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Summary. It has previously been shown that across three British birth cohorts, 

relative rates of intergenerational social class mobility have remained at an 

essentially constant level among men and also among women who have worked 

only full-time. We aim now to establish the pattern of this prevailing level of social 

fluidity and its sources and to determine whether it too persists over time, and to 

bring out its implications for inequalities in relative mobility chances. We develop a 

parsimonious model for the log odds ratios which express the associations between 

individuals’ class origins and destinations. This model is derived from a topological 

model that comprises three kinds of readily interpretable binary characteristics and 

eight effects in all, each of which does, or does not, apply to particular cells of the 

mobility table: i.e. effects of class hierarchy, class inheritance and status affinity. 

Results show that the pattern as well as the level of social fluidity is essentially 

unchanged across the cohorts; that gender differences in this prevailing pattern are 

limited; and that marked differences in the degree of inequality in relative mobility 

chances arise with long-range transitions where inheritance effects are reinforced by 

hierarchy effects that are not offset by status affinity effects. 

 

Keywords: Social class, social mobility, loglinear models, topological models, 

indicator models 
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1.  Introduction 

In previously reported research (Bukodi et al., 2015) it has been found that in Britain 

among men in three birth cohorts whose lives span the later twentieth and early 

twenty-first centuries relative rates of intergenerational social class mobility have 

remained more or less unchanged. Further, the same situation has been found 

(Bukodi et al., 2016a) in the case of those women in the three cohorts who have 

always, when in employment, worked full-time, even if with one or more periods of 

absence from the labour market. One could therefore say that for a substantial part 

of the active British population social fluidity within the class structure – that is, 

individuals’ chances of mobility or immobility considered net of class structural 

change – has been at an essentially constant level. It is with the pattern and sources 

of this constancy that the present paper is concerned. Among women who at some 

point have worked part-time, social fluidity does show a change – in fact an increase; 

but, as discussed at length in Bukodi et al., (2016a), this would appear to result from 

social processes involving a significant degree of self-selection, and the further 

analysis of this change would call for a quite separate modelling exercise from that 

here attempted. 

More formally, the results that have been earlier obtained are the following. For a 

sample of individuals, their social class origin (the individual’s father’s class 

position), class destination (the individual’s own class position) and birth cohort are 

recorded. These can be summarized as a three-way contingency table with observed 
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frequencies Yijk for origin i=1,…,I, destination j=1,…,J and cohort k=1,…,K where I 

and J are equal (in our analyses I=J=7 and K=3). The data may be modelled with 

Poisson log-linear or log-multiplicative models for the expected frequencies Fijk = 

E(Yijk) (see e.g. Agresti, 2013, for an overview of such models). With the British data 

for men and (separately) for women who have only worked full-time, the tables are 

reproduced with a satisfactory fit by the loglinear model 

                  log Fijk =  μ + λi
O + λj

D + λk
C + λik

OC + λjk
DC + λij

OD                                              (1)                                                                    

for i=1,…,I; j=1,…,J; k=1,…,K. Here the parameters of main interest are the λij
OD, which 

quantify the associations – as measured by log odds ratios – between origin (O) and 

destination (D), separately from their marginal distributions. These associations 

describe levels and patterns of social fluidity, with stronger associations 

corresponding to lower levels of fluidity. In model (1) – known as the ‘constant 

social fluidity’ model – these parameters take the same values for all cohorts (C). 

Moreover, no significant improvement on this model is made by the log-

multiplicative UNIDIFF model (Erikson and Goldthorpe, 1992; Xie, 1992) which 

allows the log odds ratios to vary between cohorts by a multiplicative factor.   

In the present paper, we consider a series of further questions that arise from these 

earlier findings. Given that the level of social fluidity within the British class 

structure displays an essential stability, what is the pattern of this fluidity and how is 

this pattern created? Does the patterning of social fluidity, as well as its level, remain 
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stable over time? How far does the same pattern prevail for men and women? And, 

in a wider context, what are the implications of the patterning of fluidity for the 

propensities for different intergenerational mobility transitions to be made and for 

consequent inequalities in relative mobility rates? 

In terms of the loglinear models, these lines of inquiry correspond to looking for 

parsimonious and interpretable patterns in the origin-destination odds ratios 

defined by the parameters λij
OD. Model (1) has (I-1)(J-1) free parameters for them. We 

seek well-fitting models where these odds ratios are determined by a smaller 

number of theoretically informed and substantively interpretable parameters.   

Specifically, we begin by developing a model of social fluidity of the general kind 

that Hout (1983: ch. 4) has labelled as ‘topological’. In such models, the cells of the 

origin-by-destination table (`mobility table’) within each cohort are assigned, 

exclusively and exhaustively, to a number of subsets in each of which a common 

value of the association parameter λij
OD is taken to hold. In our model these subsets 

are determined by a still smaller number of parameters with distinct interpretations, 

each referring to some characteristic of the cell to which a parameter applies. We 

then show that this specification also implies a linear model for the log odds ratios 

defined by the parameters, which thus also depend only on the cell characteristics 

that define the topological model.  
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Based on sociological theory and empirical analysis of data from the British birth 

cohort studies, we propose a topological model with three types of explanatory 

characteristics: hierarchy effects which correspond to the partial ordering of the social 

classes, inheritance effects which capture the tendency of individuals to remain in the 

same class as their parents, and status affinity effects which reflect relatively lower 

barriers to mobility among certain subsets of social classes.  

In Section 2 of the paper we describe the data used for the analyses. Topological 

models and the resulting models for log odds ratios are described in general terms in 

Section 3, and our specific model for social fluidity is defined in Section 4. Results for 

fitting the model to the British mobility data are given in Section 5, and more general 

conclusions are drawn in Section 6.   

 

2.  Data and variables 

A full description of the data that we use and of the relevant variables that we derive 

from these data is provided in Bukodi et al. (2015). Here therefore we give only a 

rather brief account.  

We draw on the data-sets of the three earliest British birth cohort studies: the MRC 

National Survey of Health and Development (NSHD) (doi: 10.5522/NSHD/Q101), the 

National Child Development Study (NCDS) and the British Cohort Study 1970 

(BCS), which have followed through their life-courses children born in Britain in one 
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week in 1946, 1958 and 1970, respectively. The data-sets have some missing values 

for the social class variables, resulting primarily from cohort attrition. These missing 

values have been multiply imputed to allow for the inclusion of the incomplete 

observations in the analysis. The imputation process is described in an Appendix. 

The multiply imputed data-sets have been used for all of our analyses.   

In forming intergenerational social mobility tables, we cross the two variables of 

individuals’ social class origins and their social class destinations. The former refers 

to fathers’ class positions when cohort members were aged 10 or 11 (or 15 or 16 if 

this earlier information is not available), and the latter to the class positions in which 

cohort members were themselves found at age 38 (or, if not then in employment, 

when last in employment). Age 38 is the latest for which we have relevant 

information available for members of the 1970 cohort in the data-set we analyse but 

is usually regarded as an age by which ‘occupational maturity’ has been achieved: 

i.e. an age by which the probability of further occupational changes of a kind that 

would imply changes in class position falls away (see further Bukodi and 

Goldthorpe, 2009, 2011).  

Class positions of both origin and destination are determined according to the 7-

class version of the National Statistics Socio-Economic Classification (NS-SEC). This 

classification derives from employment status and occupation which are together 

taken as indicators of individuals’ positions in the social relations of labour markets 

and production units or, in short, of their employment relations (see further ONS, 
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2005; Rose, Pevalin and O’Reilly, 2005: ch.4; and for the theoretical basis of this 

approach to the determination of class positions, Goldthorpe, 2007: vol. 2, ch. 5). 

