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Abstract

We consider a class of spatio-temporal models which extend popular econometric spatial

autoregressive panel data models by allowing the scalar coefficients for each location (or panel)

different from each other. To overcome the innate endogeneity, we propose a generalized

Yule-Walker estimation method which applies the least squares estimation to a Yule-Walker

equation. The asymptotic theory is developed under the setting that both the sample size and

the number of locations (or panels) tend to infinity under a general setting for stationary and

α-mixing processes, which includes spatial autoregressive panel data models driven by i.i.d.

innovations as special cases. The proposed methods are illustrated using both simulated and

real data.
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1 Introduction

The class of spatial autoregressive (SAR) models is introduced to model cross sectional depen-

dence of different economic individuals at different locations (Cliff and Ord, 1973). More recent

developments extend SAR models to spatial dynamic panel data (SDPD) models, i.e. adding time

lagged terms to account for serial correlations across different locations. See, e.g. Lee and Yu

(2010a). Baltagi et al. (2003) considers a static spatial panel model where the error term is a SAR

model. Lin and Lee (2010) shows that in the presence of heteroskedastic disturbances, the maxi-

mum likelihood estimator for the SAR models without taking into account the heteroskedasticity

is generally inconsistent and proposes an alternative GMM estimation method. Computationally

the GMM methods are more efficient than the QML estimation (Lee, 2001). Lee and Yu (2010a)

classifies SDPD models into three categories: stable, spatial cointegration and explosive cases.

As pointed out by Bai and Shi (2011), the cases with a large number of cross sectional units and

a long history are rare. Hence it is pertinent to consider the setting with short time spans in

order to include as many locations as possible. Both estimation method and asymptotic analysis

need to be adapted under this new setting. Yu et al. (2008) and Yu et al. (2012) investigate the

asymptotic properties when both the number of locations and the length of time series tend to

infinity for both the stable case and spatial cointegration case, and show that QMLE is consistent.

Motivated by the evidence in some practical examples, we extend the model in Yu et al. (2008)

and Yu et al. (2012) by allowing the scalar coefficients for each location (or panel) different from

each other. This increase in model capacity comes with the cost of estimating substantially more

parameters. In fact that the number of the parameters in this new setting is in the order of

the number of locations. The model considered in this paper has four additive components: a

pure spatial effect, a pure dynamic effect, a time-lagged spatial effect and a white noise. Due to

the innate endogeneity, the conventional regression estimation methods such as the least squares

method directly based on the model lead to inconsistent estimators. To overcome the difficulties

caused by the endogeneity, we propose a generalized Yule-Walker type estimator for estimating the

parameters in the model, which applies the least squares estimation to a Yule-Walker equation.

The asymptotic normality of the proposed estimators is established under the setting that both

the sample size n and the number of locations (or panels) p tend to infinity. Therefore the number

of parameters to be estimated also diverges to infinity, which is a marked difference from, e.g., Yu

et al. (2012). We develop the asymptotic properties under a general setting for stationary and

α-mixing processes, which includes the spatial autoregressive panel data models driven by i.i.d.

innovations as special cases.

The rest of the paper is organized as follows. Section 2 introduces the new model, its mo-

tivation and the generalized Yule-Walker estimation method. The asymptotic theory for the

proposed estimation method is presented in Section 3. Simulation results and real data analy-

sis are reported, respectively, in Section 4 and 5. All the technical proofs are relegated to an
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Appendix.

2 Model and Estimation Method

2.1 Models

The model considered in this paper is of the following form:

yt = D(λ0)Wyt + D(λ1)yt−1 + D(λ2)Wyt−1 + εt, (1)

where yt = (y1,t, . . . , yp,t)T represents the observations from p locations at time t, D(λk) =

diag(λk1, . . . , λkp) and λkj is the unknown coefficient parameter for the j-th location, and W is

the p×p spatial weight matrix which measures the dependence among different locations. All the

main diagonal elements of W are zero. It is a common practice in spatial econometrics to assume

W known. For example, we may let wij = 1/(1 + dij), for i ̸= j, where dij ≥ 0 is an appropriate

distance between the i-th and the j-th location. It can simply be the geographical distance between

the two locations or the distance reflecting the correlation or association between the variables

at the two locations. In the above model, D(λ0) captures the pure spatial effect, D(λ1) captures

the pure dynamic effect, and D(λ2) captures the time-lagged spatial effect. We also assume that

the error term εt = (ε1,t, ε2,t, . . . , εp,t)T in (1) satisfies the condition Cov (yt−1, εt) = 0. When

λk1 = · · · = λkp for k = 0, 1, 2, (1) reduces to the model of Yu et al. (2008), in which there

are only 3 unknown regressive coefficient parameters. In general the regression function in (1)

contains 3p unknown parameters.

The extension to use different scalar coefficients for different locations is motivated by practical

needs. For example, we analyze the monthly change rates of the consumer price index (CPI) for

the EU member states over the years 2003-2010. The detailed analysis for this data set will

be presented in section 5. Figure 1 presents the scatter-plots of the observed data yi,t versus

the spatial regressor wT
i yt and yi,t−1, for some of the EU member states, where wT

i is the i-th

row vector of the weight matrix W which is taken as the sample correlation matrix with all

the elements on the main diagonal set to be 0. The superimposed straight lines are the simple

regression lines estimated using the newly proposed method in Section 2.2 below. It is clear from

Figure 1 that at least Greece and Belgium should have a different slope from those of France or

Iceland.

2.2 Generalized Yule-Walker estimation

As yt occurs on both sides of (1), Wyt and εt are correlated with each other. Applying least

squares method directly based on regressing yt on (Wyt,yt−1,Wyt−1) leads to inconsistent es-

timators. On the other hand, applying the maximum likelihood estimation requires to profile a

p× p nuisance parameter matrix Σε = Var(εt), which leads to a complex nonlinear optimization

problem. Furthermore when p is large in relation to n, the numerical stability is of concern.
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Figure 1: Plots of the monthly change rates yi,t of CPI against the spatial regressor wT
i yt (on the

top) and the dynamic regressor yi,t−1 (on the bottom) for four EU member states in 2003-2010.

The superimposed straight lines were estimated by the newly proposed method in Section 2.2.

We propose below a new estimation method which applies the least squares method to each

individual row of a Yule-Walker equation. To this end, let Σk = Cov(yt+k,yt) for any k ≥ 0.

Note that we always assume that yt is stationary, see condition A2 and Remark 1 in Section 3

below. Then the Yule-Walker equation below follows from (1) directly.

(I−D(λ0)W)Σ1 = (D(λ1) + D(λ2)W)Σ0,

where I is a p× p identity matrix. The i-th row of the above equation is

(eT
i − λ0iwT

i )Σ1 = (λ1ieT
i + λ2iwT

i )Σ0, i = 1, . . . , p, (2)

where wi is the i-th row vector of W, and ei is the unit vector with the i-th element equal to 1.

Note that (2) is a system of p linear equations with three unknown parameters λ0i, λ1i and λ2i.

Since Eyt = 0, we replace Σ1 and Σ0 by the sample (auto)covariance matrices

Σ̂1 =
1
n

n∑

t=1

ytyT
t−1 and Σ̂0 =

1
n

n∑

t=1

ytyT
t .

