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ABSTRACT

Recent works have discussed application-driven image restoration neural networks capable

of not only removing noise in images but also preserving their semantic-aware details, making

them suitable for various high-level computer vision tasks as the pre-processing step. However,

such approaches require extra annotations for their high-level vision tasks in order to train the joint

pipeline using hybrid losses, yet the availability of those annotations is often limited to a few image

sets, thereby restricting the general applicability of these methods to simply denoise more unseen

and unannotated images. Motivated by this, we propose a segmentation-aware image denoising

model dubbed U-SAID, based on a novel unsupervised approach with a pixel-wise uncertainty

loss. U-SAID does not require any ground-truth segmentation map, and thus can be applied to any

image dataset. It is capable of generating denoised images with comparable or even better qual-

ity than that of its supervised counterpart and even more general “application-agnostic” denoisers,

and its denoised results show stronger robustness for subsequent semantic segmentation tasks.

Moreover, plugging its “universal” denoiser without fine-tuning, we demonstrate the superior gen-

eralizability of U-SAID in three-folds: (1) denoising unseen types of images; (2) denoising as

pre-processing for segmenting unseen noisy images; and (3) denoising for unseen high-level tasks.

Extensive experiments were conducted to assess the effectiveness and robustness of the proposed

U-SAID model against various popular image sets.
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NOMENCLATURE

NIQE Naturalness Image Quality Evaluator

PSNR Peak Signal-to-Noise Ratio

SSIM Structural Similarity Index Measure

CNN Convolutional Neural Network

DNN Deep Neural Network

MSE Mean Squared Error

U-SAID Unsupervised Segmentation-aware Image Denoising Model

S-SAID Supervised Segmentation-aware Image Denoising Model

GT Groundtruth

MRI Magnetic Resonance Imaging

FPN Feature Pyramid Network

ResNet Residual Neural Network
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1. INTRODUCTION

Image denoising aims to recover the underlying clean image signal from its noisy measure-

ment. Traditionally, it has been treated as an independent signal recovery problem, focusing on

either single-level fidelity (e.g., PSNR) or human perception quality of the recovery results. How-

ever, once high-level vision tasks are conducted on noisy images, and such a separate image de-

noising step is typically applied as preprocessing, it becomes suboptimal due to its unawareness of

semantic information. A series of recent works [1, 2, 3, 4, 5, 6] discuss application-driven image

restoration models that are capable of simultaneously removing noise and preserving semantic-

aware details for certain high-level vision tasks. Those models achieve visually-promising de-

noising results with richer details, in addition to better utility when supplied for high-level task

pre-processing.

However, a common drawback of these models is their demand for extra annotations for the

high-level vision tasks, which they require in order to train the joint pipeline with hybrid low-

level and high-level supervisions. On the one hand, such annotations (e.g., object bounding boxes,

semantic segmentation maps) are often highly non-trivial to obtain for real images, thus limiting

current works to synthesizing noise on existing annotated, clean datasets, to demonstrate the ef-

fectiveness of their methods. On the other hand, training with only one annotated dataset runs the

risk of overly tying the resulting denoiser with the semantic information of this specific dataset,

causing a lack of universality and the potential to exhibit various artifacts due to overfitting when

attempting to denoise other substantially different images.

This paper attempts to break the aforementioned hurdles of existing application-driven image

restoration models. We propose a novel unsupervised segmentation-aware image denoising (U-

SAID) model that enforces segmentation awareness and the discriminative ability of denoisers

without actually needing any segmentation groudtruth during training. It is implemented by

creating a novel loss term that penalizes the pixel-wise uncertainty of the denoised outputs for

segmentation. Our contributions are twofold:
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• On the low-level vision side, to the best of our knowledge, U-SAID is the first unsupervised

(or “self-supervised”) application-driven image restoration model. In contrast to the exist-

ing peer work [1], U-SAID can be trained on any image datatset, without needing ground-

truth (GT) segmentation maps. That greatly extends the applicability of U-SAID as a more

“universal” denoiser, that can be applied to denoise images with few semantic annotations

while being substantially different from natural images in existing segmentation datasets.

