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Abstract

Understanding species’ responses to environmental change underpins our abilities to make predictions on future

biodiversity under any range of scenarios. In spite of the huge biodiversity in most ecosystems, a model species

approach is often taken in environmental studies. To date, we still do not know how many species we need to study

to input into models and inform on ecosystem-level responses to change. In this study, we tested current paradigms

on factors setting thermal limits by investigating the acute warming response of six Antarctic marine invertebrates: a

crustacean Paraceradocus miersi, a brachiopod Liothyrella uva, two bivalve molluscs, Laternula elliptica, Aequiyoldia eight-

sii, a gastropod mollusc Marseniopsis mollis and an echinoderm Cucumaria georgiana. Each species was warmed at the

rate of 1 °C h�1 and taken to the same physiological end point (just prior to heat coma). Their molecular responses

were evaluated using complementary metabolomics and transcriptomics approaches with the aim of discovering the

underlying mechanisms of their resilience or sensitivity to warming. The responses were species-specific; only two

showed accumulation of anaerobic end products and three exhibited the classical heat shock response with expres-

sion of HSP70 transcripts. These diverse cellular measures did not directly correlate with resilience to heat stress and

suggested that each species may have a different critical point of failure. Thus, one unifying molecular mechanism

underpinning response to warming could not be assigned, and no overarching paradigm was supported. This biodi-

versity in response makes future ecosystems predictions extremely challenging, as we clearly need to develop a

macrophysiology-type approach to cellular evaluations of the environmental stress response, studying a range of

well-rationalized members from different community levels and of different phylogenetic origins rather than extrapo-

lating from one or two arbitrary model species.
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Introduction

Accurately predicting climate change effects at the

ecosystem level is complex and fraught with difficulty.

However, such knowledge is critical to understanding

future biodiversity and the impact on ecosystem ser-

vices. As it is impossible to acquire a detailed knowl-

edge of the responses of all species within an ecosystem

to a given environmental perturbation, a tractable

approach is to evaluate a series of candidate species to

understand the underlying mechanisms (P€ortner, 2010;

Peck, 2011). Identifying the factors that lie behind the

sensitivity or resilience of a range of species to chang-

ing conditions enables the extrapolation of those results

to other less well-characterized species (i.e. applying a

macrophysiological approach) and improves our

abilities to predict the ecosystem-level consequences of

climate change (Chown & Gaston, 2016). However, the

challenge with this approach is identifying the number

and choice of species that must be investigated to pre-

dict the behaviour of the ecosystem and developing

robust experimental protocols to inform on relative sen-

sitivities (Buckley & Kingsolver, 2012; Chown &

Gaston, 2016).

One approach to this problem is to use experimental

manipulation of thermal tolerances using ramping

assays. These are proving effective at predicting future

thermal tolerances, even though these are very short

term relative to the rate of climate change (Peck et al.,

2009; Terblanche et al., 2011). Importantly, they provide

an estimate of the relative sensitivities of different spe-

cies to a particular environmental stress (Peck et al.,

2009; Buckley & Kingsolver, 2012). These types of

experiments are particularly useful for those species

where long-term husbandry is not known, which
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compromises the ability to successfully perform

long-term acclimations. In previous thermal ramping

trials using Antarctic marine invertebrates, more active

animals survived to higher temperatures than sessile

species (Peck et al., 2009). Those thermal trials used a

warming rate of 1 °C day�1 and 1 °C per 3 days. How-

ever, subsequent experiments using a more rapid

warming rate of 1 °C h�1 and long-term acclimation

trials suggested that this rule was not universal (Peck

and Morley, pers. obs.). Clearly, more detailed evalua-

tions are required to understand the mechanisms

underlying both acute and chronic responses to envi-

ronmental change. Can we, for example, group species

into different ‘types’ of stress response (or different

levels of stress response) to empower the predictions of

the response of biodiversity to climate change with the

ultimate goal of accurately defining future ecosystem

structure and stability? Whilst Krogh (1929) is largely

remembered for advocating the use of model organ-

isms, it is often forgotten that he also emphasized the

need to study diversity (Chown & Gaston, 2016).

Indeed, previous analyses examining cellular responses

to environmental change, even in the same species,

have been confounded by variability in external factors,

making it difficult to dissect species’ cellular responses

from experimental variability and identify whether

there are any truly universal biomarkers to environ-

mental change (cf. Clark et al., 2016).

Approaches which seek to provide unifying concepts

to explain responses to environmental stress include

identification of a conserved cellular stress proteome

(K€ultz, 2005), the accumulation of toxic oxidized pro-

teins (Powell et al., 2005) and oxygen- and capacity-lim-

ited thermal tolerance at the level of whole-animal

physiology (P€ortner, 2010). In the latter, warming pro-

duces an increase in metabolism leading to a mismatch

between oxygen demand and supply, which if main-

tained leads to time-limited thermal tolerance, reduced

aerobic scope and loss of performance levels. The initial

period of passive heat resistance can see the activation

of a number of cellular pathways [cf. stress proteome

(K€ultz, 2005)] including the up-regulation of antioxi-

dant defences and the heat shock response [which has

often been proposed as a universal response to stress

(Gross, 2004)]. At higher temperatures, survival

becomes time limited and is characterized by the trans-

fer to anaerobic metabolism. In the marine environ-

ment, exposure to warming is also accompanied by a

reduction in the solubility and concentration of oxygen

(by 40% between 0 and 15 °C) and therefore potentially

results in functional hypoxia, exacerbating oxygen

demand (Abele & Puntarulo, 2004). The ability to toler-

ate the accumulation of anaerobic end products has

been associated with resilience to environmental stress

(De Zwaan & Eertman, 1996), and in addition,

increased ambient oxygen has been proven to increase

resistance to warming under a variety of experimental

ramping protocols (Weatherly, 1970; Mark et al., 2002;

P€ortner et al., 2006; Peck et al., 2007). However, these

ramping experiments were conducted at what would

be considered intermediate rates of experimental

warming with a 1 °C increase every 12 h (Mark et al.,

2002; P€ortner et al., 2006) and there is uncertainty as to

whether oxygen limitation can explain the reduction in

performance levels over all rates of warming and time-

scales (Peck et al., 2009).

