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Benefit-cost Integrated assessment models (BC-IAMs) inform cli-
mate policy debates by quantifying the tradeoffs between alternative
greenhouse gas abatement options. They achieve this by coupling
simplified models of the climate system to models of the global econ-
omy and the costs and benefits of climate policy. While these models
have provided valuable qualitative insights into the sensitivity of pol-
icy tradeoffs to different ethical and empirical assumptions, they are
increasingly being used to inform the selection of policies in the real
world. To the extent that BC-IAMs are used as inputs to policy
selection, our confidence in their quantitative outputs must depend
on the empirical validity of their modeling assumptions. We have
a degree of confidence in climate models both because they have
been tested on historical data in hindcasting experiments, and be-
cause the physical principles they are based on have been empirically
confirmed in closely related applications. By contrast, the economic
components of BC-IAMs often rely on untestable scenarios, or on
structural models that are comparatively untested on relevant time
scales. Where possible, an approach to model confirmation similar
to that used in climate science could help to build confidence in the
economic components of BC-IAMs, or focus attention on which com-
ponents might need refinement for policy applications. We illustrate
the potential benefits of model confirmation exercises by performing
a long-run hindcasting experiment with one of the leading BC-IAMs.
We show that its model of long-run economic growth – one of its
most important economic components – had questionable predictive
power over the 20th century.

Integrated assessment | climate policy | long-run economic growth | model

confirmation | structural uncertainty

Abbreviations: IAM, integrated assessment model; BC-IAM, benefit-cost integrated

assessment model; SCC, social cost of carbon; TFP, total factor productivity

‘Prediction is very difficult, especially about the future.’ –
Niels Bohr

A little over twenty years ago a seminal article on the in-
terpretation of numerical models in the earth sciences

appeared in a leading scientific journal [1]. The authors ar-
gued that while verification and validation of these models
is strictly logically impossible, model confirmation is a neces-
sary and desirable step. In the intervening years an impressive
body of work in climate science has compared the predictions
of global climate models with observations. Chapter 9 of the
Intergovermental Panel on Climate Change’s Fifth Assessment
report summarizes recent work [2], stating that “model eval-
uation...reflects the need for climate models to represent the
observed behaviour of past climate as a necessary condition
to be considered a viable tool for future projections”. Scien-
tists continue to use empirical tests of climate models to refine
and improve them, while also reflecting on the methodologi-
cal questions that arise when interpreting model predictions
to inform decision-making [3].

Climate models are however only a part of the technical
apparatus that has been developed to inform climate policy
decisions. Integrated Assessment Models (IAMs) provide the
link between physical science and policy. IAMs come in two
varieties – benefit-cost models, which attempt to estimate the
aggregate costs and benefits of climate policy to society, and
detailed process models, which usually analyze more detailed

policies in a cost-effectiveness framework (i.e. assuming an ex-
ogenous policy objective), often in much greater sectoral detail
than the highly aggregated benefit-cost models [4]. We focus
on Benefit-Cost IAMs (BC-IAMs) in this article, as these have
been the focus of research activity in economics [5, 6], and are
increasingly influential in policy applications.

BC-IAMs couple simplified climate models with representa-
tions of the global economy in an attempt to understand the
tradeoffs between alternative policy options. They have been
applied to a wide variety of questions: How might different
welfare frameworks affect the attractiveness of policy options
(e.g. [7])? Which approaches to international agreements are
likely to succeed (e.g. [8])? How might different policy in-
struments affect innovation in energy technologies (e.g. [9])?
These modeling exercises provide valuable insights into the
possible qualitative differences between policy options. How-
ever, their quantitative implications are conditional on the ve-
racity of the underlying models. BC-IAMs can be used to
show that policy A leads to higher welfare than policy B in
model X, but in order to extend this model-based finding to
claims about reality, we need to know how well X approxi-
mates reality. Are the equations and initialization procedures
used by model X structurally sound, and if not, what risks
might we run by treating them as if they are?1