Compared to standard “application-agnostic” denoisers such as [7], U-SAID is observed to

provide better visual details, that are also more favored under perception-driven metrics [8].

• On the high-level vision side, the U-SAID denoising network is shown to be robust and

“universal” enough, when applied to denoising different noisy datasets, as well as when

used towards boosting the segmentation task performance on unseen noisy datasets, thanks

to its less semantic association with any dataset annotation. Furthermore, U-SAID trained

with segmentation awareness generalizes well to unseen high-level vision tasks, and can be

plugged into without fine-tuning, which reduces the training effort when applied to various

high-level tasks.

This paper is constructed as below: section 2 reviews related literature from deep neural net-

work based denoiser to more recent application-driven denoising works, which serve as the base to

our method. In section 3, we introduce our proposed unsupervised segmentation-aware image de-

noising network, including the network architecture and the loss function definitions. In addition,

we provide proof of concept experiments and analysis to show why our method works without

strong label supervision. In section 4, we validate the proposed method with extensive experi-

ments on various popular image sets to demonstrate its outstanding effectiveness, robustness, and

universality. Finally, section 5 concludes the thesis by advocating that our methodology is (almost)

a free lunch for image denoising, and has a plug-and-play nature to be incorporated with existing

deep denoising models.

2



2. LITERATURE REVIEW

Image denoising has been studied with intensive efforts for decades. Earliest methods refer to

various image filters [9]. Later on, many model-based method with various priors have been intro-

duced to this topic, in either spatial or transform domain, or their hybrid, such as spatial smoothness

[10], non-local patch similarity [11], sparsity [12, 13, 14] and low-rankness [15]. More recently,

a number of deep learning models have demonstrated superior performance for image denois-

ing [16, 17, 7]. Despite their encouraging process, most existing denoising algorithms reconstruct

images by minimizing the mean square error (MSE), which is well-known to be mis-aligned with

human perception quality and often tends to over-smooth textures [18]. Moreover, while image

denoising algorithms are often needed as the pre-processing step for the acquired noisy visual data

before subsequent high-level visual analytics, their impact on the semantic visual information was

much less explored.

Lately, a handful of works are devoted to closing the gap between the low-level (e.g., image

denoising, as a representative) and high-level computer vision tasks. Such marriage leads to, not

only better utility performance for high-level target tasks, but also the denoising outputs with richer

visual details after receiving the extra semantic guidance from the high-level tasks, the latter being

first revealed in [19, 20]. [1] presented a systematical study on the mutual influence between

the low-level and high-level vision networks. The authors cascaded a fixed pre-trained semantic

segmentation network after a denoising network, and tuned the entire pipeline with a joint loss

function of MSE and segmentation loss. The overview of cascaded denoising network is illustrated

in 2.1. In that way, the authors showed the denoised images to have sharper edges and clearer

textual details, as well as higher segmentation and classification accuracies when feeding such

denoised images for those tasks. A similar effort was described in [4], where a segmentation-

aware deep fusion network was proposed to utilize the segmentation labels in MRI datasets to

aid MRI compressive sensing recovery. [3] considered a joint pipeline of image dehazing and

object detection. [21] proposed to incorporate global semantic priors (e.g., eyes and mouths) as an

3
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Figure 2.1: Overview of high-level supervised denoiser.

input to deblur the highly structured face images. This field is now rapidly growing, with a few

benchmarks launched recently [22, 23, 24, 25].

Following [1, 4], we also adopt segmentation as our high-level task, because it can supply pixel-

wise feedback and is thus considered to be more helpful for dense regression tasks. As pointed out

by [26], the availability of segmentation information can compromise the over-smoothening effects

of CNNs across regions and increases their spatial precision. However, we would like to emphasize

(again) that while [1, 26, 4] all exploit GT segmentation maps as extra strong supervision infor-

mation during training, we have only a weaker form of feedback available from the segmentation

task, due to the absence of its GT as extra information. Straightforwardly, our methodology is

applicable when cascaded with other high-level tasks as well.