This study expands on previous physiological evalu-

ations of thermal tolerances (Peck et al., 2009) with a

multi-omics approach comprising nuclear magnetic

resonance (NMR) spectroscopy-based metabolomics

and RNA-Seq transcriptomics. These provide comple-

mentary approaches to discover the molecular mecha-

nisms underlying Antarctic species sensitivities to

warming. Transcriptomics can provide specific insights

into the potential response of the animal (especially if

highly conserved gene pathways are up-regulated).

However, these transcripts may not necessarily be

translated into active end products, which is where

metabolomics studies provide essential additional

information (Hines et al., 2007; Viant, 2007). Whilst the

difficulties of metabolite identification often limit the

interpretation of metabolomics data, especially from

nonmodel species, metabolites do represent functional

molecules which can be predictive of animal physiol-

ogy (Viant, 2007). In particular, metabolomics is very

effective at identifying anaerobic end products

(Hochachka & Somero, 2002), which are one of the foci

of this study, as these would be expected to be pro-

duced as the animals transfer from passive heat resis-

tance into anaerobic metabolism. As molecular

information in Antarctic species is limited, utilizing

these two ‘omics techniques in a comparative approach

leverages the advantages of both techniques, enhancing

abilities to decipher responses to warming within an

ecological context (Viant, 2007).

In this study, we took six diverse Antarctic marine

invertebrates with different locomotory habits and sub-

jected them to rapid rates of warming (1 °C h�1). These

comprised a highly active crustacean Paraceradocus

miersi, a sessile-attached brachiopod Liothyrella uva, two

infaunal bivalve molluscs, Laternula elliptica, Aequiyoldia

eightsii, (previously known as (Yoldia eightsii) a locomo-

tory gastropod mollusc Marseniopsis mollis and an

attached echinoderm Cucumaria georgiana (previously

known as Cucumaria attenuata). These are common spe-

cies, all widely distributed around the Antarctic (Dell,

1972; Foster, 1974; Coleman, 1989; O’Loughlin et al.,

2011), and their thermal limits have been previously
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tested at both 1 °C day�1 and 1 °C 3 days�1 (Peck et al.,

2009). In addition, we already have valuable back-

ground information on the ecology and physiology of

these species with L. elliptica particularly well studied.

It is the largest Antarctic marine bivalve contributing

the highest ecological biomass and plays a significant

role in benthopelagic coupling (Ralph & Maxwell, 1977;

Ahn, 1993). Growth rates and more detailed analyses of

responses to temperature have been carried out in sev-

eral of the species: L. elliptica (cf. Peck et al., 2002);

L. uva (cf. Peck et al., 1997); M. mollis (Peck et al., 2006);

and A. eightsii (Peck & Bullough, 1993; Abele et al.,

2001). In addition, P. miersi is one of the largest Antarc-

tic amphipod and has proven a useful model to exam-

ine nerve conductance related to temperature (Young

et al., 2006) and M. mollis has been particularly studied

in relation to chemical defence (McClintock et al., 1992).

These are all highly abundant species in the near-shore

marine fauna around the Rothera Research base, and

therefore, any change in their biomass would signifi-

cantly impact on ecosystem functioning.

The aim of this series of experiments was to test to

what extent the current unifying physiological and cel-

lular concepts applied to warming responses and

whether they were underpinned by unifying molecular

mechanisms. Rapid warming was chosen specifically to

test acute responses, to identify whether survival corre-

lated with activity levels and test the hypothesis that

resilience correlated with the ability to tolerate anaero-

bic end products as a result of the transfer to anaerobic

metabolism. NMR metabolomics was applied to all spe-

cies to identify the biodiversity of the significantly

changing metabolites, including anaerobic end prod-

ucts, with a subsequent LC-MS study on A. eightsii, to

provide added sensitivity and greater insight into the

response of the most resilient species. These data pro-

vided intriguing results, and therefore, complementary

transcriptomic sequencing was subsequently con-

ducted to further identify the biodiversity in the

response of biochemical pathways as a result of the

warming experiment.

Materials and methods

Animal collection

The six species used in experimental work (P. miersi, L. uva,

L. elliptica, A. eightsii, M. mollis and C. georgiana) were chosen

because they demonstrated a wide range of thermal tolerances

in their upper lethal temperatures (ULT) at a warming rate of

1 °C h�1 (Peck, pers. obs.) (Table 1). The animals were col-

lected at Rothera Research Station, Adelaide Island, Antarctic

Peninsula (67°34007″S, 68°07030″W), by SCUBA divers during

the austral summer at depths of 10–15 m. Animals were accli-

mated in the flow-through aquarium facility at Rothera for

2 weeks prior to the experiment, and the control animals

(n = 10 for each species) were maintained in the same system.

Temperature in the control tanks (500 l) was maintained at

external ambient sea temperatures using flow-through water

pumped directly from the sea at rates in excess of 20 l min�1.

The whole aquarium system was held in a controlled tempera-

ture room where air temperatures were set at 0.5–1.0 °C.

Thermal trials

All species were collected from the same site, tested in the

same week (to negate temporal and seasonal effects) and sub-

jected to the same ramping of temperature, with each animal

being sampled when they were just below the level of being

unresponsive and below their ULT, using ULT trials con-

ducted in 2012 as a guideline (Peck, pers. comm.) (Fig. 1). This

ensured that they were still metabolically active. Thus, as far

as possible, each species was subjected to the same level of

heat stress to provide directly comparable data. Animals

(n = 10) were placed in 75-l internal volume tanks with hollow

walls, through which water was pumped from a temperature-

controlled unit. One tank was used for the ten animals. The

whole system was placed inside a temperature-controlled

room and the system held at 0 °C. After transfer of the ani-

mals to the experimental system, they were warmed at a rate

of 1 °C h�1. Animals were checked every 30 mins and were

sampled when they responded poorly to tactile stimuli, such

as touching or prodding with a blunt seeker (L. elliptica) or

appropriate behavioural stimuli such as movement of anten-

nae (M. mollis), retraction of tentacles (C. georgiana), failure to

rapidly close the shell (A. eightsii and L. uva) or movement of

parapodia (P. miersi).