Significance

Benefit-Cost Integrated assessment models (BC-IAMs) combine
climate science, impacts studies, and representations of long-run
economic growth to estimate the costs and benefits of climate
policy. They provide valuable qualitative insights into how pol-
icy outcomes might depend on ethical and empirical assump-
tions. Increasingly however, BC-IAMs are being used to inform
quantitative policy choices. Yet, their economic components are
largely untested, or untestable, over relevant time scales. We
demonstrate the potential benefits of model confirmation exer-
cises for policy applications, demonstrating that the economic
growth model used by a prominent BC-IAM had little predictive
power over the 20th century. Insofar as possible, out-of-sample
empirical tests of the economic components of BC-IAMs should
inform their future development for real world applications.
Author contributions: AM and TM developed the concept of
the study and analyzed the data. AM wrote the paper.

Reserved for Publication Footnotes

1The concept of a structurally sound BC-IAM needs to be interpreted with care. We give a detailed
definition that makes our usage of this term more precise in the Supporting Information. In par-
ticular, our definition separates the empirical relationships in a BC-IAM (the focus of this article)
from its ethical assumptions.
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Assessing the structural soundness of economic modeling
assumptions in BC-IAMs has recently become an increasingly
pressing issue, as they are beginning to be used to inform
quantitative real world policy decisions. For example, the US
government has recently established an interagency working
group [10] to estimate a value of the social cost of carbon
(SCC), the welfare cost to society from emitting a ton of CO2.
The value of the SCC that was adopted will form part of the
cost-benefit assessment of all federal projects and policies, and
thus has the potential to influence billions of dollars of invest-
ment. The process used to establish a value for the SCC relied
heavily on BC-IAMs, the first time they have directly informed
quantitative federal rules. While the US SCC estimate is per-
haps the most prominent recent example, other governments
and international organizations are also increasingly turning
to BC-IAMs to inform policy choices.

As soon as a model is used to inform quantitative policy de-
cisions, the criteria by which it must be judged become more
demanding. A given model may be a useful tool for exploring
the qualitative implications of different assumptions, but in
order for it to be profitably applied to policy choices, we need
to know how plausible those assumptions are as empirical hy-
potheses about how the world works. If a model can be shown
to be structurally flawed in hindcasting exercises, our expec-
tation should be that similar errors might occur when using
it to make predictions that inform policy choices today. No
model is perfect, and we should not expect any given model to
insure us against regret entirely. But to the extent possible,
it is in our interests to attempt to ascertain how wrong we
might go when relying on a given model to make decisions.
As has occurred in climate science, this exercise could build
confidence in those economic modeling assumptions that are
found to be consistent with empirical data, and focus attention
on those assumptions that may require refinement for policy
applications.

Importantly, confirmation exercises provide entirely differ-
ent information about a model’s validity from model calibra-
tion, sensitivity analysis, probabilistic approaches to quantify-
ing parametric uncertainty, or expert elicitation of model pa-
rameters, all of which are standard practice in the field. These
uncertainty quantification methods explore the space of model
outcomes (and perhaps estimate their likelihood), taking the
model’s structural assumptions as given. Model confirmation,
on the other hand, tests whether the equations and initial-
ization procedures a model uses to generate predictions are
able to provide a good representation of observed outcomes.
A model whose outcome space has been explored using the
uncertainty quantification methods mentioned above may still
yield error-prone predictions if the underlying modeling as-
sumptions are not a good fit to reality. While these meth-
ods can of course generate a distribution of model outcomes,
whether or not such distributions reflect the uncertainty we ac-
tually face depends on the structural soundness of the model
used to generate them. We note that model confirmation is
only possible if a model is specified in a self-contained manner,
i.e. it is comprised of a set of structural assumptions and free
parameters that can, at least in principle, be estimated from
data. This makes models that rely on fixed external scenar-
ios for generating predictions very difficult to confirm ex ante.
Although such models could provide a good characterization
of current uncertainty, we have no way of assessing whether
this is likely to be the case by testing their past performance.

