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Abstract

Adaptive randomization of the sequential construction of optimum exper-
imental designs is used to derive biased-coin designs for longitudinal clinical
trials with continuous responses. The designs, coming from a very general
rule, target pre-specified allocation proportions for the ranked treatment ef-
fects. Many of the properties of the designs are similar to those of well-
understood designs for univariate responses. A numerical study illustrates
this similarity in a comparison of four designs for longitudinal trials. De-
signs for multivariate responses can likewise be found, requiring only the
appropriate information matrix. Some new results in the theory of optimum
experimental design for multivariate responses are presented.
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1. Introduction

Response-adaptive designs are becoming increasingly popular in phase III
clinical trials with sequential entrance of patients. The ethical objective is
to use the accumulating data to skew the allocation in favour of the better
treatments, so ensuring that as few patients as possible receive bad treat-
ments. The advantages of response-adaptive designs are extolled by Zelen
and Wei (1995), Hu and Rosenberger (2003) and Rosenberger and Hu (2004).
Gallo et al. (2006) provide a perspective from the pharmaceutical industry.

Our procedure is based on the adaptive randomization of treatment al-
locations from the sequential construction of optimum experimental designs.
As a consequence, we require optimum designs for multivariate continuous
responses that provide balance over the prognostic factors that may be in-
cluded in the estimation of treatment effects. Unfortunately, the majority
of the adaptive designs that have been developed are for a single binary
response per patient in the absence of covariates. Examples include the
play-the-winner (PW) design (Zelen, 1969), the randomized play-the-winner
(RPW) design (Wei and Durham, 1978), the success driven design (Durham
et al., 1998) and the drop-the-loser (DL) rule (Ivanova, 2003). Related de-
signs for continuous responses, using non-parametric methods to discretise
the problem, include Rosenberger (1993) and Bandyopadhyay and Biswas
(2004).

These designs work well in skewing the allocation in favour of the better
treatment, although they are not derived from any optimality criterion. One
form of optimality, for binary responses, consists of minimizing an aspect of
behaviour, such as the total expected number of failures, for a given variance
of the estimated treatment difference. Such designs include those of Rosen-
berger et al. (2001) and Biswas and Mandal (2007) for binary responses.
Zhang and Rosenberger (2006, 2007) and Biswas et al. (2007) find optimum
designs for continuous responses.

Several of these procedures have been extended to design in the pres-
ence of covariates, giving rise to Covariate Adjusted Response Adaptive
(CARA) designs. For the randomized play-the-winner rule, Bandyopadhyay
and Biswas (1999) combined polytomous covariates with binary responses
and Bandyopadhyay and Biswas (2001) incorporated covariates in their de-
sign for continuous responses. Zhang et al. (2007) studied asymptotic proper-
ties of CARA designs under widely satisfied conditions. Optimum biased-coin
designs for covariate balance, without response adaptivity, were introduced
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by Atkinson (1982). This form of optimality was extended to response-
adaptive designs for univariate responses by Atkinson and Biswas (2005a,
2005b). Rosenberger and Sverdlov (2008) discuss the arguments that have
been advanced in the clinical trials literature for and against treatment al-
locations rules that provide some balance over covariates, as do Shao et al.

(2010).
There is an appreciable literature on the analysis of data from clinical

trials when the responses are observed at a series of monitoring times, for
example Everitt and Pickles (2004, Chapters 5–7). Molenberghs et al. (2004)
describe data from three clinical trials of anti-depressants in which the re-
sponses can be treated as continuous. Galbraith and Marschner (2002) pro-
vide guidelines for designing non-adaptive longitudinal clinical trials.

By comparison there is very limited literature on the design of adaptive
longitudinal trials. Biswas and Dewanji (2004b) describe a trial of pulsed
electro-magnetic field therapy in which each patient was monitored for about
16 weeks. The original responses in this trial had a complicated multivariate
structure, which was ignored in the design. Instead a binary variable ‘recur-
rence’ was used. Biswas and Dewanji developed an urn design for longitu-
dinal binary responses, which is a modification and simple extension of the
RPW design where the covariates were ignored. See also Biswas and Dewanji
(2004a,c). Sutradhar et al. (2005) used a similar urn model based design and
allowed for the possibility of time-dependent covariates. Subsequently, Su-
tradhar and Jowaheer (2006) extended this approach for longitudinal count
data. Biswas et al. (2012) provided an optimum response-adaptive design
for longitudinal binary responses. Atkinson and Biswas (2014, Chapter 5)
provide an account of work on response-adaptive designs for longitudinal
responses. Further, Huang et al. (2013) proposed a general framework for
longitudinal covariate-adjusted response-adaptive randomization procedures,
and studied the related asymptotic properties.

In contrast, we obtain optimum biased-coin designs for multivariate and
longitudinal responses by the extension of methods for univariate responses.
The optimum designs in both cases are functions of the information matrix
for the observations. The model for multivariate data is introduced in Sec-
tion 2.1. In the rest of Section 2 we explore the consequences of a general
formulation for randomized response-adaptive designs for univariate or mul-
tivariate responses. These designs use optimum design theory to provide
covariate balance in a general adaptive rule that skews allocation to the bet-
ter treatments, whilst maintaining a controllable degree of randomness. We
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stress that these results are extremely general; to apply the rules we merely
need to be able to provide the information matrix of the observations. Loss
and bias, used to compare the designs, are presented in Section 3 with the
information matrix for longitudinal designs explicitly presented in Section 4.

Four specific allocation rules are described in Section 5. These include the
extension of the rule of Atkinson and Biswas (2005a), which achieves adap-
tivity through use of the link function of Bandyopadhyay and Biswas (2001),
and our new rule. We take the particular form of this rule which targets
specified proportional allocations to the ranked treatments: in our numerical
example with two treatments, our target is that 80% of patients should be
allocated to the unknown better treatment. This procedure overcomes the
instability in early allocations with the link-function based rule that can lead
to imbalance if the trial is stopped early. In our application we apply the
results to the particular information pattern and covariance structure arising
with longitudinal responses developed in Section 4. The numerical results
are in Section 7.