Extensive tests of the validity of basing NS-SEC on these indicators have been 

carried out with generally positive results (Rose and Pevalin, 2003; Rose, Pevalin and 

O’Reilly, 2005: ch. 6). We work with the SOC90 occupational classification which can 

be applied in all three of our cohorts (for further details of the coding scheme 

involved, see ONS, 2005: Table 17). In Table 1 we show the resulting distributions of 

the class origins and destinations of men in the three cohorts, and in Table 2 the 

corresponding distributions for those women in the three cohorts who have worked 

only full-time. 

[Tables 1 and 2 here] 

As noted, previous analyses by Bukodi et al. (2015, 2016a) have shown that the 

constant social fluidity model (1) provides a satisfactory fit for the 7 x 7 class 

mobility tables that have been constructed for these men and women (the fit of the 

models is judged by likelihood ratio tests for overall goodness of fit, and against a 

model where patterns of fluidity are allowed to vary across cohorts, as discussed in 

Section 1).  
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3.  Topological models and their implications for models for log odds 

ratios 

3.1. Definition and interpretation 

The ideas discussed in this section apply generally to associations in loglinear 

models. For simplicity of notation, however, we describe them in the context of the 

specific model in our analysis of social fluidity, that is model (1) as defined in Section 

1. Here the intercepts and main effects µ, λi
O

,  λj
D, and  λk

C  together with the association 

parameters  λik
OC and λjk

DC  refer to the two-way marginal distributions of origin (O) by 

cohort  (C) and destination (D) by cohort, and their estimated values will be such 

that the observed values of those distributions (and thus also the one-way margins 

of all three variables) will always be reproduced exactly by the fitted model. These 

parameters are not of central concern here. Instead, we focus on the parameters λij
OD 

which describe the associations in the two-way `mobility tables’ between origin and 

destination. Each such table is an IxJ table where I=J. We assume that the origins i 

and destinations j are coded similarly and in the same order, so that, for example, i=j 

means that the origin class and the destination class are the same.  

The origin-destination associations in a mobility table are quantified by the log odds 

ratios (log ORs)  

log 𝜃𝑖𝑙,𝑗𝑚 = log
𝐹𝑖𝑗𝐹𝑙𝑚

𝐹𝑖𝑚𝐹𝑙𝑗
= log

𝑃(𝐷 = 𝑚 | 𝑂 = 𝑙)/𝑃(𝐷 = 𝑗 | 𝑂 = 𝑙)

𝑃(𝐷 = 𝑚 | 𝑂 = 𝑖)/𝑃(𝐷 = 𝑗 | 𝑂 = 𝑖)
                                                (2)  
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for all i=1,…,I-1; l=i+1,…,I; j=1,…,J-1; m=j+1,…,J. In model (1), the association 

parameters λij
OD and consequently the log ORs do not depend on the cohort. Because 

of this, we omit here and in the following the cohort subscript k from the notation for 

simplicity, and take log 𝜃𝑖𝑙,𝑗𝑚 to denote the log ORs in the mobility table for any 

cohort. Expression (2) defines I2(I-1)2/4 of these quantities (441 of them in our 

analysis, where I=J=7), any ones of which may be used to describe associations in 

specific parts of the table. A single 𝜃𝑖𝑙,𝑗𝑚 is the OR for the 2x2 subtable which 

includes the four cells corresponding to the four combinations of the ith and lth rows 

and jth and mth columns of the full IxJ table. It describes the odds that an individual 

from origin class l is found in destination class m rather than destination class j, 

relative to the same odds for someone from origin class i. The ORs are variation-

independent of and orthogonal to the sufficient statistics for the lower-order margins 

in the Poisson loglinear model (see, e.g., Barndorf-Nielsen and Cox, 1994, S. 2.9), 

which in our case include the marginal distributions of origin and destination classes 

within each cohort.  This means that the odds ratio is distinct from and need not be 

affected by changes in the distributions of the classes over time and across 

generations, making it a uniquely convenient parameter for describing social fluidity 

(relative mobility) between origin and destination classes, separately from such 

marginal changes.    

The log ORs are in turn determined by the parameters λij
OD in (1) as  
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log 𝜃𝑖𝑙,𝑗𝑚 = λij
OD + λlm

OD − λim
OD − λlj

OD.      (3) 

There are (I-1)(J-1) degrees of freedom  available for setting the IJ values of λij
OD, so 

some constraints are required to identify their values uniquely. For example, 

commonly used baseline constraints set λia
OD = 0 for all i and λbj

OD = 0 for all j for some 

choice of a and b, typically a = b = 1. In this case also log 𝜃𝑎𝑙,𝑏𝑚 = λlm
OD. In general, 

however, the parameters λij
OD are not log ORs themselves, so they do not have a 

direct interpretation individually but only in relation to each other as in (3).   

Our aim here is to seek a well-fitting model which defines all of the log odds ratios 

from a smaller number of distinct parameters than (I-1)(J-1). This is achieved in three 

steps. First, we define a parsimonious model for the association parameters λij
OD, 

employing the idea of a topological model or `levels model’ (Hauser, 1978, 1979; see 

also Hout, 1983; Clogg and Shockey, 1984; Klimova and Rudas, 2012). This divides 

the IJ cells of the origin-by-destination table into a smaller number S of exhaustive 

and mutually exclusive subsets (`levels’ or `regions’), associates a parameter 𝛼𝑠 with 

each level, and specifies that  λij
OD = 𝛼𝑠 for every cell (i,j) which belongs to level 

s=1,…S.  

Second, we derive the levels of a topological model for λij
OD as configurations of a set 

of  binary characteristics, each of which either applies or does not apply to each cell 

of the table (such models are instances of the `indicator models’ of Zelterman and 

Youn, 1992, and `relational models’ of Klimova et al., 2012). Let 𝑧𝑖𝑗(𝑟) be an indicator 

variable which is 1 if characteristic r (=1,…,R) applies to cell (i,j) and 0 otherwise. For 
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example, one such characteristic is that a cell is on the diagonal of the table, in which 

case 𝑧𝑖𝑗(𝑟) = 1 if 𝑖 = 𝑗 and 𝑧𝑖𝑗(𝑟) = 0 if 𝑖 ≠ 𝑗.  

We thus specify that  λij
OD = 𝒛𝑖𝑗′𝜸, where 𝒛𝑖𝑗 = (𝑧𝑖𝑗(1), … , 𝑧𝑖𝑗(𝑅))′ and 𝜸 = (𝛾(1), … , 𝛾(𝑅))′ 

is a vector of parameters. For convenience, we may also write 𝛾(𝑖𝑗)
(𝑟)
= 𝑧𝑖𝑗(𝑟)𝛾

(𝑟), i.e. 

𝛾(𝑖𝑗)
(𝑟)
= 𝛾(𝑟) if characteristic r applies to cell (i,j) and 𝛾(𝑖𝑗)

(𝑟)
= 0  if it does not. The model 

for the origin-destination association parameters in the loglinear model (2) can then 

be expressed as  

λij
OD = 𝒛𝑖𝑗

′ 𝜸 =  𝛾(𝑖𝑗)
(1)
+⋯+ 𝛾(𝑖𝑗)

(𝑅).                                                        (4) 

This is a topological model where the levels are defined by those distinct 

combinations of the R binary characteristics which actually occur in the table, the 

number of levels S is the number of these combinations, and the levels parameters 𝛼𝑠 

are given by the distinct possible values of the sum on the right-hand side of (4).  

The third and most important step of the model development is to observe that (4) 

also implies a model for the log odds ratios, as can be seen by substituting it into (3), 

to give 

log 𝜃𝑖𝑙,𝑗𝑚 = (𝒛𝑖𝑗 + 𝒛𝑙𝑚 − 𝒛𝑖𝑚 − 𝒛𝑙𝑗)
′
𝜸 = 𝒙𝑖𝑙,𝑗𝑚

′ 𝜸.                                  (5) 

This is linear in the parameters 𝜸, and its explanatory variables 𝒙𝑖𝑙,𝑗𝑚 are of the form 

𝑧𝑖𝑗(𝑟) + 𝑧𝑙𝑚(𝑟) − 𝑧𝑖𝑚(𝑟) − 𝑧𝑙𝑗(𝑟) for r=1,…,R. Each such variable is a ‘net count’ of how 

many of the cells in the 2x2 subtable which define an odds ratio are such that a 
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characteristic r applies to them, with the off-diagonal cells in the subtable counted 

with a negative sign. The possible values of this count are -2, -1, 0, 1, and 2.  

