

José Luis Palacios and Daniel Quiroz

Birth and death chains on finite trees:
computing their stationary distribution and
hitting times

Article (Accepted version)
(Refereed)

Original citation: Palacios, José Luis and Quiroz, Daniel (2016) Birth and death chains on finite
trees: computing their stationary distribution and hitting times. Methodology and Computing in
Applied Probability, 18 (2). pp. 487-498. ISSN 1387-5841
DOI: 10.1007/s11009-014-9436-1

© 2015 Springer Science+Business Media

This version available at: http://eprints.lse.ac.uk/66937/
Available in LSE Research Online: June 2016

LSE has developed LSE Research Online so that users may access research output of the School.
Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or
other copyright owners. Users may download and/or print one copy of any article(s) in LSE Research
Online to facilitate their private study or for non-commercial research. You may not engage in further
distribution of the material or use it for any profit-making activities or any commercial gain. You may
freely distribute the URL (http://eprints.lse.ac.uk) of the LSE Research Online website.

This document is the author’s final accepted version of the journal article. There may be differences
between this version and the published version. You are advised to consult the publisher’s version if
you wish to cite from it.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSE Research Online

https://core.ac.uk/display/42486711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://link.springer.com/journal/11009
http://link.springer.com/journal/11009
http://dx.doi.org/10.1007/s11009-014-9436-1
https://www.springer.com/gp/about-springer
http://eprints.lse.ac.uk/66937/

Birth and death chains on finite trees: computing

their stationary distribution and hitting times

José Luis Palacios

Department of Electrical and Computer Engineering

The University of New Mexico

Albuquerque, NM 87131, USA

e-mail: jpalacios@unm.edu

tel: 505-2770111; fax: 505-2771439

and

Daniel Quiroz

Department of Mathematics

London School of Economics

London WC2A 2AE, UK

e-mail: D.Quiroz@lse.ac.uk

tel.: +44-207-9557732; fax: +44-207-9557925

Abstract

Every birth and death chain on a finite tree can be represented

as a random walk on the underlying tree endowed with appropriate

conductances. We provide an algorithm that finds these conductances

in linear time. Then, using the electric network approach, we find the

values for the stationary distribution and for the expected hitting times

between any two vertices in the tree. We show that our algorithms

improve classical procedures: they do not exhibit ill-posedness and

the orders of their complexities are smaller than those of traditional

algorithms found in the literature.

1

Key Words: Effective resistance, Conductance, Star graph, Hitting times

1991 Mathematics Subject Classification. Primary: 60J15; secondary:

60C05.

2

1 Introduction.

Birth and death (B. D.) chains on trees are natural generalizations of or-

dinary B. D. chains, where the transitions occur from any given vertex of

a tree to either itself or to any other neighboring vertex in the tree. The

ordinary birth-and-death processes occur on the linear graph. The research

involving B. D. chains on trees (Bertoncini 2011, Fayolle et al. 2002, Ma

2010) appears to be directed to infinite (random or deterministic) trees and

is related to the questions of whether the process is transient or recurrent

and, in the latter case, whether closed form formulas can be found for the

stationary distribution. In this article we will be concerned with B.D. chains

which occur on finite trees, and we will find the values for the stationary dis-

tribution and for the hitting times between any two arbitrary vertices. The

idea is to represent a B.D. chain on a finite tree as a random walk on the un-

derlying tree, by means of an algorithm that assigns suitable conductances

to the edges of the tree, and then use known formulas for the stationary

distribution and for the hitting times given in terms of the conductances.

Since the appearance of the book of Doyle and Snell (1984), a great

deal of attention has been devoted to the relation between electric networks

and random walks on graphs. In particular, the computation of station-

ary distributions and expected hitting times sometimes is greatly simplified

by this electric network approach, which consists of thinking of the edge

between vertices v and u as a resistor with resistance rvu (or conductance

Cvu = 1/rvu); then we can define the random walk on the connected undi-

rected graph G = (V,E), as the first order Markov chain Xn, n ≥ 0, that

from its current vertex v jumps to the neighboring vertex u with probability

pvu = Cvu/C(v), where C(v) =
∑

w:w∼v Cvw, and w ∼ v means that w is a

neighbor of v. Note that we can assign a (fictitious) conductance Czz from

a vertex z to itself, giving rise to a transition probability from z to itself.

We denote by EaTb the expected value, starting from the vertex a, of the

hitting time Tb of the vertex b, defined by

Tb = inf{n ≥ 0 : Xn = b}.

