation and effects in soil organisms 

have been studied [19-20]. Earthworms are common in a wide range of soils and have largely been 

used in bioassays for evaluating hazardous chemicals in soils [21]. Earthworms are more 

susceptible to metal pollution than many other soil invertebrates, and have a number of 

characteristics (large size, behaviour, and high biomass) that make them highly suitable for use as 

bioindicator organisms for determining the toxicity of chemicals in soil [22]. As so-called eco-

engineers, they play an important role in decomposition and soil-forming processes, but they also 

can easily accumulate chemicals from soil and subsequently, as important prey, introduce them into 

the food chain [19]. Consequently, earthworms have been adopted as standard organisms for 

ecotoxicological testing [23]. 

The purpose of the present study was to determine the influence of ageing on the availability 

and toxicity of ZnO NPs to earthworms (Eisenia andrei) in soils with contrasting properties. Three 

natural soils with different physicochemical soil properties were selected to assess the fate and 

effects of ZnO NPs. In addition, an ionic Zn (ZnCl2) treatment was included for comparison. Pore 

water extraction was applied to assess changes in the availability of the two studied Zn forms over a 
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t6-month ageing period. Bioavailability and toxicity were measured by exposing E. andrei to ZnO 

NPs or ZnCl2 aged in soils for different periods of time. Internal Zn concentrations in the animals, 

survival, weight change, and reproduction were measured to evaluate Zn bioavailability and 

toxicity. 

MATERIALS AND METHODS 

Soils 

Three uncontaminated soils with contrasting properties were selected from different 

countries. Two soils were collected from the surface horizon of fields in Spain (SPCA; forestland in 

Granada) and the Netherlands (NLGA; a garden in Bilthoven), homogenized, 5 mm sieved and air 

dried. The third soil was the LUFA 2.2 natural standard soil (LUFA Speyer, Germany). Before the 

start of the tests, the following physicochemical properties were determined: soil pH in 1 M 

potassium chloride (soil:KCl, ratio 1:2.5 [w:v]) and pH in pore water; electric conductivity (EC); 

calcium carbonate content (CaCO3), organic carbon (OC) content, particle-size distribution, and 

cation exchange capacity (CEC), according to Romero-Freire et al. [24] and water holding capacity 

(WHC) [25] (Table 1). 

Soils were spiked in the laboratory with ZnO NPs (Nanosun Zinc Oxide P99/30) with a 

primary particle diameter size of 20-40 nm (Figure SI-1). To study the effect of dissolved (ionic) 

Zn, one treatment with the soluble salt ZnCl2 (Merck, zinc chloride pure) was included. Test 

concentrations were based on toxicity data obtained in an earlier study with the same type of ZnO 

NPs [11]. The spiking concentrations correspond with EC10 and EC50 for the effects of ZnO NPs, 

and EC50 for effects of ZnCl2 on earthworm reproduction. The selected dosing levels were adjusted 

to take into account the influence of soil pH and CEC on the effect concentrations. Test 

concentrations of ZnCl2 were 500 mg Zn kg
-1

 in LUFA and NLGA, and 1250 mg Zn kg
-1

 in SPCA; 

ZnO NP concentrations tested were 500 and 1000 mg Zn kg
-1

 in LUFA and NLGA, and 1250 and 

2500 mg Zn kg
-1

 in SPCA. Uncontaminated controls were also included. 
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tThe ZnO NPs were mixed into the soils as a powder in order to avoid dissolution of the 

particles prior to addition to the soil, while ZnCl2 was introduced as an aqueous solution. Soils were 

intensively mixed with a spoon to avoid modifying the NPs, to achieve as homogenous distribution 

of the Zn as possible. After spiking, soils were moistened to 50% of their WHC. Soils were dosed 

as a single batch which was then split into separate aliquots for each time point and replicate. Soils 

were incubated in a climate room (Weiss Technik Benelux B.V., Rotterdam, The Netherlands) at 

20°C and 75% relative air humidity, with a light/dark cycle of 12/12 h. Soil moisture content was 

checked weekly by weighing the test containers and if needed readjusted.  

Extraction procedure to assess Zn availability 

 To assess available Zn concentrations, two methods were applied: pore water extraction 

and extraction with a diluted Cu(NO3)2 solution. We expected that the latter method would allow 

discrimination between particulate and freely available Zn forms. Since this method did not seem to 

work as expected, we will not discuss this further; we included a brief description in the Supporting 

Information.  

 At 1, 3, 56, and 168 d after spiking the soils, pore water extractions were performed. For 

that purpose, 50 g soil samples were placed in Teflon containers and moistened to 100% WHC, 

mixed and equilibrated for 7 d at room temperature. Soils were then centrifuged for 45 min at 2000 

× g at 10 
o
C, through a 0.45 μm membrane filter (Whatman NC45, cellulose nitrate diameter 47 

mm) placed between two circular filters (Whatman filter paper cat. n
o
 10001-047, diameter 47 mm) 

[26]. The pH of the extracted pore water was measured with an inoLab pH 7110 pH meter (WTW 

Wissenschaftlich-Technische Werkstätten GmbH, Germany), and electric conductivity was 

measured by an EC Multiline P4 with a cell TetraCon 325 (WTW, Germany). Samples were 

acidified with a drop of concentrated nitric acid and refrigerated for further analysis. Pore water 

extraction was performed in duplicate for each treatment, including two controls with water only. 

Earthworm tests 
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tEarthworm tests were performed using soils incubated for 1, 56, and 140 d after spiking. 

