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ABSTRACT

This thesis summarizes the development of a collaborative localization algorithm simulation

environment and the implementation of collaborative localization using Ultra-Wideband ranging

in autonomous vehicles. In the developed simulation environment, multi-vehicle scenarios are

testable with various sensor combinations and configurations. The simulation emulates the net-

working required for collaborative localization and serves as a platform for evaluating algorithm

performance using Monte Carlo analysis. Monte-Carlo simulations were run using a number of

situations and vehicles to test the efficacy of UWB sensors in decentralized collaborative localiza-

tion as well as landmark measurements within an Extended Kalman Filter. Improvements from

adding Ultra-Wideband ranging were shown in all simulated environments, with landmarks offer-

ing additional improvements to collaborative localization, and with the most significant accuracy

improvements seen in GNSS-denied environments. Physical experiments were run using a by-

wire GEM e6 from Autonomous Stuff in an urban environment in both collaborative and landmark

setups. Due to higher than expected INS certainty, adding UWB measurements showed smaller im-

provements than simulations. Improvements of 9.2 to 12.1% were shown through the introduction

of Ultra-Wideband ranging measurements in a decentralized collaborative localization algorithm.

Improvements of 30.6 to 83.3% were shown in using UWB ranging measurements to landmarks

in an extended kalman filter for street crossing and tunnel environments respectively. These re-

sults are similar to the simulated data, and are promising in showing the efficacy of adding UWB

ranging sensors to cars for collaborative and landmark localization, especially in GNSS-denied

environments. In the future, additional moving vehicles with additional tags will be tested and

further evaluations of the UWB ranging modules will be performed.
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1. INTRODUCTION

1.1 Background

There are numerous industries that are in the process of developing autonomous passenger

vehicles. Such vehicles have the capacity to reduce risk and increase free time of riders. In the

development of autonomous vehicles, a key consideration is reliable localization in order to plan

for and react to the environment. Typically, high accuracy positioning is achieved through the

use of Global Navigation Satellite Systems (GNSS) such as the US based GPS or the European

GALILEO. The use of GNSS with an Inertial Measurement Unit (IMU) or odometry measure-

ments can lead to a reliable and accurate positioning estimate that can be used to control vehicles

and robots [1].

However, reliable GNSS measurements are often not available. Because GNSS receivers must

have line of sight with at least four GNSS satellites to fix time and location, environments that

include obstructions pose significant challenges. Urban canyons, tunnels, or indoor environments

can degrade or fully obstruct GNSS signals, forcing the system to rely on inertial and odometry

measurements [2]. These measurements are subject to drift, and therefore cannot be trusted after

continued interruption of GNSS measurements. As such, it would be advantageous to the con-

tinued development of autonomous vehicles to use a exteroceptive sensor for navigation through

environments where GNSS is typically denied.

Ultra-Wideband (UWB), defined as radio technology exceeding 500 MHz or 20% of the arith-

metic center frequency [3], utilizes low-energy pulse communication typically for short-range,

high-bandwidth applications. By measuring time of flight (ToF) across various frequencies, it

is possible to measure distance between modules while overcoming issues typically associated

with multipath errors [4]. This has allowed UWB modules to be applied towards localization and

tracking problems [5]. UWB ranging measurements can be generated in both indoor and outdoor

environments, showing their promise in transitional areas and especially in GNSS-denied environ-
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ments. With the continued development of UWB technology and roll out in commercial products,

it’s ability to aid in navigation should continue to be explored.

Additionally, by mounting UWB ToF sensors on autonomous vehicles, it is possible to gener-

ate ranging estimates to other independent vehicles. Just like measurements to landmarks, these

measurements are not subject to drift when GNSS measurements are obscured, and can be made

available in both indoor and outdoor environments. By producing a reliable ranging estimate be-

tween vehicles, localization estimates can be generated using a network approach. Known as

collaborative localization, these measurements can leverage the growing number of intelligent ve-

hicles on the road, and can increase the effective area of vehicles that are currently limited to

GNSS-available environments.

1.2 Purpose and Aims

It is the goal of this thesis work to explore the application of UWB ranging technology in the

collaborative localization of autonomous vehicles.

By utilizing the Decawave EVK1000 modules [6], it will be possible to explore the error dis-

tribution of this sensor in various configurations between vehicles and landmarks. This will allow

for the creation of a sensor model to validate its use in Kalman filter update equations. Further, to

better incorporate these measurements in real time, necessary drivers will be created to interface

between the UWB sensor modules and the Robot Operating System (ROS) middleware.

In order quickly to test various algorithms and configurations, a simulation environment will

be created. This environment will simulate kinematic models of vehicles as well as contain sensor

models for IMU, odometry, GNSS, and UWB sensors. This environment will be used to evaluate

the efficacy of adding UWB sensors, as well as explore different estimation algorithms.

Because UWB ranging measurements also offer relative measurements between vehicles, this

work will explore the application of decentralized collaborative localization across a network of

vehicles. With the prospect of using both landmark measurements and relative vehicle to vehicle

(V2V) measurements, this work will evaluate the benefit of using UWB ranging on autonomous

vehicles.
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1.3 Contributions

This work has produced a number of contributions, including a collaborative localization simu-

lation, sensing models for GNSS and UWB modules, Monte Carlo simulations of collaborative and

landmark sensing environments, and experimental results of collaborative and landmark sensing

environments.

Through the developed MatLab simulation environment, multi-vehicle scenarios are testable

with various sensor combinations and different configurations. These scenarios provide repeatable

and realistic environments to test various algorithms for collaborative localization and filtering.

The simulation also serves as a platform for evaluating algorithm performance using Monte Carlo

analysis. Additionally, animations of the environments, vehicles, and estimates are producible in

real time to visually aid evaluation.

Sensing models were created for both the GNSS and UWB modules. The GNSS sensor model

accepts CEP values and transforms the value using a circularly symmetric Rayleigh distribution.

The UWB ranging residuals were shown to follow a normal distribution using a normal probability

plot and a Jarque-Bera test.

Using Monte Carlo simulations, improvements were shown in all simulated environments, with

landmarks offering more improvement to collaborative localization, and with the most significant

accuracy improvements seen in GNSS-denied environments.

ROS driver packages to connect RTK GNSS modules from u-blox and UWB ranging modules

from Decawave were developed. These packages wrapped serial communication protocols for each

module with a ROS package that include node, drivers, message files, and launch files necessary

to access real-time data.

To validate the simulation results, physical experiments were run using a by-wire GEM e6 from

Autonomous Stuff in an urban environment in both collaborative and landmark setups. Improve-

ments were shown using UWB in collaborative localization environments as well as using UWB

ranging measurements to landmarks in an extended kalman filter.
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2. LITERATURE REVIEW

2.1 Indoor Localization using UWB

Ultra-Wideband, with it’s previously mentioned benefits, is a very promising technology for

robotic localization. There are many examples of using UWB ranging modules for high-accuracy

indoor localization of ground or aerial systems. These systems typically measure ranges with re-

spect to fixed landmark anchors that are map specific and do not incorporate mobile anchors [7, 8].

