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Abstract Since the early 21st century, improvements in understanding cli-7

mate variability resulted from the growth of the ocean observing system. The8

potential for a closure of the Earth’s energy budget has emerged with the9

unprecedented coverage of Argo profiling floats, which now provide a decade10

(2006 - 2015) of invaluable information on ocean heat content changes above11

2000m. The expertise gained from Argo and repeat hydrography sections mo-12

tivated the extension of the array toward the ocean bottom, which will pro-13

gressively reveal the poorly known deep ocean and reduce the uncertainty of14

its presumed 10-15% contribution to the global ocean warming trend of 0.6515

- 0.80 W m−2. The sustainability and synergy of various observing systems16

helped to corroborate numerical models and decipher the internal variability17

of distinct ocean basins. Due to unique observations of the circulation in the18
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North Atlantic, particular attention is paid to heat content changes and their19

relationship to dynamic variability in that region.20

Keywords Oceanic heating · Argo · Repeat Hydrography · GO-SHIP · North21

Atlantic22

1 Introduction23

Observational data show an unequivocal warming of the Earth’s climate sys-24

tem since the mid-twentieth century (Rhein et al. 2013). Every past decade25

has been warmer than its predecessor, and the year 2015 now stands as the26

warmest ever recorded (Tollefson 2016). This positive temperature trend at the27

Earth’s surface is driven by a radiative imbalance at the top of the atmosphere28

(e.g. Allan et al. 2014), which is widely attributed to human activities and the29

increased concentration of greenhouse gases in the troposphere (e.g. Trenberth30

et al. 2014). The global surface signal is, however, being constantly modulated31

by natural fluctuations of the climate system acting over a wide range of spatial32

and temporal scales (e.g. volcanic eruptions, solar cycles, oceanic circulation).33

For instance, those natural changes can significantly reduce the increase in34

global mean surface temperature over periods of decades (e.g. Meehl et al.35

2011), and mislead the wider community regarding the fate of global warming36

(Trenberth and Fasullo 2010).37

The observational record, however, is becoming complete enough to as-38

certain the on going rise of the Earth’s energy content. Amongst the heat39

reservoirs, the global ocean plays a critical role in capturing heat from the40

atmosphere and slowly redistributing it around the globe. More than 90% of41

the anthropogenic heat enters the ocean at a rate of 0.65 - 0.80 W m−2 (Rhein42

et al. 2013; Wijffels et al. 2016). For a few decades, global and regional ocean43

variability have been increasingly revealed by the synergy of several observing44

systems maintained and co-ordinated by strong international collaborations.45

The repeat of full-depth hydrography sections (Talley et al. 2016), the remote46

detection of sea-level changes (Church et al. 2011), the systematic sampling47
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of the upper ocean by profiling floats (Roemmich and Gilson 2009), and the48

maintenance of trans-basin moored arrays (McCarthy et al. 2015a) became49

the heart of our current understanding of the ocean’s role in climate change.50

They have, for instance, validated numerical models that provided complete51

explanations of the recent surface warming slowdown at global scale (e.g. Fyfe52

et al. 2016; Xie 2016), and also explained regional patterns of heat content53

changes (e.g. Bryden et al. 2014). Important observational gaps however re-54

main, with the Achilles’ heel of climate studies residing in the under-sampled55

deep ocean and its uncertain contribution of 10-15% to recent changes in the56

global heat and sea-level balances (Palmer et al. 2011). The systematic ob-57

servation of the deep and abyssal layers at sufficient resolution is needed to58

average out vertical rearrangements of the heat field and hence capture the59

anthropogenic warming more effectively. The emergence of a Deep Argo array60

(Johnson et al. 2015) represents a significant step forward in that direction.61

Abraham et al. (2013) provided a comprehensive review of the observing62

systems used to assess temperature and oceanic heat content (OHC) changes63

in the ocean, and detailed the major OHC indices and their uncertainties64

from five decades of in situ measurements (1960-2011). Here, we (1) review65

recent findings on the 21st century OHC variability revealed by the growing66

observational record, (2) report innovative approaches for elucidating regional67