Earthworms (E. andrei) were obtained from a laboratory culture at the Department of Ecological 

Science of the Vrije Universiteit in Amsterdam. The earthworms were fed with horse manure free 

of pharmaceuticals and incubated at 20 
o
C. The tests used adult earthworms with well-developed 

clitellum, which were acclimatized for 24 h in the respective control soils before starting the 

exposures. 

The earthworm tests followed OECD guideline 222 [27], including 28 d exposure of adult 

animals followed by another 28 d incubation of cocoons to enable the assessment of juvenile 

production. Four replicate test containers were used for each Zn concentration and control, 

containing approx. 500 g soil (dry weight equivalent) moistened to 50% WHC. Ten adult 

earthworms were added to each test container after being gently cleaned on moistened paper towels 

and weighed. Furthermore, 10 g (wet weight) of horse manure:distilled water (1:2 ratio) were added 

to each container to feed the earthworms. The containers were maintained under the same 

conditions as mentioned above for soil incubation. Container weights were monitored weekly to 

maintain soil moisture content and additional food was added if required. 

After 28 d, test containers were emptied into a tray and surviving adults were collected by hand 

sorting and weighed. Loss in earthworm weight after 28 d was calculated (WL) relative to the initial 

weight and expressed as the percentage reduction. Surviving earthworms were incubated on moist 

filter paper in Petri dishes for approx. 24 h to void their gut contents. Subsequently, they were 

frozen, freeze-dried and stored for analysis. Soils containing cocoons were returned to the 

respective containers and incubated for another 28 d. After this period the number of juveniles was 

determined by placing the containers in a water bath at 60 
o
C forcing juveniles to emerge to the 

surface, where they were counted. 

Metal analysis 

To check spiked concentrations, approx. 0.1 g oven-dried soil samples were digested in 2 

mL of a 4:1 mixture of nitric acid (65% pro analysis; Riedel-de Haen) and hydrochloric acid (37% 
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tpro analysis, Baker) in tightly closed Teflon containers, which were heated in an oven at 140 
o
C for 

7 h. Measured Zn concentrations were used in all data analyses. To determine the Zn concentration 

in earthworms, one freeze-dried individual earthworm of each replicate test container was digested 

using the same acid mixture and procedure as described for soil samples (n=4). Total Zn 

concentrations in soils (ZnT), earthworms (ZnE), and porewater Zn concentrations (ZnPW) were 

measured by flame atomic absorption spectrometry (AAS; Perkin Elmer AAnalyst 100). 

Instrumental drift was monitored by regularly running standard element solutions between samples. 

All Zn analyses included procedural blanks. Certified reference materials were also measured for 

ZnT (ISE sample 989, River Clay from Wageningen, The Netherlands) and for ZnE (Dogfish Liver 

DOLT-4, National Research Council Canada). Procedural blanks for estimating the detection limits 

(n=20) were <0.003 mg L
-1

 for Zn. Digested blanks contained Zn concentrations below the limit of 

detection. Recovery of Zn (mean±SD) from the reference soil was 95±6.9 % and from the DOLT-4 

reference material was 97±2.4% (both n =3). 

Data analyses 

Normal distribution of the data was verified using a Kolmogorov-Smirnov test. Significant 

differences were determined by ANOVA and multiple comparisons were performed with Tukey's 

test (p < 0.05). Partition coefficients (KdPW) were calculated as ZnT (mg kg
−1

) divided by ZnPW 

(mg L
−1

). To compare soils and treatments with different Zn concentrations, bioaccumulation 

factors (BAF) for the accumulation of Zn in the earthworms were calculated by dividing ZnE by 

ZnT. To determine the influence of soil properties and ageing on Zn availability and earthworm 

responses for the three test soils, principal component analyses (PCA) were performed using the 

‘CANOCO for Windows’ program v4.02. To study the effect of ageing by relating soil properties 

and earthworm behaviour, we assumed that soils, which were incubated under controlled 

conditions, had reached equilibrium well before day 140. The PCA analyses were done with the 

data of the earthworm exposures that started on day 140 and the chemical analysis data from day 

168, the latter date coinciding with the end of the 28 day exposure of the earthworms. Ordination 
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tdiagrams were explained with soils shown as points and most of the studied variables (KdPW, pHPW, 

BAF, ZnE and WL) as arrows, according to González-Alcaraz et al. [28].  

RESULTS 

Available Zn 

Measured concentrations (mean±SD) in the test soils on average were 97 ± 6% (n=48) of the 

nominal (background and added) Zn concentrations, and variation among replicate samples was less 

than 18.5% for all treatments (Table 2). ZnPW was lower in ZnO NP treatments than in soils spiked 

with ZnCl2, with the difference being a factor of 4.4-32 in LUFA and NLGA soils spiked at 500 mg 

kg
-1

 and a factor of 1.5-15 at 1000 mg kg
-1

. In the SPCA soil spiked the difference was a factor of 

1.9-7.5 and 1.2-3.3 when dosing at 1250 mg kg
-1

 and 2500 mg kg
-1

 respectively (Table 2). For 

ZnCl2 treatments, average ZnPW corresponded with 5.04-11.4% of the total Zn in LUFA, 1.71-

2.57% in NLGA and 0.08-0.34% in SPCA soil. In the ZnO NP treatments, ZnPW was ≤ 2.53% of 

ZnT in LUFA and ≤ 0.61% in the other two soils, the fraction of Zn found in the pore water was 

lowest in SPCA soil (Table 2). In LUFA and NLGA, ZnPW tended to increase with time for all 

treatments, while in SPCA it remained constant or slightly decreased with time.  