In [9], an Indoor Positioning System (IPS) utilizing a 8-DOF Extended Kalman Filter (EKF) to

fuse IMU and UWB measurements is compared to the non-inertial UWB system. A MatLab sim-

ulation was created to estimate the benefit of fusing inertial measurements which resulted in more

than a 100% improvement of localization accuracy. These results were validated with a 3-DOF

test bed, showing similar results. In [10], non-line-of-sight (NLOS) errors and multipath effects

were considered for complex indoor environments. By implementing a Sage-Husa Fuzzy Adaptive

Filter, outlier measurements can be detected and corrected. Through this work, an IPS utilizing

UWB was validated using simulation and experimental results. In [11], an UWB sensor frame-

work is incorporated into a Extended Kalman Filter with a low cost IMU and vision-odometry.

The framework was originally tested in SimplySim and validated indoors physically with results

showing an accuracy of 10 cm. In [12], multiple omnidirectional robots each with UWB sensors

were coordinated along multiple trajectories. Using an Extended Kalman Filter, the UWB range

measurements were incorporated and a dynamics compensated control schema with PID control

was utilized to coordinate the robots. Similarly, in [13], an Unscented Kalman Filter was uti-

lized for indoor navigation using wheel odometry and UWB measurements. This framework was

validated in a real-time control experiment with a mean error of 7 cm.

2.2 Outdoor Localization using UWB

There are also examples of using UWB modules for outdoor vehicular environments. Such a

framework has the capacity to increase localization accuracy of existing systems, or provide accu-
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rate localization in environments where GPS is not reliable, such as tunnels or urban canyons. In

[14], an EKF was utilized to fuse UWB, and IMU data. In order to simulate GNSS deprivation,

the on board RTK GPS unit was not used in the filter, but rather as a ground truth comparison.

In the outdoor environments that were tested, an accuracy of below 10 cm was achieved, which

was an improvement for a purely compromised GNSS system. In [15], a UWB sensing frame-

work is utilized where multiple UWB modules are used on each vehicle, and these measurements

are fused with a Kalman filter. Using experimental measurements for a vehicle position, UWB

measurements were simulated, producing position error standard deviations of less than 1 meter.

In [16], odometry and inertial measurements were fused with UWB using an EKF and a Non-

Line-of-Sight removal algorithm to further improve accuracy. Utilizing fixed road landmarks, a

real-time positioning system was developed capable of operating with a mean error of less than 18

cm. Finally, in [17], a vehicle to everything (V2X) cooperative position framework was proposed

for the inclusion of UWB measurements. A tightly coupled GPS/UWB/INS integrated positioning

equation was used in a Robust Kalman Filter. By using a Vehicular Ad hoc Network (VANET),

vehicles are expected to make use of inter-vehicle distance and angle measurements to aid local-

ization. This integrated system showed improvement over GPS-denied environments and has the

capacity for expansion to collaborative environments.

2.3 Collaborative Localization

Given a network of vehicles, it is possible to leverage relative measurements to provide bet-

ter localization accuracy as a group, than as a collection of individuals, generally referred to as

collaborative localization (CL). Early work in CL was done in [18], which described a method of

"Cooperative Positioning with Multiple Robots" that showed significant improvement over dead-

reckoning. Improvements on their methods have produced a range of methods for using networks

to improve state estimation. These methods are generally classified in two groups: centralized

methods, and decentralized methods.
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2.3.1 Centralized Methods

Centralized CL methods use a single or multiple fusion centers, to which every vehicle commu-

nicates measurement information. These state estimators are capable of producing optimal results

when estimating linear systems, and have been used in a number of applications with success.

It was shown in [19] that a network of four ground robots with relative pose measurements can

be numerically optimized using maximum likelihood estimation (MLE) to determine the optimal

estimate of relative state for the entire network.

A sequential motion method similar to that simulated in [18], was implemented in [20] using

a centralized network of three robots. This work implemented the relative measurements using

LED lights and monocular cameras. The system was capable of improving previous camera-based

localization.

Additional work in CL using centralized architectures have been done using unmanned aerial

vehicles (UAVs). Simultaneous localization and mapping (SLAM) was performed in [21] using

a network of two UAVs that communicated monocular vision data to a central server that would

manage map fusion, optimization, and distribution back to the vehicles.

Issues with centralized networks include sensitivity to failure or disconnection, as well as band-

width and computational power. As the number of measurements made can increase on the order of

O(n2), centralized networks can meet constraints when large networks of nodes are implemented

with complex measurements or update functions. Methods to mitigate this issue are discussed in

[22].

2.3.2 Decentralized Methods

Decentralized CL methods distribute the state estimation computation across numerous or ev-

ery agent in the network. Unlike centralized methods, decentralized CL methods are not suscepti-

ble to single point failures.

It was shown in [23] that the equations of a centralized Kalman estimator can be rewritten

in the form of smaller decentralized communicating filters. Information exchange would only be
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necessary when two robots have relative measurements, with bandwidth on order of O(n), but

requires a fully connected and synchronous network at all times.

Approximations of the centralized method can extend the framework to decrease convergence

time [24] or computational cost without loss of accuracy [25, 26, 27].

Very promising has been the work in [28] which proposed a CL framework that tracks corre-

lations while limiting communication to the two robots that obtain a relative measurement. The

algorithm is recursive, reducing memory requirements and it supports generic measurement mod-

els. This algorithm was augmented by [29] to be flexible to different measurement modalities and

handle the double counting problem.

2.4 Vehicular Ad-Hoc Network

VANets are a type of wireless multi-hop network designed to have rapid changes in topology

due to moving nodes [30, 31]. These networks are capable of supporting a large range of applica-

tions, but in the case of this research work, they are instrumental in the exchange of state informa-

tion and covariance estimates. In the growing effort to grow and standardize such networks IEEE

802.11 was amended to include wireless access in vehicular environments which would greatly

facilitate the exchange of information in V2V and V2X communication [32].

VANets have been used in numerous applications, from traffic management and routing [33,

34, 35] to aiding localization [36]. While the use of VANets poses interesting security challenges,

there is work being performed to find robust solutions [37]. Most interestingly, VANets have been

used with ground and air vehicles for cooperative methods [38, 39].

In this research, it will be assumed that a synchronized and connected VANet exists in order

for vehicles to exchange state information and measurements.
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3. RESEARCH METHODOLOGY

This section will outline the methods used to research the performance of UWB modules in

landmark and collaborative localization. As stated, the goal of this thesis work to explore the

application of UWB ranging technology to the localization of autonomous vehicles. This will be

done by creating a flexible kinematic simulation of vehicles that incorporates the various sensors

available to the unmanned systems lab. This simulation framework will be used to test various

algorithms and estimate improvements from their implementation with UWB measurements using

Monte Carlo simulations. These algorithms will be testing physically using experimental data

collected using an vehicle in an urban environment.

3.1 Ultra-Wideband Evaluation

As the UWB modules are novel sensors, preliminary evaluation will be performed in order

to better model the expected output. The first step in this process would be to ensure measure-

ments can be reliably obtained from the sensors. To do this, the DecaRangeRTLS PC Application

provided by Decawave will be used to log the ranging output of the UWB transceiver [40].