mechanisms of OHC variability from in situ measurements (North Atlantic68

focus), and (3) inform on the upcoming opportunities for closing the global69

energy budget.70

2 The unabated heating of the upper ocean71

2.1 The global picture drawn by the Argo array72

The first deployments for the Argo array of autonomous profiling floats were73

made in 2000. The array reached its target fleet size in 2007 with 3000 floats74

sampling the top two kilometres of the water column on a nominal 10-day cycle75



4 Damien Desbruyères et al.

(Roemmich and Gilson 2009). Today, in 2016, the Argo database provides more76

than a million profiles of temperature (and salinity) with nominal accuracy of77

0.002C for temperature and 2.4 dbar for pressure (Abraham et al. 2013). More78

than 80% of the profiles in the current (to 2016) Argo database were obtained79

after 2006, and the earlier description of the 0-2000m OHC was consequently80

found to depend strongly on the choice of climatological references in data-81

sparse regions (Lyman and Johnson 2013; Cheng and Zhu 2015; Gaillard et al.82

2016). Undersampled areas, particularly located in the southern Hemisphere,83

may have significantly biased low the estimates of global OHC trends between84

1970 and 2004 (Durack et al. 2014). The uncertain nature of the multi-decadal85

record was further highlighted by the difficulty of correcting significant biases86

in expendable bathythermograph measurements, which represented the main87

source of upper-ocean temperature profiles before the launch of Argo (Lyman88

et al. 2010; Goes et al. 2015). Overall, the OHC curves prior to the mid 2000’s89

have large error-bars, and the year-to-year variations typically show limited90

agreement with the net TOA fluxes estimated from satellite products (Loeb91

et al. 2012; Smith et al. 2015). It is therefore for about a decade (since the Argo92

fleet neared completion), that the observing system has been adequate for the93

global analysis of upper OHC changes, although persistent spread between the94

various 0-2000m OHC estimates still hampers a robust closure of the current95

Earth energy budget (von Schuckmann et al. 2016).96

Through comparison of three Argo analyses, the global OHC trend above97

2000m during the period 2006-2015 was estimated as 0.50 - 0.65 W m−2 over98

the effectively sampled ocean (Figure 1 - from Wijffels et al. (2016)). As ex-99

pected, the global warming rate shows its strongest magnitude in the first100

few hundred meters of the water column and the interannual variability above101

500m shows pronounced changes that control the global temperature variations102

at the air-sea interface (Roemmich et al. 2015). Those upper OHC changes re-103

flects in large part the El-Niño/Southern Oscillation (ENSO) and its influence104

on the horizontal tilt of the equatorial thermocline in the Pacific. In addition105

to this interannual signal, the shift from a positive to a negative phase of the106
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Pacific Decadal Oscillation in the early 2000’s significantly cooled the Eastern107

Pacific, which reduced the positive trend in global mean surface temperature108

while increasing subsurface heat uptake (e.g. England et al. 2014; Meehl et al.109

2011; Johansson et al. 2015). It is now widely accepted that the global mean110

surface temperature is a poor indicator of the global heat gain (e.g. Palmer111

and McNeall 2014).112

The most recent OHC trend (2006-2015) was marked by a clear hemispheric113

asymmetry, with the southern hemisphere heating much faster than northern114

latitudes (Roemmich et al. 2015). A full understanding for such a striking115

warming of the Southern Hemisphere extra-tropics across the three oceans116

is, however, still missing. The inhomogeneous radiative forcing by ozone and117

aerosols may have played a role (Shindell 2014), so did internal ocean vari-118

ability. In fact, the horizontal distribution of the OHC trend in the upper119

layer emphasizes substantial redistribution of heat driven by the intrinsic dy-120

namics of each ocean basin. Amongst them, a strong OHC rise in the Indian121

Ocean stood out, with a temperature trend between 2006 and 2015 accounting122

for 50-70% of the global OHC trend above 700m (Nieves et al. 2015). Such123

a rise in the Indian Ocean’s OHC presumably originated in the western Pa-124

cific following a dynamical response to a shift toward a negative phase of the125