Partition coefficients calculated from ZnPW (KdPW) were significantly affected by ageing in 

LUFA for both Zn forms (ZnCl2 and ZnO NPs). In NLGA KdPW values showed only a significant 

decrease with ageing for ZnO NPs (Tukey, p < 0.05), while in SPCA they did not show significant 

changes for ZnO NPs but significantly increased with time for ZnCl2 (Tukey, p < 0.05) (Figure 1). 

Toxicity and bioaccumulation of Zn in earthworms 

Earthworm responses to the different test soils and treatments at different times of ageing 

are shown in Table 3. Survival was higher than 78% for all treatments and sampling times, except 

for SPCA spiked with ZnCl2 after 56 d of ageing where survival was only 25%. Earthworm weight 

loss (WL), after 28 d of exposure, increased significantly with ageing in all test soils (Tukey, p < 

0.05) except for NLGA spiked with ZnO NPs (500 mg kg
-1

). The number of juveniles produced per 

earthworm during the 28 d exposure period in the controls was 1.8 in NLGA, 3.1 in LUFA and 3.6 
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tin SPCA for exposures starting after 1 d ageing (data not shown). Compared to the control, 

earthworm reproduction was most affected by ZnCl2, with complete inhibition in LUFA and SPCA 

at all ageing times and with ≥ 82% reduction in NLGA (Table 3). LUFA soil also showed a 

significant decrease in earthworm reproduction after 140 d ageing for both ZnO NP treatments 

(Tukey, p < 0.05). In NLGA, no significant reduction (p>0.05) in reproduction with time was seen 

for the ZnO NP treatments. In SPCA, earthworm reproduction with time was not affected by the 

ZnO NP treatment of 1250 mg Zn kg
-1

 soil while at 2500 mg kg
-1

 almost no reduction was seen 

compared to the control after 56 d. 

ZnE differed within each soil (Table 4). Earthworms from the control soils had ZnE concentrations 

ranging from 105 to 143 µg g
-1

, increasing in the order: LUFA<NLGA<SPCA. ZnE differed from 

the controls for both ZnCl2 and ZnO NP treatments, except for earthworms kept in SPCA soil 

spiked with ZnCl2 which showed similar ZnE concentrations than the corresponding controls. In 

general, soils spiked with ZnO NPs showed a trend of increasing ZnE with increasing ZnT. The 

highest ZnE was found for the highest treatments with ZnO NPs, and amounted to 284 and 387 µg 

Zn g
-1

 earthworm in LUFA and NLGA, respectively, spiked with 1000 mg Zn kg
-1

 soil. The highest 

ZnE recorded was 408 µg Zn g
-1

 in earthworms kept in SPCA soil spiked with 2500 mg kg
-1

 Zn. In 

earthworms exposed to LUFA soil, ZnE showed a decrease with ageing for the ZnCl2 treatment, 

while for the ZnO NP treatments ZnE showed an increase after 56 d of ageing and a decrease after 

140 d. In earthworms exposed to NLGA, ZnE was highest after 56 d of ageing and significantly 

lower after 140 d (Tukey, p < 0.05). Upon exposure to SPCA, ZnE did not show remarkable 

changes upon ageing (Table 4). 

Bioaccumulation factors calculated for the controls with the Zn background differed among 

the soils with the following pattern: LUFA>NLGA>SPCA. In the treatments with Zn, BAF was 

also lowest in the SPCA soil while NLGA and LUFA had similar BAF values. The SPCA soil had 

the highest BAF in the lowest treatment with ZnO NPs (1250 mg Zn kg
-1

 soil). At the same 

concentration added as ZnCl2, BAFs were similar to those in the ZnO NP treatment of 2500 mg Zn 
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tkg
-1

 soil. It should be noted that earthworm survival was only 25% in SPCA soil spiked with ZnCl2 

for exposures started after 56 d, making the BAF estimate less reliable. Except for the highest ZnO 

NP treatment, BAF values in SPCA decreased with ageing. In LUFA and NLGA, BAFs were 

higher in the ZnCl2 treatments and did not show clear trends with ageing, while for the ZnO NP 

treatments they dose-relatedly decreased with increasing ZnT.  

Influence of soil properties and ageing on Zn bioavailability 

The pH measured in pore water differed among treatments and incubation times (Table S1), 

and was higher in soils spiked with ZnO NPs than in the control soils. In soils spiked with ionic Zn, 

pore water pH decreased or remained similar compared to the control. With ageing, in general, pH 

decreased for all treatments; this decrease was most pronounced in LUFA and NLGA soils spiked 

with ZnO NPs. 

To study the influence of soil properties, a principal component analysis (PCA) was 

performed using ZnE, BAF, WL, KdPW, and pH of the pore water for the three test soils and the 

different treatments (ZnCl2 and ZnO NP) as well as two different ageing periods (1 and 168 d). 

Because earthworm reproduction in ZnCl2 treatments was very low in NLGA and zero in the other 

two soils (Table 3), this variable was not taken into account in this analysis. On day 1, the alkaline 

Spanish soil (SPCA) grouped together with the variables pHPW, KdPW, and ZnE on the positive side 

of the main gradient (X-axis) (Figure 2a). Treatments with Zn applied as ZnCl2 in this soil showed 

more separation from the ZnO NP treatments and variables for time 1 d. NLGA spiked with ZnO 

NPs appeared in the centre of the gradient, and shifted to the negative side of the X-axis when it 

was spiked with ZnCl2. Pore water pH and KdPW were negatively related, and BAF was positively 

related to ZnCl2 treatment in NLGA soil. Results for LUFA soil were similar to those for NLGA but 

with less clear differences between treatments. In the secondary gradient (Y-axis), WL was 

negatively correlated with SPCA soil spiked with ZnCl2 (negative side). The remaining soils were 

not segregated well in this gradient. The results obtained 168 d after spiking the soils (Figure 2b) 



A
c
c
e
p
te
d
P
r
e
p
r
i n

tshowed similar aggregation patterns of the variables as after 1 d, but the soils were better segregated 

with higher explained variance (85.3%).  