As the first example, consider the very simple case of a constrained quasi-

independence model. This uses for each cell only the one characteristic of whether or 

not the cell is on the diagonal of the full table, so that R=1 and  𝑧𝑖𝑗(1) = 1 if 𝑖 = 𝑗 and 0 

otherwise. The possible log ORs are then    

log 𝜃𝑖𝑙,𝑗𝑚 =

{
 
 

 
  2𝛾

(1) if 𝑖 = 𝑗 and 𝑙 = 𝑚  (log-OR involving two diagonal cells)

𝛾(1) if either 𝑖 = 𝑗 or 𝑙 = 𝑚  (log-OR involving one diagonal cell)

−𝛾(1) if either 𝑖 = 𝑚 or 𝑙 = 𝑗  (log-OR involving one diagonal cell)
0 if 𝑖 ≠ 𝑗,𝑚 and 𝑙 ≠ 𝑗,𝑚  (log-OR involving no diagonal cells)

 

where the difference between the cases with  𝛾(1) and with −𝛾(1) is whether or not 

the one diagonal cell (in the full table) is on the diagonal of the 2x2 table which 

defines the odds ratio. In a mobility table the cells on the diagonal correspond to 

individuals who are in the same class as their fathers. The observed number of such 

cases is normally higher than would be expected under no association (perfect 

fluidity), so 𝛾(1) will be positive. The model thus specifies no association whenever a 

log OR does not involve a case of a person staying in their father's class, non-zero 

association of size 𝛾(1) or  −𝛾(1) if it involves one such case, and the positive 

association of 2𝛾(1) if two. These associations could then be interpreted as being due 

to the persistence of class membership across generations. This is a simple case of an 

inheritance effect, instances of which will be included in our model.  
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Topological models are still loglinear models, so maximum likelihood estimates of 

their parameters can be obtained using estimation algorithms for loglinear models, 

as long as these allow the user to specify the design matrix of the model. We have 

used the gnm package in R (Turner and Firth 2015) to fit the models (examples of the 

R code for doing this are included in on-line supplementary materials to this article). 

This gives estimates 𝜸̂ of the association parameters 𝜸. Estimates of log odds ratios 

are then obtained by substituting  𝜸̂ into (5), and standard errors of estimated log 

ORs by applying the delta method to (5) with the estimated variance matrix of  𝜸̂. 

3.2. Specification and identification of the models  

We thus propose to derive a parsimonious model for the log odds ratios by 

specifying first topological models for the origin-destination association parameters 

λij
OD.  This indirect approach raises two preliminary questions, which we address in 

this section: why is the focus not on the λij
OD which are modelled first, and why is the 

model not defined directly for the log ORs.  

The ultimate focus of interest is on the log ORs because the association parameters 

λij
OD themselves are not individually interpretable. They are also not uniquely 

identified, in the sense that many different but equivalent sets of λij
OD with different 

parameter constraints will (together with the rest of the model parameters) define 

the same joint distribution of the expected frequencies and cell probabilities for a 

table. In the context of topological models this means that there will be many 
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equivalent models with different configurations of topological regions which have 

constant values of the association parameters. This also implies that even if two cells 

have the same value of  λij
OD in a given parametrization, this does not imply that 

those cells are similar in the sense of having equal joint or conditional probabilities. 

The topological regions are also not necessarily uniquely defined even for a given 

number of levels (Macdonald, 1981), i.e. there can exist an equivalent model with the 

same number of levels in a non-trivially different configuration (although this is not 

always the case; for example, the model for social fluidity which we define later 

appears to be unique in this sense).  

All such equivalent parametrizations will, however, imply the same values for the 

log odds ratios. A simple illustration of this idea is given in Table 3 (an extended 

version of this example is included in the supplementary materials).  It shows three 

versions of the same 2x2 sub-table of a larger two-way table, under three ostensibly 

different but equivalent topological models. Within each of the 2x2 tables, the cells 

with the same value of the association parameter (denoted here by 𝛾(1) or 𝛾(2)) are 

on the same topological level. In all three instances the log OR is 0, i.e. there is no 

association in the 2x2 table. However, the explanations for why this is the case are not 

the same, because the levels are different. In sub-table (1), all four cells are on the 

same level, so the value of λij
OD= 𝛾(1) is the same for all of them and the log OR from 

(6) is obviously log 𝜃 =  𝛾(1) + 𝛾(1) − 𝛾(1) − 𝛾(1) = 0. In sub-table (2), there are not one 

but two distinct levels, but within each row the two columns are on the same level (1 
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for the first row, 2 for the second). So the two rows are still similar in this sense, and 

log 𝜃 =  𝛾(1) + 𝛾(2) − 𝛾(1) − 𝛾(2) = 0. Finally, in sub-table (3) the two columns within 

each row are different in level, but in the same way for both rows (both having level 

2 for the second column and 1 for the first), so the level parameters 𝛾(1) and 𝛾(2) 

again cancel out and log 𝜃 =  0 for the 2x2 table.   

[Table 3 here] 

Because the levels of a topological model are not uniquely defined, developing such 

a model purely empirically is very difficult if not impossible (see also Macdonald, 

1983, for a discussion of this point). Instead, the numbers and configurations of 

levels for candidate models have to be motivated primarily by substantive theory 

and interpretability. For our models, this means selecting the interpretable 

characteristics of the cells whose configurations determine the levels of the 

topological model and thus the explanatory variables in the model for the log odds 

ratios. These models, focusing on the log ORs, can typically be considered well-

defined for substantive interpretation, despite the formal unidentifiability of the 

levels of the initial topological model.  

Since the log odds ratios are the quantities of ultimate interest, an alternative 

modelling approach would be to specify models for them directly. This can be done, 

under the family of `generalized loglinear models’ (Lang and Agresti, 1994; see also 

Lang, 2005 and Bergsma et al., 2009, for further developments and references). The 
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models that we propose are members of this family, in the special case where the 

explanatory variables for each odds ratio are defined by counts of characteristics of 

the individual cells, as in equation (5). This clearly does not encompass all possible 

model specifications for the log odds ratios. Ones that go beyond it include, for 

example, models where explanatory variables refer to the four cells as a group or 

which impose equality constraints within specific sets of log ORs or for a given log 

OR across different groups. Breen (2008) gives examples of models for social fluidity 

with such constraints across countries. Models like this may be fitted using 

specialised algorithms for generalized loglinear models.  

For our purposes, explanatory variables or constraints for a log OR in general 

provide little added value. This is in large part because substantive theory provides 

few suggestions for such models. In contrast, the approach of starting with the 

individual cells has the virtue that the cells are more basic entities to which it is 

easier to assign interpretable characteristics. In a mobility table each cell corresponds 

to a pair of one origin class i and one destination class j, and the characteristics of the 

cells are characteristics of these pairs – for example, that a person is in the same class 

as his or her father (i=j), or in a hierarchically higher class (j>i). Starting from such 

cell characteristics alone a rich class of models for the log odds ratios can be derived. 

In the rest of the article, we propose and apply one such a model for social fluidity in 

Britain.    
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4.  Topological models for social fluidity 

4.1. Previously proposed models 

In the versions of topological models that were first developed for modelling social 

fluidity in the US by Hauser (1978) and Featherman and Hauser (1978), and that 

were then adapted to the British case by Goldthorpe (1987), the cells of the mobility 

table were partitioned directly into subsets (levels) with constant association 

parameters. The assignment of cells to different subsets was guided by theoretical 

expectations in only a rather general way and also by rather ad hoc considerations of 

balancing parsimony, as regards the number of subsets created, and fit. To try to 

improve on this situation in producing a model of the ‘core’ pattern of social fluidity 

within the class structures of modern industrial societies, Erikson and Goldthorpe 

(1992: ch. 4) took the then novel approach of moving to the kind of specification 

discussed as the second step in our model development in Section 3, that is by 

deriving the levels of the topological model based on combinations of different 

binary characteristics of the cells, each with its own theoretical motivation.  