Two main contributions of our paper are the provision of our general rule
and its application to longitudinal trials. In the form we use here, the design
ceases to be response-adaptive once the correct ordering of the treatments
has been established. We can then extend standard results of the effect of
randomization on inference (Burman, 1996; Atkinson, 2002) to multivariate
designs. For longitudinal designs with correlated observations we define an
effective number of observations that permits calculation of the loss from
randomization. This important quantity indicates the average number of
patients on whom information is lost due to a particular randomization rule.
Simulations in Section 7 confirm the accuracy of this definition.

The methods of optimum experimental design are central to our con-
struction of allocation rules. In Appendix A.1 we develop new results on
multivariate DA-optimality that allow us to estimate linear combinations of
the treatment effects, such as differences, in the presence of the parame-
ters associated with the prognostic factors over which we are balancing. An
equivalence theorem satisfied by the optimum designs is in Appendix A.2.
These contributions are discussed in Section 8.
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2. Multivariate Data

2.1. Models

Patients arrive sequentially and are to be allocated one of t treatments.
The particular treatment to be allocated to patient n+1 depends on a vector
of prognostic factors xn+1, on previous allocations and on the information
available from the responses of previous patients. In a longitudinal study
this information will increase as extra readings become available on earlier
patients. But we start with the simpler multivariate case of nh responses
from each patient, all of which are available before the next patient arrives.
In Section 4 we extend the model to the longitudinal case of incomplete time
series of observations.

We assume that the results of the trial, perhaps after data transformation,
will be analysed using a regression model which, for the nh readings on patient
i, is written

E(yi) = Fiβ = Hiα + Ziθ +Gζ, (1)

where yi is nh × 1. Although we take all observations to have the same di-
mension, there is no difficulty, other than notational, in yi being of dimension
nh(i).

Here α is the t× 1 vector of treatment effects that are the focus of infer-
ential interest and Hi is the nh × t matrix of t indicator variables, the one
non-zero column indicating which treatment the patient received. The nh×v
matrix Zi contains those covariates, including any powers or interactions of
the elements of xi, which may be used to adjust the responses when estimat-
ing α. Because of the way we have parameterized the treatment effects, Zi

does not include a constant column. In the context of longitudinal data the
nh − 1 elements of ζ are arbitrary period effects, the same for all patients;
the nh× (nh−1) matrix G is the matrix of indicator variables for the period.
These matrices are highly structured. All rows of Hi are the same for patient
i, as are those of Zi, whereas the rows of G are different.

Conditionally on the values of the xi the additive errors of observation in
(1) have an nh dimensional normal distribution with covariance matrix

cov yi = σ2V. (2)

For longitudinal data V has a known structure; in our numerical example this
comes from an AR(1) process of errors. Efficient estimation is by weighted
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least squares, with a block diagonal weight matrix with diagonal elements
V −1. The conditional information matrix for all n patients is

I(n) =
n∑

i=1

F T
i V

−1Fi. (3)

The design criterion does not depend on the value of σ2, which is suppressed
in (3). However, σ2 is necessary in power calculations. In response adap-
tive designs the value of xi is determined by previous values of yi, so that,
unconditionally, the observations are not independent. In Section 6 we give
the argument that (3) is, however, the correct unconditional asymptotic in-
formation matrix.

2.2. Parameter Estimation and Randomization

To construct adaptive designs for the efficient estimation of α in (1) we
employ randomized versions of the sequential construction of optimum exper-
imental designs (Fedorov, 1972; Atkinson et al., 2007; Fedorov and Leonov,
2014). The cost of randomization is that the design is likely to be unbal-
anced when it is stopped after a number of patients that is unknown at the
planning stage; there is a consequent loss of efficiency in estimation.

In order to balance parameter estimation and randomization in general
non-sequential designs, Ball et al. (1993) suggested finding designs to maxi-
mize the utility

U = UV − γUR, (4)

where the contribution of UV is to provide estimates with low variance,
whereas UR provides randomness. The parameter γ provides a balance be-
tween the two. We extend their method to the sequential construction of
longitudinal clinical trials.

With πj the probability of allocating treatment j, let

UV =

t∑

j=1

πjφj ,

where φj is a measure of the information from applying treatment j. In the
next section this is defined in terms of DA-optimality.

Ball et al. (1993) are interested in randomness with equal allocation, when

UR =

t∑

j=1

πj log πj.
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To combine randomness with greater allocation to preferred treatments we
introduce a set of gains G1, . . . , Gt for the allocation of the individual treat-
ments. These gains can be quite general, although we require Gi ≥ 0 ∀ i.
Then

UR =

t∑

j=1

πj(−Gj + log πj). (5)

In Section 2.5 we associate the Gj with the target allocation proportions of
the treatments ordered by desirability. When all Gj are zero, UR reduces to
the utility used by Ball et al. (1993).

To maximize the utility (4) subject to the constraint
∑t

j=1 πj = 1 we
introduce the Lagrange multiplier λ and maximize

U =

t∑

j=1

πjφj − γ

t∑

j=1

πj(−Gj + log πj) + λ

(
t∑

j=1

πj − 1

)
. (6)

Since the Gj occur in U with a positive coefficient, maximization of U gives
large values of πj for treatments with larger Gj. Differentiation of (6) with
respect to πj leads to the t relationships

φj − γ(−Gj + 1 + log πj) + λ = 0,

so that all quantities
φj/γ +Gj − log πj

must be constant. Since
∑t

j=1 πj = 1, we obtain

πj = {exp(φj/γ +Gj)}/S = {exp(ψj/γ)}/S, (7)

where
ψj = φj + γGj

and

S =
t∑

j=1

exp{(φj/γ) +Gj} =
t∑

j=1

exp(ψj/γ).