Animal and tissue sampling

Immediately following the thermal treatment, the animals

were measured [wet weights (�0.001 g) where appropriate,

length and height of shell (�0.01 mm)] before being snap fro-

zen in liquid nitrogen. The animals were either frozen whole

or the tissues were dissected out prior to freezing as detailed.

The majority of samples comprised tissue mixes with a high

proportion of muscular tissue: P. miersi: whole animal was

frozen, with the tissue sample taken from one of the abdomi-

nal segments incorporating a pair of pleopods; L. uva: the

lophophore was dissected out, but not used in the analyses as

it is highly calcified, the rest of the animal tissue was mixed

and used for the NMR and RNA-Seq; L. elliptica: five tissues

were sampled: siphon, mantle, foot, gill and digestive gland

(all five were used in the NMR, but only mantle and gill in the

RNA-Seq); A. eightsii: the foot of the animal was dissected out

and stored separately. The remainder of the animal was used

as a mix for the NMR samples; M. mollis: only foot muscle

was taken and C. georgiana: the whole animal was frozen, but

the end portion of the animal close to the cloaca (cross-section

of muscular body wall) was taken for NMR and RNA-Seq. A

set of controls kept at 0 °C (n = 10 for each species) was sam-

pled at the same time. Tissues were stored at �80 °C until

analysed. The thermal tolerance trial had to be repeated for
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P. miersi, as the RNA had degraded in the samples used for

the metabolomics extractions. The same protocol was strictly

followed in this repeat trial.

Metabolite extraction protocol

Approximately 50–100 mg of frozen tissue was used for

each extraction. Samples were homogenized in a Precellys

bead-based homogenizer (Stretton Scientific, Stretton, UK)

using ceramic beads (Stretton Scientific) as described by Wu

et al. (2008) with the following modifications. In general, tis-

sues were subjected to 2 9 10 s homogenization at

6400 rpm, but where tissues were particularly recalcitrant,

for example C. georgiana and M. mollis, three rounds of

2 9 10 s homogenization were used. When the homoge-

nates were removed from the Precellys tubes to clean

1.8-ml glass vials, an additional wash step was added.

Instead of adding 4 ll mg�1 chloroform directly to the sam-

ple in the glass vials, 4 ll mg�1 chloroform and 2 ll mg�1

of double-distilled water were first added to the Precellys

tubes and vortexed lightly before adding to the previous

homogenate in the glass vials to ensure that all homoge-

nized tissue was carried over for the next step. Both polar

and nonpolar fractions were removed into separate 1.8-ml

glass vials using a Hamilton syringe and stored at �80 °C
before further processing, although only the polar fraction

was used for the following analyses. The polar metabolites

were then transferred to a 1.5-ml microcentrifuge tube. Each

metabolite sample was dried using a centrifugal concentra-

tor (Thermo Savant, Holbrook, NY, USA) and stored at

�80 °C.

NMR spectroscopy of tissue extracts

The dried polar extracts were resuspended in sodium phos-

phate buffer [0.1 M in 10% D2O and 90% H2O, pH 7.0, contain-

ing 0.5 mM sodium 3-trimethylsilyl-2,2,3,3,-d4-propionate

(TMSP: chemical shift standard)]. The tissue extracts were

analysed on the DRX-500 NMR spectrometer (Bruker Biospin,

Coventry, UK) equipped with a cryoprobe and operated at

500.18 MHz (at 300 K). One-dimensional (1-D) 1H NMR spec-

tra were obtained using excitation sculpting for water sup-

pression and a 8.4 ls (60°) pulse, 6 kHz spectral width and a

2.5 s relaxation delay with water presaturation. A total of 64

transients were collected into 16 348 data points, requiring a

4.5-min acquisition time. The data sets were zero-filled to

32 768 points, before line broadenings of 0.5 Hz were applied

prior to Fourier transformation. To maximize metabolite dis-

crimination, two-dimensional (2-D) 1H J-resolved (JRES) NMR

spectra were also acquired for each sample using eight tran-

sients per increment, for eight increments, which were col-

lected into 16 384 data points with spectral widths of 6 kHz in

F2 (chemical shift axis) and 50 kHz in F1 (spin–spin coupling

constant axis). A 4.0-s relaxation delay was employed result-

ing in a total acquisition time of 24 min. The data sets were

zero-filled in F1; the F2 dimension was then multiplied by a

SEM window function using 0.5 Hz line broadening whilst

the F1 dimension was multiplied by a sine-bell window func-

tion, all prior to Fourier transformation. The JRES spectra were

tilted by 45°, symmetrized about F1 and calibrated using Top-

Spin (Bruker Biospin). The data were exported as the 1-D sky-

line projections of JRES spectra (pJRES) and converted to a

format for multivariate analysis using custom-written PROME-

TAB software in MATLAB (version 7.1; The MathsWorks, Natick,

MA, USA; Viant et al., 2003).

Table 1 Details of species, thermal tolerances and sampling temperatures. Thermal tolerance was based on upper lethal tempera-

ture trials conducted at a warming rate of 1 °C h�1 (based on Peck, pers. obs.). With the exception of Paraceradocus miersi, animals

were sampled across a temperature range depending on responsiveness

Species Taxa Thermal tolerance

Temperature range of

animals sampling (�C)
Mean temperature animals

sampled at (�C)

Aequiyoldia eightsii Bivalve mollusc Very high 24.8–25.8 25.0

Laternula elliptica Bivalve mollusc High 17.8–23.9 19.9

Liothyrella uva Brachiopod Intermediate 17.3–19.6 18.1

Cucumaria georgiana Echinoderm Intermediate 14.7–16.0 15.2

Paraceradocus miersi Crustacean Intermediate 15.1 15.1

Marseniopsis mollis Gastropod mollusc Low 11.6–13.0 12.0

Fig. 1 Upper lethal temperatures at a warming rate of 1 °C h�1

(Peck, pers. obs.) compared with sampling temperatures in this

experiment.
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NMR spectral processing

The 220 pJRES spectra were split according to control and

treated tissue of each species. The 220 2-D JRES NMR spec-

tra were processed and skyline projection pJRES spectra

were calculated in the MATLAB programming environment

using NMRLAB software. The pJRES spectra were baseline

corrected, unwanted spectral regions (containing TMSP,

water and a signal between dH 2.21–2.26) were excluded,

and spectra were binned to a bin width of 0.005 ppm, nor-

malized and g-log transformed using the lambda parameter

1e-7. The variables were mean centred prior to principal

component analysis (PCA). All comparisons were subjected

to both PCA and partial least squares discriminant analysis

(PLS-DA). For identification and quantitation of specific

metabolites, peak areas were fitted and measured using the

Chenomx software and normalized to the TMSP reference

peak within each sample.