In the context of their cross-national comparative research, Erikson and Goldthorpe 

in fact proposed four different classes of characteristics (`effects’) bearing on social 

fluidity: 

Hierarchy effects. effects limiting social mobility that derive from differences in the 

general desirability of class positions and further from the relative advantages that 
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are offered by different classes when considered as classes of origin – e.g. in terms of 

the availability of family economic, cultural and social resources; and from the 

relative barriers that exist to their attainment when considered as classes of 

destination – e.g. in terms of required skills, qualifications or capital. 

Inheritance effects. effects enhancing social immobility, and thus limiting mobility, that 

derive from the special desirability for individuals of positions falling within their 

own class of origin and, further, from their distinctive opportunities for entry into 

such positions – e.g. via the intergenerational transmission of capital or ‘going 

concerns’ or family connections; or from distinctive constraints existing on mobility 

away from their class of origin – e.g. as resulting from restricted possibilities in local 

labour markets. 

Sector effects. effects limiting social mobility that derive from economic divisions 

creating vertical rather than, or in addition to, hierarchical barriers to mobility in that 

mobility between them is likely to require geographical and/or sociocultural 

relocation – as, most notably, in the case of mobility between the agricultural and 

non-agricultural sectors. 

Affinity or disaffinity effects. effects enhancing or limiting social mobility that derive 

from specific  linkages or discontinuities between classes that offset or increase the 

more generalised effects of hierarchy, inheritance or sector – as e.g. in the case of the 

effects of social status as distinct from those of class. 
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4.2. Our topological model for social fluidity 

We follow here the same approach as Erikson and Goldthorpe (1992) but since we 

are concerned only with a model of the pattern of social fluidity within the British 

class structure, rather than with one of wider, cross-national applicability, it is 

possible for us to proceed on simpler lines. We first disregard sector effects, which, 

as was noted, mainly relate to barriers to mobility existing between the agricultural 

and non-agricultural sectors. Given the very small number of farmers and farm 

workers within the active labour force in Britain since the middle of the last century, 

this can be done with little loss, and in any event the numbers in our cohorts 

employed in the agricultural sector would be too small to allow for any separate 

analysis. We are then also able to disregard certain inheritance and affinity and 

disaffinity effects that Erikson and Goldthorpe introduced into their model in order 

to deal with further distinctive features of propensities for mobility either into or out 

of the agricultural sector.  

Our model comprises eight effects in all, as follows:  

Hierarchy effects.  We propose four hierarchy effects that are determined by the five 

hierarchical levels which it has become standard practice to distinguish within the 7-

class version of NS-SEC, and which are indicated by the dotted lines in Tables 1 and 

2. It can be seen that these levels result from treating Classes 3, 4 and 5 as being at 

the same hierarchical level. While members of these classes do hold qualitatively 
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different class positions – that is, are involved in different kinds of employment 

relations – the classes cannot be seen as unequivocally ordered as regards the 

relative advantages they offer if considered as classes of origin or as regards the 

relative barriers to their entry if considered as classes of destination. Our first 

hierarchy effect, labelled HI1, operates in cells of the 7 x 7 mobility table (within each 

cohort) that imply the crossing of any one of the five hierarchical levels, the second 

effect, HI2, in cells implying the crossing of two levels, the third effect, HI3, in cells 

implying the crossing of three levels, and the fourth, HI4, in cells implying the 

crossing of four levels. These hierarchy effects are thus cumulative, so that, for 

example, cells in which HI4 applies will be ones in which HI1, HI2 and HI3 also 

apply. 

Inheritance effects. We propose two inheritance effects. The first, IN1, is intended to 

capture a general propensity for intergenerational class immobility. It operates in all 

cells of the mobility table defined by the same class of origin and destination or, that 

is, in all seven cells on the main diagonal of the mobility table. The second 

inheritance effect, IN2, is then limited to just two cells on this diagonal: those 

relating to immobility in Class 1, that of higher-level managers and professionals, 

and in Class 4, that of small employers and own account workers. This further effect, 

additional to IN1, is introduced in order to reflect the fact that in these two classes 

the propensity for immobility is likely to be increased in that inheritance may occur 

more directly than in other classes through the intergenerational transmission of 
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capital or of actual businesses or practices. (We note that although Class 1 is 

predominantly made up of employee – i.e. salaried (managers and professionals), it 

does also include a small number of ‘large’ employers (i.e. those with more than 25 

employees) – and some number of managers who, while formally salaried, will also 

have ownership interests in the businesses they manage, and of professionals who 

are, at least in some degree, self-employed.) 

Affinity effects. We propose two effects that are intended to capture affinities of social 

status – specifically, of ‘white-collar’ and ‘blue-collar’ status – that are taken as in 

some degree offsetting the constraints on mobility imposed by hierarchical class 

effects. Status is here treated (see further Chan and Goldthorpe, 2007; Goldthorpe, 

2012) as a form of social stratification qualitatively different from, and only 

imperfectly correlated with, class that is expressed in distinctive lifestyles and 

differential association, especially in more intimate aspects of social life such as close 

friendship or marriage. A major line of status division still prevails in British society 

between white-collar and blue-collar work (Chan and Goldthorpe, 2004) and this 

does map more or less closely onto the version of NS-SEC that we use. An affinity 

effect is thus taken to operate, on the one hand, in the case of all cells of the mobility 

table implying mobility within the largely white-collar world – that is, as between 

Classes 1, 2 and 3; and, on the other hand, in all cells implying mobility within the 

largely blue-collar world – that is, as between Classes 5, 6 and 7. We allow for these 



23 
 

white-collar and blue-collar status affinity effects to be of differing strength, with the 

former being labelled AF1 and the latter AF2. 

Each of the eight effects specified either applies or does not apply to any given cell of 

the mobility table, and indicator variables for each of them are defined as described 

in Section 3.  Online Supplementary Material shows the IxJ = 7x7 design matrices of 

these indicators for all the cells, separately for each of the eight effects. Our model 

for the pattern of social fluidity within the British class structure is thus a loglinear 

model (1) with the origin-destination association parameters 𝜆𝑖𝑗
𝑂𝐷 given by the 

topological model (4) with R=8 distinct effects. Different combinations of presences 

and absences of the effects in the 49 cells of the mobility table define 11 distinct 

values of 𝜆𝑖𝑗
𝑂𝐷, including 0 in six cells where none of the effects apply. These levels 

and the effects which contribute to them are shown in Table 4. Our model is then 

equivalent to an eleven-level topological model of the older kind, but has a more 

explicit theoretical basis and derives the eleven levels from eight basic parameters. It 

may further be observed that the model is symmetrical in its specification for cells 

above and below the main diagonal (i.e. for upward and downward mobility, for 

pairs of hierarchically ordered classes).  

[Table 4 here] 

This topological model for the association parameters then also implies a model of 

the form (5) for the log odds ratios between origin class and destination class.  We 
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will describe and interpret this latter model in the next section, in the context of its 

use in the analysis of social fluidity in Britain. 

    

5.  Results 

Table 5 shows results for our topological model fitted to the 7 x 7 class mobility 

tables for men in our three cohorts, together with two other models for comparison. 

The overall model fit and comparisons of fit between certain nested models are 

assessed using modified versions of likelihood ratio tests designed for use with 

multiply imputed data (Meng and Rubin, 1992; Li et al., 1991; see Appendix for more 

information). The table also shows for each model the estimated index of 

dissimilarity (DI), which is used as an overall summary measure of the fit of a 

model. It can be interpreted as the smallest percentage of observations in the 

observed contingency table which would need to be moved to other cells to make 

the model fit perfectly. We use a bias-adjusted version of the index and confidence 

interval for it calculated as described in Kuha and Firth (2011).     