Interdecadal Pacific Oscillation, and a subsequent intensification of the heat126

transport through the Indonesian Archipelago (Lee et al. 2015).127

Moving down through the water column, the contribution of the interme-128

diate layer (700-2000m) to the global OHC change above 2000m was about129

50% of the full water column during 2006-2015 (Figure 2), that is 20% higher130

than the long-term (1955-2010) estimation of Levitus et al. (2012). This recent131

and on going increase in the sequestration of heat below the upper layer has132

been supported by model-based analysis (Gleckler et al. 2016) and linked to a133

combination of multiple underlying mechanisms driven by the local modes of134

atmospheric variability (Trenberth and Fasullo 2013). In particular, the signif-135

icant warming of the North Atlantic and Southern Ocean in the depth range136

of Labrador Sea Water and Antarctic Intermediate Water (Chen and Tung137
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2014) reinforced the idea of a strong link between convective processes, merid-138

ional overturning cells (MOC), and intermediate/deep heat storage (e.g. Meehl139

et al. 2011; Katsman and van Oldenborgh 2011; Robson 2014; Drijtfhout et al.140

2014; Williams et al. 2014; Rahmstorf et al. 2015). This link has received in-141

creased attention from the observational community in recent years, through142

the development of sustained observing systems and innovative methodologies.143

2.2 Observational insights into the regional dynamics: An Atlantic ’lead’144

Direct and sustained observations of the ocean circulation are difficult tasks,145

and there exist very few observational records capable of linking ocean dy-146

namics and decadal variability of the climate system. Ocean reanalysis (ORA)147

that assimilate in situ and satellite data in a dynamical and statistical way can148

be used to provide such a link with satisfactory degrees of consistency (e.g.149

Balmaseda et al. 2013). Yet, the multitude of assimilation-based analysis has150

to be interpreted in the light of poor observational constrains below the upper151

layer and large spreads between models due to the different dynamic schemes152

employed (Palmer et al. 2015). These sources of uncertainties and model bi-153

ases are being tackled within the ocean reanalysis inter-comparison project154

(Balmaseda et al. 2015), but their understanding will also rely on valuable155

observations that infer the dynamics of OHC changes.156

Due to its major role in the meridional and vertical rearrangement of heat,157

the Atlantic became in the last decade a targeted field for innovative observa-158

tional experiments. The establishment in 2004 of the RAPID-MOCHA observ-159

ing system to measure the MOC at 26◦N has led to unprecedented views on160

the internal dynamics of a critical ocean basin in the climate system (Srokosz161

and Bryden 2015). In addition to detecting a MOC weakening over a decade of162

magnitude exceeding the strength predicted by climate models (Smeed et al.163

2014), the RAPID time-series proved the close relationship between short-164

term changes in oceanic heat transport (30% AMOC reduction in 2009/10) and165

rapid OHC events in the North Atlantic sector (∼1.3 1022 J lost between 25◦N166
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and 45◦N) Bryden et al. (2014). Promising use of altimetry data for retracing167

past MOC changes at 26N have been proposed (Frajka-Williams 2015), while168

alternative methodologies based on coastal sea-level changes along the US east169

coast demonstrated the hypothesized multi-decadal correlation between circu-170

lation changes and upper OHC in the mid-latitude North Atlantic (McCarthy171

et al. 2015b). The dominant role of heat transport convergence in driving172

long-term OHC changes in the North Atlantic was also deduced through com-173

prehensive analyses of ORA models (Williams et al. 2014; Häkkinen et al.174

2015). These multi-decadal OHC changes exert a strong influence on surface175

temperature patterns such as the Atlantic Multi-decadal Oscillation (Delworth176

and Mann 2000), which subsequently drive turbulent heat fluxes at the air-sea177

interface and associated atmospheric responses (Gulev et al. 2013).178

At higher latitudes, an exceptionally long hydrography time series (1975-179

present) of full-depth temperature and salinity in the northeastern Atlantic180

also showed significant interannual and decadal OHC fluctuations likely to181

be driven by circulation changes (Holliday et al. 2015). The observed upper182

cooling of the eastern subpolar gyre during the most recent years (2006-2014)183

derived from repeat hydrography appeared in line with Argo-derived trends184

(Desbruyères et al. 2014), and suggested an on going eastward expansion of185

cold subpolar waters and a southward retreat of warm subtropical waters186

(e.g. Häkkinen et al. 2013; Desbruyères et al. 2013). A similar hydrography187

time series in the western subpolar gyre has recently revealed the return of188

intense deep convection in the winter of 2013/14, generating a new vintage189

of Labrador Sea Water (LSW) currently spreading within the subpolar gyre190

(Kieke and Yashayaev 2015) and affecting the heat content of the intermediate191

and deep layers (e.g. Mauritzen et al. 2012). The intensity of deep convection192

