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Abstract  

In the open ocean ecosystem, climate and anthropogenic changes have driven biological 

change at both ends of the food chain. Understanding how the population dynamics of 

pelagic predators are simultaneously influenced by nutrient-driven processes acting from the 

“bottom-up” and predator-driven processes acting from the “top-down” is therefore 

considered an urgent task. Using a state-space demographic model, we evaluated the 

population trajectory of an oceanic predator, the macaroni penguin (Eudyptes chrysolophus), 
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and numerically assessed the relative importance of bottom-up and top-down drivers acting 

through different demographic rates. The population trajectory was considerably more 

sensitive to changes in top-down control of survival compared to bottom-up control of 

survival or productivity. This study integrates a unique set of demographic and covariate data 

and highlights the benefits of using a single estimation framework to examine the links 

between covariates, demographic rates and population dynamics. 

 

Keywords: Density-dependence; El Niño Southern Oscillation; Macaroni penguin; Monte 

Carlo Markov Chain; Population model; Predation; Seabird; Sea Surface Temperature; 

Stochastic variable selection. 

 

Introduction  

The predator-driven or “top-down” view of population control appears to be widely accepted 

by researchers considering terrestrial (Hairston et al. 1960), fresh water (Carpenter et al. 

1985) and intertidal ecosystems (Paine 1980). In contrast, the majority of population change 

in the pelagic zone, apart from those resulting from human exploitation and fisheries by-

catch, is thought to be nutrient-driven, or controlled from the “bottom-up” (Aebischer et al. 

1990, Stenseth et al. 2002). The overall structure and functioning of the pelagic system is 

dominated by physical processes and nutrient fluxes (Pace et al. 1999, Behrenfeld et al. 

2006), however the consequences of removing pelagic predators remains unclear, and a 

number of studies have linked the overexploitation of these species to marked changes in 

community structure at lower trophic levels, indicative of top-down control (e.g. Estes & 

Duggins, 1995; Bascompte et al., 2005; Frank et al., 2005; Springer & van Vliet, 2014).  
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Polar ecosystems are receiving growing attention because anthropogenic drivers have 

precipitated biological change at both ends of the food chain. In the Antarctic system, rapid 

regional warming has had a major impact on lower trophic levels (Vaughan et al. 2003, 

Atkinson et al. 2004), furthermore the composition of predators occupying the upper trophic 

level has been repeatedly changed by “boom and bust” sealing, whaling and fishing industries 

(Agnew 2004). Regulating exploitation pressures at sustainable levels and reliably predicting 

the population response to future climate change requires certainty in the ecological processes 

that influence population dynamics. Consequently, unravelling the effects of bottom-up and 

top-down forcing in this region, particularly on species that utilise the open ocean, is 

considered an urgent task (Smetacek and Nicol 2005). To reliably separate these effects 

requires diverse demographic and covariate data that are difficult to collect for ocean-scale 

populations. Consequently, studies comparing the relative importance of these population 

drivers are largely lacking for this system. 

 

The early view was that Antarctic and Sub-Antarctic oceanic systems were relatively simple, 

characterised by a large prey resource, principally Antarctic krill (Euphausia superba), 

supporting an assemblage of apex predators (Laws 1977). However, an increasing number of 

studies have demonstrated that the demographic processes of particular Antarctic predators 

are controlled by trophic levels both above and below them (Schwarz et al. 2013, Horswill et 

al. 2014). By considering specific species of seals and seabirds as occupants of intermediate 

trophic levels, we improve our ability to evaluate the drivers of their population dynamics. 

This is best assessed using integrated population models (Francis and Sagar 2011, Maunder 

and Punt 2013, Thomson et al. 2015, Tuck et al. 2015). In particular, Bayesian state-space 

approaches permit relationships between covariates and demographic processes to reflect the 

available knowledge of the system (Buckland et al. 2004). Furthermore, missing data can be 
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imputed and the measurement errors inherent in ecological data can be accounted for in the 

estimation and prediction uncertainty (Buckland et al. 2004).  

 

Many populations of Antarctic and Sub-Antarctic marine predators declined between the 

1980s and early 2000s (Reid and Croxall 2001, Woehler et al. 2001, Lyver et al. 2014). For 

example, macaroni penguin (Eudyptes chrysolophus) colonies on South Georgia, had a net 

decline of approximately 70% during this time (Trathan et al. 2012; Fig. 1A). Several studies 

have attributed this to a single driver, including climate (Forcada and Trathan 2009), as well 

as elevated levels of competition associated with recovering populations of Antarctic fur seals 

(Arctocephalus gazella; Trathan et al. 2012). However, the relative importance of these 

effects is not understood. Furthermore, a recent examination of macaroni penguin survival 

rates highlighted that top-down control mechanisms should also be considered when 

examining the demography of this species (Horswill et al. 2014). 