[Table 5 here] 

The top panel of the table shows first, as a baseline, the fit of the independence 

model where 𝜆𝑖𝑗
𝑂𝐷 = 0 for all i,j: that is, a model which postulates conditional 

independence between men’s class origins and destinations within each cohort. Its 

fit, as would be expected, is quite poor with around 14 per cent of all cases being 
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misclassified. In the second row we then show the results of fitting our topological 

model with its parameters constrained to be the same for each cohort. The fit is in 

this case acceptable, with p = 0.116 for the overall goodness of fit test and now only 

around 4 per cent of all cases are misclassified. In the third row of the table we show 

the fit of the model with parameters being allowed to vary by cohort. In this way, 

some further improvement in fit appears to be obtained but, as can be seen, this 

improvement falls just short of significance at the 5% level.  

The lower panel of Table 5 gives estimates of the parameters 𝛾(𝑟) for the eight effects 

of our topological model when these are constrained to be equal across the cohorts. 

All of them are statistically significant and take their expected sign. (We will return 

to the interpretation of the parameters later.)  

On the basis of these results, we are then inclined to accept our model in its common 

parameters version and to believe that, for men at least, it gives a reasonably good 

representation of the pattern of the essentially stable level of social fluidity within 

the class structure that our earlier work revealed. 

Table 6, which has the same format as Table 5, shows the results for the models fitted 

for women who have worked only full-time (while this qualification should always 

be kept in mind, we will henceforth usually refer simply to women). The model with 

common parameters for each cohort fits well, with again only around 4 per cent of 

all cases misclassified, and the improvement achieved by allowing parameters to 
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vary by cohort is clearly non-significant. The pattern of the parameter values is 

similar to that for men, although three of the parameters (HI1, HI4, and AF1) fall 

short of statistical significance.  

[Table 6 here] 

For the women we cover as well as for men, we have, therefore, reasonable grounds 

for supposing that our model, with common effect parameters across cohorts, can 

adequately capture the pattern of the more or less unchanging level of social fluidity. 

However, a question that directly follows is that of how far the pattern that the 

model expresses is, in more detailed terms, the same in the case of men and women 

alike. To examine this question, we pool the data for men and women and fit the 

model with common origin-destination association parameters for men and women 

as well as for cohorts (and with all other parameters of the model varying freely 

between the genders and cohorts). As is shown in Table 7, this version of the model 

fits the data satisfactorily but the model with its parameters being allowed to vary by 

gender does make a statistically significant improvement (with p=0.017 for the 

likelihood ratio test between the two models).   

[Table 7 here] 

To throw further light on the matter, we revert to the estimated parameters in Tables 

5 and 6 where the model is fitted to men and women separately, and consider the 

differences between these parameters. From the results reported in Table 8, it is, 
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overall, the degree of cross-gender similarity that is most notable. However, gender 

differences are indicated in two respects. The white-collar affinity effect AF1 is 

stronger for men than for women and the general inheritance effect IN1 is also 

stronger for men, although to a smaller extent (with p=0.060). As regards the first of 

these differences, what should be noted is that women, even if from white-collar 

backgrounds, tend to be concentrated in their own employment in the lowest white-

collar status groups, mainly those of routine office and sales workers (Chan and 

Goldthorpe, 2004: 388-9), and are more likely than men to remain at this level within 

the white-collar world during their working lives rather than achieving upward 

mobility – as, say, from Class 3 to Class 1 or 2 positions (Bukodi et al., 2016b). As 

regards the second difference, a general tendency exists – and is found in our own 

data (results available on request) – for greater class immobility to occur among men 

than among women because of a stronger propensity for men to follow their fathers 

in specific occupations than for women to follow either their fathers or their mothers; 

or, one could say, men tend to be more favoured by, or responsive to, family 

occupational traditions (Jonsson et al., 2009; Erikson, Goldthorpe and Hällsten, 2012). 

[Table 8 here] 

Any set of odds ratios may be used to further interpret the fitted models. Here we 

focus on the set of symmetric log ORs, that is log 𝜃𝑖𝑙,𝑖𝑙 for i=1,…,I-1; l=i+1,…I.  These 

are the I(I-1)/2 associations which are calculated from the 2x2 sub-tables which 

involve the same pair of classes for both the two origin classes and the two 
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destination classes and which thus have the most straightforward sociological 

meaning.  

To illustrate the calculations, consider log 𝜃12,12. This is the log of the odds of an 

individual from origin Class 2 to be in destination Class 2 (lower managers and 

professionals) rather than in destination Class 1 (higher managers and 

professionals), relative to the same odds for someone from origin Class 1. Our 

topological model implies that it is obtained as  

log 𝜃12,12 = (2·IN1 + IN2) – (2·HI1 + 2·AF1) = (2·0.371 + 0.305) – (2·[-0.154] + 2·0.483)        

= (1.047) – (0.658) = 0.389 

where for simplicity of notation we use letters only to refer to the effects parameters 

(i.e. IN1 means the estimate of 𝛾(𝑟) for the IN1 effect, and so on), and the numbers 

are the corresponding estimates for men, from Table 5.      

Note first that the inheritance effects, on the one hand, and the hierarchy and affinity 

effects, on the other, always refer to different cells of the table, appearing only in the 

diagonal and off-diagonal cells of the full table respectively. This provides an 

interpretation for the signs of the estimated effects in Tables 5 and 6. Since the 

inheritance and hierarchy parameters have opposite signs, they in fact contribute in 

the same direction to increase a log odds ratio, while the affinity effects work in the 

opposite direction, attenuating the associations back toward zero.  
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Inheritance effects contribute to log 𝜃12,12 in several ways. The first row of the 2x2 

table in it includes the cell (1,1), that is individuals who stay in Class 1, which 

contributes both the general and the additional inheritance parameters IN1 and IN2. 

Similarly, the second row includes cell (2,2) of individuals who stay in Class 2, 

contributing IN1 again. The total inheritance contribution is then 2·IN1+IN2 =  1.047, 

indicating a fairly strong association which shows that staying in classes 1 and 2 

rather than moving away from them is substantially more likely than would be 

expected under independence. 

The hierarchy effect is in this case -2·HI1 = 0.308 because classes 1 and 2 are only one 

hierarchical level apart (and counted twice with a negative sign, from the two off-

diagonal cells (1,2) and (2,1)). This is more than offset by the white-collar affinity 

effect -2·AF1 = -0.966 which quantifies the lower barriers to mobility between the 

otherwise hierarchical classes 1 and 2. The affinity effect then also reduces the 

overall association to 0.389, substantially less than would be implied by the 

inheritance and hierarchy effects alone.  

In general, the symmetric log ORs from the model are of the form  

log 𝜃𝑖𝑙,𝑖𝑙 = (2IN1 + aIN2) – 2(HI1 + … + HIb) – 2(c1AF1 + c2AF2)  

where a is the number (0, 1, or 2) of times cells (1,1) and/or (4,4) contribute to the 

association, HIb is the hierarchy effect for the number of hierarchical levels between 

classes i and l (or HI1 + … + HIb=0, if they are both among classes 3,4,5), and c1 and 
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c2 are indicator variables respectively for whether classes i and l are both white-collar 

classes (1, 2 or 3) or both blue-collar classes (5, 6 or 7).  

[Table 9 here] 

Table 9 shows, separately for men and women, the estimates of the symmetric log 

ORs under the fitted models and also the contributions made by the hierarchy, 

inheritance and affinity effects.  