LC-MS metabolomics of tissue samples

To obtain greater detail on the metabolite profile of the most

thermally resilient species, a limited trial of LC-MS was car-

ried out on the A. eightsii sample aliquots (rest of animal –
minus foot). The polar extract aliquots designated for MS for

10 samples each of AeRC (control) and AeRT (heat treated)

were first used to pool a QC sample from all of them, then

dried down and applied to UHPLC-MS on a 100 9 2.1 mm

Thermo Hypersil Gold column with a flow rate of

400 ll min�1. The 15-min programme on the Ultimate 3000

UHPLC system contained a gradient from 100% A (0.1% for-

mic acid in water) to 100% B (0.1% formic acid in methanol).

The LTQ-FT Ultra mass spectrometer acquired data in positive

ion mode from m/z 100–1000 at 50 000 resolution and in cen-

troid mode. To avoid salt contamination, the first 30 s of the

LC run was diverted away from the mass spectrometer. Addi-

tional MS/MS data were acquired on the same mass spec-

trometer.

LC-MS spectral processing

Data were processed by converting the Thermo .raw files into

netcdf (.cdf) format using Thermo’s XCalibur software; then

an R script containing XCMS and CAMERA command (Brown

et al., 2009; Dunn et al., 2011) was run to create an output in

form of a csv file, containing an intensity matrix, m/z values,

retention times and other information. A Taverna-based work-

flow was used to match the output against the Manchester

Metabolite Library (MMD; Brown et al., 2009), and it was also

inserted into the standard MATLAB-based Birmingham DIMS

workflow (Kirwan et al., 2014) for alignment and sample filter-

ing. Further in-house MATLAB scripts were used for subsequent

matrix processing: normalization using the PQN algorithm,

filling missing values using KNN with k = 5, and, for multi-

variate statistics, g-log transformation. Further annotation of

metabolites was carried out by searching the extended peaklist

against the KEGG (www.genome.jp/kegg/pathway.html) and

LipidMap databases (LIPID MAPS Lipidomics Gateway,

http://www.lipidmaps.org), using the MIPack package

(Weber & Viant, 2010).

Statistical analysis of metabolomics data

Multivariate analyses (PCA and PLS-DA) were performed

using the Eigenvector PLS Toolbox. For PCA, the resulting

PCs were tested for significant separations between control

and treated tissues using an in-house MATLAB script applying

ANOVA and a Tukey test (PC scores test). PLS-DA models were

created in parallel and tested using an in-house MATLAB script

applying cross-validation using a venetian blinds method

(permutation testing). The bins used in the model were then

reduced by forward selection of variables to the optimum for

a robust separation of classes based on variable importance

for projection (VIP) scores. The optimized models were again

permutation tested. For NMR data, for both PCA and PLS-DA

models identification of metabolites in the 25 highest PC load-

ings for each significant PC, and those with forward-selected

VIP values, respectively, a two-tailed t-test was performed on

the peak areas of these metabolites. The P values were

adjusted for multiple testing using a 5% false discovery rate

[FDR, after Benjamini & Hochberg (1995)] correction (q val-

ues). For LC-MS data, univariate statistics were carried out on

the whole normalized matrix after filling missing values in

form of a two-tailed t-test with a 5% FDR correction (q values).

At the same time, this in-house script determined fold

changes.

RNA extraction

RNA was extracted from n = 5 for each set of control and trea-

ted animals using TRI reagent (Bioline, London, UK) and puri-

fied on RNeasy mini columns (Qiagen, Hilden, Germany)

according to manufacturer’s instructions. RNA was quantified

using an Agilent Technologies Tape Station 2200. These were

the same animals (with the exception of P. miersi) that had

been used in the metabolomics analyses to provide a directly

comparable analysis. The RNAs were subjected to RNA-Seq

on an Illumina Hi-Seq 2000 at The Genome Analysis Centre

(TGAC), Norwich.

Transcriptomic analysis

The raw Illumina reads were assembled using SOAP denovo

(soap.genomics.org.cn) with transcripts >500 bp used for both

producing the backbone sequence database and also for map-

ping differential expression patterns. Selection for differential

expression was carried out using a stringent twofold expres-

sion-level difference, and the use of a linear model in Bayseq

(Hardcastle & Kelly, 2010) using a model drawing on replicate

individuals (Guo et al., 2013). A further adjustment was made

for multiple testing (Benjamini & Hochberg, 1995) with an

FDR cut-off set at 0.01. Only mappings where both paired-end

reads mapped to the same contig were used to generate

expression levels and calculate significance of expression.

Contigs were searched for sequence similarity using Blast

(Altschul et al., 1997) against the GenBank nonredundant
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database (Benson et al., 2007) with a threshold score of <1e�10.

All annotations were manually verified, where possible and

the putative annotations binned into generic cellular path-

ways.

Data submission

All sequence data were submitted to the NCBI Short-Read

Archive (SRA) with the accession numbers: P. miersi:

SRP071221; L. elliptica: SRP071174; L. uva: SRP071176; A. eight-

sii: SRP071173; M. mollis: SRP071177; C. georgiana: SRP070764.

All metabolomic profiles have been submitted to METABO-

LITE and can be viewed at http://www.ebi.ac.uk/metabo-

lights/MTBLS336.