 

In this study, we used an age-structured state-space model to integrate a unique set of 

demographic and covariate data to examine the links between individual covariates, 

demographic rates, and the overall population trajectory of macaroni penguins. This included 

28 years of abundance and productivity data, 8 years of survival data and a diverse set of 

covariates. By subjecting this model to a sensitivity analysis, we also estimated the relative 

contributions of top-down and bottom-up forces in generating year-to-year variation in 

demography and population dynamics. 
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Methods 

Study system 

This study uses data collected from the Fairy Point macaroni penguin colony on Bird Island, 

South Georgia (54° 00’ S, 38° 03’W). Abundance and productivity were monitored annually 

between 1985 and 2012 (Table 1); the total number of breeding pairs was counted at the start 

of the incubation phase (29 November-10 December), and the number of chicks was counted 

shortly before fledging (16 February). Productivity is defined as the proportion of breeding 

pairs that reared a chick to the fledgling count date. Each annual count was repeated at least 

three times in the field, or to within 10% of the other estimates (methods are further detailed 

in CCAMLR, 2004). Survival data were obtained from a mark-recapture study conducted 

between 2003 and 2012 based on passive integrated transponders (PIT; Horswill et al., 2014). 

To remove any temporal correlation introduced by the covariates that were retained in this 

earlier study, the estimates of survival utilised in the current study were re-estimated from a 

model without covariates, that incorporated age and time-specific variation and included year 

as a nominal factor variable (recapture and transition rates were specified in agreement with 

the best candidate model reported by  Horswill et al., 2014). This maximally flexible model 

produced year-specific estimates of survival with associated yearly measures of uncertainty. 

 

State-space population model 

Simultaneous estimation of parameters and hidden states was carried out alongside model 

selection in a state-space population model that included: (1) coefficients describing the 

relationship between different covariates and demographic processes between 1985 and 2012 

(Appendix S1); (2) Bernoulli selection coefficients that determined the inclusion of each 

covariate; (3) missing (and thus imputed) segments of demographic and covariate time series; 

and (4) the magnitude and direction of different observation biases and imprecision (code 
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listed in the accompanying Data File S1). Inference was undertaken in OpenBUGS 

(http://www.mrc-bsu.cam.ac.uk/bugs/). Models were fitted by running three Monte Carlo 

Markov Chains (MCMC) for 1x106 iterations and retaining every 100th step in order to 

increase the effective MCMC sample size for the same amount of computer memory. The 

first 5000 MCMC draws were removed as burn-in. Each chain was initialised at different 

points in parameter space, and mixing and convergence of the MCMC was examined for each 

parameter and state. The amount of mixing between the three chains indicated the ability of 

the model to reach a steady state distribution. Convergence of the chains was confirmed using 

the Brooks-Gelman-Rubin diagnostic tool in the OpenBUGS software (all values <1.02). The 

final model structure was validated by removing the demographic data and simulating the 

population time series using the influential covariates and the marginal posterior distributions 

for the respective parameters. This procedure demonstrated whether the observed population 

time series could be recreated from the functional structure, the parameter estimates and the 

covariate data, and by not including the implicit covariance embedded in the MCMC samples 

was considered a stringent method for testing the descriptive power of the variables 

(Appendix S2).  

 

Covariates 

The demographic function of survival included covariates that were demonstrated to be 

influential at the population-level in our earlier analysis of deviance study; i.e., predation 

pressure and local sea surface temperature anomalies (SSTa) (equations 2-3; Table 1; 

Horswill et al. 2014). Wider testing of candidate covariates in the survival function reduced 

model convergence and was therefore avoided. For the demographic function of productivity, 

we selected candidate covariates from information across Spheniscidae (Table 1). Top-down 

control was assessed using a proxy of predation pressure. Bottom-up control was assessed 
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using female body mass at the start of the breeding season, two measures of competition, as 

well as one local and two quasi-remote climatic variables: (i) SSTa; (ii) the El Niño/Southern 

Oscillation (ENSO) phenomenon; and (iii) the Southern Annular Mode (SAM).  