The log ORs themselves are nearly all significantly different from zero, the value 

which would indicate the independence of class origins and destinations or the 

existence of ‘perfect mobility’. The only exceptions, and in general the smallest 

ratios, are found in the top-left and bottom-right corners of the table where either 

only classes on the white-collar side of the status division (Classes 1, 2 and 3) or only 

on the blue-collar side (Classes 5, 6 and 7) are involved, and where status affinity 

effects thus substantially modify the hierarchy effects that apply. The log ORs 

involving Class 4, that of small employers and own account workers, where the 

additional inheritance effect IN2 operates, then show a notable increase. However, 

the most marked increase in the log ORs is to be seen in moving towards the top-

right corner of the table: that is, where what is involved are the relative chances of 

mobility between positions, on the one hand, within the professional and managerial 

salariat and, on the other, within the body of routine wage-workers. The hierarchical 

distance between the classes involved thus widens and strong hierarchical effects 
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(see Tables 5 and 6) cumulate, status affinity effects no longer apply, and, where 

Class 1 is concerned, the IN2 effect is again present. Thus, at the extreme, the Class 1/ 

7 log OR is, for men and women alike, in the region of 3, which can be exponentiated 

(e3.0 = 20.08) to say that the chance of someone originating in Class 1 being found in 

Class 1 rather than in Class 7 is around 20 times greater than the same relative 

chance of someone originating in Class 7.  

The estimated symmetric log ORs are in fact generally quite similar for men and for 

women although the direction of any differences does show some consistency: i.e. 

the ratios tend to be higher for men. This difference becomes statistically significant 

in two cases: that is, with the Class 2/5 and Class 3/6 log ORs, and chiefly on account 

of the stronger IN1 effect for men. However, exceptions to this tendency arise in 

cases involving classes within the white-collar world. This is so because of the 

stronger status affinity effect that here operates with men, and that thus offsets 

hierarchy effects to a greater degree than with women. The Class 1/3 log OR is 

significantly higher for women than for men. 

As regards the contributions of different effects to the symmetric log ORs, it can be 

said that inheritance effects are dominant insofar as short-range mobility is 

concerned. Their contribution is exceeded by that of hierarchy effects only in the 

cases of the Class 1/6, Class 2/7 and Class 1/7 log ORs involving quite long-range 

mobility and where (see Table 4) the HI3 and then the HI4 effect come into play. 

Again, gender differences are not for the most part significant. Nonetheless, because 
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inheritance effects tend to be somewhat stronger for men than for women, the 

contribution made to the symmetric log ORs of hierarchy effects relative to that of 

inheritance effects is regularly greater with women than with men. And this 

difference is then accentuated in those cases where affinity effects apply in that these 

effects, serving to counter hierarchy effects, do so to a greater extent for men than for 

women and, as earlier noted, especially – and significantly – so where the white-

collar status affinity effect is in operation (see Note to Table 9).  

 

6.  Conclusions 

In this paper we have started out from previous findings that across three British 

birth cohorts, whose members’ lives span the later twentieth and early twenty-first 

centuries, relative rates of intergenerational class mobility have remained at a more 

or less constant level among men and also among women who have worked only 

full-time. Our concerns have then been to establish the pattern of this prevailing 

level of fluidity and its sources, to determine whether it too persists over time and is 

on the same lines for the men and women we consider, and to bring out its 

implications for inequalities in relative mobility chances. To this end, we have 

sought to develop a parsimonious model for the log ORs expressing the associations 

between class origins and destinations in our mobility tables for men and women. 

This model is derived from a topological model which uses a limited and readily 

interpretable number of binary characteristics, each of which does, or does not, 
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apply to particular cells of the tables. We have shown that an acceptable model can 

be obtained that accounts for the log ORs in terms of three kinds of such 

characteristics and eight effects in all: that is, class hierarchy (four cumulative 

effects), class inheritance (two cumulative effects), and status affinity (two separate 

effects). The main findings we obtain under this model may be summarised as 

follows. 

First, the pattern of social fluidity as well as its level is essentially unchanging across 

the three cohorts. If we fit our model with its effect parameters being allowed to vary 

by cohort, no significant improvement in fit is obtained over the model with its 

parameters being constrained to be the same for each cohort. The long-term stability 

– or powerful resistance to change – of the class mobility regime is in this way 

further confirmed. 

Second, the pattern of social fluidity does not vary greatly by gender, at least if we 

limit our attention to women who have worked only full-time. If we fit our model to 

the pooled data for men and for these women an acceptable result is obtained, 

although further analysis reveals two differences of some sociological interest. The 

white-collar status affinity effect is stronger in the case of men and so also – though 

at a marginally significant level – is the general inheritance effect.  While, then, it is 

apparent from the symmetric log ORs that we present that no strong claims can be 

made concerning greater fluidity among women than among men, what could be 

said on the basis of the decomposition of these ratios is that this broad similarity in 
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level comes about in somewhat different ways. Specifically, women’s class mobility 

appears, in comparison with men’s, to be more impeded by hierarchical barriers 

than by the propensity for inheritance - i.e. for the same class positions to be passed 

on from generation to generation. 

Third, within the degree of cross-cohort and cross-gender similarity that prevails in 

the pattern of social fluidity, our model brings out  marked differences in the levels 

of fluidity that exist in regard to different mobility transitions, and the sources of 

these differences. Our analysis of symmetrical log ORs indicates that where class 

mobility is short-range - that is, involves crossing only one or at most two of the 

hierarchical levels that we distinguish – and especially where it occurs between 

classes on the same side of the white-collar/blue-collar status divide, so that status 

affinity effects modify hierarchy effects, inequalities in relative chances are often not 

that great and reflect chiefly inheritance effects. In other words, regions of the 

mobility table can be identified where fluidity is generally high and, in the case of 

some transitions, does not in fact diverge significantly from ‘perfect mobility’ 

expectations. A qualification to this finding is that with even short-range transitions 

involving Class 4, greater inequality in relative chances is found because of the high 

propensity for intergenerational immobility within this class. However, the main 

contrast with the high fluidity regions of the mobility table arises in those regions 

where long-range mobility transitions are entailed, as between positions involving 

the crossing of three or four hierarchical divisions, and thus also moving between 
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the white-collar and blue-collar worlds so that hierarchy effects are no longer offset 

by status affinity effects.  Hierarchy effects then dominate and inequalities in relative 

mobility chances increase dramatically and to an extreme that could be thought 

disturbing. 
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Table 1. Estimated distribution of cohort members by class of origin at age 10/11 and class of 

destination at age 38,  men 

 

  1946 cohort   1958 cohort   1970 cohort 

 

Class of 

origin 

Class of 

destination   

Class of 

origin 

Class of 

destination   

Class of 

origin 

Class of 

destination 

Class 1: Higher managers 

and professionals  4.6 8.9   6.7 15.3   11.3 20.8 

Class 2: Lower managers 

and professionals  9.7 26.6   15.2 19.1   17.2 20.5 

Class 3: Intermediate 

occupations 9.8 9.8 

 

14.7 8.5 

 

7.4 9.5 

Class 4: Small employers 

and own account workers 10.1 10.7 

 

5.7 13.8 

 

14.1 14.4 

Class 5: Lower 

supervisory and technical 

occupations 12.6 12.6   19.3 10.5   14.0 8.7 

Class 6: Semi-routine 

occupations 16.5 13.0   10.9 12.5   14.1 12.8 

Class 7: Routine 

occupations 36.7 18.5 

 

27.4 14.5 

 

22.0 11.9 

         Total 100.0 100.0 

 

100.0 100.0 

 

100.0 100.0 

N † 2394   7219   5979 

†: N denotes the total number of respondents, including ones for whom the variable was not 

observed. The proportions shown in the table were estimated using multiple imputed data 

to allow for the nonresponse. 
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Table 2. Estimated distribution of cohort members by class of origin at age 10/11 and class of 

destination at age 38, women who have worked only full-time 

 

  1946 cohort   1958 cohort   1970 cohort 

 