Results

Each species was warmed at a rate of 1 °C h�1 and

sampled within a very small temperature window at

between 0.8 and 4.1 °C below their ULT, as previously

determined in experiments performed 2 years earlier

(Peck, pers. comm.) (Fig. 1; Table 1). The relative ther-

mal sensitivity of each species in this experiment was in

the same order as previously identified in the ULT trials

(Fig. 1): A. eightsii was the most tolerant species sam-

pled at a mean temperature of 25.0 °C, followed by

L. elliptica (19.9 °C), L. uva (18.1 °C), C. georgiana

(15.2 °C) and P. miersi (15.1 °C), with M. mollis having

the lowest thermal tolerance, sampled at 12.0 °C (Fig. 1;

Table 1). This order was different to that previously

obtained under the different ramping regimes of

1 °C day�1 and 1 °C 3 days�1 (Peck et al., 2009) where

more active animals survived to higher temperatures

than sessile ones. In this experiment, P. miersi, the most

active species, and the locomotory gastropod M. mollis

were the most thermally sensitive with the infaunal

bivalves and sessile-attached brachiopod, the most resi-

lient. There was no significant difference in size of ani-

mals between the control and treated groups for any of

the species (Table S1), and all animals were reproduc-

tively mature.

NMR metabolomics

The PCA analysis showed that there were PC scores

that gave significant separations between the control

and treated samples for all tissues of L. elliptica (siphon,

mantle, foot, gill and digestive gland), whole-animal

tissue mix of L. uva and whole-animal tissue mix of

A. eightsii (Fig. 2). PC scores did not show any signifi-

cant separations for the foot tissue of A. eightsii or the

whole-animal tissue mixes extracted from P. miersi and

C. georgiana or the foot of M. mollis. Further analysis

identifying metabolites from the top 25 loading plots

and adjustment for multiple testing verified these

results with the exception that separation was no longer

statistically significant for one tissue from L. elliptica

(siphon) (Data S1). Virtually identical results were pro-

duced with the PLS-DA analysis when adjusted for

multiple testing, except that PLS-DA analysis forced a

separation for the A. eightsii foot samples (Table 2).

From the PLS-DA results, between 11 and 21 metabo-

lites were putatively annotated across all species (the

exception being C. georgiana where only 1 was identi-

fied) (Data S1). These were tested for their significance

using VIP scores for the full data set, with significant

separation identified only for signals annotated as ace-

tone, alanine, aspartate, dimethyl amine, dimethyl sul-

phone, lactate, succinate and valine in three species

(Table 2). When the results were constrained to those

metabolites showing a fold change greater than one,

only L. elliptica and A. eightsii were retained, with the

significant metabolites identified as arginine, lactate,

succinate and valine (Table 2). There were many

metabolites which were not identified due to weak sig-

nal intensity or overlapping complex signals and also

due to problems identifying metabolites in nonmodel

species. To investigate these ‘unknown’ metabolites,

advanced chromatographic separations and NMR tech-

niques would be required. These results correlated with

the thermal tolerance of the species chosen, with only

significant separation of metabolites identified between

control and treated animals for the three most ther-

mally resilient species (Table 3).

Transcriptomics

The limited results (in terms of NMR identifications of

anaerobic end products in only three of the six species)

were intriguing and somewhat unexpected, given our

prior hypothesis that resilience was related to the abil-

ity to tolerate anaerobic end products. Thus, it was

decided to further investigate the response to warming

on the same samples using a complementary transcrip-

tomics approach. It was only possible to perform

expression analyses on a more limited range of tissues

and therefore where multiple tissues for a species were

investigated using NMR, only one tissue type was cho-

sen for A. eightsii (whole-animal mixed tissue, as this

produced a metabolomics result) and two tissues for

L. elliptica [gill, as this showed the highest succinate

levels and mantle as this tissue has been extensively

investigated in similar transcriptomic experiments (cf.

Truebano et al., 2010; Clark et al., 2010, 2016)]. The

number of transcripts up-regulated in each species

when treated animals were compared with controls

varied dramatically (Table 3). At the lowest end,

M. mollis and P. miersi both showed 32 up-regulated

transcripts, followed by C. georgiana with 34, then
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A. eightsii with 79, L. uva with 279 and finally L. elliptica

gill with 1871 (Tables S2–S7, respectively). The latter

result in gill was in complete contrast to the

transcriptomic results in L. elliptica mantle tissue, which

showed no differential expression of transcripts

between experimental and control animals and

Fig. 2 Principal component analysis (PCA) plots showing separation of control and treated groups for Laternula elliptica (a) mantle; (b)

foot; (c) gill; (d) digestive gland; (e) Liothyrella uva (whole-animal tissue mix); (f) Aequiyoldia eightsii (whole-animal tissue mix).

Table 2 NMR-based metabolomics: fold change in metabolite concentration for identified significant principal component analysis

(PCA) and PLSDA results (P < 0.05) for the three more thermally resilient species

Acetone Alanine Aspartate Dimethyl amine Dimethyl sulfone Lactate Succinate Valine

Laternula elliptica

Mantle 1.42 14.63 1.60

Foot 25.84

Gill 0.61 2.45 0.55 4.07 94.73 3.84

Digestive gland 2.13 72.91 2.53

Liothyrella uva 0.16

Aequiyoldia eightsii

Foot 0.69

Whole animal 0.53 0.51 7.91
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therefore the results of the mantle sequencing were not

included in Tables 2 and 3. When the annotations pro-

duced from Blast sequence similarity searching of the

up-regulated transcripts were analysed in more detail,

the putative functions could be assigned to a variety of

pathways (Table 3). None of the species showed the

same response to warming. Only three species demon-

strated a heat shock response (P. miersi, L. uva and

L. elliptica), with up-regulation of members of the

70 kDa heat shock protein (HSP70) family. P. miersi

showed major up-regulation of putative transcripts

involved in neurotransmission, whilst M. mollis and

C. georgiana were the only species to express transcripts

involved in the mitochondrial electron transport chain.

In general, the least resilient species showed not only a

lower number of up-regulated transcripts, but also less

diversity of response, in terms of the putatively identi-

fied cellular pathways (Table 3).