 

 

DISCUSSION 

Zinc oxide availability 

Our results showed that at the same concentration of Zn added, soils spiked with ZnO NPs 

had lower ZnPW concentrations than those spiked with ZnCl2. This was also found by Waalewijn-

Kool et al. [12] and indicates that ZnO NPs behaved differently compared to ionic Zn. The lower 

pore water Zn concentrations obtained for the ZnO NPs compared with ZnCl2 might suggest that a 

considerable proportion of the ZnO NPs remained in the particulate form, probably as agglomerates 

[7]. It cannot be excluded however, that part of the ZnO NPs present in the pore water did pass the 

0.45 µm filter used when collecting pore water. Although we did not see large differences between 

Zn concentrations in pore water before and after ultrafiltration using a 3 kDa filter in a previous 

study [12], it is possible that our pore-water collection method was not fully adequate for separating 

NPs from dissolved Zn. This element requires further studies. 

Soil pH was affected by the addition of Zn, with an increase in pH in soils spiked with the 

ZnO NPs and a decrease in pH in soils treated with ionic Zn. Difference in Zn solubility can also be 

related to soil properties, such as pH. Franklin et al. [29] found that dissolved Zn concentrations in 

pore water were higher in soils with lower pH, which matches with the results obtained in the 

present study. Low Zn availability at higher pH has been explained by stronger sorption to the solid 

phase in basic soils [30], as we observed in our study in the carbonate-rich SPCA soil. Moreover, in 

the SPCA soil, less Zn was available when spiked with ZnO NPs than with ionic Zn. It has been 

demonstrated that water solubility of ZnO is highly pH-dependent [29]. In addition, it was also 

reported that soils with low pH and low organic matter content have a higher availability of Zn [31], 

which is in agreement with our results, where LUFA soil (with the lowest OC content and low pH) 
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tshowed the highest ZnPW for both the ZnO NP and ZnCl2 treatments. The NLGA soil had a pH 

similar to that of LUFA but a higher OC content; this soil showed lower ZnPW compared to LUFA 

for the ZnCl2 treatment but similar ZnPW in the treatments with ZnO NPs. Natural organic matter 

can modify the surface charge of NPs, affecting their aggregation [29], and Li et al. [32] found that 

Zn ions could have a high affinity for binding to or complexation with dissolved organic carbon. In 

a study with ZnO NPs, Waalewijn-Kool et al. [12] found the highest ZnPW in the most organic soil 

(with 15% of organic matter), although under acidic pH (pH(CaCl2)=5). In the present study, the 

SPCA soil had the highest OC content but alkaline pH, so it seems that soil pH could determine Zn 

availability in soils spiked with ZnO NPs better than organic matter content, for this Zn form. Kd 

can be used to express the adsorption of Zn [33]. Our Kd values for the three tested soils decreased 

in the order: SPCA>NLGA>LUFA, regardless of the applied Zn form. This indicates the highest 

adsorption and therefore lowest availability of Zn in SPCA soil and the highest Zn availability in 

LUFA soil. The Kd values decreased with decreasing soil pH, which agrees with literature data 

[34].  

Upon ageing, Zn availability increased in the LUFA and NLGA soils for all treatments, 

while in SPCA soil no significant differences were found for ZnO NPs and a decrease was observed 

for ZnCl2. Our results for the times 1 to 3 d, which is relatively short-term, showed a greater 

decrease in Zn availability in the LUFA soil (with the lowest CEC), although it increased again 

after 6 months of incubation. Lock and Janssen [18] also observed a faster rate of adsorption in soils 

with low CEC. Hence ageing or equilibration of contaminated soil might provide a more realistic 

insight into ZnO NP behaviour and therefore its potential toxicity under natural conditions. The 

equilibrium processes of metals between pore water and the soil solid phase are rather complex and 

NP solubility could be continuously changing with time [29], so the influence of soil components 

on Zn solubility cannot be ignored [12].  

Zinc toxicity and Zn bioaccumulation by earthworms 
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tNanoparticles are expected to be less toxic than ionic forms. Notter et al. [35] derived a 

nanofactor of 2 to indicate the difference in toxicity of both metal species. Zinc concentrations for 

the treatments used in the present study were based on effective concentrations (EC50) for effects 

on earthworm reproduction of ZnO NPs and ZnCl2 [11], therefore no effects on survival were 

expected. This indeed was the case for almost all soils and treatments (>78% of survival) except for 

the SPCA soil after 56 d of ageing (Table 3).  

After 28 d of exposure, earthworm body weights showed a decrease in all soils and varied 

between treatments and soils, which suggests that the observed differences can be related to soil 

type. According to Janssen et al. [36], WL variation could be caused primarily by soil factors. 

Hooper et al. [7] observed greater WL of the earthworm Eisenia veneta exposed to 750 mg Zn kg
-1

 

soil as ZnO NPs compared to treatments with ionic Zn. This disagrees with our finding of greater or 

the same WL in the ZnCl2 treatments compared to the ZnO NPs in all test soils. Heggelund et al. 