 

The influence of predation pressure was examined using the number of northern 

(Macronectes halli) and southern (M. giganteus) giant petrel chicks successfully reared to 

fledging. Northern and southern giant petrels are large birds that are predators and 

scavengers. On Bird Island these species breed sympatrically at densities that at the time of 

publication were among the highest in the world. Nesting pairs of giant petrels in three study 

areas close to the penguin study colony were visited weekly during incubation and chick-

rearing to determine the local productivity. This measure represents the number of adult giant 

petrels that will be foraging within a restricted range for the whole of the penguin breeding 

season, including when the macaroni penguin chicks fledge. Penguins form a major 

component of giant petrel diet during the breeding season (Bonner and Hunter 1982, Hunter 

and Brooke 1992), and at Bird Island, this is thought to consist predominantly of adult 

macaroni penguins (Hunter 1983) scavenged from predation events by sub-adult Antarctic fur 

seals (Bonner and Hunter 1982). More recently, anecdotal accounts from Bird Island report 

macaroni penguin chicks also being heavily predated by giant petrels as they fledge (J. A. 

Green; P. N. Trathan; R. A. Phillips pers. obs.), as well as an adult macaroni penguin being 

killed by a giant petrel in waters close to the study colony (J. Gillham pers. comm.). 

Therefore, the predation pressure index is taken to reflect predation by both giant petrels and 

sub-adult Antarctic fur seals.  

 

To examine the annual variation of macaroni penguin body condition on productivity we 

included the body mass of adult females at the start of the breeding season (n=49-59). The 
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macaroni penguin breeding season is highly synchronous, and birds were weighed annually 

between the 8th and 9th November using a spring balance (±0.05kg; Pesola, Baar). A study of 

macaroni penguins breeding in the Indian Ocean did not identify a significant relationship 

between arrival mass and productivity, however a positive correlation has been reported in 

other crested penguins (rockhopper penguins E. chrysocome filholi, Crawford et al. 2006). 

The influence of competition during the breeding season was examined using proxies of 

inter- and intra-specific effects. The foraging grounds and diets of breeding macaroni 

penguins and Antarctic fur seals overlap extensively during the breeding season (Reid et al. 

1996, Trathan et al. 2006, Staniland et al. 2012), and we used the number of Antarctic fur seal 

pups born on the fur seal study beach at Bird Island (minus those found dead) to provide a 

measure of female seals foraging within a restricted foraging range during the macaroni 

penguin breeding season. To examine intra-specific competition we used the number of 

macaroni penguin breeding pairs at the study colony. The trajectory of the study colony 

mirrored other, much larger colonies in the same region (Trathan et al. 2012), and therefore, 

this measure was taken to reflect the wider population density of penguins. 

 

SSTa are considered to have a major influence on prey biomass within the South Georgia 

continental shelf zone (Trathan et al. 2003). To reflect local conditions we used SSTa in the 

foraging area used by macaroni penguins during the breeding season (35.5°W to 44.5°W; 

52.5°S to 54.5°S). These data were obtained from the National Oceanographic and 

Atmospheric Administration (NOAA) International Research Institute 

(http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.EMC/.CMB/.GLOBAL/.Reyn_S

mithOIv2/.monthly/.SSTa/). Ocean-scale climate effects, such as the El Niño Southern 

Oscillation (ENSO) phenomenon and the Southern Annular Mode (SAM), are associated 

with major changes in upwelling, SSTa, circumpolar winds (Meredith et al. 2008) and local 
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prey availability (Murphy et al. 2007). These data were obtained from the NOAA Climate 

Diagnostics Center (http://www.cdc.noaa.gov/people/cathy.smith/best/), and the NOAA 

Climate Prediction Center (http://www.cpc.ncep.noaa.gov/). Candidate temporal lags for 

these climatic variables were calculated by summing plausible physical and biological 

process lags (following Horswill et al. 2014, Appendix S2). El Niño events are associated 

with warmer temperatures in the Scotia Sea region after approximately a 2 year lag, whereas 

the effects of SAM are typically more immediate, i.e. no lag (Meredith et al. 2008). 

Biological lags associated with the recruitment of krill to South Georgia were added to the 

physical lags in two potential spawning and dispersal scenarios. Either spawning occurs 

across the Scotia Sea with recruitment maintained within that year in all shelf regions 

(Brierley et al. 1999), or spawning and successful survival through the first year occurs 

mainly in central and southern areas of the Scotia Sea, with dispersal occurring through 

interactions with the ocean and sea ice over the next 1–2 years (Hofmann et al. 1998). All 

covariates were standardised to have a zero mean and unit variance to promote convergence 

across parameters with different scales (Congdon 2003). Annual values were calculated 

following Horswill et al. (2014; Appendix S2). 