While the physical science models upon which the scientific
components of BC-IAMs are based have often been subjected
to tests of structural validity, their economic components are
often either based on untestable exogenous scenarios, or on

structural modeling assumptions that are largely untested on
the temporal scales that are relevant to climate applications.
In part this reflects genuine data difficulties, which make some
economic assumptions in BC-IAMs very difficult to confirm.
For example, BC-IAMs assume a functional form for the cli-
mate damage function, which quantifies the impact of global
average temperature changes on the aggregate productivity of
the economy. BC-IAM results are highly sensitive to the rate
of increase of damages with temperature at high temperatures,
but as we’ve only seen a small amount of average warming so
far, it is very difficult to test any assumed functional form for
damages. Some of the most important economic components
of some BC-IAMs are however amenable to empirical tests.

An out-of-sample test of a model of long-run economic

growth
To demonstrate what may be learned from model confirmation
exercises we focus on the economic growth model used by the
well known DICE BC-IAM [15]. The assumptions BC-IAMs
make about long-run economic growth have a very substan-
tial effect on leading policy outputs such as the SCC. This
is because economic growth strongly affects the path of GHG
emissions, the magnitude of climate damages, and the wealth
of future generations, all key determinants of the aggregate
costs and benefits of climate policy. Unlike other well known
BC-IAMs (e.g. the PAGE [16] and FUND [17] models), which
rely on external scenarios for economic growth that are impos-
sible to test empirically ex ante, DICE uses an explicit model
of economic growth that makes it well suited to empirical test-
ing, and is also widely deployed across climate economics (see
e.g. [18]). A crucial part of this growth model is a model of the
temporal evolution of total factor productivity (TFP), a quan-
tity that sets the overall level of technological advancement in
the economy. Economic growth is largely driven by techno-
logical progress in DICE. Thus, although policy evaluation in
DICE is also highly sensitive to other structural modeling as-
sumptions (e.g. the shape of the damage function, and the
evolution of abatement costs), a lot depends on how it models
overall technological progress.2

In order to test the structural assumptions and initialization
procedures employed by DICE’s economic growth model, we
consider the following question: How would this model fare if
we asked it to predict the growth path of a major economy over
the 20th century? This question is closely analogous to those
asked of climate models by climate scientists [2]. The model
of the evolution of the economy DICE employs is a version of
the Ramsey neoclassical growth model, familiar to any student
of macroeconomics (see [19] for a detailed exposition). In this
model economic output is generated by competitive firms, and

2This view is confirmed by Nordhaus [12]: ‘the major factor producing different climate outcomes
in our uncertainty runs is differential technological change. In our estimates, the productivity un-
certainty outweighs the uncertainties of the climate system and the damage function in determining
the relationship between temperature change and consumption.’ A global sensitivity analysis of the
DICE model confirms that its SCC estimates are highly sensitive to the growth rate of TFP [13]. A
heuristic understanding of why policy recommendations are so sensitive to assumptions about TFP
growth can be obtained by studying the social discount rate ρ(t). Under standard assumptions
the change in social welfare that arises from a small change in consumption ∆t which occurs t

years in the future is given by ∆te
−ρ(t)t. Standard computations (see e.g. [14]) show that in

a deterministic setting ρ(t) = δ + ηg(t), where δ is the pure rate of social time preference,
η is the elasticity of marginal utility, and g(t) is the average consumption growth rate between
the present and time t. In most cases the term ηg(t) is the dominant contribution to ρ(t).
Since consumption growth g(t) is driven by TFP growth in DICE, the present value of future
climate damages is highly sensitive to TFP growth. For example, for δ = 1%/yr, η = 2 and
g(100) = 1%/yr an incremental climate damage of $100 that occurs 100 years from now will

be valued at $100e−(0.01+2×0.01)100 ≈ $5 in present value terms. For g(100) = 2%/yr

however, the same $1 damage would be worth $100e−(0.01+2×0.02)100 ≈ $0.7. Thus
an increase in consumption growth from 1% to 2%/yr reduces the current welfare cost of climate
damages that occur in 100 years by a factor larger than 7.