As γ → ∞, emphasis is solely on randomization and now all quantities
Gj − log πj must be constant so that πj ∝ exp(Gj). When the gains Gj for
the allocation of the individual treatments are equal, we obtain the equal
randomization rule of Ball et al. (1993) with πj = 1/t. This also follows
directly from (5) since, with Gj = G ∀ j, ΣjπjGj = G, which does not affect
the allocation.
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2.3. Optimum and Sequential Designs

The probabilities of allocation πj in (7) depend on the information mea-
sure φj and on the utility Gj from allocating treatment j. We first consider
φj.

In the methods of optimum experimental design, treatments are allocated
to make large some function of I(n). We allocate to minimize the variance
of s linear combinations of the treatment estimates which are adaptively
chosen to give the desired probability of allocation of each treatment. For
this measure we follow Atkinson (1982) and use DA-optimality (Atkinson
et al., 2007, §10.2).

The s linear combinations of the treatment effects are LTα, where LT is
s× t, s < t. The s combinations of all parameters can be written

ATβ = LTα+W T
1 θ +W T

2 ζ, (8)

where AT is s × (t + v + nh − 1), W T
1 is s × v and W T

2 is s × (nh − 1). If
the effects of the variables Zi and G are not of interest in themselves, the
parameters θ and ζ in (1) become nuisance parameters and the elements of
W1 and W2 are zero. For any A the variance of the estimated combination
of coefficients is

var {AT β̂} = σ2AT {I(n)}−1A, (9)

where β̂ is the least squares estimate of β.
The properties of the design depend on the number of treatments and on

the dimension of the space of the nuisance parameters over which allocations
are randomized. The exact relationship depends on the form of randomiza-
tion. Atkinson (2014) provides many examples. There is no randomization
over the values of the time profile G. Since, in (8),W T

1 is s×v, the dimension
of the nuisance parameters is q = t+ v − s.

DA-optimum designs minimize the logarithm of the determinant of the
covariance matrix (9). Thus we seek designs to maximize the information
measure

φ = − log |AT{I(n)}−1A| = − log Ψ. (10)

If treatment j is allocated to the (n+1)st patient we extend the notation of
(10) and obtain

φj = − log |AT{I(n + 1, j)}−1A| = − logΨj .

8



Once the allocation has been made, we can suppress the subscript j which
is, however, required when we are comparing treatments for allocation. Sub-
stitution of this expression for φj in (7) yields

πj = Ψ
−1/γ
j exp(Gj)/S. (11)

In the sequential generation of optimum designs we would make the allocation
for which φj was a maximum.

For clinical trials with univariate responses Atkinson (1982) exploited
the results on sequential generation of DA-optimum designs from Silvey
(1980). Here we have multivariate responses. The requisite extension of
DA-optimality is derived in Appendix A.1, with the Equivalence Theorem
for multivariate DA-optimality in Appendix A.2. It is clear from (A-1) that
Ψj is the product of two terms, one of which is the same for all allocations.
Substitution into (11) yields the allocation probability

π(j|xn+1) =
{1 + dA(j, n, xn+1)}1/γ exp(Gj)∑t
s=1{1 + dA(s, n, xn+1)}1/γ exp(Gs)

, (12)

where dA(j, n, xn+1), the directional derivative of the DA-optimality criterion,
is given by (A-3) and xn+1 is the vector of covariates for the new patient that
are included in I(n + 1, j).

2.4. Gain and Allocation Probabilities

We have derived our very general allocation rule in terms of undefined
gains Gj from allocation of the treatment j. We now find appropriate Gj for
an allocation rule which targets proportions of adaptively ranked treatments.

Let the target proportion of patients receiving treatment ranked j be p∗j .
Then we require that

p∗1 ≥ p∗2 ≥ . . . ≥ p∗j ≥ . . . ≥ p∗t , (13)

with, to avoid uniform allocation, at least one inequality. With p∗1 = 1 (and
all other p∗j = 0) we obtain a rule in which only the most highly ranked
treatment is allocated. Plausible rules allow allocation to all treatments
that have not been eliminated from the study and have the p∗j a decreasing
function of j. The purpose of the rule is to ensure a specified ethical gain
without going through possible extreme designs even if, for example for a
two treatment design, α1 is very much greater than α2. By using ranks,

9



we ensure both a prefixed allocation which is ethically skewed and sufficient
allocation to each treatment to ensure that the design is not too inferentially
inefficient.

At the optimum design it follows from the Equivalence Theorem of Ap-
pendix A.2 that all dA(j, n, xn+1) are equal and the treatments are correctly
ordered. Let the correct, but unknown, rank of treatment j be R(j). Then,
from (12)

π(j|xn+1) = p∗R(j) =
exp{GR(j)}∑t
s=1 exp{GR(s)}

. (14)

The probabilities of allocation in (12) and (14) are unaltered if we replace
GR(j) with

Gc
R(j) = GR(j) + c.

We choose c so that
∑t

i=1 exp{Gc
R(i)} = 1. Then (14) becomes

Gc
R(j) = log p∗R(j)

and the allocation probabilities (14) have the simple form

πG(j|xn+1) =
{1 + dA(j, n, xn+1)}1/γp∗R(j)∑t
s=1{1 + dA(s, n, xn+1)}1/γp∗R(s)

, (15)

provided the ranking of the treatments is known. In designing the trial, the
p∗j are the fundamental quantities which are to be specified, rather than the
gains Gj.

2.5. Skewed Allocations

Replacement of the ranks R(j) in (15) with the ranks R̂(j) based on the
estimated ordering of the treatment effects α gives an operational rule, but we
have also to specify the coefficients L that give an efficient design. We develop
the argument for s = 1, when the properties of a linear combination lTα are of
interest. First consider univariate responses, variance σ2, with a proportion
rj = nj/n of the n patients receiving treatment j. When there are two
treatments and in (8) we take lT = (1 −1), or equivalently (0.5 −0.5), the
inferential purpose is to estimate α1−α2 with minimum variance. The design
minimizing (9) provides balance over the covariates and equal allocation to
the two treatments, so that r1 = r2 = 0.5.
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To obtain skewed allocation for t treatments combined with efficient pa-
rameter estimation we find designs for estimation of the linear combination
with

lTα = ±l1α1 ∓ . . .± ltαt, (16)

where the coefficients lj , j = 1, . . . , t are such that 0 < lj < 1 and
∑
lj = 1.