 

Demographic model 

Incomplete attendance histories at the individual level caused by variable recapture rates 

within seasons precluded the identification of recruitment and missed breeding events. 

Studies of crested penguins marked with flipper bands report that recruitment can occur 

within the same year as first return following deferred reproduction (+1 yr; Guinard et al., 

1998). The mean age of recruitment was therefore taken to correspond with the maximum 

age of first return for this population (4 years; Horswill et al., 2014). In the absence of 

evidence for a significant sex difference in survival rates (Horswill 2015) we assumed a 1:1 
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sex ratio in the population. To account for the production of one chick per two adults, the 

model was based on female numbers only, i.e., the number of breeding females (equal to the 

number of breeding pairs), and the number of female chicks fledged (equal to half the total 

productivity). The model assumed that all birds aged 4 and above will breed annually. 

Although macaroni penguins may skip an individual breeding attempt following particularly 

adverse winter conditions (Williams and Rodwell 1992, Crawford et al. 2006), the study 

population did not fluctuate widely between years, and the PIT reader used in this study 

achieved very high recapture rates when it was fully operational (99%; Horswill et al., 2014). 

Consequently, it appears that intermittent breeding was not a common source of variation for 

this population.  

 

The deterministic transition matrix was based on breeding success (bt) and 5 state variables; 

one fledgling (from fledging to 1 year of age; ,f tφ ), three sub-adult (age classes 2-4 have the 

same survival probability as an adult) and one adult stage ( ,a tφ  ): 

,

0 0 0 0 0
2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

t
a,t

f t

a,tt

a,t

a,t

a,t a,t

b

R

φ

φ
φ

φ
φ

φ φ

 
 
 
 
 =  
 
 
 
 
 

      (1) 

Macaroni penguins lay two eggs, but near-complete failure of the first-laid egg means that 

they effectively produce a single-egg clutch (Williams 1995). This permitted individual 

productivity and survival events to be modelled using binomial demographic stochasticity, 

estimating the probability of success for each time step using a logit function that 

incorporated candidate covariates (following Matthiopoulos et al., 2013), as well as variable 

selection priors to numerically evaluate the probability of inclusion for each covariate (Lunn 
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et al. 2012; eqns. 2-4). For purposes of model selection, a switch variable with an 

independent Bernoulli 0/1 indicator was used to determine whether a specific covariate was 

allowed to operate within the model for any given parameterisation (George and McCulloch 

1993). By using a uniform prior bounded between 0 and 1 to estimate the parameter of this 

indicator, we were also able to estimate the probability of inclusion for each covariate. All 

prior distributions are detailed further in Appendices S1-S2.  

 

The logit functions for adult and fledgling survival rates are shown in eqn. 2 and 3. The age-

specific drivers included changing combinations of top-down control from predation pressure 

(P) and bottom-up control from SSTa (with a year lag, St-1): 

, ,0 1 1 2 2 3 3 1logit( ) ( )f t f t tI I P I Sφ α α α α −= + + +         (2) 

, ,0 1 1 3 3 1logit( ) ( )a t a t tI P I Sφ α α α −= + +         (3) 

Here, f and a denote birds in the fledging year and birds that are older than 1 year, 

respectively. Age dependence was determined by using different parameters for the baseline 

survival of each age class ( ,0fα , ,0aα ). Following Horswill et al. (2014) the parameters for the 

predation ( 1α ) and SSTa terms ( 3α ) replicated the effect of these covariates across both age 

classes, and an extra coefficient ( 2α ) was included in the function for fledgling survival to 

allow for an additional component of predation on fledglings (Horswill et al. 2014).  

 

The productivity function (eqn. 4) included female arrival mass (A), environmental forces 

(SSTa S, SAM M, and ENSO E), inter- (D) and intra-specific competition (C) and predation 

pressure (P): 

0 1 1 2 2 3 3 4 4 1 5 5

6 6 1 7 7 2 8 8 3 9 9 10 10

logit( )t t t t t

t t t

b I A I P I S I S I M

I M I E I E I D I C

β β β β β β
β β β β β

−

− − −

= + + + + +
+ + + + +

    (4) 

The number of breeding females estimated by the process model was fed back into the 
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productivity function as the auto-covariate C .  