LC-MS metabolomics on A. eightsii

After the processing of the metabolomics and transcrip-

tomics data, LC-MS was applied for a deeper inspec-

tion of the metabolomic response of the most resilient

species. Processing of the LC-MS data resulted in a

peak list and data matrix of 1470 signals. Both PCA and

PLS-DA analysis produced separation of treated and

control samples (Data S2). The forward selection of

variables by VIP score to obtain an optimized PLS-DA

model resulted in 26 signals, whilst the t-test resulted

in 25 signals with significant q values (P values after

FDR correction), with 14 of these signals found on both

lists. Of these seven were annotated as being likely ver-

sions of the same molecule, succinate, which is signifi-

cantly up-regulated in the treated samples and

corresponds to the NMR results (Table 4). Also leucine

or isoleucine and a signal annotated as O-propanoylcar-

nitine were up-regulated and on both lists, whilst sev-

eral probably inorganic signals decreased. The

Table 3 Summary of combined metabolite and transcriptomic data sets, including the detail on the cellular pathways up-regu-

lated in response to animals being warmed at 1 °C per h, based on putatively annotated transcripts from RNA-Seq experiments

Response

Species

Mm Pm Cg Lu Le Ae

Physiological tolerance Low Intermediate Intermediate Intermediate High Very high

Tissue type Foot Mix Mix Mix Gill Mix

Number of transcripts up-regulated 32 32 34 279 1871 79

Number of metabolites significantly changed 0 0 0 0 3 1

Heat shock response X X X

Anaerobic end products X X

Number of major pathways identified 2 2 4 8 7 5

Detail on pathways identified

Heat shock response X X X

Neurotransmission X

Respiratory electron transport chain X X

Apoptosis X X X X X

Cytoskeleton X X X X

CYP450 detoxification X X X

Protein degradation X X X

Immune response X X X

DNA damage and repair X

Cell signalling and ion transport X X X

X denotes a positive result. Species symbols: Mm,Marseniopsis mollis; Pm, Paraceradocus miersi; Ca, Cucumaria georgiana; Lu, Liothyrella

uva; Le, Laternula elliptica; Ae, Aequiyoldia eightsii. Only the Laternula elliptica gill tissue results are presented here, as the mantle tissue

did not show any significantly up-regulated transcripts.

Table 4 LC-MS-based metabolomics: fold change in metabo-

lite concentration for safely annotated significantly changed

metabolites (PLS-DA and t-test) of Aequiyoldia eightsii (whole

animal, not the foot)

Annotation Fold change

Leucine or isoleucine 2.4

Succinate 2.4–12.8*
Tryptophan 2.1

O-propanoylcarnitine 1.7

O-butanoylcarnitine 2.0†

*Range of fold changes for different adduct forms of succinic

acid.

†Important only in multivariate statistics.
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forward-selected variables also contained a compound

annotated as O-butanoylcarnitine and also tryptophan

retained a significant q value (both increased). The rest

of these compounds including a putative peptide and a

very polar sulphur-containing ion could not be reliably

annotated.

Discussion

These data demonstrate, for the first time, the wide

diversity in response to warming in six Antarctic mar-

ine species. All species were collected from the same

site, tested in the same week and subjected to the same

ramping of temperature. Thus, as far as possible, each

species was subjected to the same level of heat stress to

provide directly comparable data. The difference

between the mean sampling temperature compared to

the mean ULT varied with species, but was not unex-

pected as ULTs can vary annually depending on condi-

tions such as food supply and long-term habitat

temperatures (Morley et al., 2012). In this experiment,

the sampling temperature erred on the cautious side so

that the upper lethal limit was not reached.

Previous studies comparing the stress response of

different species have been hampered by variance in

the experimental protocol, either the methodology of

application of the stress, different stresses or timings

(cf. Clark et al., 2016 and discussion therein). There-

fore, it has previously been difficult to differentiate

between treatment effect and species-specific response.

These factors have made the identification of the diver-

sity of response exhibited between species difficult to

achieve.

The major paradigm around species inability to cope

with changed conditions, specifically to resist warming,

is based on oxygen limitation (P€ortner, 2010). In fact,

exposure to critical warming, as in the rapid rates here,

is accompanied by a considerable reduction in the solu-

bility and concentration of oxygen and therefore func-

tional hypoxia. This would exacerbate the problems

from warming, with induced increases in oxygen

demand (Abele & Puntarulo, 2004). From this paradigm

of oxygen limitation, it was expected that as each spe-

cies approached their critical temperature, they would

switch to anaerobic respiration which could be demon-

strated by the accumulation of anaerobic end products

(cf. P€ortner, 2010) and tolerance of such products has

been associated with enhanced survival (De Zwaan &

Eertman, 1996). A range of anaerobic end products has

been documented in invertebrates, aside from the

widely observed lactate, several of which are common

metabolites, such as succinate, that can be detected by

NMR (Hochachka & Somero, 2002). Previous analyses

have shown the presence of anaerobic end products in

invertebrate muscle tissue (reviewed in De Zwaan &

Eertman, 1996) and with the exception of L. elliptica

which was dissected into separate tissues, the samples

from other species were tissue mixes, comprising a sig-

nificant proportion of muscle. This use of muscle-domi-

nated tissue mixes maximizes the chances of detecting

anaerobic end products and also significantly reduces

the possibility of observing tissue-specific responses.

This is more difficult to achieve with larger species

which have more defined tissues and are easier to dis-

sect, such as demonstrated by L. elliptica, but with these

animals, it is equally important to evaluate a range of

different tissues to understand the whole-animal

responses (cf. Clark et al., 2016).

What was very surprising was that only three of the

species (which happened to be the most resilient ones)

showed significant differences observed in separation

of metabolites between control and treated animals.

Hence, only half of the species studied showed a

response to acute warming in their metabolite profiles.