Then, in the absence of covariates,

var {lT α̂} = (σ2/n)
t∑

j=1

l2j/rj with
t∑

j=1

rj = 1. (17)

Use of a Lagrange multiplier shows that this variance is minimized when the
proportion of patients receiving treatment j is lj , as it is when the design is
balanced across treatments, in the sense of the covariates having the same
conditional distribution for each treatment. The signs in (16) are a general-
ization to t treatments of the weights 0.5 and −0.5 that give efficient designs
with rj = 0.5 for the treatment difference.

To obtain an adaptive design targeting (13) we take weights

lj = p∗
R̂(j)

.

2.6. Adaptive Design: Rule G

With estimated rankings the probability of allocation of treatment j for
Rule G is

π(j|xn+1) =
{1 + dA(j, n, xn+1)}1/γp∗R̂(j)∑t
s=1{1 + dA(s, n, xn+1)}1/γp∗R̂(s)

. (18)

The effect of different values of the parameter γ can be elucidated by sim-
ulation, as in Atkinson (2014) for univariate responses. In our example we
take γ = 0.1. Distributional results for Rule G are in Section 6.

It is a characteristic of this scheme that the probability of allocating the
treatments depends on the p∗j and on the ordering of the αj , but not on
the differences between them. Suppose there are two treatments. Then,
if α1 > α2, treatment 1 will eventually be allocated in a proportion p∗1 of
the trials regardless of the value of ∆ = α1 − α2. Of course, if ∆ is small
relative to the measurement error, in many of the initial trials, α̂1 < α̂2 and
it will seem that treatment 2 is better. Then some individual allocations
will be skewed in favour of treatment 2 with target p∗1, that is pR̂(2). When
â1 > α̂2, treatment 1 will be preferred. If the trial is terminated before a
clear difference between the treatments has been established, each treatment
may have been be allocated to around half the patients.
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3. Loss, Bias and the Assessment of Designs

3.1. Loss

Our adaptive designs have some randomness in allocation. The effect of
randomness is slightly to unbalance the designs while reducing the chance of
guessing the next allocation. To compare designs we need measures of these
two aspects.

We start with the effect of imbalance and extend the idea of loss (Burman,
1996) to multivariate responses. For univariate responses the variance of
the estimated linear combination (9) has a minimum value of σ2/n for the
optimum design with proportions lj and balance across the covariates. For
multivariate data with nh independent observations on each patient, the
minimum variance is σ2/(nnh). However, in general the variance depends on
the correlation of the multivariate observations.

For observations with structure given by (1), the contribution of yi to
the total sum of squares is yTi V

−1yi. For positively correlated data this is a
smaller contribution than if the observations were independent. We define
the effective number of observations as

neffec = JTV −1J, (19)

where J is a vector of ones.
The effective number of observations neffec depends on the structure of

V . For independent observations neffec = nh. For correlated observations
it decreases with increasing correlation. With this definition the variance of
the estimated linear combination for the optimum design has the minimum
value

var {lT α̂∗} = σ2/(n× neffec), (20)

where α̂∗ is the least squares estimate of α from the optimum design.
We can find from (9) the variance of the same linear combination for any

other design. The efficiency of the design is then

En = 1/
[
nlT {I(n)}−1l

]
.

The loss Ln is defined on comparing the variance (9) with the minimum value
given by (20) as

var {lT α̂} =
σ2

n× neffec − Ln
.
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Comparisons can use either the efficiency En, or the loss, calculated by Atkin-
son and Biswas (2014) for numerous rules for skewed and unskewed alloca-
tions when the responses are univariate.

For all reasonable designs the efficiency tends to one as n→ ∞. However,
distinct limits of loss are known for several classes of design for univariate
responses and comparisons of loss provide an incisive means of comparing
designs for the quality of the estimates of the treatment effects. The number
of such parameters does not depend on the dimension of the multivariate
observations and, in the multivariate setting, the loss can be interpreted as
neffec times the number of patients on whom information is lost due to the
lack of optimality of the design.

3.2. Selection Bias

The purpose of including randomization in these rules is to prevent var-
ious kinds of bias. Selection bias occurs when the clinician is able correctly
to guess the next treatment to be allocated. For two treatments it can be
written as

Bn = (probability of correctly guessing the allocation to patient n

−probability of incorrectly guessing the same allocation). (21)

As do Heritier et al. (2005), we directly use the allocation probability πn(j) for
patient n. The probability of correctly guessing the allocation of treatment j
when πn(j) ≥ 0.5 is πn(j) and of an incorrect guess is 1−πn(j). The selection
bias can then be estimated by simulation as the average value of {2πn(j)−1}.
In simple cases the bias can be calculated explicitly. For example, in the non-
randomized sequential construction of optimum designs the next treatment
to be allocated is known exactly and the value of Bn is one.

4. Longitudinal Designs

The main algebraic difference between multivariate designs and longitu-
dinal designs comes from the reduced amount of information that is available
from previous patients when allocation is made to patient n + 1. As an ex-
ample, in our calculations we assume that patients arrive, or are grouped to
arrive, in cohorts of size ng (ng can equal one). In the general case of ng > 1
the various members of each cohort can be allocated different treatments.

Consider the first patient of cohort k + 1, so that n + 1 = kng + 1. We
assume the responses are delayed, so that there is no information on the
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responses from cohort k. Patients from cohort k−1 contribute one response,
those from cohort k− 2 two responses and so forth. Working backwards, the
first cohort to contribute all nh responses is number k−nh. Let S(i, n) denote
this set of indexes for patient i as cohort k + 1 starts. Then the information
matrix for the allocation of patient n + 1 is, in an extension of the notation
of (3),

I(n) =
n∑

i=1

F T
i,S(i,n)V

−1
S(i)Fi,S(i,n). (22)

The same process of counting applies to the sufficient statistics and so to the
estimates of α used in the adaptive allocation rules. For allocation of the
remaining observations in cohort k+1 we increment the information matrix
by the complete value of F T

i V
−1Fi for each allocated observation. This is

a temporary measure to aid balance, so that we remove these contributions
when recalculating (22) for the next cohort.