3

https://www.researchgate.net/publication/45925179_Cut-off_and_Escape_Behaviors_for_Birth_and_Death_Chains_on_Trees?el=1_x_8&enrichId=rgreq-1fac22e252394cb94d592f7de3b169a9&enrichSource=Y292ZXJQYWdlOzI3MzMxNTA1OTtBUzoyMDc2NTcyNDQ4NjA0MTZAMTQyNjUyMDc1MzIxNg==
https://www.researchgate.net/publication/227320707_Birth-death_processes_on_trees?el=1_x_8&enrichId=rgreq-1fac22e252394cb94d592f7de3b169a9&enrichSource=Y292ZXJQYWdlOzI3MzMxNTA1OTtBUzoyMDc2NTcyNDQ4NjA0MTZAMTQyNjUyMDc1MzIxNg==
https://www.researchgate.net/publication/227320707_Birth-death_processes_on_trees?el=1_x_8&enrichId=rgreq-1fac22e252394cb94d592f7de3b169a9&enrichSource=Y292ZXJQYWdlOzI3MzMxNTA1OTtBUzoyMDc2NTcyNDQ4NjA0MTZAMTQyNjUyMDc1MzIxNg==

The stationary distribution π = {πz}z∈V is the unique row probability

vector that satisfies

πP = π, (1)

where P = (pvu)v,u∈V is the transition probability matrix of the process.

In this context we have:

Theorem 1 For a random walk on a finite tree G we have

πz =
C(z)∑
z C(z)

(2)

and for any a, b ∈ G and P the unique path of vertices between a and b we

have

EaTb =
∑
x∈P

Rx,bC
x, (3)

where Rx,b is the effective resistance between x and b, Cx =
∑

w∈Gx
C(w),

Gx is the connected component of G − E(P) that contains x and E(P) is

the set of edges in the path P .

Derivations of (2) and (3) can be read in Doyle and Snell (1984) and Palacios

(2009), respectively.

Doyle and Snell also noted that a finite ergodic Markov chain can be

represented as a random walk on a finite graph with conductances if and only

if the Markov chain is reversible. A stochastic process is said to be reversible

if the future of the process at any given time has the same distribution as

the process seen in reversed time. In particular, reversible Markov chains

are characterized by Kolmogorov’s criteria in the following way (see Kelly

(1979)).

Lemma 1 A finite ergodic Markov chain on states {1, ..., N}, is reversible

if and only if its transition probabilities satisfy

p(j1, j2)p(j2, j3) . . . p(jk−1, jk)p(jk, j1)

= p(j1, jk)p(jk, jk−1) . . . p(j3, j2)p(j2, j1)

for any finite sequence of states j1, j2, . . . , jk ∈ {1, 2, . . . , N}.

4

https://www.researchgate.net/publication/44563538_Reversibility_and_stochastic_networks_FP_Kelly?el=1_x_8&enrichId=rgreq-1fac22e252394cb94d592f7de3b169a9&enrichSource=Y292ZXJQYWdlOzI3MzMxNTA1OTtBUzoyMDc2NTcyNDQ4NjA0MTZAMTQyNjUyMDc1MzIxNg==
https://www.researchgate.net/publication/44563538_Reversibility_and_stochastic_networks_FP_Kelly?el=1_x_8&enrichId=rgreq-1fac22e252394cb94d592f7de3b169a9&enrichSource=Y292ZXJQYWdlOzI3MzMxNTA1OTtBUzoyMDc2NTcyNDQ4NjA0MTZAMTQyNjUyMDc1MzIxNg==
https://www.researchgate.net/publication/23777056_On_hitting_times_of_random_walks_on_trees?el=1_x_8&enrichId=rgreq-1fac22e252394cb94d592f7de3b169a9&enrichSource=Y292ZXJQYWdlOzI3MzMxNTA1OTtBUzoyMDc2NTcyNDQ4NjA0MTZAMTQyNjUyMDc1MzIxNg==
https://www.researchgate.net/publication/23777056_On_hitting_times_of_random_walks_on_trees?el=1_x_8&enrichId=rgreq-1fac22e252394cb94d592f7de3b169a9&enrichSource=Y292ZXJQYWdlOzI3MzMxNTA1OTtBUzoyMDc2NTcyNDQ4NjA0MTZAMTQyNjUyMDc1MzIxNg==

Hence, as trees are acyclic, B.D. chains on trees are reversible and there-

fore, they can be represented as random walks on the underlying tree en-

dowed with conductances.