We estimate (λ0i, λ1i, λ2i)T by the least squares method, i.e. to solve the minimization problem

min
λ0i,λ1i,λ2i

∥Σ̂T

1 (ei − λ0iwi)− Σ̂0(λ1iei + λ2iwi)∥2
2.

The resulting estimators are called generalized Yule-Walker estimators which admits the explicit

expression:

(λ̂0i, λ̂1i, λ̂2i)T = (X̂T
i X̂i)−1X̂T

i Ŷi, (3)
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where

X̂i = (Σ̂
T

1 wi, Σ̂0ei, Σ̂0wi) and Ŷi = Σ̂
T

1 ei.

More explicitly,

X̂i =

(
1
n

n∑

t=1

yt−1(wT
i yt),

1
n

n∑

t=1

yt−1yi,t−1,
1
n

n∑

t=1

yt−1(wT
i yt−1)

)
, Ŷi =

1
n

n∑

t=1

yt−1yi,t.

Then it holds that for i = 1, · · · , p,



λ̂0i

λ̂1i

λ̂2i


−




λ0i

λ1i

λ2i


 = (X̂T

i X̂i)−1




1
n

∑n
t=1 yT

t−1(w
T
i yt)× 1

n

∑n
t=1 εi,tyt−1

1
n

∑n
t=1 yT

t−1yi,t−1 × 1
n

∑n
t=1 εi,tyt−1

1
n

∑n
t=1 yT

t−1(w
T
i yt−1)× 1

n

∑n
t=1 εi,tyt−1


 .

2.3 A root-n consistent estimator for large p

When p/
√

n → ∞, the estimator (3) admits non-standard convergence rates (i.e. the rates

different from
√

n); see Theorems 2 and 4 in Section 3 below. Note that there are p equations

with only 3 parameters in (2). Hence (3) can be viewed as a GMME for an over-determined

scenario. The estimation may suffer when the number of estimation equations increases. See, for

example, a similar result in Theorem 1 of Chang, Chen and Chen (2015). A further compounding

factor is that the estimation for the covariance matrices Σ0, Σ1 using their sample counterparts

leads to non-negligible errors even when n →∞. Below we propose an alternative estimator which

restricts the number of the estimation equations to be used in order to restore the
√

n-consistency

and the asymptotic normality.

For i = 1, · · · , p, put Xi = (ΣT
1 wi,Σ0ei,Σ0wi). Note that the k-th row of Xi is (eT

k ΣT
1 wi,

eT
k Σ0ei, eT

k Σ0wi) which is the covariance between yk,t−1 and (wT
i yt, yi,t−1, wT

i yt−1). Let

ρ
(i)
k =

∣∣eT
k ΣT

1 wi

∣∣+
∣∣eT

k Σ0ei

∣∣+
∣∣eT

k Σ0wi

∣∣ , k = 1, · · · , p. (4)

Then ρ
(i)
k may be viewed as a measure for the correlation between yk,t−1 and (wT

i yt, yi,t−1,wT
i yt−1)T .

When ρ
(i)
k is small, say, close to 0, the k-th equation in (2) carries little information on (λ0i, λ1i, λ2i).

Therefore as far as the estimation for (λ0i, λ1i, λ2i) is concerned, we only keep the k-th equation

in (2) for large ρ
(i)
k .

Let zi
t−1 be the di × 1 vector consisting of those yk,t−1 corresponding to the di largest ρ̂

(i)
k

(1 ≤ k ≤ p), where ρ̂
(i)
k is defined as in (4) but with (Σ1, Σ0) replaced by (Σ̂1, Σ̂0). The new

estimator is defined as

(λ̃0i, λ̃1i, λ̃2i)T = (ẐT
i Ẑi)−1ẐT

i Ỹi, i = 1, · · · , p. (5)

where

Ẑi =
( 1

n

n∑

t=1

zi
t−1(w

T
i yt),

1
n

n∑

t=1

zi
t−1yi,t−1,

1
n

n∑

t=1

zi
t−1(w

T
i yt−1)

)
, (6)
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and

Ỹi =
1
n

n∑

t=1

zi
t−1yi,t.

Now it holds that



λ̃0i

λ̃1i

λ̃2i


−




λ0i

λ1i

λ2i


 = (ẐT

i Ẑi)−1ẐT
i




1
n

∑n
t=1 εi,tzi

t−1

1
n

∑n
t=1 εi,tzi

t−1

1
n

∑n
t=1 εi,tzi

t−1


 .

Theorem 3 in Section 3 below shows the asymptotic normality of the above estimator provided

that the number of estimation equations used satisfies condition di = o(
√

n).

3 Theoretical properties

We introduce some notations first. For a p× 1 vector v = (v1, · · · , vp)T , ∥v∥2 =
√∑p

i=1 v2
i is the

Euclidean norm, ∥v∥1 =
∑p

i=1 |vi| is the L1 norm. For a matrix H = (hij), ∥H∥F =
√

tr(HTH)

is the Frobenius norm, ∥H∥2 =
√

λmax(HTH) is the operator norm, where λmax(·) is the largest

eigenvalue of a matrix. We denote by |H| the matrix (|hij |) which is a matrix of the same size as

H but with the (i, j)-th element hij replaced by |hij |. Note the determinant of H is denoted by

det(H). A strictly stationary process {yt} is α-mixing if

α(k) ≡ sup
A∈F0

−∞,B∈F∞k

∣∣P (A)P (B)− P (AB)
∣∣→ 0, as k →∞, (7)

where F j
i denotes the σ-algebra generated by {yt, i ≤ t ≤ j}. See, e.g., Section 2.6 of Fan and

Yao (2003) for a compact review of α-mixing processes.

Let S(λ0) ≡ I−D(λ0)W be invertible. It follows from (1) that

yt = Ayt−1 + S−1(λ0)εt,

where A = S−1(λ0)(D(λ1) + D(λ2)W). Some regularity conditions are now in order.

A1. The spatial weight matrix W is known with zero main diagonal elements; S(λ0) is invertible.

A2. (a) The disturbance εt satisfies

Cov(yt−1, εt) = 0.

(b) The process {yt} in model (1) is strictly stationary and α-mixing with α(k), defined in

(7), satisfying
∞∑

k=1

α(k)
γ

4+γ < ∞,

6



for some constant γ > 0.

(c) For γ > 0 specified in (b) above,

sup
p

E
∣∣wT

i Σ0yt

∣∣4+γ
< ∞, sup

p
E
∣∣wT

i Σ1yt

∣∣4+γ
< ∞, sup

p
E
∣∣eT

i Σ0yt

∣∣4+γ
< ∞,

sup
p

E
∣∣wT

i yt

∣∣4+γ
< ∞, sup

p
E
∣∣eT

i yt

∣∣4+γ
< ∞,

where wi denotes the i-th row of W. The diagonal elements of Vi defined in (8) are bounded

uniformly in p.

A3. The rank of matrix (ΣT
1 wi,Σ0ei,Σ0wi) is equal to 3.

Remark 1. Condition A1 is standard for spatial econometric models. Condition A3 ensures that

λ0i, λ1i and λ2i are identifiable in (2). Condition A2(c) limits the dependence across different

spatial locations. It is implied by, for example, the conditions imposed in Yu et al. (2008).

Lemma 1 in the Appendix shows that Condition A2 holds with γ = 4 under conditions A1 and

B1 – B3 below. Note that conditions B1–B3 are often directly imposed in the spatial econometrics

literature including, for example, Lee and Yu (2010a), and Yu et al. (2008).