The other difference between longitudinal data and the multivariate data
of Section 2.1 is the structure of the covariance matrix V . In our numerical
example the errors form an AR(1) process. A stationary process can be
simulated by generating u1 = ǫ1 ∼ N{0, 1/(1 − ρ2)} and, for i > 1, ui =
ρui−1+ ǫi where ǫi ∼ N(0, 1). Then var ui = 1/(1−ρ2) and cov (ui, ui−s) =
ρs/(1−ρ2). The errors of observation will be σui, where σ is to be estimated.

For this error structure

V −1 =




1 −ρ 0 0 . . .
−ρ 1 + ρ2 −ρ 0 . . .
0 −ρ 1 + ρ2 −ρ . . .
. . . . . . . . . . . . . . .




and, from (19)

neffec = JTV −1J = nh − 2(nh − 1)ρ+ (nh − 2)ρ2.

For ρ = 0, neffec = nh. The number however decreases appreciably as ρ
increases; for nh = 4 and ρ = 0.5, neffec = 1.5.

5. Four Allocation Rules

We now present and compare four specific allocation rules, two of which
depend directly on the estimated ranking of the treatments. As in §2.5, let
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the ranking of treatment j be R(j), estimated by R̂(j) from the ranking of
the estimated treatment effects α̂.

1. Rule D (Deterministic). For the purposes of comparison with adap-
tive rules, we assume that the correct ordering of the treatments is known.
There is no randomization and the rule is that for the sequential construc-
tion of the optimum design. We allocate that treatment for which (A-2) is a
maximum:

πD(j|xn+1) =

{
1 j = arg max

j∈1,...,t
dA(j, n, xn+1)

0 otherwise
.

Simulations of designs for univariate responses mentioned above show that
the loss Ln for this rule rapidly tends to zero and the bias Bn is one, since it
is always known which treatment will be allocated next. These are extreme
values; other rules have higher loss and lower bias.

2. Rule RA (Random and Response Adaptive). In this rule the treat-
ments are allocated with probabilities p∗j introduced in (13) and based on
the estimated ranking of treatment effects; there is no attempt at covariate
balance. Then (18) reduces to

πRA(j) = p∗
R̂j
.

The best guessing strategy is always to guess that the seemingly best
treatment will be allocated. Asymptotically the probability of being correct
is p∗1 (and of being wrong 1− p∗1), so that the limit of Bn in (21) is 2p∗1 − 1.
For univariate responses the asymptotic value of the loss is q (Cox, 1951;
Burman, 1996).

3. Rule G (General with ranks). This rule (18) extends Rule RA to
include covariate balance. Since dA(j, n, xn+1) in (18) is not standardized for
n, the rule tends asymptotically to Rule RA.

4. Rule L (Link). For two treatments the target probabilities depend

on the estimated difference in treatment means ∆̂ = α̂1 − α̂2. Atkinson
and Biswas (2005a) use a link function to relate the lj to ∆̂. Following

Bandyopadhyay and Biswas (2001) they take l1 = Φ(∆̂/T ), where Φ(.) is
the standard normal cumulative distribution function (c.d.f.). The value of
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l1 may be greater or less than 0.5 and the parameter T controls the degree
of skewing of the allocation.

For generality we present the t treatment version of this rule. After n
patients have been treated the estimated treatment parameters are α̂j . To
preserve the invariance of the procedure to the overall treatment mean let

ᾱ =
t∑

j=1

α̂j/t and ∆̂j = α̂j − ᾱ.

The cumulative normal distribution provides coefficients lj by setting l′j =

Φ(∆̂j/T ) with

lj = l′j/Sl, where Sl =

t∑

k=1

l′k. (23)

For t = 2 this reduces to the design procedure of Bandyopadhyay and Biswas
(2001) except that the standard deviation T is replaced by 2T .

This design procedure does not depend on the values of the covariates.
To provide a rule that is covariate adjusted, we use the values of l′j in place
of p∗

R̂(j)
in (18) to give allocation probabilities

πL(j|xn+1) =
{1 + dA(j, n, xn+1)}1/γl′j∑t
s=1{1 + dA(s, n, xn+1)}1/γl′s

. (24)

Use of l′j , or the standardized lj from (23), gives identical allocation proba-
bilities πL(j|xn+1) since the summation Sl cancels in (24). As for Rule G, the
emphasis on covariate balance reduces as n increases, the rule asymptotically
reducing to that of Bandyopadhyay and Biswas (2001).

The result is a rule in which the targets vary more than in the three
other rules of this section. When the estimated treatment difference is small
the allocations are closer to 0.5 and when the treatment differences are over-
estimated, the allocation probabilities are more extreme.

6. Distributional Results

The conditional distribution of the responses in (1) is multivariate normal.
But, for the adaptive design, the value of Fi depends on the preceding values
of yi, so that, unconditionally, the observations are no longer independent.
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However, asymptotically, the least squares parameter estimates for this model
have the same distribution as those from a non-adaptive design.

The crucial property is that the four rules considered in our paper are
such that π(j|xn+1) > c for all n and j, with c some positive constant. Then,
with nj,n the number of patients allocated to treatment j, nj,n → ∞ with
n. Asymptotic results require that the information matrix (3) is such that
In/n tends to a limit. For known covariance matrix V in (2) the form of
the rules ensures that the information matrix for the treatment terms in (1)
has a limit, as does the matrix for the non-stochastic period indicators G.
The remaining requirement is that the distribution of the covariates Zi is
well behaved. It then follows, as in Lai and Wei (1982), that the asymptotic
information matrix is that for least squares from the conditional model (1)
and that the parameters are asymptotically normally distributed. If the value
of ρ is not known, a consistent estimator of ρ is required in (2), together with
an estimate of σ2. Then the asymptotic information matrix is I(n) given by
(22) for longitudinal designs.