It was shown in Palacios and Tetali (1996) that every ordinary birth-

and-death Markov chain can be represented as a random walk on the linear

graph with vertices 0, 1, . . . , N and conductances Ck, 1 ≤ k ≤ N , between

vertices k − 1 and k given by

Ck =
p1 · · · pk−1
q1 · · · qk−1

C1, 2 ≤ k ≤ N, (4)

where C1 is arbitrary. C00 = s0
p0
C1 and conductances from any vertex to

itself given by

Ckk =
sk
qk
Ck, 1 ≤ k ≤ N. (5)

This pair of equations, which allows to explicitly find conductances on

the linear graph in terms of the transition probabilities, is one of the main

inspirations of our algorithm. The next lemma, which shows how to assign

conductances starting from a vertex that branches out in more than two

directions, is the other source of inspiration.

Lemma 2 Any B.D. chain on the star graph with center N and leaves

1, 2, . . . , N − 1, N ≥ 2, and transition probabilities

p(N, i) = pi, p(i,N) = qi, 1 ≤ i ≤ N − 1, p(i, i) = si, 1 ≤ i ≤ N

can be represented as a random walk on the star graph with conductances

CNi =
C1pi
p1

, 1 ≤ i ≤ N − 1, CNN =
C1sN
p1

, (6)

Cii =
C1sipi
qip1

, 1 ≤ i ≤ N − 1, (7)

where C1 > 0 is arbitrary.

Proof. Left to the reader.

5

1 2 3

4 5

6
1/3 1/5 1/4

1/3

1/2 1/2

2/3

1/5

3/5

1/8
3/8 2/3

1/4

1/6

1/3

1/2

1 2 3

4 5

61/2 1 6

9/2

18 12

1 3

9

6

12

Transition probabilities

Conductances

Figure 1: From transition probabilities to conductances.

2 The algorithm

To avoid trivialities, all B.D. chains considered are ergodic Markov chains,

that is, there are non-zero probabilities to go from any given vertex to any

neighboring vertex and back to the original vertex. We will denote by p(v, u)

the transition probability from v to u and the underlying tree will be G =

(V,E), and recall that we write v ∼ u if v and u are neighbors. Then we

6

can describe the algorithm that expresses the chain as a random walk on

the tree with appropriate conductances on the edges as follows:

1. Take any vertex v ∈ V of the tree as the root, and consider any u ∼ v.

Assign an arbitrary (positive) value to Cvu.

2. Letting Cvu play the role of C1 in formulas (6), obtain the conductance

Cvv and all conductances Cvw where w is a neighbor of v, i.e.:

Cvw =
Cvup(v, w)

p(v, u)
, w ∼ v; Cvv =

Cvup(v, v)

p(v, u)
.

3. Taking v as the root, traverse the vertices of the tree using Breadth

First Search (BFS). Every time a vertex not previously visited is reached,

only one of its adjacent conductances has being assigned. Take this conduc-

tance as the C1 used to obtain all other adjacent ones.

The fact that the procedure works, that is, the fact that we can recover

the transition probabilities from the conductances can be checked easily

since

C(v) =
∑
w∼v

Cvw =
Cvu

p(v, u)
,

and then the motion of the random walk from v to w is dictated by

Cvw

C(v)
=
Cvup(v, w)

p(v, u)

p(v, u)

Cvu
= p(v, w),

when v ∼ w and

Cvv

C(v)
=
Cuvp(v, v)

p(v, u)

p(v, u)

Cvu
= p(v, v),

as desired.

This procedure stops when all leaves, and thus all vertices, have been

visited. Since trees are acyclic no vertex is visited more than once. The

number of operations is a linear function of the number of vertices N : in

this BFS algorithm, for each vertex v only one iteration is made; the number

of operations per iteration is, at most, 2d(v), where d(v) is the degree of v.

7

This number of operations is achieved when there is a positive transition

probability from vertex v to itself. In total, the number of operations is at

most
∑

v∈V 2d(v) = 4|E| = 4N − 4.

Figure 1 shows an example of a B.D. chain on a tree with certain tran-

sition probabilities and the same tree with the conductances assigned when

the algorithm starts at vertex 1 and C12 = C1 = 1. The next calculation is

then C11 = C12p(1,1)
p(1,2) = 1/3

2/3 = 1
2 . The next is C23 = C12p(2,3)

p(2,1) = 3/5
1/5 = 3. The

next is C22 = C23p(2,2)
p(2,3) = 3/5

3/5 = 1, etc.