B1. The errors εi,t are i.i.d across i and t with E(εi,t) = 0, Var(εi,t) = σ2
0, and E |εi,t|4+γ < ∞.

The density function of εi,t exists.

B2. The row and column sums of |W| and
∣∣S−1(λ0)

∣∣ are bounded uniformly in p.

B3. The row and column sums of
∑∞

j=0

∣∣Aj
∣∣ are bounded uniformly in p.

Now we are ready to present the asymptotic properties for (λ̂0i, λ̂1i, λ̂2i)T , i = 1, . . . , p, with

fixed p and n →∞ first, and then p →∞ and n →∞.

3.1 Asymptotics for fixed p

For i = 1, . . . , p, let

Σy,εi(j) = Cov(yt−1+jεi,t+j ,yt−1εi,t), j = 0, 1, 2, · · · ,

Σy,εi = Σy,εi(0) +
∞∑

j=1

[
Σy,εi(j) + ΣT

y,εi
(j)
]
,

Vi =




wT
i Σ1ΣT

1 wi wT
i Σ1Σ0ei wT

i Σ1Σ0wi

wT
i Σ1Σ0ei eT

i Σ0Σ0ei eT
i Σ0Σ0wi

wT
i Σ1Σ0wi eT

i Σ0Σ0wi wT
i Σ0Σ0wi


 , (8)

and

Ui =




wT
i Σ1Σy,εiΣ

T
1 wi wT

i Σ1Σy,εiΣ0ei wT
i Σ1Σy,εiΣ0wi

wT
i Σ1Σy,εiΣ0ei eT

i Σ0Σy,εiΣ0ei eT
i Σ0Σy,εiΣ0wi

wT
i Σ1Σy,εiΣ0wi eT

i Σ0Σy,εiΣ0wi wT
i Σ0Σy,εiΣ0wi


 . (9)
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Theorem 1 Let conditions A1 – A3 hold and p ≥ 1 be fixed. Then as n →∞, it holds that

√
n







λ̂0i

λ̂1i

λ̂2i


−




λ0i

λ1i

λ2i







d−→ N(0,V−1
i UiV−1

i ), i = 1, . . . , p,

where Vi and Ui are given in (8) and (9).

3.2 Asymptotics with diverging p

When p diverges together with n, Ui,Vi in (9) and (8) are no longer constant matrices. Let U
− 1

2
i

be a matrix such that (U
− 1

2
i )2 = U−1

i .

Theorem 2 Let condition A1 – A3 hold.

(i) As n →∞, p →∞ and p = o(
√

n),

√
nU

− 1
2

i Vi







λ̂0i

λ̂1i

λ̂2i


−




λ0i

λ1i

λ2i







d−→ N(0, I3), i = 1, . . . , p.

(ii) As n →∞, p →∞,
√

n = O(p) and p = o(n),
∥∥∥∥∥∥∥∥




λ̂0i

λ̂1i

λ̂2i


−




λ0i

λ1i

λ2i




∥∥∥∥∥∥∥∥
2

= Op

( p

n

)
, i = 1, . . . , p.

Theorem 2 indicates that the standard root-n convergence rate prevails as long as p = o(
√

n).

However the convergence rate may be slower when p is of higher orders than
√

n. Theorem 2

presents the convergence rates for the L2 norm of the estimation errors. The rates also hold for

the L1 norm of the errors as well. Corollary 1 consider the estimation errors over p locations

together, for which we have established the result for L1 norm only.

Corollary 1 Let condition A1 hold, and condition A2 and A3 hold for all i = 1, · · · , p. Then as

n →∞ and p →∞, it holds that

1
p

p∑

i=1

∥∥∥∥∥∥∥∥




λ̂0i

λ̂1i

λ̂2i


−




λ0i

λ1i

λ2i




∥∥∥∥∥∥∥∥
1

=





Op( 1√
n
) if p√

n
= O(1),

Op( p
n) if p√

n
→∞ and p

n = o(1).

To derive the asymptotic properties of the estimators defined in (5), we introduce some new

notation. For i = 1, . . . , p, let

Σi
0 = Cov(yt, zi

t), Σi
1 = Cov(yt, zi

t−1),
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Σzi,εi
(j) = Cov(zi

t−1+jεi,t+j , zi
t−1εi,t), j = 0, 1, 2, · · · ,

and

Σzi,εi
= Σzi,εi

(0) +
∞∑

j=1

[
Σzi,εi

(j) + ΣT
zi,εi

(j)
]
.

Let

V∗
i =




wT
i Σi

1(Σ
i
1)

Twi wT
i Σi

1(Σ
i
0)

Tei wT
i Σi

1(Σ
i
0)

Twi

wT
i Σi

1(Σ
i
0)

Tei eT
i Σi

0(Σ
i
0)

Tei eT
i Σi

0(Σ
i
0)

Twi

wT
i Σi

1(Σ
i
0)

Twi eT
i Σi

0(Σ
i
0)

Twi wT
i Σi

0(Σ
i
0)

Twi


 , (10)

and

U∗
i =




wT
i Σi

1Σzi,εi
(Σi

1)
Twi wT

i Σi
1Σzi,εi

(Σi
0)

Tei wT
i Σi

1Σzi,εi
(Σi

0)
Twi

wT
i Σi

1Σzi,εi
(Σi

0)
Tei eT

i Σi
0Σzi,εi

(Σi
0)

Tei eT
i Σi

0Σzi,εi
(Σi

0)
Twi

wT
i Σi

1Σzi,εi
(Σi

0)
Twi eT

i Σi
0Σzi,εi

(Σi
0)

Twi wT
i Σi

0Σzi,εi
(Σi

0)
Twi


 . (11)

Theorem 3 below indicates that the estimators defined in (5) are asymptotically normal with

the standard
√

n-rate as long as di = o(
√

n). Note that it does not impose any conditions directly

on the size of p.

A4. (a) For γ > 0 specified in A2(b),

sup
p

E
∣∣wT

i Σi
0z

i
t

∣∣4+γ
< ∞, sup

p
E
∣∣wT

i Σi
1z

i
t

∣∣4+γ
< ∞, sup

p
E
∣∣eT

i Σi
0z

i
t

∣∣4+γ
< ∞,

sup
p

E
∣∣wT

i yt

∣∣4+γ
< ∞, sup

p
E
∣∣eT

i yt

∣∣4+γ
< ∞.

and the diagonal elements of V∗
i defined in (10) are bounded uniformly in p.

(b) The rank of matrix E{Ẑi} is equal to 3, where Ẑi is defined in (6).

Theorem 3 Let conditions A1, A2(a,b) and A4 hold. As n → ∞, p → ∞ and di = o(
√

n), it

holds that

√
n(U∗

i )
− 1

2 V∗
i







λ̃0i

λ̃1i

λ̃2i


−




λ0i

λ1i

λ2i







d−→ N(0, I3), i = 1, . . . , p,

where V∗
i and U∗

i are given in (10) and (11).

The key assumption of Theorem 2 is A2(c), which decides the fact that the effect of the dimen-

sionality p only comes from E1 in equation (13) in the Appendix. We can relax this assumption

by allowing E2 to be affected by p as well. Under the new relaxed assumption, we may obtain a

better convergent rate of estimator (3) by making use of the fact that (3) is invariant if we divide

both the numerator and denominator by the same number, for example, a number relating to p.