Although a range of metabolites were identified in the

NMR study across all the species, only alanine, lactate,

succinate and valine were significantly up-regulated in

the NMR study in L. elliptica and A. eightsii, the first

three metabolites being classic end products of anaero-

bic respiration in marine bivalves (Table 2) (De Zwaan

& Eertman, 1996; Hochachka & Somero, 2002). Whilst

valine has been shown to be produced in response to

both anoxia and heat stress in other species, the exact

reason is unknown (Mayer et al., 1990; Kaplan et al.,

2004; Podrabsky et al., 2007). In general, any animal

exposed to environmental stress has shown a perturba-

tion of the amino acid pool. It has been suggested that

this may be due to either the possible degradation of

proteins, a decrease in consumption of amino acids

associated with the arrest of protein synthesis, balanc-

ing intracellular osmolarity or to support secondary

metabolite production as part of an immune defence

mechanism (Kaplan et al., 2004; Podrabsky et al., 2007;

Ellis et al., 2014). In A. eightsii, these data were later

supplemented with an LC-MS study (Table 4), which

showed the accumulation of succinate (validating the

NMR result) (Tables 2 and 3), along with two free

amino acids (leucine/isoleucine and tryptophan) and

O-propanoyl carnitine. The putative detection of O-pro-

panoyl carnitine was intriguing, as it has not been iden-

tified in metabolite studies of invertebrates before. It is

involved in the carnitine pathway which plays an

important role in fatty acid and energy metabolism.

Whilst it may be present in A. eightsii as an intermedi-

ate of this pathway, it has also been demonstrated to

induce an antioxidant defence against the lipid peroxi-

dation of membranes in mammals (Sayed-Ahmed et al.,

2001).
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It is perhaps pertinent that the two species which

showed accumulation of alanine, lactate and succinate

are bivalve molluscs that regularly experience periods

of hypoxia. Therefore, they are habituated to shutting

down their metabolism in times of stress and tolerating

increased levels of anaerobic end products (cf. De

Zwaan & Eertman, 1996). For example, L. elliptica

shows a seasonal pattern of long periods of siphon clo-

sure in the winter when its phytoplankton food source

is in scarce supply (Morley et al., 2007). This may be the

reason for the more limited metabolomic response in

the siphon and mantle and the lack of a significant tran-

scriptomic response in the mantle, with these organs

being shut down and cellular energy concentrated in

the more vital organs. A. eightsii is a bioturbating

deposit feeder that carries out vertical feeding migra-

tions in the sediment. It is completely buried whilst

feeding and thus regularly experiences hypoxic condi-

tions (Davenport, 1988). The metabolomics results rep-

resent a conundrum. It was expected that anaerobic

end products would accumulate in all species, not just

the two bivalves. Therefore, to try and decipher the

mechanisms underlying the response to rapid warming

further, it was decided to extend this study by examin-

ing the gene expression profiles of exactly the same tis-

sue samples studied by metabolomics. The gene

expression data identified an even more diverse range

of species-specific responses.

Marseniopsis mollis was the most thermally sensitive

species and essentially lacked a transcriptomic

response (Table 3). The putative annotations almost

solely comprised of enzymes in the electron transport

chain (NADH dehydrogenase and cytochrome c)

(Table S2), indicating that the animals were respiring

aerobically. Hence, there was almost a complete

absence of a recognizable cellular stress response (cf.

K€ultz, 2005).

Paraceradocus miersi was the second most thermally

sensitive species in this experiment. Surprisingly, all

the experimental animals succumbed at exactly the

same temperature. Blast sequence similarity searching

produced many matches to InterPro annotated

domains, several of which revealed putative connec-

tions with neuronal functions, for example contig

4656385 (structural integrity of nerve terminals), contig

4630105 (sodium symporter with neurotransmitter

activity) and contig 4676103 (synaptojanin involved in

synaptic vesicle recovery) amongst others (Table S3).

Whilst these annotations were tentative, given the evo-

lutionary distance between P. miersi and the vertebrate-

centric data, the fact that many domain matches had

putative neuronal connections added weight to the

hypothesis that neuronal collapse may be the reason for

failure of this species at 15.1 °C and the potential

reason why all the animals failed at the same tempera-

ture. A test of the thermal characteristics of neuronal

conduction in P. miersi indicated an upper thermal

block in conduction at 21.5 °C (Young et al., 2006). This

is considerably higher than the ULT in the current

experiment, but the conduction test was run at the even

faster rate of warming of 1 °C every 4 min. If the ani-

mals were warmed at the same rate, it is entirely possi-

ble that they would have achieved this temperature,

even though whole animals tend to fail at lower tem-

peratures than their individual biochemical pathways

(P€ortner et al., 2006). A particularly interesting discov-

ery in P. miersi was the up-regulation of an HSP70 tran-

script (Table S3). Previous analyses of heat shock genes

in this species failed to reveal a heat shock response,

but the analyses were limited to a handful of HSP70

transcripts obtained via degenerate PCR and not the

transcriptome-led approach here (Clark et al., 2008a).

The HSP70 transcript identified here did not corre-

spond to any gene fragments previously isolated and

thus brings the total of HSP70 genes identified in

P. miersi to 5, which is approaching a similar level to

that of other highly active Antarctic crustaceans, krill

Euphausia superba and ice krill Euphasia crystallorophias

(Cascella et al., 2015).

The last more thermally sensitive species was the sea

cucumber, C. georgiana. Similar to M. mollis, there was

an impoverished transcriptomic response with evi-

dence of up-regulation of enzymes in the electron trans-

port chain (NADH dehydrogenase and cytochrome c)

and aerobic respiration (Table 3). However, there were

also additional annotations to the cytoskeleton (contig

7122771), detoxification (CYP450, contig 7122369),

apoptosis (contigs 7140781, 7152303 and 7099238) and

tropomyosin with the stabilization of stress fibres (con-

tigs 7090962 and 7129591) (Table S4), which indicated

that this species did invoke a type of stress response.

There was no heat shock response (HSR).