[11] found a dose-related increase in WL of the earthworm Eisenia fetida in ZnCl2 treated soils, but 

not in soils spiked with ZnO NPs at concentrations of 238 to 2500 mg Zn kg
-1

 d.w. soil. In our ZnO 

NP treatments, earthworms in LUFA and SPCA showed similar results at the two tested ZnO NP 

concentrations, while in NLGA there was a small decrease with increasing ZnT. In addition, ageing 

effects were observed in all soils, with an increase in WL with time in all treatments. The higher WL 

was observed for the LUFA soil for both ZnCl2 and ZnO NP treatments. The observed earthworm 

weight changes in our test soils suggest that, upon exposure to ZnO NPs, WL was not dose-related 

and it is probably influenced by soil properties. It also suggests that there is an ageing effect with an 

increase in WL with time, influenced by soil properties. 

Reproduction of E. andrei is, in general, more sensitive and more ecologically relevant than 

the other earthworm toxicity endpoints [11, 37]. Earthworm reproduction is known to be influenced 

by soil properties [38], and this indeed was observed from the difference in juvenile numbers in the 

controls. Earthworm reproduction was more affected by ZnCl2 than by ZnO NPs, with almost total 

inhibition of reproduction in soils spiked with ionic Zn. A dose-related effect on reproduction was 
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tseen for the ZnO NP treatments in our test soils. It is remarkable that in SPCA soil, spiked with 

higher Zn concentrations, reproduction was similar to that in the other two soils spiked at lower 

total Zn concentrations. This could be explained by the low ZnPW concentration in this soil (Table 

2). However, it has to be noted that in SPCA, inhibition of earthworm reproduction was not always 

dose-related, and in some cases inhibition was stronger at lower available Zn levels (e.g., after 56 

and 140 d of ageing).  

Studies using artificially spiked soils should be considered with care as metal solubility and 

toxicity may change with time (ageing). Therefore results of ecotoxicity tests with Zn in freshly 

spiked soils could differ from those with field-contaminated soils [39]. In the present study, an 

increase of earthworm WL was seen in all test soils and treatments with ageing, while only a 

decrease in earthworm reproduction with time was observed in the case of LUFA treated with ZnO 

NPs. In a study with enchytraeids, no effect of ageing on Zn toxicity was detected, which was 

explained by the high adsorption capacity of soil components (clay and organic matter content) 

[40]. In the present study, the changes in the reproduction toxicity of Zn with ageing could mainly 

be attributed to the higher Zn availability (ZnPW) in LUFA soil that showed an increase with 

ageing (Table 2). Therefore, further studies on ZnO NP toxicity with ageing are needed using 

different soil types and exposure levels. 

Earthworms are able to sequester and retain, as well as autoregulate internal Zn 

concentration for essential functions, therefore their ZnE can remain constant regardless of the 

concentrations of total and available Zn in soil [38]. Heggelund et al. [11] found that E. fetida kept 

in control soils with different pH (4.5-7.2) had average Zn internal concentration of 123-132 µg Zn 

g
-1

 earthworm (n=300), which is within the range of ZnE values in our controls ranging between 

105 and 143 µg Zn g
-1

 earthworm. Heggelund et al. [11] also observed that in soils spiked with ZnO 

NPs and ZnCl2, the earthworms showed higher ZnE in the NP treatments, which agrees with our 

findings. We found somewhat higher ZnE in the NLGA and SPCA soils spiked with the highest 

concentrations of ZnO NPs (387±65 and 408±158 µg Zn g
-1

 earthworm, respectively). The 
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tobserved ZnE in our test soils spiked with different concentrations and forms of Zn highlights the 

need for further studies on the influence of soil type on Zn bioavailability, as well as their potential 

role in the capability of earthworms to regulate their Zn body concentrations [31].  

The bioaccumulation factor (BAF) is a good indicator to compare among soils, taking into 

account the difference in the applied concentrations, but BAF value alone does not provide enough 

information because of metal auto-regulation mechanisms in earthworms. In addition, after 24 h of 

depuration some 5% of the gut content may still remain in earthworms, and the gut loading of soil 

can vary based on the properties of the soil and soil moisture content [41], adding more bias to the 

use of BAF values. Nevertheless, BAF is a good measure to compare tissue concentrations of 

earthworms exposed in different soils, taking into account the differences in the applied 

concentrations. In the present study, BAFs were lowest for SPCA compared to the other test soils, 

for both Zn forms. In general, BAFs in soils spiked with ZnO NPs showed a dose-dependent pattern 

(opposite to KdPW in the PCAs, Figure 2) with the lowest values at the highest soil concentrations. 

This behaviour had been observed earlier for other essential elements, such as molybdenum, for 

which internal concentrations in exposed earthworms may be regulated to fairly constant levels 

[19].  

According to the PCA analysis, the BAF was inversely related with pHPW, which suggests 

that along with the available Zn, the pH could have an important role in earthworm Zn 

bioaccumulation. This agrees with Spurgeon et al. [42], who indicated that Zn uptake in earthworms 

can be dependent on soil pH, making it hard to predict Zn uptake by earthworms from available Zn 

concentrations [31]. BAFs were inversely related with pH, independent of the Zn type studied [11]. 