Our work is also broadly related to training deep network with noisy or uncertain annota-

tions [27, 28]. Especially for the segmentation task, existing supervised models require manually

labeled segmentations for training. But pixel-based labeling for high-resolution images is often

time-consuming and error-prone, causing incorrect pixel-wise annotations. Existing works often

consider them as label noise [29]. For example, [30] proposed a noise-tolerant deep model for

histopathological image segmentation, using the label-flip noise models proposed in [31]. How-

ever, those algorithms still need to be given segmentation maps (though inaccurate), and often

4



demand more statistical estimations of the label noise.

5



3. THE PROPOSED MODEL: U-SAID

Our proposed unsupervised segmentation-aware image denoising (U-SAID) network follows

the same cascade idea of the segmentation-guided denoising framework proposed by [1]. We

replace their self-designed U-Net denoiser with the classical deep denoiser DnCNN [7], using

the 20-layer blind color image denoising model referred to as CDnCNN-B1, since we favor more

robustness to varying noise labels. Note that the choice of denoiser network should not affect much

our obtained conclusions. Its loss LMSE is the reconstruction MSE between the denoised output

and the clean image. The network architecture is illustrated in Figure 3.1.

3.1 Design of USA Module

The USA module is composed of a feature embedding sub-network for transforming the input

(denosied image) to the feature space, followed by an unsupervised segmentation sub-network that

calculates the pixel-wise uncertainty of semantic segmentation.

3.1.1 Feature embedding sub-network

We use a Feature Pyramid Network (FPN) [32], with a ResNet-101 backbone as the feature

encoder, which is the bottom-up path in yellow blocks as illustrated in Figure 3.1. M2-M5 are

feature maps which undergo 1 × 1 convolutions and element-wisely added to the feature maps

from top-down pathway. The final feature maps (P2-P5) are generated through two layers of 3× 3

convolutions from M2-M5. We use ImageNet-pretrained weights2 for the backbone, and keep

all default architecture details of FPN/ResNet-101 unchanged. During training, the ResNet-101

backbone is frozen as a fixed feature extractor, and the top-down feature pyramid part of FPN

started with random Gaussian initializations and also keeped fixed.

1https://github.com/cszn/DnCNN
2https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
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Figure 3.1: The architecture of the proposed U-SAID network

3.1.2 Unsupervised segmentation sub-network

We assume the input image resolution to beM×N and to contain at mostK different semantic

classes. After FPN, we obtain 512 channels of feature maps ∈ RM
4
×N

4 . We then apply K 3 ×

3 convolutions to re-organize the output feature maps into K channels, eventually leading to a

(resized) K-class segmentation map.

Since the image segmentation task can be cast as pixel-wise classification, classical segmenta-

tion networks will adopt pixel-wise softmax function to generate a K-class probability vector pi,j ,

for the (i, j)-th RK vector (i, j range from 1 to M,N , respectively), choosing the highest probabil-

ity class and producing the final segmentation map ∈ RM×N . However, since we have no GT pixel

labels in the unsupervised case, we instead minimize the average entropy function of all predicted

class vectors pi,j , denoted as LUSA, to encourage confident predictions at all pixels:

LUSA =
1

MN

∑
1≤i≤M,1≤j≤N

−pi,j log pi,j

All layer-wise weights in the unsupervised segmentation sub-network are random Gaussian initial-

ized, and the ResNet-101 backbone uses the pre-trained ImageNet weights.
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3.2 Analysis of LUSA

We train the cascade of denoising network and USA module in an end-to-end manner, while

fixing the weights in the latter. If more components of the USA modules are trainable, the model

would easily collapse to a bad local minimum quickly, which leads to only a single class being

predicted throughout the image. In that way, no segmentation guidance can be provided by the