These measurements will be parsed in MatLab in order to determine the maximum reliable

distance which the UWB module can measure. In order to determine the standard deviation and

bias of ranging errors, two modules will be held at a fixed distance, measured by tape. The modules

shall be allowed to reach steady state, and a sample of at least 100 measurements will be taken.

This process will be repeated in 10 meter increments from 10 to 100 meters.

In order for a Kalman filter to be the best linear unbiased estimator, an assumption made is

that the residuals of the measurements are normally distributed. As such, the sample errors will be

evaluated for conformity to a normal distribution. This will be done by creating a normal proba-

bility plot. If the plot is approximately linear, a Jarque–Bera test will be performed to determine

the likelihood the measurement errors do not conform to a normal distribution [41].
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3.2 Simulation Design

In order to evaluate the methods used in collaborative localization with the UWB modules, it is

imperative to have a repeatable and reliable simulation. The simulation proposed would facilitate

the development and testing of collaborative localization algorithms, and provide initial estimates

of performance. Requirements for the simulation were:

• Simulate vehicles using a kinematic model as truth

• Develop sensor models for IMU, odometry, GNSS, and UWB sensors

• Accept configurations for different scenarios, number of vehicles, and sensor availability

• Simultaneously run multiple algorithms for state estimation

• Run Monte Carlo simulations of scenarios to evaluate the distribution and errors of various

estimation algorithms

3.2.1 Kinematic Model

In order to model the vehicles, the kinematics will be derived from the center of the rear wheel

axis, using the methods described in [42]. These kinematics will be used to derive the differen-

tial equations of motion for the kinematic model vehicle. The simulation will implement these

differential equations in a fixed step process that will approximate the motion for small steering

angles.

3.2.2 Simulation Architecture

The simulation will be structured in a way to best emulate the real-world implementation of the

localization algorithm. As such, each vehicle will maintain its own self estimate as well as physical

and sensor characteristics. Such an architecture would follow the current state of roadways and not

rely on the introduction of centralized computing and other infrastructures. This separation will

be created through the use of objects. As such, each object instance will be isolated in its filtering
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and private measurements, and will only be able to interact with other vehicles through relative

measurements and state exchange.

The system will allow state exchange between vehicles through the use of an intermediate

object that stores vehicle information and can introduce a step delay in the exchange of state. This

simulated network object will handle the relative measurement models as well as the state truth

and state estimates from each vehicle.

3.2.3 Monte Carlo Simulation

To explore the localization accuracy of each situation given the various random sampling errors

in each sensor, a Monte Carlo (MC) method will be implemented [43]. Using random sample draws

for each sensor that follow their modelled distribution, each simulation run will be different. In

order to better understand performance, a MC method runs each scenario many times, collecting

information on the state estimation error for each run. This information, when collected, gives a

distribution of errors that approach an analytical solution of the error estimation problem. Due to

the changing scenarios and complexity of the problem, a MC solution is much more attainable and

can approximate otherwise incalculable values.

Therefore, a final object that acts as the simulation wrapper will be created in order to manage

the simulation run, vehicle objects, and VANet object. This simulation object will collect the state

estimation errors for each run and will allow simulations to be run in parallel to decrease computing

time. To produce a relatively smooth distribution that approximates the true error distributions of

each state estimator, each scenario will be run 5,000 times. RMS errors for each run will be

collected to estimate the distribution of mean errors in the various configurations.

3.3 Collaborative Localization

UWB ranging measurements can act as a typical update to a Extended Kalman Filter (EKF)

by finding a vehicle’s distance to known landmarks. Additionally, by measuring distance between

vehicles, it is relatively straightforward to derive the UWB update equations for a centralized

localization system that receives all control and update measurements. However, as discussed in

10



Chapter 2, there are difficulties in scaling up a centralized network, and it is not robust against

single points of failure. Additionally, decentralized methods are flexible in the introduction of

nodes and require less infrastructure than centralized methods for passenger vehicles. Therefore,

it is advantageous to incorporate a decentralized collaborative localization (DCL) algorithm as

described in [28].

The DCL algorithm requires state exchange and relative measurements between vehicles. As

such, this algorithm will be implemented into the simulation using the state exchange protocols

outlined in Section 3.2.2. Here, a realistic application of DCL will be shown due to the possibility

of a large network of simulated vehicles.

Additionally, the DCL algorithm will be implemented experimentally using a single moving

vehicle and a simulated stationary vehicle, due to current limitations on in-person testing. Such

an experiment will not fully validate the algorithm’s application, but with estimations of state and

uncertainty of a stationary vehicle, any improvements in collaborating with stationary vehicles can

be shown.

3.4 Experimental Design

Once the performance of the UWB sensors is validated, physical experiments will be performed

to show any localization accuracy improvements through the use of UWB sensors and collaborative

localization.

3.4.1 UWB Sensor Package

In order to make use of the sensor data and have real-time analysis, it is necessary to make the

UWB sensor measurements available within the ROS framework. In order to do this, a ROS driver

package will be created to utilize the serial interface of the EVK1000 boards from Decawave. This

ROS package will define custom messages for the UWB sensors to facilitate their incorporation

into algorithms. Additionally, launch files and ROS nodes will be defined to decrease startup time

to access sensor data. Finally, the package will be compatible with catkin to increase usability.
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3.4.2 RTK GNSS Sensor Package

Additionally, estimations will be compared to a ground truth produced from RTK corrected

GNSS measurements. Using a ZED-F9P from u-blox, positioning accuracy of 0.01 meter are

achievable and errors are estimated in real time [44]. As the error of these corrected GNSS modules

is significantly lower than the expected error of the state estimate, these RTK GNSS measurements

will be used as a ground truth for means of estimating state error.

In order to interface with these modules, a similar ROS driver will be created to connect to

the serial interface. This package will expand upon an existing serial package [45]. Specific

contributions will be the addition of interface definitions to include the ZED-F9P module. This

will allow the measurements of relative position and angle estimates from two GNSS antennae to

be communicated via serial messages. Additionally, this new package will wrap the serial interface

with a ROS driver. This includes the definition of nodes, messages, and launch files in order to

make real-time measurements available. Finally, the package will similarly be compatible with

catkin to increase usability.

3.4.3 Test Scenarios

The collaborative and landmark localization using UWB ranging will be testing physically

using a autonomous Polaris GEM e6 from the Unmanned Systems Lab. This autonomous trolley

has access to IMU, odometry, and GNSS measurements through ROS. To add measurements for

the UWB ranging and RTK GNSS, both the UWB tags and RTK GNSS antennae will be mounted

to the roof rack of the vehicle. Measurements will be taken to determine the frame transformations

for both sets of sensors, and will be incorporated into the estimation and evaluation algorithms.