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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is either consumed, or reinvested in firms. Firms produce out-
put via a production technology, which uses the capital and
labour supplied by consumers as inputs. In DICE technolog-
ical progress is modeled as an increasing trend in total factor
productivity, which acts as a multiplier on firms’ production
technologies. Thus as TFP grows, and the technologies of pro-
duction become more advanced, fewer capital and labour in-
puts are required to generate a given level of economic output.
A specific model of the time dependence of TFP is assumed
in DICE. This model depends on free parameters that can be
estimated from economic history.3

We test this model’s predictive performance using recently
compiled data on the US economy from 1870-2010 [21]. We
single out the US as it is the largest economy for which de-
tailed long-run economic data are available, and because of its
position at the technological frontier over much of the 20th
century [22]. Our tests are as generous as possible to the
model (e.g. we assume a perfect forecast of labour supply),
and stick closely to the calibration and forecasting methodol-
ogy utilized by DICE (details of the model implementation are
available in the Supporting Information). Due to the generos-
ity of our modeling assumptions our results likely exaggerate
the model’s predictive performance. To test the model’s pre-
dictive power we divide the data into different training and
verification windows. 95% confidence intervals (CI) for the
parameters of the TFP model are inferred from the training
data. The state equation for the capital stock and empirically
estimated model of TFP evolution are then used to predict
economic output.

Fig. 1 is illustrative of our model estimation and confir-
mation methodology. The figure depicts a long-run forecast
of TFP and economic output obtained by estimating the TFP
model on the 50 years of data from 1870 to 1920. The left panel
of the figure depicts the fit of the TFP model to the training
data, and its out-of-sample projection of TFP. The right panel
shows an out-of-sample projection of GDP at 1920, which is
generated using the empirically estimated TFP model, the
state equation for the evolution of the capital stock, and a
perfect forecast of labour supply. The figure shows that al-
though the TFP model fits the training data well, its out-
of-sample forecast substantially underestimates technological
progress in the latter half of the 20th century. These errors
are compounded for GDP projections, as persistent underes-
timates of TFP affect predicted investment flows and capital
formation in each future period, which further downward bias
the model. We note however that while the presence of model
errors is significant, the fact that the model was downward
biased in 1920 does not imply that it will be downward biased
in all periods, as we demonstrate below.

While the out-of-sample forecasts of TFP and GDP the
model generates in 1920 are not successful, they nevertheless
look reasonable when viewed from the perspective of the fifty
year data series up to that year. Had economists produced
these predictions at the time based on only these 50 years of
data, they would no doubt have been perceived as plausible fu-
ture growth scenarios. From today’s perspective however, the
model looks like a less reliable predictive tool. An important
reason why the model performs poorly is that the post World
War Two boost in productivity growth is not presaged in the
training data at 1920. This finding is indicative of the diffi-
culty of predicting long-run technological developments. We
face precisely the same difficulties today when using BC-IAMs
to project economic growth into the next century and beyond
(see Supporting Information for further discussion).

While Figure 1 suggests that the model’s long-run predictive
performance could be a concern, it focusses on only a single
forecasting date, i.e. 1920. In addition, even if the model’s

long-run predictions are flawed, it could be a useful predictive
tool on intermediate time scales, e.g. 30 years, where unpre-
dictable technological jumps are less likely to make past data
unrepresentative of future outcomes. Although 30 years may
seem a short forecast horizon for a problem as long-lived as cli-
mate change, fully 50% of the value of the SCC is determined
by outcomes over this period under common parameteriza-
tions of the DICE model [23].4 To address these issues, Fig. 2
extends the analysis of Fig. 1, summarizing the model’s pre-
dictive performance at each year in the data series, for 30 and
50 year training and confirmation windows. For each year in
the period 1900-1980 (1920-1960) the model was trained on
the previous 30 (50) years of data, and the estimated model
used to forecast GDP for the next 30 (50) years. Although the
model performs well in some 30 year periods, in most years
the realized growth outcome falls outside of the forecasted in-
terval. Arguably, the model is thus not a successful predictive
tool on this shorter time scale, despite less sensitivity to large
unpredictable shifts in the technological frontier. For 50 year
forecasts, the model performs well post World War II, but
poorly in the pre-war period. This shows that the illustra-
tion of model performance depicted in Fig. 1 is not excep-
tional. The 50 year forecasts further illustrate the sensitivity
of growth projections to structural breaks of the kind that fol-
lowed the war, and demonstrate the value of a long historical
perspective. Had we only evaluated the model on the most
recent 60 years of data we would likely have overestimated its
long-run predictive performance.