Once the transition probabilities have been turned into conductances, the

stationary distribution of the process on the tree is found with formula (2),

a computation which is obviously linear in N . Also, for any pair of vertices

a and b, the hitting time EaTb is found by computing (3), a procedure whose

linearity in N is a bit more involved to justify: the summation in (3) runs

over the edges of the unique path between a and b, and the computation

of Cx involves adding conductances in Gx, the connected component of

G − E(P) that contains x; at the end, every edge of the tree is taken into

account at most once during the calculation of (3).

One should also take into account the storage complexity: how much

computer memory is used to store the data of the tree (first the transition

probabilities, then the conductances) expressed in terms of the size N of the

tree. It is natural to store transition probabilities in a matrix, and conduc-

tances in the form of an adjacency matrix with weights on the edges. But

since both matrices are sparse, having m non-zero elements with m ≤ 3N−2,

they can be stored in a smaller data structure. Indeed, each matrix can be

represented with the help of three vectors a = (ai)1≤i≤m, b = (bi)1≤i≤m,

and c = (ci)1≤i≤N+1 as follows: a contains all non-zero elements ordered by

row, and bi is the column to which the ai belongs. The vector c satisfies

that c1 = 1 and, for 2 ≤ i ≤ N + 1, ci equals ci−1 plus the number of non-

zero elements in the (i− 1)-th row of the matrix. So, in order to access the

(i, j) element of a matrix compressed in this way, one should check whether

bk = j for any ci ≤ k < ci+1. If it is so, then the (i, j) element of the matrix

8

is ak. A different explanation of the same structure, which we believe to be

folklore, and an example of its use, can be found in Dongarra (2000).

By avoiding the use of matrices in an explicit way, the memory used by

this data structure consists of a fixed number of scalars and a fixed number of

vectors of length at most 3N−2. Therefore, the storage requirement for the

tree data is a linear function of N . The process of accessing elements in these

data structures does not affect the linearity of the number of operations.

Numerical examples are provided in Section 3 to exemplify this.

These linear procedures are substantially more efficient that the classical

ones. Indeed, finding the stationary distribution of a finite Markov chain on

N states entails solving the (redundant) N × N system given by (1) with

the additional equation ∑
z

πz = 1.

The brute force procedure to solve this system is a costly algorithm of order

roughly N3, though there are known methods for solving this type of linear

systems of equations which have smaller order of complexity as they take

advantage of the sparsity of the matrix P. We will show in Section 3 that

our linear procedures behave better than these methods.

Additionally, the classical procedures to obtain the hitting times involve

matrix inversions, therefore having complexity roughly N3 and sometimes

exhibiting ill-posedness. That is the case, for instance, when we take W to

be the matrix with all rows are identical to π, and then from the fundamental

matrix Z given by

Z = {Zij}i,j∈V = (I−P + W)−1,

we obtain (see Grinstead and Snell, 1997)

EaTb =
Zbb − Zab

πb
.

One final note: our algorithm obtains a single hitting time in linear time,

and therefore if we wanted to obtain all hitting times then the complexity

of our procedure would seem to become N3. We will show in section 4,

9

https://www.researchgate.net/publication/260244200_Introduction_To_Probability?el=1_x_8&enrichId=rgreq-1fac22e252394cb94d592f7de3b169a9&enrichSource=Y292ZXJQYWdlOzI3MzMxNTA1OTtBUzoyMDc2NTcyNDQ4NjA0MTZAMTQyNjUyMDc1MzIxNg==

however, that we may reduce the complexity of computing all hitting times

down to N2.

3 Numerical examples

In order to test the speed and precision of our algorithm we created a

procedure that randomly generates birth-and-death chains on trees. This

procedure is based on algorithms found in A. J. Quiroz (1989) which ran-

domly generate trees, either with a fixed number k of descendants per vertex

(k−ary trees, which we call type k trees) or trees with no restriction on the

number of descendants per vertex (which we call free trees). Our procedure

takes the resulting tree and randomly assigns non-zero transition probabili-

ties between neighboring vertices. All the calculations were implemented in

Fortran using Silverfrost FTN95.