This will be presented in Theorem 4. We propose the new relaxed assumption:
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A5. For γ > 0 specified in A2(b),

max
{

sup
p

E
∣∣wT

i Σ0yt

∣∣4+γ
, sup

p
E
∣∣wT

i Σ1yt

∣∣4+γ
, sup

p
E
∣∣eT

i Σ0yt

∣∣4+γ
}

= O(s0(p)).

max
{

sup
p

E
∣∣wT

i yt

∣∣4+γ
, sup

p
E
∣∣eT

i yt

∣∣4+γ
}

= O(s1(p)).

and the diagonal elements of Vi defined in (8) is in the order of s2(p), where s0(p), s1(p)

and s2(p) are numbers relating to p.

Denote C as a constant. When the number of nonzero elements (or elements bounded away

from zero) in wi increases with p but is o(p), we may have s1(p) = o(min{s0(p), s2(p)}). Simulation

scenario 2 is under this case. When there are only finite number of nonzero elements (or elements

bounded away from zero) in wi, we might have s1(p) ≍ C, which is the case of simulation scenario

1. The reason we assume the diagonal elements of Vi defined in (8) are in the order of s2(p) is

because we can treat wT
i Σ1ΣT

1 wi, eT
i Σ0Σ0ei,wT

i Σ0Σ0wi as the second moments of three random

variables wT
i Σ1x, eT

i Σ0x and wT
i Σ0x respectively, where the p× 1 random vector x has mean 0

and covariance matrix Ip.

Theorem 4 Let conditions A1, A2(a,b), A3 and A5 hold. As n → ∞, p → ∞, if ps1(p)
s2(p) = o(n)

and s
1/2
0 (p) = O(ps

1/2
1 (p)s2(p)), it holds that

∥∥∥∥∥∥∥∥




λ̂0i

λ̂1i

λ̂2i


−




λ0i

λ1i

λ2i




∥∥∥∥∥∥∥∥
2

= Op

(
max

{ps
3/4
1 (p)

ns2(p)
,

s
1/4
0 (p)√
ns2(p)

})
.

Let us consider some examples. (1) When s0(p) ≍ p, s1(p) ≍ C and s2(p) ≍ p, the convergence

rate is max
{

1
n , 1√

np3/4

}
. (2) When s0(p) ≍ p, s1(p) ≍ √

p and s2(p) ≍ p, if p = o(n2), the

convergence rate is max
{

p3/8

n , 1√
np3/4

}
. (3) When s0(p) ≍ C, s1(p) ≍ C and s2(p) ≍ C, if

p = o(n), the convergence rate is max
{

p
n , 1√

n

}
, which corresponds with Theorem 2. Theorem

4 indicates that under different situations of s0(p), s1(p) and s2(p), we may obtain different

convergence rates. These observations are illustrated by simulation examples in section 4.

4 Simulation study

To examine the finite sample performance of the proposed estimation methods, we conduct some

simulation under different scenarios.

4.1 Scenario 1

λ0i, λ1i and λ2i are generated from U(−0.6, 0.6). The spatial weight matrix W used is a block

diagonal matrix formed by a
√

p×√p row-normalized matrix W∗. We construct W∗ such that the

10



first four sub-diagonal elements are all 1 and the rest elements are all 0 before normalizing. This

kind of W corresponds to the pooling of
√

p separate districts with similar neighboring structures

in each district, see Lee and Yu (2013). The error εi,t are independently generated from N(0, σ2
i ),

where we generate each σi from U(0.5, 1.5).

For all scenarios, we generate data from (2.1) with different settings for n and p. We apply

the proposed estimation method (2.3) and (2.5) (with di = min (p, n10/21)) and report the mean

absolute errors:

MAE(i) =
1
3

2∑

j=0

|λ̂ji − λji|, MAE =
1
p

p∑

i=1

MAE(i).

We replicate each setting 500 times.

Figure 2 depicts two boxplots of MAE with p equals to, respectively, 25 and 100. As the

sample size n increases from 100, 250, 500, 750 to 1000, MAE decreases for both methods.
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0.
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left:estimator (2.3) and right: estimator (2.5), 	 p=25

n
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2
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3
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left:estimator (2.3) and right: estimator (2.5), 	 p=100

n
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A

E

Figure 2: Boxplots of MAE for estimator (2.3) (left panels) and estimator (2.5) (right panels)

with p = 25 (top panels) and 100 (bottom panels), n = 100, 250, 500, 750, 1000 for scenario 1.

Figure 3 depicts the boxplots of the MAE for the original estimator (2.3), the root n consistent

estimator (2.5), and the estimator (2.5) with the ridge penalty, where we choose the ridge tuning

parameter to be C × p
n in order to avoid the nearly singularity problem of ẐT

i Ẑi, and C is chosen

via cross validation. With n = 500, the dimension p is set at 25,49,64,81,100,169,324 and 529

11



respectively. The MAE for (2.3) remains about the same level as p increases; see the panel on

the left in Figure 3. This is in line with the asymptotic result of Theorem 4 when, for example,

s1(p) ≍ C, s0(p) ≍ p and s2(p) ≍ p. In contrast, the MAE for estimator (2.5) increases sharply

when p increases; see the panel in the middle. This is due to the fact that ẐT
i Ẑi is nearly singular

for large p. Adding a ridge in the estimator certainly mitigates the deterioration when p increases;

see the panel on the right in Figure 3.
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Figure 3: Boxplots of MAE of the original estimator (2.3) (the left panel), the root n consistent

estimator (2.5) (the middle panel), and the estimator (2.5) after adding ridge penalty (the right

panel) with n = 500 and p = 25, 49, 64, 81, 100, 169, 324, 529 for scenario 1.

4.2 Scenario 2

λ0i, λ1i and λ2i are generated from U(−0.6, 0.6). The spatial weight matrix W is constructed as

follows. First, we construct a
√

p×√p row-normalized matrix W∗, where W∗ is chosen such that

the first two sub-diagonal elements are all 1 and the rest elements are all 0 before normalizing.

Then we treat W as a
√

p × √
p block matrix and put W∗ into the main diagonal, 2nd, 4th,

6th and etc. sub-diagonal block positions. This kind of W corresponds to the pooling of
√

p

districts (each district has
√

p locations) which the evenly numbered districts are connected and

the oddly numbered districts are connected but evenly numbered districts and oddly number

districts are separated. Each district has similar neighboring structures. As p increases, the

number of the locations influencing one specific location increases in the order of
√

p. The error

εi,t are independently generated from N(0, σ2
i ), where we generate each σi from U(0.5, 1.5).

Figure 4 depicts two boxplots of MAE with p equals to, respectively, 25 and 100. As the

sample size n increases from 100, 250, 500, 750 to 1000, MAE decreases for both methods.

Figure 5 depicts three boxplots as Figure 3. The MAE for (2.3) increases steadily as p increases,
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Figure 4: Boxplots of MAE for estimator (2.3) (left panels) and estimator (2.5) (right panels)

with p = 25 (top panels) and 100 (bottom panels), n = 100, 250, 500, 750, 1000 for scenario 2.

which matches the result of Theorem 4 when, for instance, s1(p) ≍ √
p, s0(p) ≍ p and s2(p) ≍ p.