With the sensors mounted and the ROS drivers installed, a subset of the simulated scenarios

will be created that only require a total of four UWB modules, which is a limitation on the number

currently available in the lab. This subset will cover street crossing and moving parallel to a

single vehicle, street crossing and moving through an intersection that has landmarks installed,

and moving through a tunnel with landmarks.
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Multiple data sets of each scenario will be collected and recorded to allow for playback in real

time for tuning and algorithm testing. Using the resulting state estimate and transformed RTK

GNSS data, accuracy evaluations will be made with and without the UWB sensor updates as the

difference of the position estimate and RTK GNSS position. Using the RMS position errors in

these runs, it will be possible to compare the performance gains in adding UWB modules in the

simulations and in experimental environments.
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4. THEORY

This section will introduce the theory behind the methods and algorithms that comprise and

support this thesis work.

4.1 Tests for Normality

Incorporating measurements into a Kalman filter gives the optimal estimate of a state with the

given measurement and prior information. An assumption made in the filter is the measurement

residuals are drawn from a zero mean Gaussian distribution [46]. In the evaluation of the UWB

modules, it is necessary to show that the ranging estimates are given by

z = ‖pi − pj‖+ ν (4.1)

where pi and pj are the UWB tag locations and where

ν ∼ N (0, Qt
i) (4.2)

In order to verity this, samples are to be taken at a known distance and the resulting distribution

will give

ν = z − ‖pi − pj‖true (4.3)

Using the calculated residuals, a normal probability plot can be used to create an visual check

of normality [47]. The normal probability plot transforms a sorted distribution of samples with the

following

zi = Φ−1

(
i− 1

n+ 1− 2a

)
(4.4)

for i = 1, 2...2, where a = 1/2 for n > 10, and Φ−1 is the standard normal quantile function.
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If the data are consistent with samples from a normal distribution, they will show an approxi-

mately linear plot of z values. Any trends or deviations from the line are indications of subsequent

deviations from a normal distribution.

Additionally, a Jarque–Bera goodness of fit test can be performed on the data to provide a less

subjective measure of normality by determining if the sample data have the skewness and kurtosis

matching a normal distribution [41]. The test is defined as

JB =
n

6

(
S2 +

1

4
(K − 3)2

)
(4.5)

where the skewness S and kurtosis K are given by

S =
1
n
Σn
i=1(xi − x̄)3(

1
n
Σn
i=1(xi − x̄)2

)3/2
(4.6)

K =
1
n
Σn
i=1(xi − x̄)4(

1
n
Σn
i=1(xi − x̄)2

)2 (4.7)

With sufficiently large samples, the JB test statistic follows a Chi-Square distribution with 2

degrees of freedom. Therefore, an associated probability p < 0.05 would indicate the samples

come from a normal distribution.

4.2 Kinematic Modelling

In order to simplify the kinematic modelling, a rear-axle bicycle model is used. Using the center

of the rear axle as the reference point and a system defined in Figure 4.1, giving the following

relations.

θ̇ = ω =
v

R
(4.8)

tan(δ) =
L

R
(4.9)
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Figure 4.1: Rear Axle Bicycle Model

Therefore, the following differential equations can be derived.

ẋr = v cos(θ) (4.10)

ẏr = v sin(θ) (4.11)

θ̇r = ω =
v tan δ

L
(4.12)

where v is the vehicle speed, δ is the angle of the front wheel, and L is the wheelbase length.

4.3 Decentralized Collaborative Localization

The decentralized collaborative localization algorithm is an approximation of a centralized

kalman filter that distributes computation and reduces communication between nodes. The esti-

mation of the entire state of a network is broken down into smaller filters where each vehicle has

private controls and measurements that are used internally and relative measurements that require

the sharing of state and covariance information.

For a network of N vehicles, let xi be the pose of vehicle i. Each vehicle has an estimate of

its own state x̂ti and covariance Σt
ii at time t. Let each vehicle maintain a joint state estimate of

the system where x̂t = [x̂t1; ...; x̂tN ] and Σt = [Σt
ij]1≤i,j≤N . With this network, an outline of the
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collaborative update algorithm is shown in Chapter A.

4.3.1 Initialization

It is assumed that at the begging of any network, the vehicles positions are uncorrelated. There-

fore, the network state can be initialized with the initial beliefs beli of each vehicle and the cross

correlation is set as

{Σt
ij = 0}∀i 6=j (4.13)

When the vehicles come into sensing range, generally the cross correlation Σt+1
i j 6= 0, and

therefore decompose according to [48].

Σt+1
ij = σt+1

ij (σt+1
ji )T (4.14)

where any decomposition is valid. For simplicity, the covariance is decomposed as σt+1
ij = Σt+1

ij

and σt+1
ji = I . This allows each vehicle to track contributions to the cross-correlation terms without

the need for communication during each prediction and private update.

4.3.2 Control

It is assumed that the vehicles follow a motion model g where control input U is an IMU

measurement. The prediction step for vehicle i is given by the standard EKF equations without

updates to other vehicles

x̂t+1
i = g(x̂ti, U

t
i ) (4.15)

Σt+1
ii = Gt

iΣ
t
ii(G

t
i)
T +Rt

i (4.16)

Σt+1
ij = GiΣ

t
ij (4.17)

x̂t+1
j = x̂tj (4.18)

Σt+1
jj = Σt

jj (4.19)
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for all j 6= i where the linearized motion model is defined as

Gt
i =

∂g(x, U)

∂x
(x̂ti, U

t
i ) (4.20)

and Rt
i is the process noise. In the particular case of using a constant velocity prediction step,

the motion model can be written as

x̂t+1
i = Gtx̂ti +BtU t

i (4.21)

where

Gt =



1 0 0 dt 0 0

0 1 0 0 dt 0

0 0 1 0 0 dt

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0


, Bt =



dt2

2
0 0

0 dt2

2
0

0 0 dt

dt 0 0

0 dt 0

0 0 1


, U t

i =


ax

ay

ωz

 (4.22)

To reduce communication, the cross-correlations of Equation (4.17) can be correctly updated

by instead updating

σt+1
ij = Gσtij (4.23)

4.3.3 Private Update

It is assumed that the private update measurement to be a function of the state of a single vehicle

with a Gaussian error disturbance.

zti = h(x̂ti) + νp (4.24)

with νp ∼ N (0,M t
i ), M t

i being the private measurement noise, and h being the measurement
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model. The private update step for the system is

x̂t+1
i = x̂ti +Kt

i

[
zti − h(x̂ti)

]
(4.25)

x̂t+1
j = x̂tj +Kt

j

[
zti − h(x̂ti)

]
(4.26)

Σt+1
ii = (I −Kt

iH
t
i )Σ

t
ii (4.27)

Σt+1
ij = (I −Kt

iH
t
i )Σ

t
ij (4.28)

Σt+1
jj = Σt

jj −Kt
jH

t
iΣ

t
ij (4.29)

where

H t
i =

∂h(x)

∂x

(
x̂ti
)

(4.30)

Kt
i/j = Σt

ii/jj(H
t
i )
TS−1 (4.31)

S = H t
iΣ

t
ii(H

t
i )
T +Qt

i (4.32)

and the cross terms are instead correctly updated with

σt+1
ij = (I −Kt

iH
t
i )σ

t
ij (4.33)

for all i 6= j. To avoid communication during this step, Equations (4.26) and (4.29) are replaced

with

x̂t+1
j ≈ x̂tj (4.34)

Σt+1
jj ≈ Σt

jj (4.35)

When the private update is from the odometry measurement, the measurement equation is given

by
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h(x̂ti) =

 vi

vi
tan(δi)
bi

 (4.36)

which produces the following linearized measurement matrix

Hk =

0 0 0 vix
vi

viy
vi

0

0 0 0 0 0 1

 (4.37)

where b is the vehicle wheelbase.