As n increases, the treatment parameters α become increasingly precisely
estimated and eventually the treatments are always correctly ordered. Then
Rules D, RA and G are no longer response adaptive, although they still adapt
to the values of the covariates. The rules become the analogue, for multi-
variate responses, of the covariate adaptive designs with skewed allocations
included in Atkinson and Biswas (2005a,b). The losses for these univari-
ate designs are similar to those of the rules for unskewed rules compared
by Atkinson (2002), although convergence to asymptotic values is slower for
more skewed allocations. Simulations in Table 1 for longitudinal responses
show that these univariate results are also a good guide to the properties of
the designs of this paper.

The value of loss indicates the effective reduction in sample size due to
randomization. This value can then be used in power calculations to assess
the effect of the randomization on average power. A different approach to
calculation of the effect of randomization on power is that of Hu and Rosen-
berger (2003) who derive a relationship between power and the variability
in the proportions of observations allocated to each treatment in a design
targeting maximum power. Under such conditions, a procedure with higher
loss will in general have a higher variance of nj,n. For random allocation to
treatment j with probability p∗j ,

√
n{var(nj,n/n)− p∗j} = p∗j (1− p∗j), (25)
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which equals 1/4 for unskewed randomization. Zhang et al. (2007, Re-
mark 3.3) give the term for the additional variance above that of (25)
for the rule of Bandyopadhyay and Biswas (2001) which depends on αj and
on T in (23). We can therefore expect that asymptotically Rule L will have
a higher loss than the other rules of Section 5.

7. Numerical Results

We now present simulation results for the four rules of Section 5 when
there are two treatments. The ethical goal is to allocate 80% of the patients
to the better treatment, taken as treatment 1. With p∗1 = 0.8, the value of the
bias Bn tends to 2p

∗
1−1 = 0.6 for large n. In these simulations we take cohorts

of size 3 (ng = 3) with nh = 4. In (1) σ2 = 1,∆ = α1 − α2 = 0.5 and there
are four prognostic factors with independent standard normal distributions,
so that q = 5. In (18) three values of γ, 0.1, 0.01 and 0.001 are taken,
both for Rules L and G, so that in all eight rules are compared. For designs
with univariate responses which are not response adaptive, smaller values
of γ initially force appreciable balance like Rule D, taking longer to move
towards random allocation as n increases. The same pattern is shown here.
For Rule L we take T = 0.5941, giving the required value of 0.8 for Φ(∆/T ).
Each rule was simulated 10,000 times. All designs were regularized to avoid
extreme designs by ensuring that the minimum number of allocations of each
treatment was never below

√
n nor the maximum above n−√

n.
Table 1 gives results for n = 48 and 192, both multiples of ng, for three

values of ρ. The behaviour of loss and bias as n increases is shown in Figures 1
and 2.

The left-hand third of the table contains results for the average losses L̄48

and L̄192 for the three values of ρ. When n = 48 the values for Rule D (non-
adaptive sequential design construction) are little affected by ρ. However,
when n = 192 the loss for ρ = 0 decreases to 0.27 in line with the known
limit of 0 as n → ∞. The decrease with n is less dramatic for the other
values of ρ. For Rule RA (random allocation) there is no balancing over
covariates. For n = 48 the loss is above 5 as it is for n = 192; for ρ = 0, the
value of 5.40 is closest to that of q, which would be the loss if the ordering
of the treatments were known. The loss increases with ρ, since the effective
number of observations decreases, making the ordering of treatments more
variable.
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Table 1: The four rules of Section 5: average loss, bias and proportion of total allocations
to treatment 1 when (a) n = 48 and (b) n = 192. Three values of γ each for rules G and
L

n = 48 Loss L̄48 Bias B̄48 Total Proportion r̄1,48

ρ 0.0 0.3 0.5 0.0 0.3 0.5 0.0 0.3 0.5

D 2.42 2.49 2.73 1.00 1.00 1.00 0.756 0.756 0.756
RA 6.63 7.53 8.95 0.59 0.59 0.60 0.726 0.711 0.686

G(0.1) 3.94 4.88 6.45 0.63 0.63 0.64 0.752 0.738 0.712
G(0.01) 2.54 3.51 5.14 0.76 0.78 0.79 0.765 0.752 0.726
G(0.001) 2.55 3.47 5.08 0.96 0.96 0.96 0.754 0.743 0.718
L(0.1) 4.58 5.45 6.79 0.64 0.64 0.63 0.749 0.741 0.727
L(0.01) 3.68 4.17 5.42 0.82 0.79 0.81 0.741 0.750 0.736
L(0.001) 3.22 4.08 5.24 0.96 0.97 0.97 0.747 0.739 0.727

n = 192 Loss L̄192 Bias B̄192 Total Proportion r̄1,192

ρ 0.0 0.3 0.5 0.0 0.3 0.5 0.0 0.3 0.5

D 0.27 1.35 2.40 1.00 1.00 1.00 0.792 0.792 0.792
RA 5.40 6.77 8.90 0.61 0.61 0.61 0.782 0.778 0.769

G(0.1) 3.96 5.31 7.40 0.61 0.61 0.61 0.791 0.788 0.779
G(0.01) 1.74 2.96 4.73 0.61 0.61 0.62 0.800 0.796 0.790
G(0.001) 0.43 1.60 3.24 0.64 0.64 0.64 0.796 0.795 0.792
L(0.1) 6.87 9.90 13.92 0.61 0.62 0.63 0.793 0.792 0.788
L (0.01) 4.85 8.06 12.12 0.62 0.63 0.64 0.800 0.800 0.799
L(0.001) 3.20 6.46 10.86 0.67 0.70 0.74 0.798 0.800 0.802
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The losses for Rule G show the strong effect of the value of γ, particularly
when n = 192 and γ = 0.001. However, for γ = 0.1, there is a slight increase
in loss with n as allocation becomes closer to that for Rule RA. For Rule
L the loss decreases with γ although it increases going from n = 48 to 192
giving values significantly larger than those for Rule G with the same value
of γ, with a maximum value of 13.92 when ρ = 0.5 and γ = 0.1. As we
described in Section 5, this design remains response adaptive and the larger
values of loss reflect the effect of the estimated treatment difference ∆̂ on the
values of l1 and l2.