The MAE for (2.5) after adding ridge penalty is slowly increasing as well. This might be caused

by the fact that, similar to A2(c), quantities in condition A4(a) is also influenced by p since the

number of nonzero elements in wi is in the order of
√

p.

5 Real data analysis

5.1 European Consumer Price Indices

We analyze the monthly change rates of the consumer price index (CPI) for the EU member states,

over the years 2003-2010. We use the national harmonized index of consumer prices calculated

by Eurostat, the statistical office of the European Union. For this data set, n = 96 and p = 31.

Figure 6 presents the time series plots of the monthly change rates of CPI for the 31 states.

To line up the curves together, each series is centered at its mean value in Figure 6. There exist

clearly synchronizes on the fluctuations across different states, indicating the spatial (i.e. cross-

state) correlations among different states. Also noticeable is the varying degrees of the fluctuation

over the different states.
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Figure 5: Boxplots of MAE of the original estimator (2.3) (the left panel), the root n consistent

estimator (2.5) (the middle panel), and the estimator (2.5) after adding ridge penalty (the right

panel) with n = 500 and p = 25, 49, 64, 81, 100, 169, 324, 529 for scenario 2.
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Figure 6: Time series plots of the monthly change rates of CPI for the 31 EU member states. Each series

is subtracted by its mean value.

Let yt consist of the monthly change rates of CPI for the 31 states. We fit the proposed

spatial-temporal model (1) to this data set with the parameters estimated by (3). We take a

normalized sample correlation matrix of yt as the spatial weight matrix W = (wij), i.e. we let

wij be the absolute value of the sample correlation between the i-th and j-th states for i ̸= j, and

wii = 0, and then replace wij by wij/
∑

k wkj .

Figure 7 presents the scatter plots of yi,t against, respectively, the 3 regressors in model

(1), i.e. wT
i yt, yi,t−1, wT

i yt−1, for four selected states Belgium, Greece, France and Iceland. We

superimpose the straight line y = λ̂ji x in each of those 3 scatter plots with, respectively, j = 0, 1, 2.

It is clear that the estimated slopes are very different for those 4 states. Figure 8 plots the true

monthly change rates of the CPI for those 4 states together with the fitted values

ŷi,t = λ̂0iwT
i yt + λ̂1iyi,t−1 + λ̂2iwT

i yt−1. (12)
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Figure 7: The scatter plots of yi,t against wT
i yt (panels on the top), yi,t−1 (panels in the middle),

and wT
i yt−1 (panels on the bottom) for four selected countries Belgium, Greece, France and

Iceland. The straight lines y = λ̂jix are superimposed in the panels on the top with j = 0, those

in the middle with j = 1, and those on the bottom with j = 2.

Overall ŷi,t tracks its truth value reasonably well. Figure 9 shows the out-of-sample forecasting

performance of our model. For the sake of comparison, predictions are made using our model and

the proposed generalized Yule-Walker estimator, and using the (constant) SDPD model of Yu et

al. (2008) and their Quasi-Maximum Likelihood estimator. In particular, for each location, we

leave out from the sample the last six observations and we compute the (out-of-sample) forecasts

with 1,2,....6 step ahead forecasting horizon; then, we compute the average prediction error over

time (i.e. the mean of the 6 prediction errors). On the left panel of Figure 9, the two box-plots

summarize the average prediction error for the 31 locations obtained with our YW estimator and

the QML estimator of Yu et al. (2008), respectively. It is evident that our estimator produces

unbiased predictions while the QML estimator appears to be biased. This advantage also reflects

on the forecasting average square errors, reported on the right panel of Figure 9. In conclusion,

the SDPD model of Yu et al. (2008) has a satisfying forecasting performance because several

locations have similar spatial structure and for those locations a model with constant parameters
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is sufficient. Anyway, a marginal improvement is observed for our estimator because several

locations have quite different structures and our model is able to capture this difference. Finally,

it is worthwhile to notice that the variability of the two predictors appears to be the same.
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Figure 8: The monthly change rates of CPI (thin lines) of Belgium, Greece, France and Iceland, and their

estimated values (thick lines) by model (1).
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Figure 9: Prediction errors generated in the out-of-sample forecasting, leaving out 6 observations from

the sample, using our model with the Generalized Yule-Walker estimator and using the constant SDPD

model of Yu et al. (2008) with the Quasi-Maximum Likelihood estimator.

To further vindicate the necessity to use different coefficients for different states, we consider

a statistical test for hypothesis

H0 : λj1 = · · · = λjp, j = 0, 1, 2

for model (1). Then the residuals resulting from the fitted model under H0 will be greater than
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the residuals without H0. However if H0 is true, the difference between the two sets of residuals

should not be significant. We apply a bootstrap method to test this significance. Let λ̃0, λ̃1, λ̃2

be the estimates under hypothesis H0. Define the test statistic

U =
1
n

n∑

t=1

∥yt − ỹt∥1, ỹt = λ̃0Wyt + λ̃1yt−1 + λ̃2Wyt−1.

We reject H0 for large values of U . To assess how large is large, we generate a bootstrap data

from

y∗t = λ̃0Wyt + λ̃1yt−1 + λ̃2Wyt−1 + ε∗t ,

where {ε∗t } are drawn independently from the residuals

ε̂t = yt − ŷt, t = 1, · · · , n,

and ŷt consists of the components defined in (12). Now the bootstrap statistic is defined as

U∗ =
1
n

n∑

t=1

∥y∗t − (λ∗0Wyt + λ∗1yt−1 + λ∗2Wyt−1)∥1,

where (λ∗0, λ
∗
1, λ

∗
2) is the estimated coefficients for the regression model

y∗t = λ0Wyt + λ1yt−1 + λ2Wyt−1 + εt, t = 1, · · · , n.

The P -value for testing hypothesis H0 is defined as

P (U∗ > U |y1, · · · ,yn),

which is approximated by the relative frequency of the event (U∗ > U) in a repeated bootstrap

sampling with a large number of replications. By repeating bootstrap sampling 1000 times, the

estimated P -value is 0, exhibiting strong evidence against the null hypothesis H0. Therefore the

model with the equal slope parameters across different locations is inadequate for this particular

data set.

5.2 Modeling mortality rates

Now we analyze the annual Italian male and female mortality rates for different ages (between 0

and 104) in the period of 1950 – 2009 based on the proposed model (1). The data were downloaded

from the Human Mortality Database (see the website http://www.mortality.org/). Let mi,t be the

log mortality rate of female or male at age i and in Year t. Those data are plotted in Figure 10.

Two panels on the left plot are the female and male mortality against different age in each year.

More precisely the curves {mi,t, i = 1, · · · , 21} for t < 1970 are plotted in red, those for t > 1990

are in blue, those with 1970 ≤ t ≤ 1989 are in grey. Those curves show clearly that the mortality

rate decreases over the years for almost all age groups (except a few outliers at the top end). Two
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Figure 10: Log mortality rates of Italian female (3 top panels) and male (3 bottom panels) are plotted

against age from each year in 1950-2009 (2 left panels), against year for each age group between 0 and 104

(2 middle panels). Differenced log mortality rates are plotted against year for each age in 2 right panels.

panels in the middle of Figure 10 plot the log mortality for each age group against time with the

following color code: black for ages not great than 10, grey for ages between 11 and 100, and

green for ages greater than 100. They indicate that the mortality for all age groups decreases over

time, the most significant decreases occur at the young age groups. Furthermore, the fluctuation

of the mortality rates for the top age groups reduces significantly over the years, while the mean

mortality rates for those groups remain about the same. This can be seen more clearly in the two

panels on the right which plot differenced log mortality rates {yi,t, t = 1951, · · · , 2009}, using the

same colour code, where yi,t = mi,t −mi,t−1.