USA module. We thereby performed a simple experiment to show the collapse of the USA module

by allowing more parts of the USA module to train. Meanwhile, we plot the training loss LUSA

against the steps to show the relationship between loss and the learnable parts. Please note the

training of the USA module remains unsupervised in this experiment. The plot in Fig. 3.2 reveals

the loss drops more quickly if more parts are trained. We train the USA module using only half

Figure 3.2: USA Module Training Loss LUSA Plot
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epoch of data by (1) fixing all parts, (2) relaxing the last classification layer (the last 3×3 convolu-

tional layer), or (3) relaxing the classification layer and the smooth layers (two 3× 3 convolutional

layers). It is clear from the plot that the training loss of (3) decrease to zero within 10 steps. We

have tested to relax more layers, but the loss plot overlaps with the (3) as their loss show a sharp

downturn in loss. Although loss of (2) decrease slower than (3), it still drops to zero within 100

steps. However, this phenomenon does not happen if the entire USA module is fixed. The proposed

U-SAID is highly regularized by the nontrainable segmentation parameters, which effectively pre-

vents the U-SAID segmentation model to collapse, i.e., avoiding the bad local minimum in the

training.

The overall loss for U-SAID is: LMSE + γLUSA, with the default γ = 1 unless otherwise

specified. The training dataset for U-SAID could be any image set and is unnecessary to have

segmentation annotations, overcoming the limitations in [1, 4]. That said, we need an estimate of

segmentation class numbers K to construct LUSA: an ablation study of estimated K will follow.

3.3 Why it works?

A noteworthy feature of U-SAID is freezing the high-level network while only training the

denoiser. Without strong label supervision, one may wonder why it can regularize the denoiser

training effectively, since it is high level features include the random initialization keep fixed,

and the ResNet-101 ImageNet features can still be regressed into some unknown map, that is only

required to be low-entropy pixel-wise. In fact, if the network itself holds large enough capacity, one

may expect to be able to find parameters that can fit with any given pixel-wise map (low-entropy

or not), that conveys little semantical information (e.g., random maps).

That might have reminded the deep image prior proposed in [33]: the authors first trained a

convolutional network from random scratch, to regress from a random vector to a given corrupted

image, and then used the trained network as a regularization. Since no aspect of the network is pre-

trained from data, such deep image prior is effectively handcrafted and was shown to work well for

various image restoration tasks. The authors attributed the success to the convolutional architecture

itself, that appeared to possess high noise impedance. In our case, the ImageNet features are
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thought as highly relevant to image semantics. Therefore, we make the similar hypothesis with the

authors of [33]: although the parameterization may regress to any random unstructured label map,

it does so very reluctantly.

Figure 3.3: Supervised Segmentation Model Convergence Plot

To verify our hypothesis, we conduct a simple proof-of-concept experiment inspired by [34]. In

the USA module, we replace LUSA with a standard pixel-wise cross entropy loss, having ResNet-

101 fixed with ImageNet weights and other parts initialized randomly. We then use PASCAL VOC

2012 training set to train this modified USA module, in a supervised way, but with three different

choices for the supervision: 1) the GT segmentation maps; 2) evenly cutting each GT map into 4

10



Figure 3.4: Images (top row) and their segmentation maps (second row) produced by USA module
on PASCAL VOC.

sub-images, and randomly permuting their locations; 3) randomly permuting all pixel locations in

each GT map. Notice that if we compute LUSA values for the three target maps, they should be the

same.

We show in Figure 3.3 the value of training loss, as a function of the gradient descent iterations

for three supervisions. Apparently, the network can converge much faster to GT maps; the more

GT maps were permuted, the more convergence “inertia” we observe. In other words, the network

descends much more quickly towards semantically meaningful maps, and resists “bad” solutions

with fewer semantics, although their entropies might have been the same.