The central third of the table gives the average biases for n = 48 and
192. The values agree with the theory of Section 3.2. For Rule D the bias is
one for both values of n; for Rule RA the values are 0.59, 0.60 or 0.61, close
to 2p∗1 − 1. When n = 48 and γ = 0.1 the biases for Rule G and L are a
little higher at 0.63 or 0.64. Both rules show that the effect of decreasing γ
is to increase bias, strongly for n = 48, although much less so for n = 192, a
feature clearly shown in the plots of Figures 1 and 2.

The right-hand side of the table gives the average allocation to treatment
1, r̄1,48. The regularization of the total number allocated to any treatment
to be at most n − √

n precludes extreme allocations for n small so that all
rules initially approach the overall target of 0.8 from below; Rule D is closest
to the target when n = 48 and Rule RA the furthest from it. For Rule L the
calculated values of p̂1 can be greater than 0.8. The entries in the table for
n = 192 show this effect for small γ, when convergence to a proportion of 0.8
is even faster than for Rule D.

Figures 1 and 2 provide further insight into the dependence of loss and
bias on the value of n. Results for ρ = 0 are in Figure 1. Apart from L all
rules ultimately target 0.8. The upper limit of loss, as n increases, is that
for Rule RA which gradually decreases to q = 5. The Loss is bounded below
by results for Rule D, which gradually decrease to zero. The losses for Rule
G are smallest for γ = 0.001.

Rules with small loss generally have high bias, a phenomenon shown in
the right-hand panel of the figure. The highest bias is one for deterministic
design construction, Rule D, and the lowest close to 0.6 for Rule RA. The
bias for Rule G is highest for the smallest value of γ, which is the value giving
the lowest loss. Rule L behaves relatively poorly in these comparisons; loss
is always higher than that for Rule G with the same value of γ, as is the bias,
except for γ = 0.1, when there is little to choose between the rules.

These results for uncorrelated observations are close to those for individ-
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Figure 1: Correlation ρ = 0. Left-hand panel: Average loss L̄n as a function of patient
number n. Reading down at n = 200, Rules L(0.1), RA, L(0.01), G(0.1), L(0.001), G(0.01),
G(0.001), D. Right-hand panel: Average smoothed bias B̄n. Reading down at n = 70,
Rules D, L(0.001), G(0.001), L(0.01), G(0.01), G(0.1), L(0.1), R.

ual patients exhibited in Atkinson (2014). The results in Figure 2 for ρ = 0.5
have a similar structure to those of Figure 1 but the numbers are slightly
different. The values of loss for Rules RA, G and D do not decline so fast
from the initial value and, at n = 200 are 2 to 3 higher than those in the
uncorrelated case. The loss for Rule L increases more rapidly with n, again
always being above that for Rule G with the same value of γ. The bias in
the right-hand panel, apart from that for Rule D, again decreases to 0.6, but
more gradually than in the uncorrelated case.

The advantage of Rule L, as is shown in Table 1 is that the proportion of
patients receiving the better treatment converges more rapidly to 0.8 than
for the other rules. The cost is the higher loss arising from the estimation of
the target proportion, rather than its convergence to the given value of 0.8.
In practice, an exact allocation of 0.8 is not likely to be important and the
choice of rule should be based on loss and bias. Atkinson (2014) gives plots,
for rules for individual patients, of loss against bias as n increases. A rule
with values of both quantities below those for all other rules at a particular
n is called “admissible”. The results of our comparisons show that Rule G is
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Figure 2: Correlation ρ = 0.5. Left-hand panel: Average loss L̄n as a function of patient
number n. Reading down at n = 200, Rules L(0.1), L(0.01), L(0.001), RA, G(0.1), G(0.01),
G(0.001), D. Right-hand panel: Average smoothed bias B̄n. Reading down at n = 100,
Rules D, L(0.001), G(0.001), L(0.01), G(0.01), L(0.1), G(0.1), RA.

admissible when compared to Rule L. The choice of γ depends on the relative
importance of bias and loss.

Finally we consider the power of the t-test for equality of the treatment
means. This is a maximum for equal allocation to the two treatments with
balance over the covariates; skewing the design causes a reduction in power,
as do increasing values of ρ, which effectively reduce the number of observa-
tions. We calculate the t-statistic using the elements of In to allow for any
correlation in the estimates α̂1 and α̂2. Since very small numbers of patients
are not of interest in these simulations, power is assessed by counting the
number of t-statistics that are greater than 1.96. Figure 3 shows the logits
of the powers for Rules D and L(0.1) as a function of ρ for three values of n.
The values for the six other rules of Table 1 lie between these two and are not
shown. For lower values of ρ Rule L has higher power than Rule D as it often
gives a more nearly balanced allocation. As ρ increases the performance of
Rule L is sometimes degraded by poor estimates of the treatment difference
leading to occasional designs which are very unbalanced over treatments.

If randomization is required, Rule D is not appropriate. Then Rules G and
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Figure 3: Power of Rules D and L(0.1) for testing treatment difference; logit of proportion
significant for the t test of size 0.05. The three pairs of lines, reading down, are for n = 198,
99 and 48. The upper limit of power shown in the plot is approximately 0.95. The effect
of the correlation ρ on the effective sample size is evident

L are to be preferred to Rule RA. However, the choice between the two sets
of rules does not only depend on statistical properties. In our comparison we
chose ∆/T such that l1 = 0.8. If this is the clinician’s ideal skewing towards
the better treatment, Rule G should be used. If, on the other hand, greater
skewing is required for larger values of ∆, then Rule L is appropriate. In
either case the value of γ will have to be chosen to balance loss against bias.

8. Discussion

For homoscedastic regression models with t treatments giving univariate
responses, the optimum allocation for testing hypotheses about the equality
of the means of the treatments is to allocate a proportion 1/t of the patients
to each treatment. However equal allocation is not always required. Dumville
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et al. (2006) and Peckham et al. (2015) review the use of unequal allocation
ratios in clinical trials.