The only exception was SPCA soil, in which the lowest BAFs were found and which were 

significantly lower for ZnCl2 compared to ZnO NPs. The BAF or ZnE did not explain the WL 

(Figure 2), with the earthworms having the lowest ZnE showing the highest WL. The lowest WL 

was found in SPCA soil, which suggests again an effect of soil properties rather than the ZnE on 

WL. These results suggest that in this soil, earthworms may be capable of sequestering Zn, leading 
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tto higher body concentrations than expected when Zn was applied as ZnO NPs. Additional studies 

are needed to unravel the complex mechanisms of Zn bioaccumulation in earthworms exposed to 

nano-particulate Zn and the role of soil properties. 

CONCLUSIONS 

The present study introduces new data on the effect of long-term incubation on the fate and 

effects of ZnO NPs in different soils, which may help improving the risk assessment of chronic 

ZnO NP exposures. We compared the effect of Zn applied as nanoparticles (ZnO NPs) and as Zn
2+

 

ions (ZnCl2) on Zn availability and bioavailability to the earthworm E. andrei at different 

incubation times after spiking in three natural soils with contrasting properties. Zinc concentrations 

in pore water were lower in soils spiked with ZnO NPs compared with ZnCl2. Zinc availability was 

lowest in the soil with alkaline pH and with high organic carbon content. For treatments with ZnO 

NPs, soil pH best explained the difference in Zn availability, while organic carbon explained Zn 

availability in soils spiked with ZnCl2. The effect of ageing on the availability of Zn showed 

differences without regular trends among soils as well as between treatments (ZnCl2 and ZnO NPs). 

Earthworms showed varying internal Zn concentrations among soils, which were highest in the soil 

with the highest OC content and basic pH, following exposure to Zn applied as ZnO NPs, even 

though this was the soil which showed lowest ZnPW.  

Toxicity of Zn to earthworm reproduction was highest for ZnCl2 treatments, with almost complete 

reproduction inhibition, but there were no clear differences in survival and weight loss (WL) 

between treatments. An effect of soil ageing on Zn toxicity to the earthworms was only observed 

for weight loss, which increased with time. No differences were seen for the other variables, so no 

significant effects of ageing were detected that could explain differences in earthworm toxicity.  

More research is necessary to understand ZnO NP interactions with different soil 

constituents and how soil properties control Zn availability. It is also essential to deepen the 

knowledge on the importance of long-term processes for Zn availability for a proper risk assessment 

of ZnO NPs as well as Zn-polluted soils. 
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Figure 1. Average partition coefficients (KdPW, in mL g
-1

), expressed as the total Zn concentration 

in soil (ZnT) divided by pore water Zn concentration (ZnPW) (n=2) at 1, 3, 56, and 168 d after 

spiking the three test soils with ZnCl2 (panel a) or ZnO NPs (panel b) (numerical data are shown in 

Table 2). Nominal zinc concentration in LUFA and NLGA soils was 500 mg kg
-1

, and in SPCA soil 

1250 mg kg
-1

. Letters indicate significant differences between KdPW for different periods of ageing 

(Tukey p<0.05). 

Figure 2. Principal Component Analysis (PCA) for the relationship between earthworm toxicity and 

soil properties in three test soils spiked with ZnO NPs and ZnCl2. Parameters included in the PCA 

are the partitioning coefficient calculated using pore water Zn concentrations (KdPW), pH of the 

pore water (pHPW), bioaccumulation factor (BAF), Zn concentration in earthworm (ZnE), and 

earthworm weight loss (WL). PCA were run for two periods of ageing of the spiked soils, 1 and 168 

days. Figure 2a shows the results for time 1 day; variance explained by the two first components is 

69.3 % (X-axis: 45.7 %; Y-axis: 23.6 %). Figure 2b shows the results for time 168 days; variance 

explained by the two first components is 85.3 % (X-axis: 58 %; Y-axis: 27.3 %). 
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tTable 1. Physicochemical properties (mean±SD) of the soils used to assess the effects of ageing and the 

influence of soil properties on the (bio)availability of ZnO nanoparticles (ZnO NPs) and ionic Zn (applied as 

ZnCl2). 

Soil Country 
pH 

(KCl) 

pH 

(PW) 

EC 

(mS cm
-1

) 

CaCO3 

(%) 

OC 

(%) 

Clay  

(%) 

CEC 

(cmol
+
kg

-1
) 

WHC 

(%) 

Background Zn 

(mg kg
-1

) 

LUFA2.2 Germany 5.6±0.07 6.7±0.04 0.05±0.02 <1 1.55±0.15 8.27±0.78 8.19±1.96 45 15.2±0.85 

NLGA Netherlands 5.9±0.03 6.9±0.07 0.03±0.01 <1 3.44±0.19 4.80±0.59 18.8±1.18 51 92.5±0.77 

SPCA Spain 7.6±0.03 8.0±0.06 0.08±0.04 37±0.44 5.43±0.38 23.6±0.90 21.4±2.00 62 154±1.77 

pH measured in potassium chloride extractions (KCl) and pore water extractions (PW). EC: electric 

conductivity; OC: organic carbon content; CEC: Cation Exchange Capacity; WHC: water holding capacity. 
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Table 2. Effect of ageing on the availability of Zn in soil. Shown are the nominal and average measured 

total Zn concentrations found immediately after spiking soils (±SD; n=3) (ZnT; in mg Zn kg
-1

 dry soil) 

in soils spiked with ionic Zn (ZnCl2) or ZnO nanoparticles (ZnO NPs), and pore water Zn 

concentrations (ZnPW; n=2; mg Zn L
-1

), obtained at different points in time after spiking the soil. Zn 

recoveries are shown as the percentage of ZnT extracted in the ZnPW (mean±SD). Also included are 

KdPW values (mean±SD), derived as the ratio of ZnT and ZnPW concentrations, and indicating the 

strength of Zn binding to the different soils. 