It is also possible for the UWB measurements to be used as private updates, when measuring

distances to landmarks. In this case, the measurement model is given by

h(x̂ti) =

[
‖pi − pL‖

]
(4.38)

where pi is the position of the vehicle tag and pL is the position of the landmark. This mea-

surement equation produces the following linearized measurement matrix

Hk =

∆X√
z
, ∆Y√

z
, 1√

z

[
pi − pL

]
R[θ]


cy

cx

0

 , 0, 0, 0

 (4.39)

where c are the anchor offsets on the vehicle, ∆X ,∆Y are the differences in the position

estimates of the anchor and tag, and R[θ] is a rotation matrix about the vertical axis using the

current orientation of vehicle i.

4.3.4 Relative Update

It is assumed that the relative update measurement to be a function of the state of two vehicles

i and j, with a Gaussian error disturbance.

zti = f(x̂ti) + νr (4.40)
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with νr ∼ N (0, Qt
ij), Qt

ij being the relative measurement noise, and f being the relative mea-

surement model. The relative update step for the system is

Σt
ij/ji = σtij/ji(σ

t
ji/ij)

T (4.41)

x̂t+1
i/j = x̂ti/j +Ki/j

[
ztij − h(x̂t+1

i , x̂t+1
j )
]

(4.42)

Σt+1
ii/jj = (I −Ki/jFi/j)Σ

t
ii/jj −Ki/jFj/iΣ

t
ji/ij (4.43)

Σt+1
ij = (I −KiFi)Σ

t
ij −KiFjΣ

t
jj (4.44)

σt+1
ij = Σt+1

ij (4.45)

σt+1
ji = I (4.46)

σt+1
ik/jk = Σt+1

ii/jj

(
Σt+1
ii/jj

)−1

σtik/jk (4.47)

and remaining cross terms updated with

Σt+1
kk ≈ Σt

kk (4.48)

x̂t+1
k ≈ x̂tk (4.49)

for k ∈ {1, ..., N}\{i, j} with linearization

F t
i/j =

∂f(xi, xj)

∂xi/j

(
x̂ti/j
)

(4.50)

and Kalman gain

K =

Σt
iiF

T
i Σt

ijF
T
j

Σt
jiF

T
j Σt

jjF
T
i

S−1 (4.51)

and residual covariance
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S =

[
Fi Fj

]Σt
ii Σt

ij

Σt
ji Σt

jj


F T

i

F T
j

+Qt
ij (4.52)

The cross-correlation is decomposed and distributed with

Σt+1
ij = σt+1

ij (σt+1
ji )T (4.53)

where, for simplicity, we assign

σt+1
ij = Σt+1

ij (4.54)

(σt+1
ji ) = I (4.55)
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5. RESULTS

5.1 Collaborative Simulation

A collaborative simulation was created in MatLab to be a framework for testing and evaluating

algorithms and filters in collaborative localization of autonomous vehicles. The simulation was

designed to simulate various scenarios with a indefinite number of collaborative vehicles. Each

vehicle instance is capable of handling its own sensor stack and estimations, while also sharing

state estimates.

Flexibility in the estimation algorithms was built in to the simulation in order to more easily

evaluate estimation performance in any given scenario. Multiple independent estimations algo-

rithms can be run for each vehicle simultaneously. By ensuring that each vehicle maintains its own

state estimates and runs independent algorithms, it was possible to predict the expected improve-

ments from the addition of collaborative localization, landmark localization, or both.

Pre-built scenes are included in the simulator in order to quickly assess performance gains

and create tests with various numbers, speeds, and directions of vehicles. The current situations

include: Parallel Motion, Street Crossings, and Underground Tunnels.

Finally, test scripts were generated in order to run single instances of the scenes, or a Monte

Carlo simulation of the scene. The Monte Carlo test script runs thousands of simulations in parallel

and collects the distribution of state errors. This distribution can be used to create an approximation

of the state error probability density function. Not only does this provide expected values for the

state error, but also gives a greater understanding to the possible distribution of errors.

5.1.1 Simulation Objects

The ability to define objects within MatLab was utilized to increase the flexibility of the sim-

ulation. A KinematicCar object was defined to handle each instance within the simulation. These

instances independently would handle their own state estimation and measurement models.

Ultra-Wideband ranging between vehicles naturally requires inter-vehicle information sharing.
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To handle this and ensure availability of data, a separate UltraWideband object was defined that

would handle the storage and update of UWB tag information. Additionally, this object would

handle the measurement models of the UWB sensors.

Lastly, in order to streamline the simulation process, a wrapper Simulation object was created

that would create the necessary KinematicCar and UltraWideband objects and initialize based on

a configuration file. This allows for a quick evaluation of various experiments. The Simulation

instance manages MC simulations following the algorithm outlined in Chapter A. Additionally,

the Simulation instance handles the parallel computing of the experimental runs such that MC

simulation results are quickly realizable even with large numbers of vehicles to simulate.

5.1.2 GNSS Sensing Model

The GNSS sensing model was created with the VN-300 in mind. Because the specifications

give GNSS accuracy in Circular Error Probable (CEP), it was desirable to create a model that took

that value as a parameter. In order to simulate the GNSS with errors, the CEP value is transformed

into a distance root mean square (DRMS) value, which is approximately 84.93% of CEP [49]. This

DRMS value is the sigma of Rayleigh distribution exemplified in Figure 5.1a. Using a Rayleigh

random number generator, the error distance is generated, and a uniform random number generator

is used to determine the angle. Combined, this gives a two-dimensional offset value for the GNSS

error model given by Equations (5.1) and (5.2).

r ∼ Rayleigh(0.8493 · CEP ) (5.1)

θ ∼ U(0, 2π) (5.2)

Additionally, the VN-300 is capable of estimating both heading and vehicle speed in UTM

coordinates. Errors on these measurements are assumed to be normal, and the standard deviations

were given by the product specifications.
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Figure 5.1: Properties of the Rayleigh distribution and CEP

5.1.3 UWB Sensing Model

Since the Kalman Filter assumes Gaussian measurement errors, it was desirable to validate the

distribution errors of these UWB ranging modules. Measurements were taken in increments of 10

meters from 10 to 100 meters. The distribution of errors are summarized in Figure 5.2a which

appears to be approximately normal. The normal probability plot shown in Figure 5.2b is approxi-

mately linear, which indicates Gaussian errors. The tails shown symmetric deviations, which could

indicate outliers that deviate from the normal distribution. A more rigorous Jarque–Bera test was

performed which failed to reject the null hypothesis with a probability p < 0.05 that the sample er-

rors come from a Gaussian distribution. Therefore, the UWB sensing model was implemented with

Gaussian normal randomly distributed errors with a measured standard deviation of 0.31 meters,

modelled as the difference of tag positions at time time

rtij ∼ N (
∥∥pti − ptj∥∥ , σ2) (5.3)

Additionally, the signal was shown to have an effective maximum in the exploratory tests of

110 meters. Because measurements were not shown to be reliable over 100 meters, a limit of 100
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Figure 5.2: Visual methods for testing normality of UWB measurement residuals

meters was implemented in the UWB sensing model. Finally, the model simulates the measure-

ment availability of the UWB sensors, which give the entire network of measurements at once.