Class of 

origin 

Class of 

destination   

Class of 

origin 

Class of 

destination   

Class of 

origin 

Class of 

destination 

Class 1: Higher managers 

and professionals  3.9 2.3   6.4 7.4   11.6 12.9 

Class 2: Lower managers 

and professionals  7.8 19.8   17.4 23.5   19.2 27.6 

Class 3: Intermediate 

occupations 9.0 34.5 

 

14.4 28.0 

 

6.9 28.6 

Class 4: Small employers 

and own account workers 8.5 6.7 

 

5.0 6.7 

 

13.0 5.8 

Class 5: Lower 

supervisory and technical 

occupations 15.3 2.5   18.1 1.5   13.9 1.4 

Class 6: Semi-routine 

occupations 19.7 17.0   9.9 19.0   13.9 16.2 

Class 7: Routine 

occupations 35.8 17.2 

 

28.8 14.0 

 

21.6 7.6 

         Total 100.0 100.0 

 

100.0 100.0 

 

100.0 100.0 

N † 1020   3535   2432 

†: N denotes the total number of respondents, including ones for whom the variable was not 

observed. The proportions shown in the table were estimated using multiple imputed data 

to allow for the nonresponse. 
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Table 3. An example of equivalent formulations of the same model for a log odds 

ratio as discussed in the text† 

 
(1)   (2)   (3)  

𝛾(1) 𝛾(1)  𝛾(1) 𝛾(1)  𝛾(1) 𝛾(2) 

𝛾(1) 𝛾(1)  𝛾(2) 𝛾(2)  𝛾(1) 𝛾(2) 
 

†: The figure shows three equivalent topological models for the same 2x2 table. Within each 

table, cells with the same value of the association parameter (𝛾(1) or 𝛾(2)) are on the same 

level of the model. The log odds ratio is 0 for each table.   
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Table 4. Distribution of effects under the topological model and the eleven levels of overall association parameter entailed 

 

Class of Class of destination 

origin Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 

Class 1 

 

IN1 IN2     HI1 AF1     HI1 HI2 AF1   HI1 HI2     HI1 HI2     HI1 HI2 HI3 HI1 HI2 HI3 HI4 

  Level 1 Level 3  Level 4 Level 7 Level 7 Level 8 Level 9 

Class 2 

 

HI1 AF1     IN1 

 

    HI1 AF1     HI1 

 

    HI1 

 

    HI1 HI2     HI1 HI2 HI3 

  Level 3 Level 2 Level 3 Level 6 Level 6 Level 7 Level 8 

Class 3 

 

HI1 HI2 AF1   HI1 AF1     IN1 

 

    

  

    

  

    HI1 

 

    HI1 HI2 

   Level 4 Level 3  Level 2 Level 5 Level 5 Level 6 Level 7 

Class 4 

 

HI1 HI2     HI1 

 

    

  

    IN1 IN2     

  

    HI1 

 

    HI1 HI2 

   Level 7 Level 6 Level 5 Level 1 Level 5 Level 6 Level 7 

Class 5 

 

HI1 HI2     HI1 

 

    

  

    

  

    IN1 

 

    HI1 AF2     HI1 HI2 AF2 

  Level 7 Level 6 Level 5 Level 5 Level 2 Level 10 Level 11 

Class 6 

 

HI1 HI2 HI3   HI1 HI2     HI1 

 

    HI1 

 

    HI1 AF2     IN1 

 

    HI1 AF2 

   Level 8 Level 7 Level 6 Level 6 Level 10 Level 2 Level 10 

Class 7 HI1 HI2 HI3 HI4   HI1 HI2 HI3   HI1 HI2     HI1 HI2     HI1 HI2 AF2   HI1 AF2     IN1 

    Level 9 Level 8 Level 7 Level 7 Level 11 Level 10 Level 2 
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Table 5. Estimated effect parameters and model fit statistics for topological models for 

social fluidity for data from three birth cohorts, men 

 

        DIc 

Model 
Modified 

LRa 
dfb p Estimate 95% CI 

    

    

(1) Independence 10.20 108 <0.001 14.37 (13.31; 15.42) 

(2) Topological model with 

common effect parameters 

across cohorts 1.175 100 0.116 4.21 (3.18; 5.25) 

(3) Topological model with 

varying effect parameters across 

cohorts 1.068 84 0.316 3.46 (2.61; 4.31) 

      (3)-(2) 1.638 16 0.056 

  

      

 

Effect parameters  under Model (2) 

                                       P          95% CI 

  HI1 -0.154 <0.001 (-0.252; -0.056)  

 HI2 -0.132 <0.001 (-0.190; -0.073)  

 HI3 -0.349 <0.001 (-0.459; -0.239)  

 

HI4 -0.352 <0.001 (-0.509; -0.195)  

 

IN1                 0.371      <0.001        (+0.253;+0.490)  

 

IN2               0.305        <0.001      (+0.151;+0.459)  

 

AF1 0.483 <0.001 (+0.398;+0.567)  

 

AF2 0.304 <0.001 (+0.192;+0.416) 

       

      
a: Likelihood ratio test calculated using the method for multiply imputed data proposed by 

Meng and Rubin (1992).  

b: The p-value of the test statistic is obtained from an F distribution. Only its first degrees of 

freedom are reported. These are identical to the degrees of freedom for the likelihood ratio test 

if the data were complete. 

c: Index of Dissimilarity, with standard errors and bias-corrected estimate as proposed by Kuha 

and Firth (2011). 
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Table 6. Estimated effect parameters and model fit statistics for topological models 

for social fluidity for data from three birth cohorts, women who have worked only full-

time 

 

        DIc 

Model 
Modified 

LRa 
dfb p Estimate 95% CI 

    

    

(1) Independence 3.916 108 <0.001 11.17 (9.89;  12.50) 

(2) Topological model with 

common effect parameters 

across cohorts 0.739 100 0.976 3.92 (2.67; 5.17) 

(3) Topological model with 

varying effect parameters 

across cohorts 0.736 84 0.966 3.68 (2.41; 4.95) 

      (3)-(2) 0.757 16 0.736 

  

      

 

Effect parameters under Model (2) 

    p 95% CI  

 HI1 -0.129 0.101 (-0.283;+0.026)  

 HI2 -0.231 <0.001 (-0.326; -0.136)  

 

HI3 -0.462 <0.001 (-0.609; -0.314) 

 

 

HI4 -0.242 0.064 (-0.498;+0.015) 

 

 

IN1                    0.176      0.048      (+0.001;+0.351) 

 

 

IN2  0.394      0.001     (+0.158;+0.629) 

 

 

AF1 0.158 0.084 (-0.023;+0.338) 

 

 

AF2 0.250 <0.001 (+0.119;+0.380) 

 See the notes to Table 5. 
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             Table 7. Model fit statistics for models fitted to data on both genders 

together  

 

        DIc 

Model 
Modified 

LRa 
dfb p Estimate 95% CI 

    

    

(1) Independence 7.230 216 0.000 13.37 (12.57; 14.16) 

 

(2) Topological model with 

common effect parameters 

across cohorts and gender 1.019 208 0.412 4.42 (3.69;  5.15) 

 

(3) Topological model with 

effect parameters common 

across cohorts but varying by 

gender 0.968 200 0.612 4.12 (3.38;  4.89) 

      (3)-(2) 2.366 8 0.017     

See the notes to Table 5.
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Table 8. Significance tests for gender difference in effect 

parameters 

Parameter 

Difference 

between men 

and women 

p 95% CI 

HI1 -0.025 0.780 (-0.205; +0.154) 

HI2 0.099 0.080 (-0.011; +0.209) 

HI3 0.113 0.220 (-0.067; +0.293) 

HI4 -0.110 0.470 (-0.407; +0.187) 

IN1 0.195 0.060 ( -0.012;+0.402) 

IN2 -0.088 0.530 (-0.366; +0.190) 

AF1 0.325 0.001 (+0.134; +0.516) 

AF2 0.054 0.530 (-0.113; +0.221) 
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Table 9. Symmetric log odds ratios and decomposition of symmetric log odds ratios into hierarchy (HI), inheritance (IN) and affinity (AF) effects as implied by our topological models† 