in the Greenland and Icelandic seas conversely shows a multi-decadal decline,193

with potential implication for the properties of the densest water masses filling194

the Atlantic bottom layer (Moore et al. 2015).195

During the summer of 2014, the North Atlantic’s observing system made196

another step change with the deployment of a mooring array in the Labrador197
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Sea, Irminger Sea and Iceland basin (”Overturning in the Subpolar North At-198

lantic Program” - OSNAP - http://www.o-snap.org). The OSNAP array will199

reveal the mechanisms governing changes in the subpolar overturning circu-200

lation, and complement existing local indices based on Argo, altimetry and201

repeat hydrography (e.g. Mercier et al. 2013). The combination of findings202

from RAPID and OSNAP, along with the continuing efforts to continuously203

monitor the meridional circulation at southern latitudes (Biastoch et al. 2015;204

Ansorge et al. 2014; Meinen et al. 2013), will soon provide new insights into205

ocean dynamics connectivity and the associated evolution of the Atlantic OHC.206

3 Tackling uncertainties: a deep ocean perspective207

Our understanding of OHC changes in the deep and abyssal ocean comes from208

the synoptic shipboard occupations of repeat hydrographic sections (Talley209

et al. 2016). While these sections represent the most accurate component of210

the observing system (accuracy of 0.002◦C), they have limited temporal reso-211

lution and spatial coverage. Following the first mapping of water masses over212

the globe by the World Ocean Climate Experiment (WOCE) (Ganachaud and213

Wunsch 2003), the follow-up surveys co-ordinated by the ”Climate Variability214

(CLIVAR)” and the ”Global Ocean Ship-based Hydrographic Investigations215

(GO-SHIP)” programs have yielded quantifications of the global and regional216

deep and abyssal changes in OHC. Purkey and Johnson (2010) estimated a 0.07217

± 0.06 W m−2 heat flux across the 2000m isobar during 1993 - 2006 from hy-218

drography sections occupied in 1990’s and 2000’s. The abyssal warming below219

the 4000m isobar was estimated as 0.027 ± 0.009 W m−2, with the strongest220

trends observed in the Southern Ocean and in deep western boundary currents221

along the northward routes of Antarctic Bottom Water (AABW) (Kouketsu222

et al. 2011; Sloyan et al. 2013). Both slow advective processes and compara-223

tively fast wave-like dynamics can lead to deep and abyssal OHC trends (e.g.224

Masuda et al. 2010). Multiple factors have accordingly been proposed to ex-225

plain the decadal warming of AABW, including freshening of the Ross Sea226



Observational Advances in Estimates of Oceanic Heating 9

Shelf Water and the associated downward heave of isopycnal surfaces, as well227

as wind-driven variability of the Weddell gyre (Purkey and Jonhson 2012;228

Purkey and Johnson 2013; Katsumata et al. 2014). Updating the hydrography229

dataset with section repeats up to 2015 has enabled a calculation and compar-230

ison of deep and abyssal warming rates during the 1990’s and 2000’s decades.231

The comparison of these decadal changes revealed no statistically significant232

difference in the magnitude and structure of the global decadal warming rate233

at deep and abyssal levels (Desbruyères et al. (a)). However there are differ-234

ences in the regional trends, specifically trend reversals in the deep Atlantic235

and deep Pacific consistent with the simulated redistribution of heat during236

hiatus periods (Meehl et al. 2011). Estimations of deep temperature trends237

from repeat hydrography during 2003-2012 have been further combined with238

the Argo-based analysis of the 0-2000m layer to yield a blended estimate of the239

full-depth ocean heat uptake (0.71 ± 0.12 W m−2, 10% found below 2000m)240

and a new representation of its vertical structure from the last decade of sus-241

tained observations (Figure 2).242

The reported uncertainties of hydrography-derived temperature trends be-243

low 2000m remain large. There are still significant gaps in the sampling cov-244

erage that introduce an unknown bias in the above estimates (see for instance245

the mismatch between the Argo-derived trend and the hydrography-derived246

trend at 2000m in Figure 2), and alternative methodologies based on sea-level247

and Argo measurements raised further concerns about the significance of the248

reported trend in deep ocean and its contribution to the global planetary en-249

ergy budget (Llovel et al. 2014). An emerging technology that will bring us250

closer to the closure of the global heat budget is Deep-Argo: a new observing251

system of profiling floats that will operate deeper than 2000 m (Johnson and252

Lyman 2014). The array design has been informed by analysis of core-Argo253

and repeat hydrographic sections (Johnson et al. 2015). Specifically, estima-254

tions of temporal and spatial decorrelation scales using full-depth CTD profiles255

and Argo-derived time series showed that an array deployed at 5 latitude x 5256

longitude x 15-day cycle (about 1200 floats) would provide decadal trends of257
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local temperature and global OHC below 2000m with unprecedented accuracy258