Our analysis suggests that the version of the neoclassical
growth model that DICE relies on could be subject to struc-
tural errors on the temporal scales relevant to climate polices.
The Ramsey growth model, and more complex models that
endogenize the process of technical change, have been prof-
itably applied to a variety of empirical questions in macroe-
conomics. It is thus important to understand how the use
of these models in DICE and other climate applications dif-
fers from their more standard empirical applications. Growth
models are usually used in empirical applications to explain
cross-country differences between the historical growth paths
of different countries. In BC-IAMs these models are used to
predict the absolute level of global or regional economic output
over the coming centuries. When neoclassical growth models
are used to explain differences in past outcomes across coun-
tries, technical change, in the form of the growth rate of TFP,
is formally nothing more than a residual in a linear regression.
It is the part of empirical growth data that is not explained
by the endogenous factors in the model, i.e. the productiv-
ity of capital and labour. If however such models are used to
make predictions, as in DICE, the future realizations of TFP
must also be predicted. This requires us to posit an explicit
quantitative model of the evolution of TFP over the coming
decades. Yet we have no law-like theory of long-run technical
change that parallels the predictive successes that have been
achieved in the physical sciences [24]. This seems unlikely to
change in the near future, and more sophisticated models that
endogenize the process of technological change also seem un-
likely to provide high-powered predictive tools, despite their

3DICE assumes that the growth rate of TFP is an exponential function that slowly decays from an
initial value to a smaller long-run value. The free parameters are the initial growth rate and the rate
of decline of the growth rate. A large literature has developed endogenous growth models, which
relate the evolution of TFP to endogenous economic variables (see [19], and [20] for a review of
applications to climate economics). Since we wish to stay as close as possible to the methodology
employed by DICE, we do not investigate the empirical performance of these models here, but see
comments below and Section 5 in the Supporting Information.
4This finding is dependent on choices of welfare parameters, which in turn affect the social discount
rate. All else equal, lower (higher) social discount rates make SCC values more (less) dependent on
forecasts of the near future.

Footline Author PNAS Issue Date Volume Issue Number 3
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more nuanced representation of its causes.5 Just as natural
selection explains differences in species’ phenotypes without
predicting future adaptations, so growth theory has proven to
be an insightful tool for explaining the causal determinants of
cross-country difference in historical growth outcomes. Pre-
diction, however, is a different matter.

Implications for the development and use of BC-IAMs

in quantitative policy applications
What can be concluded from this first example of a model con-
firmation exercise for the economic components of a BC-IAM?
Of course, DICE is a single (albeit prominent) example of a
BC-IAM, and its implementation of the Ramsey model a sin-
gle (albeit frequently deployed) representation of the process
of long-run economic growth. Our findings are not necessar-
ily representative of how other growth models might fare in
similar confirmation exercises, the structural validity of other
BC-IAMs, or the performance of their economic components.
Our point however is that because most of the economic com-
ponents of BC-IAMs have not, to our knowledge, been sub-
jected to empirical tests of structural validity using historical
data series, we do not know what their empirical status is for
quantitative policy applications. Without testing models in
hindcasting tasks closely related to the uses we wish to put
them to today, we cannot gauge the extent of any possible
model errors.