Another question raised is how the segmentation map produced by USA module would en-

hance the image denoising quality. [1] has proved the effectiveness of high-level guidance in im-

age denoising, we therefore show how the unsupervised segmentation map is helpful. Figure 3.4

visualizes these segmentation maps outputted by the USA module. Please note that we use clean

images here instead of noisy images to avoid any interruption by noise. While the segmentation

itself is apparently inaccurate because it never sees any supervision, we observe those images to

be partitioned into multiple segments (especially the salient objects), and each segment to usually

contain pixels of the same semantic characteristics. Therefore, despite using no supervised label,

the USA modules still manages to learn object saliency, as well as pixel-level semantic coherency,
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which are useful to guide the denoising module to preserve important details.
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4. PROPOSED EXPERIMENTS, DATASETS AND RESULTS

4.1 Datesets

PASCAL-VOC 20121 is a standardized dataset that is widely used for object class recognition

and for assessing and comparing different methods. This dataset includes 20 object classes and

one background class with 11,530 images that contain 6,929 segmentations.

We propose to use the PASCAL-VOC 2012 training set as the input of the U-SAID denoiser.

Gaussian i.i.d. noise with zero mean and standard deviation σ is added to the images to synthesize

the noisy input image during training. The testing set is generated similarly by adding noise on the

PASCAL-VOC 2012 validation set.

4.2 Training Strategy

We train the cascade of denoising network and USA module in an end-to-end manner, while

fixing the weights in the latter module. The overall loss for U-SAID is: LMSE + γLUSA, with the

default γ = 1 unless otherwise specified. We use the Adam solver to train both the denoiser part

and the USA module. The batch size is 16. The input patches are set to be 48 × 48 pixels (patches

are randomly sampled from images with a stride of 1). The initial learning rate is set as 1e-3 for

all learnable parts of U-SAID, using a multi-step learning decay strategy, i.e. dividing the learning

rate by 10 at epoch 10, 40 and 80, respectively. The training is terminated after 100 epochs.

4.3 Experiments

4.3.1 Denoising Study on PASCAL-VOC

We compare U-SAID with the original CDnCNN-B (re-trained on our training set) [7], which

requires no segmentation information at all. We further create another denoiser following the

same idea of [1]: cascading CDnCNN-B with the supervised segmentation network (i.e., replacing

LUSA with a standard pixel-wise softmax loss), with all other training protocols and initialization

the same as U-SAID. We call it supervised segmentation-aware image denoising (S-SAID), and
1http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
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Table 4.1: The average image denoising performance comparison on PASCAL-VOC 2012 valida-
tion set, with σ = 15, 25, 35.

CDnCNN-B S-SAID U-SAID
σ=15 PSNR (dB) 33.56 33.40 33.50

SSIM 0.9159 0.9136 0.9153
NIQE 4.3290 4.0782 4.0049

σ=25 PSNR (dB) 31.18 31.01 31.13
SSIM 0.8725 0.8698 0.8724
NIQE 4.2247 3.8508 3.8975

σ=35 PSNR (dB) 29.65 29.47 29.59
SSIM 0.8344 0.8312 0.8347
NIQE 4.1022 3.6679 3.7612

train it with the hybrid MSE-segmentation loss (the two losses are weighted equally), using the

ground-truth segmentation maps available on the PASCAL training set. Note that S-SAID is

the only method that exploits “true” segmentation information, making it a natural baseline

for U-SAID to show the effect of such extra information. We do not include other denoising

methods such as [11, 16, 15] because: 1) their average performance was shown to be worse than

CDnCNN; and 2) most of them are not designed for the blind denoising scenario, thus hard to

make fair comparisons. We have exhaustively tuned the hyper-parameters (learning rates, etc.) for

CDnCNN-B and S-SAID, to ensure the optimal performance of either baseline.

The typical metric used for image denoising is PSNR, which has been shown to correlate

poorly with human assessment of visual quality [35]. On the other hand, in the metric of PSNR, a

model trained by minimizing MSE on the image domain should always outperform a model trained

by minimizing a hybrid weighted loss. Therefore, we emphasize that the goal of our following

experiments is not to pursue the highest PSNR, but to quantitatively demonstrate the different

behaviors between models with and without segmentation awareness.