3.1 About the computation of the stationary distribution

We generated trees of several thousand vertices using this procedure. For

each of them, the stationary distribution π∗ was computed and

max
u∈V

|(π∗ − π∗P)u|
π∗u

,

that is, the maximum relative error, was recorded. The results follow:

10

N Type Execution time (sec.) Max. rel. error

1,001 free 0.062 1.658 E-07

5,000 free 0.390 2.463 E-07

15,000 free 1.138 2.463 E-07

60,393 free 4.773 2.288 E-07

1,001 1 0.078 1.834 E-07

5,000 1 0.374 1.846 E-07

3,165 2 0.249 1.907 E-07

103,059 2 8.361 2.377 E-07

50,686 3 4.258 2.370 E-07

250,003 3 20.701 3.022 E-07

24,893 7 2.121 2.766 E-07

75,529 24 6.474 4.445 E-07

11,608 73 1.060 5.306 E-07

60,001 600 ≈ N/100 5.179 9.586 E-07

2,001 200 ≈ N/10 0.171 4.258 E-07

9,841 1, 649 ≈ N/6 0.842 1.171 E-06

6,523 2, 174 ≈ N/3 0.592 1.441 E-06

15,151 5, 050 ≈ N/3 1.388 1.566 E-06

7,003 3, 501 ≈ N/2 0.624 8.569 E-07

5,684 5, 683 ≈ N 0.468 1.714 E-07

12,031 12, 030 ≈ N 1.457 1.457 E-06

Though our method is recursive, using previously obtained conductances

in order to compute new ones, the result for the stationary distribution

appears to be very precise even in graphs of tens of thousands of vertices.

As the fourth column shows, the maximum relative error seems to grow as

the type grows to N , that is, as the number of descendants per vertex grows

to N ; but it stays below 10−5. This shows how reliable this method is for

calculating the stationary distribution.

The execution time stays below 1 second for graphs of less than 10,000

vertices. It stays below 10 seconds for graphs of size up to 100,000 and only

11

reaches 20 seconds for the 250,003 vertex three-ary tree. Therefore, even in

these big graphs, the computation of the stationary distribution is made in

a reasonably short time.

3.2 Linearity of the computation of a single hitting time and

the stationary distribution

The algorithm provided in Section 2 has been shown to be linear under the

assumption that there is no relevant computational cost of extracting data

from the matrix of transition probabilities P and the matrix which stores

the conductances. However, we mentioned that the storage complexity could

also be made linear by representing each matrix in the form of 3 vectors of

length no greater than 3N − 2. Extracting data from this vector struc-

ture involves more computations. Here we will exemplify that the method

presented is still linear when the data is stored in this way.

In order to visualize the complexity, 10 trees of size N = 36, 10 of size

37, and 10 of size 38 were generated randomly with no restriction on the de-

gree of their vertices. The transition probability matrix P was stored in the

form of three vectors, as specified in Section 2. We measured the execution

time of the following three procedures: the computation of corresponding

conductances and their storage (also in the form of three vectors), the com-

putation of the stationary distribution and the computation of one hitting

time. Then the logarithm of the size of the trees, N , was plotted against the

logarithm of the execution time, t. The plot, shown in Figure 2, was made

using MATLAB and shows the linearity of the relationship between N and t

for the proposed method, for the slope of the line made by the corresponding

dots is close to one. This implies the individual experimental linearity of

obtaining the conductances of the random walk, the computation of a single

hitting time and the computation of the stationary distribution.

In the case of the computation of the stationary distribution we men-

tioned that there are methods for solving sparse linear systems of equations

that could bring down the cost of solving πP = π with the additional equa-

12

Figure 2: Experimental complexity of the algorithms.

tion
∑

i πi = 1. In T. Davies (2006) the recommended method for this type

of systems is the QR decomposition with Givens’ rotation. This book also

mentions that MATLAB’s backslash (mldivide) executes this method auto-

matically when the input matrix is sparse and has more rows than columns.

For the same trees mentioned before the time taken by this method to solve

the corresponding system was recorded for each of them. The log-log plot

of the size of the trees against the execution time is also shown in Figure 2.

From Figure 2 we can see that the experimental order of the complexity

of obtaining the stationary distribution through QR decomposition is clearly

greater than the complexity of the method presented in this paper, and that

it is approximately N2.

13

3.3 About the precision on the computation of the hitting

times

If the assignment of conductances is started from different vertices, with the

same initial arbitrary conductance, the resulting conductances in the graph

will be different. Even if the computation of the hitting times should not be

affected by this, the results obtained numerically for the hitting times could

differ when starting the algorithm from different vertices. In order to look

for this type of error, the algorithm of assigning conductances was carried

out starting from 5 different vertices. Then 4 different hitting times where

obtained (the choice, from left to right in the tables, was the following: (i)

both the start and the finish vertices are leaves (ii) only the start is a leaf

(iii) only the end is a leaf (iv) neither the start nor the end are leaves).