 

Observation model 

Observation error was stochastically assigned in each time step to account for annual 

variation associated with detection and unspecified covariates. For survival, the maximum 

range of uncertainty was set using the 95% confidence intervals (CIs) from the mark-

recapture analysis to encompass both process variability and observation error. The true 

range of residuals for survival within the state-space model will be narrower because some 

variability will be accounted for by the inclusion of covariates. Survival estimates were 

assumed to have a normal error distribution where the mean was equal to the mark-recapture 

estimate, and the variance was set from a uniform distribution. Here, the maximum value was 

stochastically assigned from a gamma distribution that represented the available range of 

95% CIs.  For productivity, observation error was also applied through a normal error 

structure on the number of breeding females and the number of female chicks. The mean was 

equal to the colony count estimate and the variance was derived from the range of the 

repeated counts. These data were available for 5 years between 2007 and 2012, and therefore 

the same variance was applied to all years. The variance (s2) was calculated using the mean 

variance of the annual counts ( 2σ =1727.3) and the mean number of counts ( n  = 4.7 repeated 

counts): 

2
2 0.0028

n
s

σ= =           (5) 

As with simpler regression analyses, the covariate data will also contain some observation 

error. Ignoring these uncertainties in a typical regression framework that uses model selection 

(e.g. via information criteria) can lead to spurious correlations. It was not computationally 

feasible to propagate these sources of uncertainty through the state-space model, however the 
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embedded model selection approach essentially operates as a Bayesian equivalent to model 

averaging (Lunn et al. 2012), and therefore should reduce the probability of spurious 

correlations (Burnham and Anderson 2002). 

 

Missing data 

Missing data on female mass at the start of the breeding season were estimated as a normal 

variate with an expectation equal to the observed data (Table 1; Appendices S2-S3). The 

missing segment of the predation pressure time series was modelled as a random walk 

through time to enable serial autocorrelation to be included in the process (Table 1; 

Appendices S2-S3). 

 

Variables influencing the population trajectory 

To identify a suitable splitting point for presenting summary statistics on the early and later 

parts of the time series we fitted a broken-stick GLM to the raw data using the statistical 

package segmented in Program R (Muggeo 2008). To quantify the relative importance of 

each covariate in determining the observed population trajectory, we compared the estimated 

population size between model iterations where specific covariates were indicated as being 

included or excluded based on the variable selection terms. For covariates that were included 

in all model iterations, we refitted the model with the covariate term indicator set to 0. Years 

where the imputed values of missing covariate data may have been overestimated were 

removed from this analysis to minimise bias. This was assessed by examining the population 

trajectory for anomalous changes that may result in residual variation being artificially 

attributed to a covariate value (Appendix S2). Repeated bootstrap sampling (5000 samples) 

was used to undertake multiple pairwise comparisons of the population trajectories estimated 

with and without the covariate included, calculating the squared residuals between randomly 
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selected MCMC iterations from each scenario. The covariates were then ranked by these 

statistics to determine their relative influence. Higher values and greater variability indicated 

that when a covariate was excluded the model’s ability to re-create the population size was 

reduced.  

 

Results 

Model fit 

The observed population trajectory was recreated convincingly by the full model (Fig. 1A) 

and the validation model that did not include the demographic time series (Appendix S4). 

Therefore, we infer that the population trajectory was adequately described by the parameters 

and covariates considered.  

 

Missing covariate data 

The imputed segment of the predation pressure time series was slightly higher and more 

variable (de-standardised 2000 2000x 302, 75SD< <= = ; Fig. 2A) than the segment of observed 

data (de-standardised 2000 2000x 269, 68SD≥ ≥= = ; Fig. 2A). This was largely attributed to 

elevated estimates during 1986, 1987, 1990 and 1994. These values may have been inflated 

in order to describe the concurrent population declines (Fig. 1A & Fig. 2B), and therefore 

were removed from the sensitivity analysis. The imputed values for body mass of females at 

the start of the breeding season were highly similar to the observed values (de-standardised 

imputed values 1989 1989x 4.99, 0.19SD< <= = , de-standardised observed values 

1989 1989x 5.04, 0.16SD≥ ≥= = ). 