Table 4.1 reports the denoising performance in terms of PNSR, SSIM and Naturalness Image

Quality Evaluator (NIQE) [8]. The last one is a well-known no-reference image quality score to

indicate the perceived “naturalness” of an image: a smaller score indicates better perceptual quality.
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Please note that the values in red and bold in the table indicate the best performance and the blue

underlined values indicate the second best performance (the same hereinafter). Our observations

from Table 4.1 are summarized as below:

• Since CDnCNN-B is optimized towards the MSE loss, it is not surprising that it consis-

tently achieves the best PSNR results among all. However, U-SAID is able to achieve only

marginally inferior PSNR/SSIMs to CDnCNN-B, which usually surpass S-SAID.

• The two methods with segmentation awareness (U-SAID and S-SAID) are significantly more

favored by NIQE, showing a large margin over CDnCNN-B (e.g., nearly 0.4 at σ = 25). That

testifies the benefits of considering high-level tasks for denoising.

• While not exploiting the true segmentation maps during training as S-SAID did, the per-

formance of U-SAID is almost as competitive as S-SAID under the NIQE metric. In other

words, we did not lose much without using the true segmentation as supervision.

4.3.2 Ablation Study on “Unsupervised Segmentation”

In training U-SAID above, we have used the “true” class number K = 21. It is then to our

curiosity that: is this ground-truth value really best for training denoisers? Or, if the class number

information cannot be accurately inferred when tackling general images, how much the denoising

performance might be affected?

K 10 15 20 21 (default) 22 25 40
NIQE 3.9878 3.8320 4.0783 3.8975 3.8455 4.1139 3.9746
PSNR 31.00 31.06 30.99 31.13 31.01 30.99 30.98

Table 4.2: Ablation study of varying K in U-SAID training.

We hereby present an ablation study, by training several U-SAID models with different K

values (all else remain unchanged), and compare their denoising performance on the testing set,
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as displayed in Table 4.2. It is encouraging to observe that, the U-SAID denoising performance

(PSNR and SSIM) consistently increase as K grows from smaller values (10, 15) towards the

true value (21), and then gradually decreases as K get further larger. The NIQE values show

the similar first-go-up-then down trend, except the peak slightly shifted to 15. That acts as a side

evidence that rather than learning a semantically blind discriminator, the USA module indeed picks

up the semantic class information and benefits from the correct K estimate. On the other hand, the

variations of denoising performance w.r.t K are mild and smooth, showing certain robustness to

inaccurate Ks too.

4.3.3 More Comparison to Relevant Methods

To solidify our results, we include more off-the-shelf denoising methods for comparison. We

performed these experiments on Kodak dataset with three test sigmas 15, 25 and 35. A detailed

comparison for each method we use is shown in Table 4.3. However, all methods we mentioned

previously, i.e. CDnCNN-B, S-SAID and U-SAID, are blind to the noise level, the competing

methods are non-blind denoisers. Therefore, we created two settings to simulate blind denoising:

• Applying the median sigma as denoising input, i.e. σ = 25;

• Assuming the oracle sigma is known in denoising

The second setting is apparently unfair to our blind model. Even so, we demonstrate the results in

Table 4.4, from which U-SAID constantly yields the best performance.

4.3.4 Segmentation Study on PASCAL-VOC

We next investigate the effectiveness of denoising as a pro-processing step for the semantic

segmentation over noisy images, which follows the setting in [1]. We first pass the noisy images in

the PASCAL-VOC testing set through each of the three learned denoisers (CDnCNN-B, S-SAID,

and U-SAID). We then apply a FPN pre-trained on the clean PASCAL-VOC 2012 training set, on

the denoised testing sets, and evaluate the segmentation performance in terms of mean intersection-

over-union (mIOU).
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Table 4.3: Comparison of different methods if it is i) deep learning based, ii) semantic-aware
denoising methods, or iii) requires extra segmentation annotation.

Deep Semantic Segmentation
Learning -Aware Annotation

U-SAID X X
S-SAID X X X

CDnCNN-B X
MLP [16] X

MC-WNNM [36]
CBM3D [37]

Table 4.4: The average Image denoising performance comparison in NIQE/ PSNR on the Kodak
dataset, with noise σ = 15, 25, 35, respectively.