 

Soil  Treatment  
Nominal Zn Measured ZnT Ageing ZnPW±SD Recovery±SD KdPW±SD 

mg kg
-1

  mg kg
-1

  Days mg L
-1

 % L kg
-1

 

LUFA 

ZnCl2 500 
487 

(±87.4) 

1 84.1 ± 4.50 a 7.78 ± 0.41 6 ± 0.31 

3 60.5 ± 4.67 a 5.59 ± 0.43 8 ± 0.62 

56 54.4 ± 4.31 a 5.04 ± 0.40 9 ± 0.71 

168 124 ± 14.7 b 11.4 ± 1.36 4 ± 0.47 

ZnO NP 500 
497  

(±36.7) 

1 2.64 ± 0.42 a 0.24 ± 0.04 191 ± 30.4 

3 3.26 ± 0.08 a 0.30 ± 0.01 153 ± 3.64 

56 12.3 ± 2.11 b 1.12 ± 0.19 41 ± 7.04 

168 25.4 ± 1.52 c 2.30 ± 0.14 20 ± 1.18 

ZnO NP 1000 
873  

(±38.6) 

1 5.51 ± 0.30 a 0.28 ± 0.02 159 ± 8.51 

3 5.46 ± 0.85 a 0.28 ± 0.04 162 ± 25.25 

56 37.4 ± 0.42 b 1.93 ± 0.02 23 ± 0.26 

168 49.0 ± 1.91 c 2.53 ± 0.10 18 ± 0.69 

NLGA 

ZnCl2 500 
495  

(±55.3) 

1 16.5 ± 2.77 a 1.71 ± 0.29 30 ± 5.10 

3 19.1 ± 0.89 ab 1.98 ± 0.09 26 ± 1.21 

56 23.6 ± 0.71 b 2.45 ± 0.07 21 ± 0.63 

168 24.8 ± 1.53 b 2.57 ± 0.16 20 ± 1.23 

ZnO NP 500 
490  

(±63.9) 

1 2.48 ± 0.18 a 0.26 ± 0.02 198 ± 14.7 

3 2.12 ± 0.13 a 0.22 ± 0.01 231 ± 13.9 

56 2.04 ± 1.00 a 0.22 ± 0.11 273 ± 134 

168 5.68 ± 0.25 b 0.60 ± 0.03 86 ± 3.87 

ZnO NP 1000 
858  

(±49.0) 

1 2.95 ± 0.06 a 0.18 ± 0.004 291 ± 6.27 

3 3.06 ± 0.39 a 0.18 ± 0.02 282 ± 28.4 

56 2.67 ± 0.14 a 0.16 ± 0.01 322 ± 17.4 

168 10.2 ± 1.68 b 0.61 ± 0.10 85 ± 14.0 

SPCA 

ZnCl2 1250 
1259  

(±230) 

1 6.84 ± 0.54 c 0.34 ± 0.03 185 ± 14.5 

3 4.95 ± 1.48 bc 0.24 ± 0.07 266 ± 79.6 

56 1.57 ± 0.08 a 0.08 ± 0.004 801 ± 39.6 

168 2.13 ± 0.06 ab 0.10 ± 0.003 591 ± 15.7 

ZnO NP 1250 
1287 

(±134) 

1 0.91 ± 0.20  0.04 ± 0.01 1451 ± 304 

3 0.73 ± 0.02  0.04 ± 0.001 1753 ± 38.8 

56 0.81 ± 0.06  0.04 ± 0.003 1592 ± 125 

168 0.83 ± 0.20  0.04 ± 0.01 1598 ± 379 

ZnO NP 2500 
2514  

(±258) 

1 2.05 ± 0.20  0.05 ± 0.005 1233 ± 118 

3 1.43 ± 0.52  0.04 ± 0.01 1888 ± 691 

56 1.33 ± 0.07  0.03 ± 0.002 1894 ± 95 

168 1.46 ± 0.21  0.04 ± 0.01 1736 ± 252 

Lowercase letters represent significance difference between sampling days for each treatment (Tukey 

HSD test. p <0.05). 
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Table 3. Effect of ageing on the toxicity of ZnO nanoparticles (ZnO NPs) and ionic Zn (applied as ZnCl2) to 

the earthworm Eisenia andrei exposed to three different natural soils. Shown are percentage average of 

survival (% ± SD) (n=40) and weight loss (WL, % ± SD) (n=40) after 4 weeks, and reduction of the number 

of juveniles produced per earthworm after 8 weeks in percentage compared to the corresponding controls 

(reproduction reduction) (% ± SD). Earthworm assays were performed after different periods of ageing of the 

spiked soils. 

Soil Treatment 
Ageing 

days 

Survival±SD 

% 

WL±SD 

% 

Reproduction Reduction±SD 

% 

LUFA 

  1 90 ± 14  11 ± 8 a 100 (nsd)  

ZnCl2 500 mg kg
-1

  56 98 ± 5  12 ± 4 a 100 (nsd)  

   140 95 ± 10  54 ± 1 b 100 (nsd)  

  1 98 ± 5  4 ± 8 a 31 ± 24 a 

ZnO NP 500 mg kg
-1

 
56 100 (nsd) 