The maximum relative difference between the obtained hitting times was

computed and set on the last row of the tables. This was performed for one

graph of size N=100 and one of size N=500, both with no restriction on the

degree of their vertices.

Hitting times obtained through proposed method, N=100

Initial ver-

tex

T88E52 T23E44 T84E15 T63E6

15 1.42380

E+07

4.91679 12424.5 2.29856

E+06

31 1.42380

E+07

4.91679 12424.5 2.29856

E+06

47 1.42380

E+07

4.91679 12424.5 2.29856

E+06

83 1.42380

E+07

4.91679 12424.5 2.29856

E+06

95 1.42380

E+07

4.91679 12424.5 2.29856

E+06

Max. Rel.

Dif.

0 0 0 0

14

Hitting times obtained through proposed method, N=500

Initial ver-

tex

T333E470 T201E159 T285E89 T116E431

61 1.43071

E+12

846.833 2.18075

E+13

6.86453

E+15

143 1.43071

E+12

846.333 2.18075

E+13

6.86453

E+15

275 1.43071

E+12

846.833 2.18075

E+13

6.86453

E+15

317 1.43071

E+12

846.833 2.18075

E+13

6.86453

E+15

469 1.43071

E+12

846.833 2.18075

E+13

6.86453

E+15

Max. Rel.

Dif.

0 0 0 0

For both graphs the proposed method behaves ideally, presenting no

difference, as the initial leaf changes, for any of the hitting times computed.

The classical procedure for obtaining hitting times needs the matrix

W, with all rows identical to π. If we obtain π through our algorithm,

then we can make the classical procedure depend on the conductances and,

therefore, on the initial leaf. Thus, the same study was made for the classical

procedure in order to see how the results could be affected by the choice of

the initial leaf. The same graph of size 500 was used for this case. This

gives a comparison point for the classical and the proposed method in the

sense of ill-posedness.

The inversion of the matrix needed for this classical method was done

using inv function of GNU Octave.

Hitting times obtained through classic method, N=500

15

Initial ver-

tex

T333E470 T201E159 T285E89 T116E431

61 1.43039

E+12

-369.163 1.01810

E+12

6.86351

E+15

143 1.43039

E+12

-369.162 1.01810

E+12

6.86351

E+15

257 1.43039

E+12

-369.175 1.01810

E+12

6.86351

E+15

317 1.43039

E+12

-368.646 1.01810

E+12

6.86351

E+15

469 1.43039

E+12

-368.646 1.01810

E+12

6.86351

E+15

Max. Rel.

Dif.

0 1.43292

E-03

0 0

The classical method also behaves ideally for three of the hitting times.

But for T201E159 the relative difference reaches 1.4 E-03, and the hitting

time computed is negative, something which is impossible. It should also be

noticed that both methods gave distinct results in the case of T285E89, even

though each method was unaffected by the choice of the initial leaf.

The fact that the classic method may produce a negative hitting time

shows clearly how unreliable a method which involves the inversion of a

matrix can be. Thus, the difference in the results obtained by both methods

seems to be more related to imprecisions of the classical method, than to

imprecisions of the proposed method, which seems to be very stable.

Regarding the computation of hitting times, it should be noted that,

sometimes, when we exceed a size of 50,000 and even sometimes for smaller

graphs, the proposed algorithm returns a floating point error. This error

is associated with the equations in (6). As the conductances used in this

formulas can get very small, if the term they have to be multiplied by is

also very small we might get a numerical 0. Another possibility is that these

conductances are very large (we have noticed in our experiments that the

16

distribution of these conductances, far from the root, has a very heavy tail)

and if the term they have to be multiplied by is also very large we can get

an overflow error.

4 Computing all hitting times in a tree

In this section we shall assume that the B.D. chain on a tree has been turned

into a random walk on the same tree through the linear algorithm discussed

in the previous sections. Restricted to the case where there are no loops (no

transition probability from a state to itself), we want to show that the com-

putation of all hitting times can be brought down to an N2 complexity. This

is achieved by first computing all hitting times between adjacent vertices,

and then computing the hitting times between more distant vertices.

Given any tree, it is well known that we can find a traversal walk such

that all its edges are traversed exactly once in each direction (see Tarry,

1895). In the first part of this procedure we obtain the hitting times between

neighbors, and to do so we use this traversal walk. When the edge (i, j) is

first visited (and assuming the walk visits vertex i before vertex j), EiTj is

computed by the linear implementation of formula (3) introduced in Section

2. Eventually, this edge will be visited in the opposite direction and then

EjTi will be obtained. Since computing each hitting time is linear and 2N−2

hitting times are to be computed, this first step of the procedure is of order

N2 regarding the number of operations. The hitting times obtained are to

be stored in a matrix, say M , such that Mi,j = EiTj , and so this part is also

of order N2 as far as the storage complexity is concerned.