 

Variables influencing survival rates 

In the fledgling age class, mean survival rates were slightly lower during the period of 
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population decline compared to the period of population stability ( 2000 2000x  = 0.37, x  = 0.43< ≥ ) 

and the variability was consistently high ( 2000 20000.20, 0.22SD SD< ≥= = ; Fig. 1B; Appendix 

S5). Mean survival rates also increased slightly in the older age class 

( 2000 2000x 0.87, x 0.89< ≥= = ) and variability was consistently low 

( 2000 20000.07, 0.05SD SD< ≥= = ; Fig. 1C; Appendix S5). Based on variable selection, both of 

the age specific predation effects were influential (Fig. 3A), and the directional influence 

followed Horswill et al. (2014; Appendix S1). The probability of inclusion for the main 

predation term was consistently above 0.5; therefore this term was included in all model 

iterations. The effect of SSTa on survival rates was not resolvable from variable selection or 

posterior credible intervals (Appendix S1; Fig. 3A). Despite this, the estimates of survival 

from the state-space model predominantly occurred within the confidence interval of the 

covariate model that was reported in our earlier study (Horswill et al. 2014), with lower 

values of survival estimated for the older age class during 2003 and 2004 (Fig. 1B&C).  

 

Variables influencing productivity rates 

Productivity increased during the study period (lm: F=5.11, df=25, p=0.03), and values were 

lower during the period of population decline ( 2000 2000x  = 0.51, x  = 0.55< ≥ ; Fig. 1D; Appendix 

S5). Based on variable selection and posterior credible intervals, annual productivity was 

positively influenced by body mass of females at the start of the breeding season, and 

negatively influenced by intra-specific competition and ENSO with a 3 year lag (Fig. 3A). 

The remaining covariates were not resolvable based on variable selection or posterior 

credible intervals (Fig. 3A).  

 

Variables influencing the population trajectory 

The breeding population declined at 6.5% (SE=0.6) per year from 1985 until c. 2000, the 
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trend thereafter could not be reliably resolved; declining at 1.2% (SE=1.1) (Fig. 1A). Prior to 

2000, the proportion of a cohort that recruited to the breeding population at Bird Island was 

0.06 ( 0.04SD = ) and the mean rate of adult mortality was 0.13 ( 0.07SD = ) (Appendix S5). 

After 2000, the rate of recruitment was 0.09 ( 0.04SD = ) and the rate of adult mortality was 

0.11 ( 0.05SD = ) (Appendix S5). The sensitivity analysis was carried out using a 24 year 

time series (Appendix S2), and this population trajectory was most sensitive to the removal of 

the predation pressure terms from the survival functions, especially the main predation term 

(Fig. 3B). The other covariates were relatively similar in their effect on population size (Fig. 

3B). 

 

Discussion 

Unravelling the relative importance of bottom-up and top-down forcing in the pelagic zone is 

central to regulating fishery pressures at sustainable levels and predicting how these 

communities will be influenced by future climatic changes. We sought to examine the links 

between individual covariates, demographic rates and the overall population trajectory of 

macaroni penguins, and quantify the relative importance of bottom-up and top-down drivers 

acting through different demographic rates. 

 

Variables influencing survival rates 

Between 1987 and 1990 the survival rate of Bird Island macaroni penguins marked with 

flipper-bands was estimated to be x ~ 0.75 ( ~ 0.06σ ) (Williams and Rodwell 1992). We 

estimated adult survival for the same period to be higher, and infer that flipper-banding may 

have impaired survival rates (Saraux et al. 2011) during the Williams & Rodwell (1992) 

study, or alternatively, survival rates estimated from visual recapture assuming 100% 

recapture may have resulted in underestimation. When operational, the automated gateway 
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system used in our study achieved very high recapture probabilities (0.88-0.99; Horswill et 

al., 2014). In agreement with Horswill et al. (2014), survival rates were generally lower 

during the fledgling year, and increased from age one. However, under certain conditions 

(low predation pressure), the survival rates of the two age classes were comparable (Fig. 1B-

C).  

 

The estimates of survival during the period of population stability were highly similar to 

those reported by Horswill et al. (2014) for the same time period. The difference in survival 

estimates for the older age class during 2008 and 2009 is likely to represent the lack of 

inference attributed to SSTa by the model. This also demonstrates the relative significance of 

the predation pressure covariate in resolving this demographic process. A negative 

relationship between survival and predation pressure agrees with dietary analysis that shows 

macaroni penguins form a major component of giant petrel diet during the breeding season 

(Hunter 1983). However, years with particularly low survival rates for macaroni penguins 

also coincided with years when other species of marine predators that breed on Bird Island 

experienced a decrease in vital rates. For example, during 1987, the survival rates of 

macaroni and gentoo penguins (Pygoscelis papua) decreased (Williams and Rodwell 1992), 

and following the 1987 winter, the breeding season of gentoo penguins and Antarctic fur 

seals was delayed (Duck 1990, Williams 1990). A delay in the onset of breeding may indicate 

adverse climatic conditions during the preceding winter (e.g. Barbraud & Weimerskirch, 