5.1.4 Simulation Output

The resulting output of this software package is a visual animation of the simulation exempli-

fied in Figure 5.3, position error summaries for each vehicle, and the final state and covariance.

When compiled in Monte-Carlo simulations, these data can be used to evaluate filter performance

improvements. Additionally, the software is configurable to automatically create videos from the

animation output of the simulation.

5.2 Simulation Results

Using the simulation framework, it was possible to test a wide variety of vehicle environments

and sensor configurations. These configurations included vehicles moving parallel to each other,

vehicles moving perpendicular in street crossings, and moving in groups in tunnels without GNSS

data. Additionally, UWB landmarks could be added to each of these scenarios.

In order to run realistic simulations, error parameters were drawn from sensor data sheets or

calibration procedures. A summary of the parameters used is shown in Table 5.1. Simulations

were allowed to run for 20 seconds over 10,000 iterations.
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Error Parameter Error Units
GPS CEP 1.00 m
PACMod Velocity 0.05 m

s

PACMod Steering 0.05 ◦

UWB Ranging 0.30 m

Table 5.1: Error Parameters used in Simulations
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Figure 5.3: Scene with two vehicles moving in parallel

5.2.1 Parallel Vehicles Environment

This experiment tested the motion of two vehicles moving in parallel with full sensor access.

Figure 5.3 outlines the environment with both cars and the optional landmarks. Figure 5.4 shows

the RMS position error through the Monte-Carlo simulation of this environment using the four

different localization algorithms.

Because the vehicles were moving in parallel, reductions in horizontal position errors were

seen, which is to be expected, as this is the direction down range of the UWB ranging measurement.

Incorporating landmarks as additional points of measurement continued to improve the localization

accuracy of the vehicles when using UWB measurements. This also was expected as increasing
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the number of measurements should improve the localization estimate. The addition of landmarks

significantly decreased both the mean and deviations of the position errors.
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Figure 5.4: Distribution of position errors of two collaborative vehicles moving in parallel

5.2.2 Four-Way Intersection Environment

This experiment tested the motion of two vehicles moving in parallel yet opposite directions

through a four way stop, while two other vehicles are waiting to proceed. Figure 5.5 outlines the

environment with all four cars and the optional landmarks. Figure 5.6 shows the RMS position

error through the Monte-Carlo simulation of this environment using the four different localization

algorithms.

As expected, increasing the number of vehicles (and therefore the number of measurements)

increased the localization accuracy of the vehicles. This is a promising result for the continued

expansion of intelligent vehicle networks as it suggests more connected vehicles could lead to more

accurately located vehicles. However, it is expected that increases in the number of measurements

was not the sole factor in improving the vehicles’ localization accuracy. As this environment had
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Figure 5.5: Scene with four vehicles moving through a four-way stop

measurements in both the lateral and longitudinal directions of the vehicle, a significant reduction

in error was observed in both directions. This adds on to the improvement seen in the parallel test.
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Figure 5.6: Distribution of position errors of two collaborative vehicles moving through a four-way
stop
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Figure 5.7: Scene with six vehicles moving through a tunnel

5.2.3 Tunnel Environment

This experiment tested the motion of six vehicles moving in parallel through a tunnel environ-

ment that obscures GNSS measurements. Figure 5.7 outlines the environment with all six cars and

the optional landmarks. Figure 5.8 shows the RMS position error through the Monte-Carlo simula-

tion of this environment using the EKF and DCL algorithms without landmark ranging. Figure 5.8

shows the RMS position error through the Monte-Carlo simulation of this environment using the

EKF and DCL algorithms with additional ranging to landmarks every 25 meters.

As expected, an environment where GNSS measurements were obstructed showed the greatest

improvement from the addition of UWB measurements. Using these measurements in a purely

collaborative framework only showed minor improvements to localization accuracy. Even though

the UWB modules offer additional measurements to the system, they are relative measurements

between similar vehicles and therefore are still subject to drift. A larger number of vehicles would

be expected to offer greater improvements as the RMS drift would approach zero.

With the addition of landmarks in the environment, however, significant improvements in lo-

calization accuracy were seen. This was expected as UWB ranging measurements to landmarks
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would be the only exteroceptive measurement made by the vehicles. This indicates the additional

framework of adding UWB ranging to landmarks in GNSS-denied environments could expand the

working range of autonomous vehicles.
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Figure 5.8: Distribution of position errors of two collaborative vehicles moving through a tunnel
without landmarks
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Figure 5.9: Distribution of position errors of two collaborative vehicles moving through a tunnel
with landmarks

5.2.4 Simulation Results Summary

Across the simulations performed, many improvements were seen. Additionally, this imple-

mentation and subsequent tests validated the architecture and algorithms used. A numerical sum-

mary of the simulation results is shown in Table 5.2. Additionally, the simulations showed the

following trends

• UWB measurements offered improvements to localization accuracy across all scenarios es-

pecially in cases GPS-deprivation

• While still being subject to drift, using more vehicles generally improved the accuracy of

localization and decreased overall deviation in the error means.

• Much like GPS dilution of precision, improved UWB sensing geometry improved the local-

ization accuracy of vehicles.

• The addition of landmarks improved the localization accuracy of all environments
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Experiment GNSS EKF EKF LMK DCL DCL LMK
Parallel Yes 0.273 0.075 0.182 0.056

Crossing Yes 0.263 0.102 0.087 0.039
Tunnel No 0.537 0.073 0.514 0.048

Table 5.2: Summary of simulation RMS position errors, in meters

5.3 Decawave ROS Driver

In order to interface with the Decawave EVK1000 UWB ranging modules, a ROS package

was developed using python3 using serial commands. The decawave_ros package includes an

installation script and can be built with catkin [50]. This package contains the source code to

connect to the serial interface of the EKK1000 boards and parse the resultant messages that are

output when ranging data is available.

This serial interface and parsing is wrapped by a ROS node that takes the data strings output by

the parser and publishes the measured distances along with the respective anchor and tag numbers.

This data becomes very useful in collaborative localization because the tag information is key in

making use of decentralized algorithms. As such, the package greatly facilitated the data collection

used in later sections of this work.