This lack of an HSR was not entirely unexpected,

because although the HSR is often the first line of

defence to increased temperature (Parsell & Lindquist,

1993), Antarctic marine species often fail to exhibit such

a response (reviewed in Clark & Peck, 2009), which has

been suggested to be the result of adaptation to millions

of years adaptation to life in the cold. Whilst the lack of

a response in the notothenioid fish has been shown to

be the result of a mutation in the promoter of the indu-

cible form of HSP70 (Buckley et al., 2004), in the other

species, including those investigated here, it is more

likely that this particular stress did not induce an HSR

or the up-regulation of classical stress proteins, such as

antioxidants. It is entirely possible that under different

stresses, either an HSR or a more complex stress

response would be produced, as shown previously, in
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both the limpet Nacella concinna and the clam L. elliptica

(Clark & Peck, 2009). As additional evidence is the fact

that previous analyses of the HSR of P. miersi

(previously known as Paraceradocus gibber) failed to

identify the HSP70 genes and HSR response (Clark

et al., 2008a) which was evident here. Clearly, more

extensive analyses over different ranges of tempera-

tures would be required to investigate whether the spe-

cies described here, which fail to exhibit such a

response, really do lack an HSR.

Transcriptome analysis of the three more thermally

resilient species revealed a much more comprehensive

response, suggesting that the capability to respond at

the molecular level may underlie tolerance (Table 3)

(Tables S5–S7). This situation was very similar to gene

expression analyses previously conducted on L. elliptica

comparing the hypoxic response of young and older

animals. The younger animals were far more resilient

with the putative transcript annotations, indicating a

more active molecular response to environmental

change (Clark et al., 2013, 2016). In other studies, more

tolerant species have also tended to produce a more

active response against cellular damage (Dong et al.,

2008; Lockwood et al., 2010; Hasanuzzaman et al.,

2013). Of the three resilient species, only two, L. uva

and L. elliptica showed an HSR (Tables S6 and S7). An

HSR had previously been described in L. elliptica (Clark

et al., 2008b), but it is the first time that the HSR has

been identified in L. uva. The other pathways identified

in the up-regulated transcripts of these three species

were a mixture of different pathways (Tables 3 and

S5–S7). The presence of transcripts putatively involved

in cell signalling and ion transport indicates that all

three resilient species were still metabolically active

and not shutting down their metabolism in response to

the heat (Podrabsky et al., 2007). These processes, along

with protein synthesis, are some of the most energeti-

cally expensive for the cell and the first to be shut down

when conditions become difficult (Buttgereit & Brand,

1995). So why did these animals fail?

It was interesting to note that in none of the species

was there evidence of the classical response to reactive

oxygen species (ROS) damage, with no transcripts

showing sequence similarity to superoxide dismutase

(SOD), catalase and the glutathione enzymes. This was

unexpected as these are often present in the ‘resting’

transcriptome of Antarctic species, which is thought to

be a response to life in the hyperoxygenated waters of

the Southern Ocean and the increased potential for

damage from ROS (Abele & Puntarulo, 2004; Chen

et al., 2008; Clark et al., 2010, 2011). In this respect, there

may be clues from previous work in Antarctic bivalves,

in which measurements were made of the antioxidant

enzyme SOD and also the pro-oxidative product

malondialdehyde (MDA). The latter is one of the first

products of lipid peroxidation in the cell, which acts as

a signalling system promoting cell death or cell

survival and is often used as a biomarker of oxidative

stress (Ayala et al., 2014). Whilst MDA levels increased

in response to environmental stress in A. eightsii and

Adamussium colbecki indicating that oxidative stress was

occurring, SOD levels decreased (Regoli et al., 1997;

Abele et al., 2001). It was suggested that Antarctic

bivalves had maximized the activity of their antioxi-

dant system at low temperatures to combat ROS dam-

age associated with living in highly oxygenated

freezing waters with a trade-off of the thermal stability

of its antioxidant system (Abele et al., 2001). In other

systems, thermal denaturation (both warm and cold) of

enzymes, such as succinate dehydrogenase, the imme-

diate downstream enzyme of succinate in the Krebs

cycle, has been proposed for the accumulation of succi-

nate as a stress metabolite (Van Den Thillart & Smit,

1984; Michaud et al., 2008). Hence, these data provide

examples of species-specific enhanced sensitivity of

critical enzymes which directly impact on organism

physiology and survival. Antarctic marine species have

evolved in isolation for the past 10–14 Myr (Clarke &

Crame, 1992), but there are questions as to whether

their proteins are completely adapted to the cold (Peck,

2016). The diversity shown here in response to acute

warming may well reflect differential thermal sensitiv-

ity of critical enzyme systems. If this hypothesis is true,

then the question arises as to how representative are

arbitrarily selected sentinel species?

In conclusion, this experiment which treated six spe-

cies of Antarctic marine invertebrate to the same acute

stress, with each species taken to the same physiologi-

cal end point (just prior to heat coma), is the first to dis-

sect the species-specific nature of the thermal stress

response from the variability in response obtained from

different experiments in nonmodel organisms, which

occurs even when performed on the same species

under similar conditions. It also demonstrated the util-

ity of laboratory experimentation in identifying the bio-

diversity of responses. Of the six species, only two

showed accumulation of anaerobic end products and

three exhibited the classical HSR with expression of

HSP70 transcripts, but these did not directly align with

resilience to heat stress. This diversity in response does

not align with current unifying concepts of thermal lim-

its, which seek to explain species responses in a chang-

ing world. Whilst this experiment specifically targeted

invertebrates with different known thermal tolerances

and this resulted in a wide phylogenetic mix of species,

future experiments should also investigate the

responses of closely related species to identify whether

there are taxa-specific constraints on the response, or
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indeed, whether this biodiversity in response holds at

different rates of temperature change (e.g. long-term

chronic challenge). However, as stated earlier, this may

not be possible in all species due to a lack of knowledge

in animal husbandry. Therefore, acute ramping experi-

ments provide essential data on differential sensitivities

over different rates of temperature change (Peck et al.,

2009; Terblanche et al., 2011). These data clearly empha-

size the need for a more macrophysiology-type

approach to understanding the cellular stress response

and integration of these data to inform on the ecosys-

tem consequences on future biodiversity (Buckley &

Kingsolver, 2012; Chown & Gaston, 2016). Initially,

such studies should concentrate on the highly abun-

dant species (such as those described here) which con-

tribute significant biomass to the marine ecosystem.

Any changes in the population densities of these spe-

cies will significantly impact on ecosystem balance and

functioning, shaping future biodiversity in our oceans.
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