2006). Rates of productivity at Bird Island were also reduced for several marine predator 

species during 1994 (Reid and Croxall 2001), and gentoo penguins experienced high adult 

mortality and very low productivity during 2009 (British Antarctic Survey, unpublished 

data). The predation pressure index may therefore also represent mechanisms acting at the 

community-level, and further work is needed to examine the interaction between bottom-up 
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and top-down forces during adverse climatic conditions (e.g. Votier et al., 2004).  

 

Variables influencing productivity  

The mean productivity rate during the period of population decline was similar to other 

decreasing populations of macaroni penguins breeding in colonies of comparable size 

( x 0.46 0.57= − chicks pair-1; Crawford et al., 2006). However, by the end of the study 

period, annual rates were comparable to an increasing population of rockhopper penguins 

( x 0.64=  chicks pair-1; Baylis et al., 2013). Observational studies indicate that giant petrels 

can depredate penguin chicks at the colony (Le Bohec et al. 2003), however this foraging 

strategy has rarely been observed at Bird Island, where predation of macaroni penguin chicks 

appears to be focused on the fledging period. In agreement with this, top-down control was 

not identified as being influential to productivity. Instead, low rates of productivity were 

consistently associated with a decrease in female body mass at the start of the breeding 

season and a higher value of ENSO; i.e., an El Niño event. A positive relationship between 

arrival mass and productivity has not been previously shown for this species, however it has 

been reported for other crested penguins (Crawford et al. 2006). Likewise, a negative 

relationship between penguin productivity and ENSO has been observed in other populations 

(e.g. Chambers, 2004). Both of these processes are likely to represent local prey availability 

immediately before and during the breeding season (Murphy et al. 2007), when macaroni 

penguins from Bird Island are foraging locally (Horswill et al. in press).  

 

The arrival body mass of female macaroni penguins decreased between 1988 and 1992 (Reid 

and Croxall 2001). Furthermore, the ENSO had a marked preponderance of El Niño 

compared with La Niña events between 1983 and 2008 (Meredith et al. 2008). Consequently, 

the overall increase in productivity between 1985 and 2012 cannot be attributed to these 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

variables; i.e. the predicted trend based on the observed change in these covariates would 

have been in the opposite direction to that observed. Productivity rates also demonstrated a 

negative relationship with intra-specific competition, such that productivity increased at 

lower population densities. Here, the proposed mechanism is principally a product of 

resource competition, whereby per capita availability of prey and high quality nesting sites 

increased as the population declined. A negative relationship between population density and 

productivity has been documented in several species of seabird (e.g. Weimerskirch & 

Jouventin, 1987; Frederiksen & Bregnballe, 2001), including penguins (rockhopper penguins; 

Baylis et al., 2013). At higher population densities, a saturation of good quality foraging 

habitat may force some individuals to forage in poorer habitat that requires greater energetic 

demands to exploit (Lewis et al. 2001, Ballance et al. 2009).  

 

Variables influencing the population trajectory 

The colony of macaroni penguins examined in this study declined rapidly between 1985 and 

the early 2000s because recruitment did not sufficiently balance adult mortality rates 

(Appendix S5). The rate of decline was similar to other, much larger colonies in the same 

region (Trathan et al., 2012), and therefore it seems likely that the mechanisms discussed 

here were influential to the population more broadly. The model’s ability to replicate the 

change in population trajectory without the observed time-series of demographic data 

indicates that the principal contributing mechanisms were captured, namely predation, arrival 

mass, ENSO and intra-specific competition. In agreement with life history theory on long-

lived species, population size was considerably more sensitive to influential covariates acting 

on adult survival rates, compared to those acting on juvenile survival and productivity 

(Sæther and Bakke 2000). The main predation term in the survival functions was 

considerably more influential in resolving the observed population trajectory than the bottom-
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up climatic variable. However, the additional component of predation pressure acting on 

fledgling survival rates also appeared to be slightly more influential than bottom-up control 

of adult survival rates. This is likely to reflect the lack of influence attributed to SSTa in the 

survival function. Therefore, as time-series data are extended, it would be worthwhile 

evaluating alternative bottom-up covariates as drivers of survival. The variables acting 

through productivity generated a similar effect on the population size to SSTa acting through 

survival. Based on these results, it appears that the population dynamics of macaroni 

penguins are relatively canalized (i.e., preserved) against climate variations. 