(1 to 26 m◦C decade−1 and 3 TW, respectively). The program is at an early259

stage, priority is now to monitor the mechanical behaviour of deployed floats260

and to assess sensor behaviours and drift to validate the first temperature and261

salinity profiles.262

4 Conclusion263

The precise quantification and understanding of global and regional climate264

change is strongly dependent on how well the oceans are observed. The sys-265

tematic sampling of the upper water column by Argo profiling floats marked266

a transition for the historical oceanographic record, until then hampered by267

under-sampled areas and instrumental biases that made any quantification of268

global OHC changes challenging. The Argo array has now captured a decade269

of temperature changes, including the warming trend driven by anthropogenic270

forcing. This upward ocean temperature trend is being constantly deformed271

by internal and external fluctuations of the climate system acting over a wide272

range of spatial and temporal scales. The most recent variability in global and273

regional OHC within the upper water column has been particularly assessed in274

the context of a significant slow-down of surface temperature rise, and focuses275

were consequently made on vertical rearrangements of the oceanic heat field.276

These global rearrangements, which appear to be dominated by variability in277

the top 500m of the Pacific related to El-Nino type regime shifts, have been pri-278

marily understood as a result of analysis of numerical model output. However,279

innovative observational experiments have effectively elucidated some essen-280

tial mechanisms of regional OHC variability. Amongst the major ocean basins,281

the extensive observation of the North Atlantic by a sustained moored array282

in the subtropics and hydrography records of unprecedented length at higher283

latitudes was used to decipher some links between ocean dynamics (MOC and284

horizontal gyres) and interannual to decadal OHC signals.285
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The repeat of hydrographic sections has demonstrated the likelihood of a286

concomitant warming of the water column below 2000m, representing about287

10-15% of the whole oceanic heat uptake, and showing no sign of significant in-288

tensification during the hiatus era. The uncertain nature of this deep warming289

trend has highlighted the need for a sustained and systematic deep observing290

system that will complement the crucial repeat of shipboard measurements.291

The community response is the nascent Deep-Argo array, which promises to292

yield, in about a couple of decades, unprecedented insights into the dynamics293

of the abyssal circulation while providing measurements of the ”missing heat”294

for closing the Earth energy and sea level budgets.295
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Fig. 1 Ocean warming rates and distributions. a, Globally averaged surface temperature

anomaly (STA, ◦C), from 5 m Argo OI temperature (red), NOAA (National Oceanic and At-

mospheric Administration) global ocean (turquoise) and a 6-month running mean of NOAA

global land averages (grey). b, Global average ocean temperature anomalies from the Argo

OI (contour interval is 0.01 for colours, 0.05 ◦C in grey). c, Global ocean 0-2,000 m heat

content anomaly as a function of time, with the OI version a 4-month running mean. d,

Global average 2006-November 2015 potential temperature trend (◦C per decade). e, Zon-

ally integrated heat content trends in 1◦ latitude bands from the three mapping methods.

For line plots c, d and e, the sources are: OI (red), RSOI (blue) and RPF (black-dashed).

From Wijfells et al, (2016), Nature Climate Change.
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Fig. 2 The surface-to-bottom profile of global temperature trend (solid red line) computed

from Argo and repeat hydrography data. The associated 95% confidence intervals are shown

in dashed lines. The bars indicate the contribution of 100m-thick layers to the global heat

uptake (relative to global surface area). Numerical values indicate the heat content trend

within the upper (0-700m), intermediate (700m-2000m), deep (2000m-4000m) and abyssal

(4000m-6000m) layers. Note the different x-axis scales used for Argo and hydrography-

related profiles. The dot indicates the Argo-derived trend values and uncertainties at 2000m

depth.