We fit the differenced log mortality data with model (1) with the parameters estimated by

(5) and di = 20. Note that now p = 104 and n = 59. Let the off-diagonal elements of the spatial

weight matrix W be

wij =
1

1 + |i− j| , 1 ≤ i < j ≤ 104.

We then replace wij by wij/
∑

i wij . Moreover, we can also fix a threshold τ and set to zero all

the elements of matrix W such that |x− w| > τ (for simplicity, we fix τ = 5 in this application,

but the results are substantially invariant for different values of τ).

The results of the estimation are shown in table 1, for a selection of cohorts of different ages.

Figure 11 shows the fitted series for ages i = 60, 80, 100.
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age λ̂0i λ̂1i λ̂2i age λ̂0i λ̂1i λ̂2i

5 0.41 -0.52 0.06 55 0.19 -0.88 0.28

10 0.20 -0.42 0.05 60 -0.09 -0.72 0.01

15 0.44 -0.65 0.18 65 0.22 -0.63 0.21

20 0.64 -0.78 0.40 70 0.21 -0.69 0.08

25 -0.04 -0.43 0.03 75 0.33 -0.59 0.22

30 0.78 -0.80 0.55 80 0.33 -0.89 0.27

35 0.11 -0.55 0.29 85 0.37 -0.76 0.18

40 -0.04 -0.66 -0.01 90 0.29 -0.62 0.16

45 0.29 -0.46 0.12 95 0.27 -0.77 0.26

50 -0.10 -0.45 -0.05 100 0.44 -0.69 -0.03

Table 1: Estimated coefficients for a selection of cohorts of different ages. The left column is the estimated

pure spatial coefficients λ̂0i; The middle column is the estimated pure dynamic coefficient λ̂1i; The right

column is the estimated spatial-dynamic coefficients λ̂2i.
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Figure 11: Observed time series (thin line) and fitted time series (bold line), for female mortality rate for

ages i = 60, 80, 100.

6 Final remark

We propose in this paper a generalized Yule-Walker estimation method for spatio-temporal models

with diagonal coefficients. The setting enlarges the capacity of the popular spatial dynamic panel

data models. Both the asymptotic results and numerical illustration show that the proposed

estimation method works well, although the number of the estimation equations utilized should

be of the order o(
√

n).
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Appendix: Proofs

We present the proofs for Theorems 2, Corollary 1 and Theorem 4 in this appendix. The proofs

for Theorem 1 and 3 are similar and simpler than that of Theorem 2, and they are therefore

omitted. We also present a lemma (i.e. Lemma 1) at the end of this appendix, which shows that

condition A2 is implied by conditions A1 and B1 – B3; see Remark 1. We use C to denote a

generic positive constant, which may be different at different places.

Proof of Theorem 2. We first prove (i) of Theorem 2. We only need to prove the assertions

(1) and (2) below, as then the required conclusion follows from (1) and (2) immediately.

(1)

√
nU

− 1
2

i




1
n

∑n
t=1 yT

t−1(w
T
i yt) 1

n

∑n
t=1 εi,tyt−1

1
n

∑n
t=1 yT

t−1yi,t−1
1
n

∑n
t=1 εi,tyt−1

1
n

∑n
t=1 yT

t−1(w
T
i yt−1) 1

n

∑n
t=1 εi,tyt−1




d−→ N(0, I3).

(2) Vi(X̂T
i X̂i)−1 P−→ I3.

To prove (1), it suffices to show that for any nonzero vector a = (a1, a2, a3)T , the linear

combination

aT




1
n

∑n
t=1 yT

t−1(w
T
i yt) 1

n

∑n
t=1 εi,tyt−1

1
n

∑n
t=1 yT

t−1yi,t−1
1
n

∑n
t=1 εi,tyt−1

1
n

∑n
t=1 yT

t−1(w
T
i yt−1) 1

n

∑n
t=1 εi,tyt−1




is asymptotic normal.

Let us take out the dominant term in 1
n

∑n
t=1 yT

t−1(w
T
i yt) 1

n

∑n
t=1 εi,tyt−1 first.

1
n

n∑

t=1

yT
t−1(w

T
i yt)

1
n

n∑

t=1

εi,tyt−1

=

[
1
n

n∑

t=1

yT
t−1(w

T
i yt)− E[yT

t−1(w
T
i yt)]

]
1
n

n∑

t=1

εi,tyt−1 + E[yT
t−1(w

T
i yt)]

1
n

n∑

t=1

εi,tyt−1

=

[
1
n

n∑

t=1

yT
t−1(w

T
i yt)−wT

i Σ1

]
1
n

n∑

t=1

εi,tyt−1 +
1
n

n∑

t=1

wT
i Σ1yt−1εi,t

=E1 + E2.

(13)
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For term E1 and k = 1, 2, · · · , p, by Proposition 2.5 of Fan and Yao (2003), we have

E

[
1
n

n∑

t=1

(eT
k yt−1wT

i yt − eT
k ΣT

1 wi)

]2

=
1
n2

n∑

t=1

Var(eT
k yt−1wT

i yt) +
1
n2

∑

t ̸=s

Cov(eT
k yt−1wT

i yt, eT
k ys−1wT

i ys)

≤C

n
+

1
n2

∑

t ̸=s

8α(|t− s|)
γ

4+γ

[
E|eT

k yt−1wT
i yt|2+ γ

2

] 2
4+γ
[
E|eT

k ys−1wT
i ys|2+ γ

2

] 2
4+γ

≤C

n
+

C

n2

∑

t ̸=s

α(|t− s|)
γ

4+γ ≤ C

n
+

C

n

n∑

j=1

α(j)
γ

4+γ = O(
1
n

),

(14)

where C is independent of p. Then it holds that

1
n

n∑

t=1

(eT
k yt−1wT

i yt − eT
k ΣT

1 wi) = Op(
1√
n

).

Therefore

∥∥∥∥∥
1
n

n∑

t=1

yt−1wT
i yt −ΣT

1 wi

∥∥∥∥∥
2

=

√√√√
p∑

k=1

[
1
n

n∑

t=1

(eT
k yt−1wT

i yt − eT
k ΣT

1 wi)

]2

= Op(
√

p

n
).

Similarly, ∥∥∥∥∥
1
n

n∑

t=1

εi,tyt−1

∥∥∥∥∥
2

= Op(
√

p

n
).

Since E1 ≤
∥∥ 1

n

∑n
t=1 yt−1wT

i yt −ΣT
1 wi

∥∥
2

∥∥ 1
n

∑n
t=1 εi,tyt−1

∥∥
2
, it holds that E1 = Op( p

n). Similar

to (14), we have Var(
√

nE2) = O(1). Given p√
n

= o(1), it holds that
√

nE1 = op(1). Hence if

p = o(
√

n),

√
n× 1

n

n∑

t=1

yT
t−1(w

T
i yt)

1
n

n∑

t=1

εi,tyt−1 =
1√
n

n∑

t=1

wT
i Σ1yt−1εi,t + op(1).