5.4 UBX ROS Driver

In order to compare to a high-accuracy ground truth, it was important that the system could use

Real-Time Kinematic (RTK) GNSS correction, which provides up to 2 cm of accuracy. In order

to use the ArduSimple RTK GNSS module, the UBXtranslator package was expanded to include

different serial message definitions [51]. This package has a similar structure to the decawave_ros

package where the serial message parsing is wrapped by a ROS node driver. This package is able

to access the high-precision lattitude, longitude, and height data given by the module, as well as a

relative heading measurement. As these measurements were used as a ground truth to the system,

the development of this package was also very useful in facilitating the evaluation of the proposed

collaborative localization algorithm.
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5.5 Experimental Results

To further the results shown in simulation, the collaborative and landmark localization frame-

work was tested in downtown Bryan, Texas using the Unmanned Systems Lab autonomous trolley

exemplified in Figure 5.10. The UWB modules were mounted alongside a VectorNav VN-300

and ArduSimple RTK GNSS [52, 53]. Further information about the sensor offsets is outlined

in Chapter B. The trolley itself includes PACMod, a by-wire kit prepared by Autonomous Stuff,

which gives access to wheel speed and steering angle data through a provided ROS driver [54].

Figure 5.10: Example experimental setup with Trolleys and UWB sensing

Because of limitations on in-person testing and the number of golf carts in Bryan, only a single

vehicle was present for testing. As such, the collaborative localization algorithm was only able to

be tested with a simulated stationary vehicle. This did not affect the testing of landmark setups.

Using tripods, the second set of UWB ranging modules were placed in various experimental setups

to either represent a stationary second vehicle or road landmarks. These offsets are also outlined
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in Chapter B. The experiments selected to experimentally test were a subset of those performed in

Section 5.2 due to a limitation on the number of tags available. However, the current design of the

tags allows for up to four anchors that range to up to eight tags at a time. With this in mind, a much

larger variety of tests can be performed.

Additionally, experimental data showed a significantly reduced range of measurements taken,

with few measurements being received over 60 meters. As this is an observation made after col-

lecting data, additional more rigorous experimentation is necessary to determine the accuracy of

this observation and what is a reasonable ranging measurement when UWB modules are mounted

on vehicles and not just in open space.

5.5.1 Parallel Vehicles Environment

The results of implementing the collaborative localization algorithm in the parallel motion

experiment increased the localization accuracy as expected with motion and estimates shown in

Figure 5.11a. The most pronounced improvement came from the lateral correction of the position

estimate. As this is the direction the measurements were generally taken, this is an expected

result. As the measurements became further, and the baseline distance decreased with respect to

the measurement distance, lateral sensitivity became large. As such, the relative updates became

decreasingly effective. As such, near the end of the runs, even when receiving correction updates,

it appears as if the vehicle is dead reckoning in the cross range direction.

5.5.2 Collaborative Street Crossing Environment

The results of implementing the collaborative localization algorithm in the perpendicular street

crossing experiment increased the localization accuracy, as expected, with motion and estimates

shown in Figure 5.11b. As with the parallel experiment, the most pronounced improvement came

from the lateral correction of the position estimate. As this is the down range direction the measure-

ments were generally taken, this is an expected result. Similar to the parallel motion experiment,

UWB measurements made at increasing distances had decreasing effects on the state estimate.

However, because the measurements were less colinear due to the orientation of the stationary ve-

35



RTK GPS
EKF
DCL
Landmarks

(a) Parallel Motion with Stationary Vehicle

RTK GPS
EKF
DCL
Landmarks

(b) Street Crossing with Stationary Vehicle

Figure 5.11: Experimental results of the DCL with UWB measurements in different scenarios
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Figure 5.12: Experimental results of the EKF with landmark measurements in different scenarios
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hicle, measurements seemed to suffer less geometric dilution of precision. This could help explain

the significantly better performance of the DCL in this scenario.

5.5.3 Landmark Street Crossing Environment

The results of incorporating the private UWB measurements into the EKF in the street crossing

environment increased the localization accuracy, as expected, with motion and estimates shown in

Figure 5.12a. As with the collaborative test in this environment, lateral accuracy showed the largest

improvement in the state estimate. As the geometry of this sensing environment was better than

the collaborative environment, it is expected that a greater improvement in localization accuracy

would be seen.

5.5.4 Landmark Tunnel Environment

The results of incorporating the private UWB measurements into the EKF in the tunnel en-

vironment significantly increased the localization accuracy, with motion and estimates shown in

Figure 5.12b. Given that in this environment, GNSS corrections were denied, UWB measure-

ments gave the only exteroceptive measurement, whose addition should regulate possible drift in

the system. Therefore, just as in the simulation, adding these measurements greatly increased the

localization accuracy of the vehicle while driving in the corridor. There does appear to be large

oscillations in tracking the true position, which indicates that further tuning of the EKF may be

necessary.

5.5.5 Experimental Results Summary

Across the experiments performed, improvements were seen in all when UWB measurements

were added in either DCL or landmark localization in an EKF. These experiments have validated

the simulation data and suggest a need to continue testing with multiple moving vehicles and more

UWB tags. A numerical summary of the experimental results is shown in Table 5.3. Very similar

to the simulations, the experimental results showed the following trends

• UWB measurements offered improvements to localization accuracy across all scenarios es-

pecially in cases of landmark usage and GPS-deprivation
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• Much like GPS dilution of precision, improved UWB sensing geometry improved the local-

ization accuracy of vehicles.

• Landmarks offered greater improvements to localization accuracy than collaboration alone

The key trend lacking from the simulations is a reduction in drift when multiple vehicles mov-

ing in parallel can collaboratively localize. When multiple vehicles and drivers are available with

more tags, this will be a next step experiment in the exploration of using UWB ranging.

Experiment GNSS EKF EKF LMK DCL DCL LMK
Parallel Yes 1.40 – 1.23 –

Crossing Yes 2.32 1.61 1.81 –
Tunnel No 7.78 1.30 – –

Table 5.3: Summary of experimental RMS position errors, in meters

The realized improvements from adding the UWB ranging measurements was lower than pre-

dicted in the simulations. It is expected that this is related to the certainty of data coming from the

VN-300 and PACMod being underestimated, leading to much higher location accuracy than sim-

ulated. As such, there percent improvement from adding collaborative measurements was lower

than in the simulations, with the smallest percent improvement being 9.2% and the largest being

12.1%. Similarly when adding landmarks, the improvement was lower being only 30.6%. How-

ever, removing the GNSS updates showed results much more in line with the simulation, with the

addition of UWB measurements in into the EKF showing a 83.3% improvement in localization

accuracy in a tunnel environment.

5.6 Future work

As discussed in previous sections, there are a number of possible areas of exploration intro-

duced by this work. The largest area of future work is the expansion of the number of moving

vehicles and UWB ranging modules used in the experiments. This would allow for a more realistic
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evaluation of the DCL equations and experiments that utilize both modes of update measurements.

Additionally, this would allow experiments to occur over larger areas for more realistic scenarios.

Additionally, it is expected that improvements in the EKF tuning could lead to greater perfor-

mance gains in the position accuracy of the vehicle. As such, larger sample sets will be collected

to aid in the finer tuning of the EKF equations.