 
8 ± 4 a 89 ± 13 

b 

  
140 93 ± 10 

 
31 ± 1 b 100 (nsd) 

b 

  1 98 ± 5  4 ± 6 a 90 ± 8 a 

ZnO NP 1000 mg kg
-1

 
56 78 ± 19 

 
9 ± 6 a 96 ± 5 

ab 

  
140 85±13 

 
49 ± 7 b 100 (nsd) 

b 

NLGA 

  1 100 (nsd)  15 ± 8 a 98 ± 3  

ZnCl2 500 mg kg
-1

 56 95 ± 6  29 ± 4 b 94 ± 11  

   140 95 ± 10  30 ± 6 b 82 ± 18  

  1 98 ± 5  26 ± 8 

 

41 ± 41  

ZnO NP 500 mg kg
-1

 
56 93 ± 15 

 
26 ± 5 

 

-5 ± 38 
 

  
140 95 ± 6 

 
25 ± 4   22 ± 21 

 

  1 95 ± 10  17 ± 2 a 74 ± 12  

ZnO NP 1000 mg kg
-1

 
56 98 ± 5 

 
27 ± 2 b 79 ± 17 

 

  
140 100 (nsd) 

 
21 ± 7 ab 61 ± 25 

 

SPCA 

  1 98 ± 5 b 21 ± 5 a 100 (nsd)  

ZnCl2 1250 mg kg
-1

 56 25 ± 13 a 32 ± 4 b 100 (nsd)  

   140 83 ± 35 b 41 ± 5 c 100 (nsd)  

  1 100 (nsd) b 14 ± 1 a 45 ± 32  

ZnO NP 1250 mg kg
-1

 
56 88 ± 10 a 18 ± 7 ab 41 ± 31 

 

  
140 100 (nsd) b 26 ± 2 b 75 ± 16 

 

  1 100 (nsd)  9 ± 1 a 83 ± 17 c 

ZnO NP 2500 mg kg
-1

 
56 95 ± 6 

 
16 ± 2 b 1 ± 17 

a 

  
140 100 (nsd) 

 
27 ± 3 c 45 ± 12 

b 

Lowercase letters represent significance difference between treatments (Tukey HSD test. p <0.05); nsd (no 

standard deviation): all earthworms survived after 4 weeks (n=40) or no reproduction was observed in the 

samples after 8 weeks (n=4). 
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Table 4. Average Zn concentrations in earthworms Eisenia andrei with corresponding standard deviation 

(ZnE±SD; n=4) after 4 weeks exposure to ZnCl2 or ZnO NPs in three different soils aged for different periods 

of time. Also given are bioaccumulation factors (BAF) calculated as Zn concentrations in the earthworms 

divided by measured total Zn concentrations in the soils (see Table 2).  

Lowercase letters in ZnE indicate significant differences in each soil sample. Lowercase letters in BAF 

represent significant differences between treatment for each sampling day (both with Tukey HSD test. p 

<0.05). 

 

  

 

Soil 

 

Treatment 

Nominal Zn Ageing ZnE±SD BAF±SD 

mg kg
-1

 
 

days µg g
-1

 
 

 

LUFA 

 

Control 0 

1 108 ± 4 a 7.06 ± 0.25  

56 105 ± 11 a 6.90 ± 0.70  

140 117 ± 8 ab 7.66 ± 0.50  

ZnCl2 
 

500 

 

1 214 ± 33 de 0.44 ± 0.07 b 

56 204 ± 24 cde 0.42 ± 0.05 b 

140 161 ± 7 bc 0.33 ± 0.02 b 

ZnO NP 
 

500 

 

1 188 ± 21 cde 0.38 ± 0.04 b 

56 195 ± 32 cde 0.39 ± 0.06 ab 

140 182 ± 26 cd 0.37 ± 0.05 b 

ZnO NP 

 

1000 

 

1 229 ± 33 e 0.26 ± 0.04 a 

56 284 ± 49 f 0.33 ± 0.06 a 

140 190 ± 37 cde 0.22 ± 0.04 a 

NLGA 

 

Control 0 

1 125 ± 8 a 1.35 ± 0.10  

56 118 ± 6 a 1.28 ± 0.07  

140 128 ± 10 a 1.39 ± 0.12  

ZnCl2 
 

500 

 

1 213 ± 20 bc 0.43 ± 0.04 b 

56 330 ± 59 ef 0.67 ± 0.11 b 

140 208 ± 26 bc 0.42 ± 0.06 b 

ZnO NP 
 

500 

 

1 203 ± 34 bc 0.42 ± 0.07 b 

56 302 ± 91 de 0.62 ± 0.20 ab 

140 189 ± 21 ab 0.39 ± 0.04 b 

ZnO NP 

 
1000 

 

1 249 ± 44 bcd 0.29 ± 0.06 a 

56 387 ± 65 f 0.45 ± 0.07 a 

140 268 ± 46 cde 0.31 ± 0.05 a 

SPCA 

 

Control 0 

1 143 ± 8 a 0.93 ± 0.05  

56 139 ± 7 a 0.90 ± 0.04  

140 132 ± 10 a 0.86 ± 0.07  

ZnCl2 
 

1250 

 

1 192 ± 37 ab 0.15 ± 0.03 b 

56 175 ± 15 ab 0.14 ± 0.01 a 

140 168 ± 22 ab 0.13 ± 0.02 a 

ZnO NP 
 

1250 

 

1 286 ± 38 bc 0.22 ± 0.03 c 

56 239 ± 38 ab 0.19 ± 0.03 b 

140 243 ± 50 ab 0.19 ± 0.04 b 

ZnO NP 
 

2500 

 

1 292 ± 55 bc 0.12 ± 0.02 a 

56 408 ± 158 c 0.15 ± 0.05 ab 

140 336 ± 89 c 0.13 ± 0.04 a 
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Figure 1 
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Figure 2 
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