Similarly, given p = o(
√

n), we have

√
n× 1

n

n∑

t=1

yT
t−1yi,t−1

1
n

n∑

t=1

εi,tyt−1 =
1√
n

n∑

t=1

eT
i Σ0yt−1εi,t + op(1),

√
n× 1

n

n∑

t=1

yT
t−1(w

T
i yt−1)

1
n

n∑

t=1

εi,tyt−1 =
1√
n

n∑

t=1

wT
i Σ0yt−1εi,t + op(1).

Now it suffices to prove

Sn,p ≡ a1
1√
n

n∑

t=1

wT
i Σ1yt−1εi,t + a2

1√
n

n∑

t=1

eT
i Σ0yt−1εi,t + a3

1√
n

n∑

t=1

wT
i Σ0yt−1εi,t

is asymptotic normal.
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Note that it holds that

E|wT
i Σ1yt−1εi,t|2+ γ

2 ≤ [E|wT
i Σ1yt−1|4+γ ]

1
2 [E|εi,t|4+γ ]

1
2 < ∞.

Now we calculate the variance of Sn,p. It holds that

Var

(
1√
n

n∑

t=1

wT
i Σ1yt−1εi,t

)

=wT
i Σ1Σy,εi(0)ΣT

1 wi +
n−1∑

j=1

(
1− j

n

)
wT

i Σ1

[
Σy,εi(j) + ΣT

y,εi
(j)
]
ΣT

1 wi,

(15)

and it follows from
∑n

j=1 α(j)
γ

4+γ < ∞ that

sup
p

∞∑

j=1

|wT
i Σ1

[
Σy,εi(j) + ΣT
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(j)
]
ΣT

1 wi|
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p

∞∑
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α(j)
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4+γ
{
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} 2

4+γ
{
E|εi,t|4+γ

} 2
4+γ < ∞.

Similarly,

Cov

(
1√
n

n∑

t=1

wT
i Σ1yt−1εi,t,

1√
n

n∑

t=1

eT
i Σ0yt−1εi,t
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i Σ1Σy,εi(0)ΣT
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j=1

(
1− j

n

)
wT

i Σ1

[
Σy,εi(j) + ΣT

y,εi
(j)
]
Σ0ei,

and supp

∑∞
j=1 |wT

i Σ1Σy,εi(j)Σ0ei| < ∞. Calculating all the variance and covariance and sum-

ming up them, it follows from dominate convergence theorem that

Var

(
Sn,p√
aTUia

)
→ 1.

To prove the asymptotic normality of Sn,p, we employ the small-block and large-block argu-

ments. We partition the set {1, 2, · · · , n} into 2kn + 1 subsets with large blocks of size ln, small

blocks of size sn and the last remaining set of size n− kn(ln + sn). Put

ln = [
√

n/ log n], sn = [
√

n log n]x, kn = [n/(ln + sn)],

where γ
4+γ ≤ x < 1. Hence

ln/
√

n → 0, sn/ln → 0, kn = O(
√

n log n).

Note that ln/
√

n → 0 is important when we derive the Lindeberg condition of the truncated

partial sum TL
n,p defined in (16).

Since
∑∞

j=1 α(j)
γ

4+γ < ∞, we have α(sn) = o(s
− 4+γ

γ
n ). It then holds that

knα(sn) = o(kn/s
4+γ

γ
n ) = o(

√
n log n/[

√
n log n]x

4+γ
γ ) = o(1).

22



Then we can partition Sn,p in the following way

Sn,p =a1
1√
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ξ
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wT
i Σ1yt−1εi,t, ζ(2) =
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Note that α(n) = o(n−
(2+γ/2)2

2(2+γ/2−2) ) and knsn/n → 0, (ln + sn)/n → 0, by applying proposition 2.7

of Fan and Yao (2003), it holds that
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n
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Therefore
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We calculate the variance of Tn,p. Similar to (15), it holds that
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Calculating all the variance and covariance and summing up them, by dominated convergence

theorem and knln
n → 1, it holds that

Var

(
Tn,p√
aTUia

)
→ 1.
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Now it suffices to prove the asymptotic normality of Tn,p. We partition Tn,p into two parts via

truncation. Specifically, we define

ξ
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Similar to computing the Var(Tn,p), it holds that
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. There-

fore
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where we denote σ2
L as the asymptotic variance of TL

n,p. Similarly, we have
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Following the same arguments as part 2.7.7 of Fan and Yao (2003), for any ϵ > 0, it holds that

Mn,p < ϵ as n, p →∞. Hence
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To prove (2), let us look at the (1, 1)-th element of X̂T
i X̂i. We have
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Using the same arguments as (14), the first term is Op( p
n) and the second term is Op( 1√

n
). Hence

given p = o(n), it holds that

1
n

∑n
t=1 yT

t−1(w
T
i yt) 1

n

∑n
t=1 yt−1(wT

i yt)
wT

i Σ1ΣT
1 wi

→ 1.

Applying the same arguments to the other elements of X̂T
i X̂i, it holds that

Vi(X̂T
i X̂i)−1 P−→ I3.

To prove (ii) in Theorem 2, the required asymptotic result follows from (13) and (17) imme-

diately when p = o(n) and
√

n = O(p). The proof is completed. �

Proof of Corollary 1. By Theorem 2, it holds that
∥∥∥∥∥∥∥∥




λ̂0i

λ̂1i

λ̂2i


−




λ0i

λ1i

λ2i




∥∥∥∥∥∥∥∥
1

=





Op( 1√
n
) if p√

n
= O(1),

Op( p
n) if p√

n
→∞ and p

n = o(1).

for all i. The required asymptotic result follows from the above result directly. �

Proof of Theorem 4. Let us look at term E1 and E2 in (13) first under the new condition (A5).

Similar to the proof of (14), it holds that

E1 = Op(
ps

3/4
1 (p)
n

), E2 = Op(
s
1/4
0 (p)√

n
).

Hence

1
n

n∑

t=1

yT
t−1(w

T
i yt)

1
n

n∑

t=1

εi,tyt−1 = Op(
ps

3/4
1 (p)
n

+
s
1/4
0 (p)√

n
).

Similarly, we have

1
n

n∑

t=1

yT
t−1yi,t−1

1
n

n∑

t=1

εi,tyt−1 = Op(
ps

3/4
1 (p)
n

+
s
1/4
0 (p)√

n
),

1
n

n∑

t=1

yT
t−1(w

T
i yt−1)

1
n

n∑

t=1

εi,tyt−1 = Op(
ps

3/4
1 (p)
n

+
s
1/4
0 (p)√

n
).
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For the first diagonal element of X̂T
i X̂i, it follows from considering the three terms in (17)

separately that

1
n

n∑

t=1

yT
t−1(w

T
i yt)

1
n

n∑

t=1

yt−1(wT
i yt) = Op(

ps1(p)
n

+
s
1/4
0 (p)s1/4

1 (p)√
n

) + wT
i Σ1ΣT

1 wi.