Class of     Class 2   Class 3   Class 4   Class 5   Class 6   Class 7 

origin     LogOR HI IN   LogOR HI IN   LogOR HI IN   LogOR HI IN   LogOR HI IN   LogOR HI IN 

Class 1 Men   0.39*** 0.31** 1.05***   0.65*** 0.57*** 1.05***   1.92*** 0.57*** 1.35***   1.62*** 0.57*** 1.05*** 2.32*** 1.27*** 1.05*** 3.02*** 1.97*** 1.05*** 

  Women   0.69*** 0.26 0.75***   1.15*** 0.72*** 0.75***   1.86*** 0.72*** 1.14***   1.47*** 0.72*** 0.75*** 2.39*** 1.64*** 0.75*** 2.87*** 2.13*** 0.75*** 

  Diff.   -0.30 0.05 0.30   

–

0.50*** -0.15 0.30   0.07 -0.15 0.21   0.15 -0.15 0.30   -0.07 -0.37 0.30   0.18 -0.15 0.30 

                                                    

Class 2 Men           0.08 0.31** 0.74**   1.36*** 0.31** 1.05***   1.05*** 0.31** 0.74**   1.31*** 0.57*** 0.74**   2.01*** 1.27*** 0.74** 

  Women           0.29* 0.26 0.35*   1.00*** 0.26 0.75***   0.61*** 0.26 0.35*   1.07*** 0.72*** 0.35*   2.00*** 1.64*** 0.35* 

  Diff.           -0.21 0.05 0.39   0.35 0.05 0.30   0.44*** 0.05 0.39   0.24 -0.15 0.39   0.02 -0.37 0.39 

                                                    

Class 3 Men                   1.05*** 0 1.05***   0.74*** 0 0.74**   1.05*** 0.31** 0.74**   1.31*** 0.57*** 0.74** 

  Women                   0.75*** 0 0.75***   0.35* 0 0.35*   0.61*** 0.26 0.35*   1.07*** 0.72*** 0.35* 

  Diff.                   0.30 0 0.30   0.39 0 0.39   0.44*** 0.05 0.39   0.24 -0.15 0.39 

                                                    

Class 4 Men                           1.05*** 0 1.05*** 1.36*** 0.31** 1.05*** 1.62*** 0.57*** 1.05*** 

  Women                           0.75*** 0 0.75*** 1.00** 0.26 0.75*** 1.47*** 0.72*** 0.75*** 

  Diff.                           0.30 0 0.30   0.35 0.05 0.30   0.15 -0.15 0.30 

                                                    

Class 5 Men                                   0.44*** 0.31** 0.74**   0.71*** 0.57*** 0.74** 

  Women                                   0.11 0.26 0.35*   0.57*** 0.72*** 0.35* 

  Diff.                                   0.33 0.05 0.39   0.13 -0.15 0.39 

                                                    

Class 6 Men                                           0.44*** 0.31** 0.74** 

  Women                                           0.11 0.26 0.35* 

  Diff                                           0.33 0.05 0.39 

†: Affinity effects (AF) apply to the associations highlighted in grey. For the log ORs among classes (1,2,3) the affinity effects is -0.97*** for men and -0.32 for women (difference is -0.65**), and for the log ORs 

among classes (5,6,7) the Affinity effect is -0.61*** for men and -0.50*** for women (difference is 0.11). 
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Appendix: Multiple imputation of missing data 

 

Table A.1 shows the proportions of observed and missing values in the respondents’ 

classes of origin and destination, separately by gender and cohort. The proportion of 

missing observations was higher for destination (23-49% missing) than for origin (10-

16%).  The largest proportions of missing data occur in the 1946 cohort.  

We used the method of multiple imputation to accommodate the incomplete 

observations. This generates several sets of possible values for the missing 

observations in a set of data, drawn from some distribution conditional on the 

observed data. Several ostensibly complete data sets are thus created. The statistical 

analysis of interest is then applied to each of these data in turn, and the results are 

combined into final estimates of the target parameters.  The idea of multiple 

imputation is due to Rubin (1987), and overviews of more recent developments are 

given by Schafer (1997), van Buuren (2012), and Carpenter and Kenward (2013).  

[Table A.1 here] 

The imputation was carried out separately for each cohort and gender. Here 

imputing values for one missing class variable given the other would not in fact be 

helpful for the estimation of the odds ratio parameters that are the focus of our 

analysis, because observations where only one of these variables is observed carry 

no information about the odds ratios (this is analogous to the fact that in any 

standard regression model, observations with only explanatory variables observed 

carry no information about the conditional distribution of the response variable). 
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The situation is different, however, if the imputation model includes also additional 

variables which provide additional information for predicting the origin and 

destination classes. We included in this role the respondent’s level of education, 

recorded in eight categories at age 37. The proportion of missing values was much 

smaller for education than for either of the social class variables, and education was 

expected to be predictive especially of the class of destination (at age 38) which was 

most frequently missing.  (The same multiply imputed data were also used for other 

analyses – not considered here – which included education directly.) 

We used a Markov Chain Monte Carlo (data augmentation) estimation approach for 

imputing categorical data from a saturated model, as proposed by Schafer (1997). 

The joint distribution of origin, education and destination was specified as a 

multinomial distribution without constraints on its probabilities, and with a 

Dirichlet prior distribution for the probabilities with all its parameters equal to 0.5 

(this gives a noninformative Jeffreys prior). The data augmentation algorithm then 

iterates between (i) imputing for each respondent values for any missing variables 

from a conditional multinomial distribution given observed variables and the 

current values of the probability parameters, and (ii) generating new values for the 

parameters from a Dirichlet posterior distribution given the observed and most 

recently imputed data. Final imputed values for the missing data are saved from 

some number of the iterations after the algorithm has converged to a stationary 

posterior distribution. We used the statistic proposed by Gelman and Rubin (1992) to 
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monitor convergence, comparing results from five parallel runs of the algorithm. 

Convergence was clearly achieved after 5000 iterations, after which one of the chains 

was continued for a further 1000 iterations and the imputed values from every 100th 

iteration were retained (with this gap, autocorrelations between the retained values 

were negligible). We thus created 10 sets of imputed data.  

 The estimated percentages in Tables 1 and 2, and the point estimates, standard 

errors, p-values and confidence intervals of individual parameters in Tables 5-7 were 

obtained by applying standard methods for combining results for multiply imputed 

data sets (see the references cited above). Estimates and inference for quantities 

derived from the model parameters in Tables 5 and 6, that is the differences between 

men’s and women’s parameters in Table 8, and the estimated log odds ratios in 

Table 9, were then calculated using the point estimates and covariance matrices of 

the model parameters obtained from the multiple imputation analysis, and using the 

standard normal distribution as their approximate sampling distribution. For the 

likelihood ratio tests in Tables 5-7, the method proposed by Meng and Rubin (1992) 

was used. This refers a combined test statistic to an F distribution for which the first 

degrees of freedom are what they would be for the likelihood ratio test if the data 

were complete, and the second degrees of freedom are obtained from a formula due 

to Li et al. (1991). We note that this test appears to have relatively low power in the 

cases considered here, where it is used to test hypotheses of large numbers of 

parameters together. 
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Table A.1. Percentages of different patterns of observed values in the two social class 

variables 

 

 Class (origin and/or destination) observed:  

 Both  

observed 

Origin only 

observed 

Destination 

only observed 

Both 

missing 

 

Total 

1946, Men 43.1% 43.7% 6.0% 7.2% 2394 

1946, Women 54.6% 34.9% 5.6% 4.9% 1020 

1958, Men 71.0% 19.9% 6.4% 2.8% 7219 

1958, Women 60.1% 29.3% 7.0% 3.6% 3535 

1970, Men 58.5% 25.5% 9.7% 6.4% 5979 

1970, Women 58.2% 25.5% 8.1% 8.2% 2432 
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