In such work it is assumed that both the target weights, and the treat-
ments to which they apply, are known. Unequal allocation targets arise
naturally for models in which the variances of the responses to the treat-
ments are not the same. For example, Wong and Zhu (2008) extend the
DA-optimum designs of Atkinson (1982) to heteroscedastic models in which
the variances differ between treatments. Atkinson (2015) gives details for
two-treatment designs in the presence of covariates.

Baldi Antognini and Giovagnoli (2015) describe compound optimum de-
signs balancing between inference and allocation of as many patients as possi-
ble to the better treatment; the allocation targets for the various treatments
may depend adaptively on parameters estimated from the responses to earlier
allocations; longitudinal responses are not considered.

The linear contrast (16) provides a mechanism for skewed allocation for

which var {AT β̂} is a scalar. Although the exposition here is in terms of DA-
optimality, criteria such as A- or E- optimality will yield the same optimum
design minimising var {AT β̂}.

Our general rule (12) provides a family of potential treatment allocation
schemes which are covariate adaptive. The particular choice of Gj that led
to (18) provides a rule for longitudinal responses that has many properties in
common with better understood rules for univariate responses. Despite the
relative computational complexity of the counting and consequent treatment
allocation algorithm described in Section 4, the loss and bias of the rule are
straightforward analogues of those for univariate responses. In particular, the
analogy of the values of loss is striking, but depends on the correct definition
of neffec.

For small n Rule G forces skewed allocation and the loss is close to that of
Rule D. But, as n increases the rule becomes increasingly like skewed random
allocation, with a higher loss but with bias tending to zero. Rules for smaller
values of the tuning constant γ have a higher initial emphasis on targeting
the target skewing proportions p∗j . In the selection of a biased-coin design
for clinical trials the emphasis in the statistical literature is often on trials
that provide allocations very close to these targets. Atkinson (2012) stresses
the importance of considering both loss and selection bias. Rule G is such
that the bias decreases as n increases, but in such a way that the efficiency
of estimation goes to 100%. A rule with constant loss of q/5 can be obtained
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by simplifying (18) and taking the allocation probabilities proportional to

R̂(j)dA(j, n, xn+1) (Burman, 1996).
Two final points. First we note that we have assumed a known value of ρ.

Indeed, the evaluation of the inferential properties of the design, particularly
neffec and the loss will depend strongly on ρ. However, the dependence of the
design itself on ρ is slight. We would recommend designing for an arbitrary
value, such as 0.3, whilst sequentially estimating ρ. Of course, the value of
the estimate ρ̂ should be used in any inferences drawn from the results of
the trial. Secondly, the methods may be extended to regression models with
distributions other than the normal through the use of elemental information
matrices as described in Atkinson et al. (2014).
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Appendix A. Multivariate DA-Optimum Designs

Appendix A.1. Sequential Design Construction

For the sake of generality we extend the single linear combination of
the parameters aTβ in (8) to the set of s combinations ATβ, where A is a
(t + v + nh − 1)× s matrix of known constants. DA-optimum experimental
designs for the linear regression model (1) maximize |AT{I(n)}−1A|−1 and so
minimize the generalized variance of these linear combinations, providing a
normal theory confidence region of minimum volume. Such optimum designs
can be constructed sequentially.

We first consider univariate responses when Fi in (1) becomes the vector
fT
i , which includes the vectors of allocation and prognostic factors for the ith
patient. When allocation is made to patient n + 1, all other allocations are
known. A useful matrix result for D-optimum designs maximizing |I(n+1)|
is that

|I(n+1)| = [1+fT
n+1{I(n)}−1fn+1]|I(n)| = {1+d(j, n, xn+1)}|I(n)|. (A-1)

That treatment is allocated for which d(j, n, xn+1) is a maximum.
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In the iterative construction of DA-optimum designs for a univariate re-
sponse,

dA(j, n, xn+1) = fT
n+1{I(n)}−1A[AT{I(n)}−1A]−1AT{I(n)}−1fn+1,

(j = 1, . . . , t). (A-2)

In the absence of randomization, patient n + 1 would receive the treatment
for which dA(j, n, xn+1) is a maximum.

We now turn to multivariate data and find the equivalent of (A-2). Let
the uth row of Fn+1 be denoted fT

u,n+1. We extend (A-2) to

dA,uv(j, n, xn+1) = fT
u,n+1{I(n)}−1A[AT {I(n)}−1A]−1AT{I(n)}−1fv,n+1.

With element u, v of V −1 written V uv, the equivalent of (A-2) is

dA(j, n, xn+1) =

nh∑

u=1

nh∑

v=1

V uvdA,uv(j, n, xn+1). (A-3)

This is the function in our generic rule (18).

Appendix A.2. An Equivalence Theorem

As n → ∞, dA(j, n, xn+1) → 0. If we replace the number of patients
allocated to each treatment by the continuous distribution of asymptotic
proportions of allocation we obtain a design measure ξ and an information
matrix I(ξ). Also dA(j, n, xn+1) tends to the directional derivative dA(j, ξ, x).
In the case of non-sequential design we can consider choosing treatments
from a space J and covariates from a space Z. The design region is then
X = J ×Z. We now extend the General Equivalence Theorem of optimum
design theory (Kiefer and Wolfowitz 1960, Whittle 1973) to multivariate DA-
optimality.

If we let
d̄A(ξ) = sup

j,x∈X
dA(x, ξ),

the equivalence theorem states that the DA-optimum design, denoted ξ∗, is
such that

d̄A(ξ
∗

DA) = s.

Here s is the number of independent linear combinations of the parameters
specified by A.
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In the sequential construction of optimum designs for clinical trials there
will asymptotically be balance for each treatment over the prognostic factors.
With such balance we ignore xn+1 and write

dA(j, ξ
∗) = s, (j = 1, ..., t).

The balanced design used in (20) to derive the expression for loss is neffecnξ
∗.

The results in Table 1 for Rule D show how fast the sequential construction
of the optimum design converges.
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