Similarly,

1
n

n∑

t=1

yT
t−1yi,t−1

1
n

n∑

t=1

yt−1yi,t−1 = Op(
ps1(p)

n
+

s
1/4
0 (p)s1/4

1 (p)√
n

) + eT
i Σ0ΣT

0 ei,

1
n

n∑

t=1

yT
t−1(w

T
i yt−1)

1
n

n∑

t=1

yt−1(wT
i yt−1) = Op(

ps1(p)
n

+
s
1/4
0 (p)s1/4

1 (p)√
n

) + wT
i Σ0ΣT

0 wi.

Given ps1(p)
s2(p) = o(n) and s

1/2
0 (p)

ps
1/2
1 (p)s2(p)

= O(1), we have

ps1(p)
n

= o(s2(p)),
s
1/4
0 (p)s1/4

1 (p)√
n

= o(s2(p)).

Divide both the numerator and denominator of estimator (3) by s2(p), it holds that
∥∥∥∥∥∥∥∥




λ̂0i

λ̂1i

λ̂2i


−




λ0i

λ1i

λ2i




∥∥∥∥∥∥∥∥
2

= Op

(ps
3/4
1 (p)

ns2(p)
+

s
1/4
0 (p)√
ns2(p)

)
.

The required result then follows directly. �

Lemma 1 Under conditions A1 and B1 – B3, condition A2 holds with γ = 4.

Proof. It is apparent that part (a) of A2 is satisfied under A1 and B1 – B3. yt is strictly

stationary because εi,t are i.i.d across i and t and condition B3. Since the density function of εi,t

exists, α(n) decays exponentially fast, see Pham and Tran (1985). Therefore
∑∞

j=1 α(j)
γ

4+γ < ∞.

Now we prove A2(c) when γ = 4.

We present a more general result first: for any p × 1 vector a satisfying supp ∥a∥1 < ∞, it

holds that

sup
p

E
∣∣aTyt

∣∣8 < ∞.

Note that

yt =
∞∑

h=0

AhS−1(λ0)εt−h ≡
∞∑

h=0

Bhεt−h.
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Then

E
∣∣aTyt

∣∣8 = E

∣∣∣∣∣
∞∑

h=0

aTBhεt−h

∣∣∣∣∣

8

≡ E

∣∣∣∣∣
∞∑

h=0

bT
h εt−h

∣∣∣∣∣

8

=E

∣∣∣∣∣∣

∞∑

h1,h2,h3,h4,h5,h6,h7,h8=0

(εT
t−h1

bh1b
T
h2

εt−h2)(ε
T
t−h3

bh3b
T
h4

εt−h4)(ε
T
t−h5

bh5b
T
h6

εt−h6)(ε
T
t−h7

bh7b
T
h8

εt−h8)

∣∣∣∣∣∣

=E

∣∣∣∣∣
∞∑

h1,h2,h3,h4,h5,h6,h7,h8=0

( p∑

i1,j1=1

[bh1b
T
h2

]i1j1εi1,t−h1εj1,t−h2

)( p∑

i2,j2=1

[bh3b
T
h4

]i2j2εi2,t−h3εj2,t−h4

)

×
( p∑

i3,j3=1

[bh5b
T
h6

]i3j3εi3,t−h5εj3,t−h6

)( p∑

i4,j4=1

[bh7b
T
h8

]i4j4εi4,t−h7εj4,t−h8

)∣∣∣∣∣

=E

∣∣∣∣∣
∞∑

h1,h2,h3,h4,h5,h6,h7,h8=0

p∑

i1,j1,i2,j2,i3,j3,i4,j4=1

[bh1b
T
h2

]i1j1 [bh3b
T
h4

]i2j2 [bh5b
T
h6

]i3j3 [bh7b
T
h8

]i4j4

× εi1,t−h1εj1,t−h2εi2,t−h3εj2,t−h4εi3,t−h5εj3,t−h6εi4,t−h7εj4,t−h8

∣∣∣∣∣

≤
∞∑

h1,h2,h3,h4,h5,h6,h7,h8=0

p∑

i1,j1,i2,j2,i3,j3,i4,j4=1

∣∣∣[bh1b
T
h2

]i1j1 [bh3b
T
h4

]i2j2 [bh5b
T
h6

]i3j3 [bh7b
T
h8

]i4j4

∣∣∣

× E|εi1,t−h1εj1,t−h2εi2,t−h3εj2,t−h4εi3,t−h5εj3,t−h6εi4,t−h7εj4,t−h8 |

≤C

∞∑

h1,h2,h3,h4,h5,h6,h7,h8=0

p∑

i1,j1,i2,j2,i3,j3,i4,j4=1

|bh1b
T
h2
|i1j1 |bh3b

T
h4
|i2j2 |bh5b

T
h6
|i3j3 |bh7b

T
h8
|i4j4

=C
[ ∞∑

h=0

∞∑

g=0

p∑

i=1

p∑

j=1

|bhbT
g |ij
]4

.

(18)

And
∞∑

h=0

∞∑

g=0

p∑

i=1

p∑

j=1

|bhbT
g |ij ≤

∞∑

h=0

∞∑

g=0

p∑

i=1

p∑

j=1

(|bh||bT
g |)ij =

p∑

i=1

p∑

j=1

( ∞∑

h=0

∞∑

g=0

|bh||bT
g |
)

ij

=
p∑

i=1

p∑

j=1

( ∞∑

h=0

|bh|
∞∑

g=0

|bT
g |
)

ij
=

p∑

i=1

p∑

j=1

( ∞∑

h=0

|bh|
)

i

( ∞∑

g=0

|bg|
)

j

=
p∑

i=1

( ∞∑

h=0

|bh|
)

i

p∑

j=1

( ∞∑

g=0

|bg|
)

j
,

(19)

where
(∑∞

h=0 |bh|
)

i
is the i-th element of the column vector

∑∞
h=0 |bh|.

Since (
∑∞

h=0 |Bh|)ij =
∑∞

h=0

(∣∣AhS−1(λ0)
∣∣)

ij
≤
(∑∞

h=0

∣∣Ah
∣∣ ∣∣S−1(λ0)

∣∣)
ij

where the row and

column sums of
∑∞

h=0

∣∣Ah
∣∣ ∣∣S−1(λ0)

∣∣ are bounded uniformly in p, it holds that the row and

column sums of
∑∞

h=0 |Bh| are bounded uniformly in p. Note that

( ∞∑

h=0

|bh|
)

i
=
( ∞∑

h=0

|BT
h a|
)

i
≤
( ∞∑

h=0

|BT
h ||a|

)
i
,
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where the row and column sums of
∑∞

h=0

∣∣BT
h

∣∣ and |a| are bounded uniformly in p. Hence the

row and column sums of
∑∞

h=0 |BT
h ||a| are bounded uniformly in p. It follows from (18) and (19)

that

sup
p

E
∣∣aTyt

∣∣8 ≤ C
[ p∑

i=1

( ∞∑

h=0

|bh|
)

i

p∑

j=1

( ∞∑

g=0

|bg|
)

j

]4
= O(1).

It is easy to prove that

sup
p
∥Σ0wi∥1 < ∞, sup

p
∥ΣT

1 wi∥1 < ∞, sup
p
∥Σ0ei∥1 < ∞.

Thus supp ∥wiΣ0yt∥1 < ∞ and etc.

The row and column sums of Σ0 and Σ1 are bounded uniformly in p. Then

sup
p

wT
i Σ1ΣT

1 wi = O(1).

Similarly, we can prove the other diagonal elements of Vi and Ui are bounded uniformly in p.

The proof is completed. �
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