Since we are restricted to the case were there are no loops, we can apply

the following formula to obtain the remaining hitting times:

ExTy = ExTv1 + Ev1Tv2 + · · ·+ EvnTy (8)

where v1, v2, ..., vn is the (unique) path of length n+ 1, n ≥ 1 between x and

y.

17

Given a fixed vertex x we compute ExTy for every other vertex y through

the following procedure:

1. Mx,x = ExTx is assigned the value 0.

2. A BFS search starts with x as the root.

3. Given that the root is in generation 0 and its neighbors in generation 1,

for every vertex i in generation k ≥ 1, ExTi is obtained as ExTp+EpTi,

where p is the“parent” of i, belonging to generation k − 1. Mx,i :=

ExTi.

The BFS search visits every vertex once and, therefore, it is linear in N . But

since we must do that search for every vertex x, this part of the procedure

is quadratic in the number of operations. Now since the first part was

also quadratic and both parts are performed in a sequence, then the whole

procedure is of order N2 regarding the number of operations. Finally, since

the only relevant element of storage is the matrix M of hitting times, the

procedure is also of order N2 regarding the storage complexity.

References

Bertoncini, O. (2011) Cut-off and escape behavior for birth and death

chains on trees, Lat. A. J. Probab. Math. Stat. Phys. 8, 149-162.

Davis, T. A. (2006) Direct Methods for Sparse Linear Systems. SIAM

Book Series on the Fundamentals of Algorithms. SIAM, Philadelphia.

Dongarra, J. (2000) Sparse Matrix Storage Formats. In Z. Bai, J. Dem-

mel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors, Templates for

the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM,

Philadelphia.

18

https://www.researchgate.net/publication/45925179_Cut-off_and_Escape_Behaviors_for_Birth_and_Death_Chains_on_Trees?el=1_x_8&enrichId=rgreq-1fac22e252394cb94d592f7de3b169a9&enrichSource=Y292ZXJQYWdlOzI3MzMxNTA1OTtBUzoyMDc2NTcyNDQ4NjA0MTZAMTQyNjUyMDc1MzIxNg==
https://www.researchgate.net/publication/45925179_Cut-off_and_Escape_Behaviors_for_Birth_and_Death_Chains_on_Trees?el=1_x_8&enrichId=rgreq-1fac22e252394cb94d592f7de3b169a9&enrichSource=Y292ZXJQYWdlOzI3MzMxNTA1OTtBUzoyMDc2NTcyNDQ4NjA0MTZAMTQyNjUyMDc1MzIxNg==

Doyle, P. G. and J. L. Snell (1984) Random walks and electrical networks.

The Mathematical Association of America, Washington, D.C.

Fayolle, G., Krikun, M., Lasgouttes, J. M. (2004) Birth and death pro-

cesses on certain random trees: classification and stationary laws, Probability

Theory and Related Fields, 128, 386-418.

Grinstead, C. M, Snell, J. L. (1997) Introduction to Probability, second

edition, American Mathematical Society, Providence, RI.

Kelly, F. P. (1979) Reversibility and Stochastic Networks. John Wiley,

Chichester.

Ma, Y. (2010) Birth-death processes on trees, Science China, Mathemat-

ics, 53, 1-10.

Palacios, J. L. and Tetali, P. (1996) A note on expected hitting times for

birth and death chains, Statistics & Probability Letters, 30, 119-125.

Palacios, J. L. (2009) On hitting times of random walks on trees, Statis-

tics & Probability Letters, 79, 234-236.

Quiroz, A. J. (1989) Fast random generation of binary, t-ary and other

types of trees, Journal of Classification, 6, 223-231.

Tarry, G. (1895) Le problème des labyrinthes, Nouvelles Annales de

Mathématiques, ser. 3, 14, 187-190.