We close with four recommendations for the testing and use
of BC-IAMs in policy applications. First, those components
of BC-IAMs whose structural properties can be meaningfully
tested using historical data should be. Confirmation exercises
can build confidence in model components that perform well
historically, and indicate the range of model parameters that
needs to be considered for a given model to have a chance of
making sensible out-of-sample forecasts. If no such parame-
ter range can be identified from such an exercise, the model’s
structural assumptions might need to be revised for the pur-
poses of policy applications. Calibration (a within sample ex-
ercise) and parametric uncertainty quantification techniques
are not substitutes for this procedure, as we need to test the
out-of-sample performance of a model’s structural assump-
tions. This is not to say however that untested or structurally
flawed models cannot be useful for illustrating qualitative con-
ceptual points about alternative modeling assumptions. Many
BC-IAMs are used profitably for this purpose in the academic
community today, and none of our points undermines the value
of such modeling exercises if they are interpreted with suffi-
cient carefulness. The hurdles a model must jump over to
qualify for application to quantitative policy choices should
however be more demanding.

Second, the economic components of BC-IAMs should be
based on testable structural hypotheses, in so far as this is
possible. The confirmation exercise we conducted with the

DICE model was only possible because the model is specified
in a self-contained manner, and with sufficient structural de-
tail to allow it to be meaningfully compared to data. This
is a great virtue of the DICE model. While in this case our
confirmation exercise raised the possibility of quantitatively
meaningful errors when applying this model to policy ques-
tions, we were at least able to ask (and partially answer) the
question: what risks might we run by assuming that the world
behaves in line with the model? Models that rely more heav-
ily on external scenarios for key economic components do not
allow for this kind of empirical testing. If a model component
cannot be tested, we cannot hope to gain confidence in it ex
ante, even if it in fact turns out to perform well ex post. Thus,
although a set of exogenous scenarios could turn out to cap-
ture our underlying uncertainty, we can never estimate what
risks we might run by assuming this to be the case when mak-
ing decisions today. The practice of making the assumptions
in BC-IAMs testable could help to build confidence in their
outputs, and filter out plausible from implausible structural
assumptions.6

Third, policy choices should be based on estimates from
many plausible, structurally distinct, models. As we have
noted there are many important aspects of IAMs that we can-
not hope to test empirically today, as the relevant verification
data will only be realized long after current policies are en-
acted. There is thus substantial irreducible uncertainty about
some of the core structural relationships in BC-IAMs. Explor-
ing a wide range of structural assumptions – not just about
overall technological change and economic growth, but also
about climate damages and abatement costs – is crucial if we
wish the policy prescriptions from modeling exercises to more
accurately reflect the extent of our uncertainty about the con-
sequences of climate policies. In our view, and that of others
[5, 29], the set of BC-IAMs that are commonly applied in cur-
rent policy analysis may underestimate the risks of inaction
on climate change, in part because of a comparative lack of
structural heterogeneity.

Fourth, the decision tools that are used to select policies
should reflect the fact that our models are at best tentative
predictive tools. Modern decision theory has developed a rich
suite of tools for rational decision-making under deep uncer-
tainty that allow us to express our lack of confidence in model
output, yet most policy analysis with BC-IAMs still relies on
decision tools that treat the uncertainty in climate policy as if
it were of the same character as tossing a coin or rolling a die
[30]. We should instead accept the limits of our knowledge,
and use decision tools that fit the profoundly uncertain task
at hand.
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Fig. 1. Long-run forecasts of US total factor productivity (left panel) and economic output

(right panel) from the economic growth model used by DICE. The model was trained on the

data from 1870-1920, and projections made in 1920. Solid red lines are realized data values.

Dashed black lines are forecasts generated using model parameter values at the boundary of

estimated 95% confidence intervals, and solid black lines (left panel) show the fit of the TFP

model to the data over the training window.
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Fig. 2. 30 year (left panel) and 50 year (right panel) forecasts of US economic growth

from the economic growth model used by DICE. For the left panel the solid red line at date T
denotes the realized compound annual growth rate over the period [T, T + 30]. The dashed

black lines at date T denote the forecasted interval for the growth rate over [T, T +30] when

the model is trained on data from [T − 30, T ], using the same estimation and prediction

methodology as in Fig. 1. The right panel depicts the equivalent for 50 year training and

verification windows.
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