In order to expand the operating area of autonomous vehicles, it is desirable to testing transi-

tional spaces where GNSS signals are lost to further evaluate the benefits of using collaborative

and landmark localization.

Finally, as the UWB measurements while mounted on the vehicle did not match the perfor-

mance seen in open environments, it is necessary to re-characterize the modules in situ in order

to verify the residuals are samples of a normal distribution. Additionally tests on the limits of

measurement and standard deviation of the residuals should be performed while the sensors are

mounted on the vehicles to ensure the numbers used in simulation are accurate.
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6. SUMMARY AND CONCLUSIONS

In conclusion this thesis summarizes the work performed in the development and testing a

collaborative localization algorithm simulation environment with experimental validations. In the

developed simulation environment, multi-vehicle scenarios are testable with various sensor com-

binations and configurations. These scenarios provide repeatable and realistic environments to test

various algorithms for collaborative localization and filtering. Through the use of various objects,

the simulation emulates the networking required for collaborative localization and serves as a plat-

form for evaluating algorithm performance using Monte Carlo analysis. Additionally, animations

of the environments, vehicles, and estimates are producible in real time for aided evaluation.

Sensing models were created for both the GNSS and UWB modules. The GNSS sensor model

was developed to accept CEP values, which is a common performance metric for receivers, and

transform the value using a circularly symmetric Rayleigh distribution. The UWB ranging residu-

als were shown to follow a normal distribution using a normal probability plot and a Jarque-Bera

test. This satisfies the assumptions made in using Kalman filters.

Monte-Carlo simulations were run using a number of situations and vehicles to test the efficacy

of UWB sensors in decentralized collaborative localization as well as landmark measurements

within an extended Kalman filter. By using 5,000 runs for each environment, it was possible to

evaluate the expected distribution of errors in each environment with various frameworks and fil-

ters. Improvements were shown in all simulated environments, with landmarks offering additional

improvements to collaborative localization, and with the most significant accuracy improvements

seen in GNSS-denied environments.

To validate the simulation results, physical experiments were run using a by-wire GEM e6

from Autonomous Stuff in an urban environment in both collaborative and landmark setups. Due

to higher than expected INS certainty, adding UWB measurements showed smaller improvements

than simulations. Improvements of 9.2 to 12.1% were shown using UWB in collaborative lo-

calization environments. Improvements of 30.6 to 83.3% were shown in using UWB ranging
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measurements to landmarks in an extended kalman filter for street crossing and tunnel environ-

ments respectively. These results are similar to the simulated data, and are promising in showing

the efficacy of adding UWB ranging sensors to cars for collaborative and landmark localization,

especially in GNSS-denied environments.

In the future, additional moving vehicles with additional tags will be tested in a greater number

of environments and for larger distances. Transitional spaces from GNSS to GNSS-denied will be

used to further test the algorithms. Lastly, further evaluations of the UWB ranging modules will

be performed in situ to ensure earlier characteristics were valid.
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APPENDIX A

ALGORITHMS

Algorithm 1: Motion Update for Robot i

input : X̂ t
i , Σt

ii, {σtij}j∈1,...,N , U

output : X̂ t+1
i , Σt+1

ii , {σt+1
ij }j∈1,...,N

G = ∂g(X,U)
∂X

(
X̂ t
i , U

)
X̂ t+1
i = g(X̂ t

i , U)
Σt+1
ii = GΣt

iiG
T +R

for 1 ≤ j ≤ N, j 6= i do
σt+1
ij = Gt

i(x
t
i)σ

t
ij;

Algorithm 2: Private Measurement Update for Robot i

input : X̂ t
i , Σt

ii, {σtij}j∈1,...,N , z

output : X̂ t+1
i , Σt+1

ii , {σt+1
ij }j∈1,...,N

H = ∂h(X)
∂X

(
X̂ t
i

)
S = HΣt

iiH
T +Q Ki = Σt

iiH
TS−1

X̂ t+1
i = X̂ t

i +Ki

[
z − h

(
X̂ t
i

)]
Σt+1
ii = (I −KiH) Σt

ii

for 1 ≤ j ≤ N, j 6= i do
σt+1
ij = (I −KiH)σtij
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Algorithm 3: Relative Measurement Update for Robot i measuring Robot j

input : X̂ t
i , Σt

ii, {σtij}j∈1,...,N , r

output : X̂ t+1
i , Σt+1

ii , {σt+1
ij }j∈1,...,N

Σt
ij = σtij

(
t
ji

)T
Σt
aa =

[
Σt
ii Σt

ij(
Σt
ij

)t
Σt
jj

]
Fa =

[
∂f(Xi,Xj)

∂Xi

(
X̂ t
i , X̂

t
j

)
,
∂f(Xi,Xj)

∂Xj

(
X̂ t
i , X̂

t
j

)
,
]

Sa = FaΣ
t
aaF

T
a +Q

Ka = Σt
aaF

T
a S
−1
a[

X̂ t+1
i

X̂ t+1
j

]
=

[
X̂ t
i

X̂ t
j

]
+Ka

[
r − f

(
X̂ t
i , X̂

t
j

)]
[

Σt+1
ii Σt+1

ij(
Σt+1
ji

)t
Σt+1
jj

]
= (I −KaFa)Σ

t
aa

σt+1
ij = Σt+1

ij σt+1
ji = I

for 1 ≤ k ≤ N, k 6= {i, j} do
σt+1
ik = Σt+1

ii (Σt
ii)
−1
σtik

Algorithm 4: Monte Carlo Simulation Algorithm
Result: Matrix of simulated estimation errors for cars
for j ∈ {1, ..., nRuns} do

initialize cars without UWB;
while t < nSteps do

for i ∈ {1, ..., nCars} do
xti ← carStep(xt−1

i );
x̂ti ← carFilter(x̂t−1

i , Z);

calculate RMSE;
t++;

initialize cars and landmarks with UWB;
while t < nSteps do

for i ∈ {1, ..., nCars} do
xti ← carStep(xt−1

i );
x̂ti ← carFilter(x̂t−1

i , Z);

calculate RMSE;
t++;
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APPENDIX B

EXPERIMENTAL OFFSETS

In order to properly use the various sensor data, coordinate frame transformations were used to

keep all data in UTM zone 14S and with respect to the VectorNav center of the vehicle. The offsets

for the RTK GNSS antennae and the UWB tags are geometrically shown with respect of the center

of rotation of the vehicle in Figure B.1.

The locations of each non-moving tag during the experiments are shown in Table B.1. These

coordinates are in UTM, which allows for easier processing of data.

Experiment Tag Easting Northing Z

Parallel
0 751574.23 3396401.47 1.27
1 751574.53 3396405.02 1.17

Crossing
0 751591.54 3396403.54 1.27
1 751572.08 3396386.66 1.17

Tunnel
0 751574.23 3396401.47 1.27
1 751574.23 3396356.33 1.17

Table B.1: UTM coordinates in zone 47H of tags in each experiment
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Figure B.1: Sensor Coordinate Offsets- UWB tags are green, RTK GNSS receivers are red
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