 

Conclusions 

This study integrates a unique set of demographic and covariate data in order to assess how 

an ocean-scale population is influenced by bottom-up and top-down drivers. We conclude 

that the population of macaroni penguins at Bird Island rapidly declined between 1985 and 

the early 2000s following an imbalance between recruitment to the breeding population and 

adult mortality. The population later stabilised following an increase in survival and 

productivity. It was not possible to reliably attribute the increase in survival to a single factor; 

however the increase in productivity appeared to be driven by a bottom-up negative feedback 

with population size. Despite this, population size was considerably more sensitive to 

changes in top-down control of survival rates than all of the bottom-up covariates included. 

Under the observed conditions, we can predict that a continued increase in the population size 

of giant petrels or a shift in their predatory behaviour (to include chicks at the colony) could 

rapidly destabilise the penguin population. More broadly, this study highlights the importance 

of considering how pelagic predators are influenced by multiple drivers when examining their 

population dynamics and assessing options for conservation management. 
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S1. Prior and posterior information on the integrated population model’s parameters; 

S2. Detailed methods; 

S3. Time series of available covariate data; 
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S4. The result of the model validation exercise; 

S5. Mean and standard deviation of demographic rates before and after the change in 

macaroni penguin population trajectory. 

 

The following data file is available for this article: 

S1. OpenBUGS code. 

 

Tables 

Table 1. The candidate covariates and the relative importance of each covariate (sensitivity) 

in resolving the population trajectory of macaroni penguins at Bird Island, South Georgia.  

The length of available time series are also illustrated in Appendix S3. 

Process Covariate 
Data 

availability

Reference of 

effect 

Survival (Fledging) Predation pressure  2001-2012 Horswill et al. 2014 

SSTa 1985-2012 Horswill et al. 2014 

Survival 

(>1 year) 

Predation pressure 2001-2012 Horswill et al. 2014 

SSTa 1985-2012 Horswill et al. 2014 

Productivity Female arrival mass 1989-2012 Crawford et al. 2006 

Predation 2001-2012 Le Bohec et al. 2003 

SSTa 1985-2012 Chambers 2004 

SAM 1985-2012 Forcada & Trathan 2009 

ENSO 1985-2012 Chambers 2004 

Intra-specific competition 1985-2012 Baylis et al. 2013 

Inter-specific competition 1985-2012 Trathan et al. 2012 
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Figures 

Figure 1. The population dynamics and demography of macaroni penguins at Bird Island, 

South Georgia between 1985 and 2011. A) The population trajectory. Observed trajectory 

with confidence interval estimated from the repeated colony counts in grey. The approximate 

point where the gradient of the popualtion trajectory changed (±standard error) is shown with 

a vertical dashed line. In all figures the median modelled trajectory (black points) is shown 

with 95% credible interval (dashed line). B-C) Posterior estimates of survival rates B) birds 

>1-year; C) fledglings. The 95% confidence intervals of the independent survival estimates 

(from capture-mark-recapture data), are shown as the light grey shaded band (fully time 

dependent model), and dark grey band (covariate model). D) Time series of posterior 

estimates of productivity rates (scaled to reflect chicks pair-1). Observed productivity 

estimates are shaded in grey with confidence interval taken from the repeated colony counts.  

 

Figure 2. A) Approximate predation rate of macaroni penguins per giant petrel (based on the 

total number of giant petrels in the study areas, methods detailed in Appendix S2; penguins 

older than 1-year - black circles, and fledglings - white squares); B) The predation pressure 

index, estimated from northern and southern giant petrels productivity at Bird Island, South 

Georgia. Observed values (i.e., number of chicks fledged from the study area) shown as black 

circles, and imputed values shown as black triangles with 95% credible interval.  

 

Figure 3. A) The probability of inclusion in the model for each covariate, estimated using 

stochastic variable selection. Dashed line shows probability of 0.5; a covariate scoring 

predominantly above this will operate in more than 50% of model parameterisations. B) The 

relative importance of each covariate in resolving the population trajectory; higher values and 

greater variability indicates more influence. Covariates are ordered by the median, those 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

indicated as being included in the majority of model iterations based on variable selection are 

shown in grey; those excluded are shown in white (box metrics: central line, median; box, 

interquartile range; whisker, 1.5*inter-quartile range). 
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