19

All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.

https://www.researchgate.net/publication/44563538_Reversibility_and_stochastic_networks_FP_Kelly?el=1_x_8&enrichId=rgreq-1fac22e252394cb94d592f7de3b169a9&enrichSource=Y292ZXJQYWdlOzI3MzMxNTA1OTtBUzoyMDc2NTcyNDQ4NjA0MTZAMTQyNjUyMDc1MzIxNg==
https://www.researchgate.net/publication/44563538_Reversibility_and_stochastic_networks_FP_Kelly?el=1_x_8&enrichId=rgreq-1fac22e252394cb94d592f7de3b169a9&enrichSource=Y292ZXJQYWdlOzI3MzMxNTA1OTtBUzoyMDc2NTcyNDQ4NjA0MTZAMTQyNjUyMDc1MzIxNg==
https://www.researchgate.net/publication/23633008_A_note_on_expected_hitting_times_for_birth_and_death_chains?el=1_x_8&enrichId=rgreq-1fac22e252394cb94d592f7de3b169a9&enrichSource=Y292ZXJQYWdlOzI3MzMxNTA1OTtBUzoyMDc2NTcyNDQ4NjA0MTZAMTQyNjUyMDc1MzIxNg==
https://www.researchgate.net/publication/23633008_A_note_on_expected_hitting_times_for_birth_and_death_chains?el=1_x_8&enrichId=rgreq-1fac22e252394cb94d592f7de3b169a9&enrichSource=Y292ZXJQYWdlOzI3MzMxNTA1OTtBUzoyMDc2NTcyNDQ4NjA0MTZAMTQyNjUyMDc1MzIxNg==
https://www.researchgate.net/publication/23777056_On_hitting_times_of_random_walks_on_trees?el=1_x_8&enrichId=rgreq-1fac22e252394cb94d592f7de3b169a9&enrichSource=Y292ZXJQYWdlOzI3MzMxNTA1OTtBUzoyMDc2NTcyNDQ4NjA0MTZAMTQyNjUyMDc1MzIxNg==
https://www.researchgate.net/publication/23777056_On_hitting_times_of_random_walks_on_trees?el=1_x_8&enrichId=rgreq-1fac22e252394cb94d592f7de3b169a9&enrichSource=Y292ZXJQYWdlOzI3MzMxNTA1OTtBUzoyMDc2NTcyNDQ4NjA0MTZAMTQyNjUyMDc1MzIxNg==
https://www.researchgate.net/publication/24056184_Fast_random_generation_of_binary_t-ary_and_other_types_of_trees?el=1_x_8&enrichId=rgreq-1fac22e252394cb94d592f7de3b169a9&enrichSource=Y292ZXJQYWdlOzI3MzMxNTA1OTtBUzoyMDc2NTcyNDQ4NjA0MTZAMTQyNjUyMDc1MzIxNg==
https://www.researchgate.net/publication/24056184_Fast_random_generation_of_binary_t-ary_and_other_types_of_trees?el=1_x_8&enrichId=rgreq-1fac22e252394cb94d592f7de3b169a9&enrichSource=Y292ZXJQYWdlOzI3MzMxNTA1OTtBUzoyMDc2NTcyNDQ4NjA0MTZAMTQyNjUyMDc1MzIxNg==
https://www.researchgate.net/publication/227320707_Birth-death_processes_on_trees?el=1_x_8&enrichId=rgreq-1fac22e252394cb94d592f7de3b169a9&enrichSource=Y292ZXJQYWdlOzI3MzMxNTA1OTtBUzoyMDc2NTcyNDQ4NjA0MTZAMTQyNjUyMDc1MzIxNg==
https://www.researchgate.net/publication/227320707_Birth-death_processes_on_trees?el=1_x_8&enrichId=rgreq-1fac22e252394cb94d592f7de3b169a9&enrichSource=Y292ZXJQYWdlOzI3MzMxNTA1OTtBUzoyMDc2NTcyNDQ4NjA0MTZAMTQyNjUyMDc1MzIxNg==
https://www.researchgate.net/publication/260244200_Introduction_To_Probability?el=1_x_8&enrichId=rgreq-1fac22e252394cb94d592f7de3b169a9&enrichSource=Y292ZXJQYWdlOzI3MzMxNTA1OTtBUzoyMDc2NTcyNDQ4NjA0MTZAMTQyNjUyMDc1MzIxNg==
https://www.researchgate.net/publication/260244200_Introduction_To_Probability?el=1_x_8&enrichId=rgreq-1fac22e252394cb94d592f7de3b169a9&enrichSource=Y292ZXJQYWdlOzI3MzMxNTA1OTtBUzoyMDc2NTcyNDQ4NjA0MTZAMTQyNjUyMDc1MzIxNg==

	New Journal Cover(accepted version refereed)
	Quiroz_Birth and death chains on trees_Author_2016