Setting I
σ=15 σ=25 σ=35

MLP [16] 4.3924/ 29.83 3.0205/ 30.09 6.5367/ 23.50
MC-WNNM [36] 5.6334 / 31.04 3.6731/ 31.35 8.6496/ 21.53

CBM3D [37] 3.7707/ 32.60 2.6152/ 31.81 6.7044/ 25.29
Setting II

σ=15 σ=25 σ=35
MLP [16] 4.675/ 29.11 3.008/ 30.09 3.070/ 28.67

MC-WNNM [36] 3.302/ 33.94 3.673/ 31.35 4.039/ 29.70
CBM3D [37] 2.6360/ 34.40 2.6620/ 31.81 2.6786/ 30.04

As compared in Table 4.1, when we apply the CDnCNN-B denoiser without considering high-

level semantics, it easily fails to achieve high segmentation accuracy due to the artifacts introduced

during denoising (even though those artifacts might not be reflected by PSNR or SSIM). With

their segmentation awareness, both S-SAID and U-SAID have led to remarkably higher mIOUs.

Most impressively, U-SAID is comparable to S-SAID, in spite of the former never having seen

true segmentation information on this dataset (training set), whilst the latter has. Figure 4.1 has

visually confirmed the impact of denoisers on the segmentation performance.
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Table 4.5: Segmentation results (mIoU) after denoising noisy image inputs, averaged over Pascal
VOC 2012 validation dataset.

noisy CDnCNN-B S-SAID U-SAID
σ=15 0.4227 0.4238 0.4349 0.4336
σ=25 0.4007 0.4003 0.4084 0.4047
σ=35 0.3667 0.3724 0.3802 0.3785

IOU: 0.7866 IOU: 0.7909 IOU: 0.7872

IOU: 0.5432 IOU: 0.8827 IOU: 0.8720

IOU: 0.5432 IOU: 0.8827 IOU: 0.8720
(a) Original (b) Groundtruth (c) C-DnCNNB (d) S-SAID (e) U-SAID

Figure 4.1: Visualized semantic segmentation examples from Pascal VOC 2012 validation set.

The first row is added with noise of σ = 15, the second row σ = 25 and the third row σ = 35.
Columns (a) - (b) are the ground truth images and true segmentation maps; (c) -(e) are the results
by applying the pre-trained segmentation model on the denoised images using (c) C-DnCNNB; (d)
S-SAID; and (e) U-SAID.

4.3.5 Generalizability Study: Data, Semantics, and Task

In this section, we define and compare three aspects of general usability, which were often

overlooked in previous research of learning-based denoisers:
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• Data Generalizability: whether a denoiser trained on one dataset can be applicable to restor-

ing another.

• Semantic Generalizability: whether a denoiser trained on one dataset can be effective in

preserving semantics, as the preprocessing step for applying semantic segmentation over

another noisy dataset (with unseen classes).

• Task Generalizability: whether a denoiser trained with segmentation awareness can also be

effective as preprocessing for other high-level tasks over noisy images.

Throughout the whole section below, all three denoisers used are the same models trained on

PASCAL-VOC 2012 above. There is no re-training involved. Our hypothesis is that since U-

SAID is not trained with any annotation on the original training set, it may less likely overfit

the training set’s semantics than S-SAID, while still preserving discriminative features, and hence

could generalize better to various unseen data, semantics and tasks.

4.3.5.1 Denoising Unseen Noisy Datasets

We evaluate the denoising performance over the widely used Kodak dataset2, consisting of

24 color images. Table 4.6 reports the quantitative results, which show strong consistency across

all three noise levels: CDnCNN-B achieves the highest PSNR and SSIM values, while S-SAID

performs the best in terms of NIQE. Interestingly, U-SAID seems to be the “balanced” solution

in terms of data generalizability: it tends to obtain very close PSNR and SSIM values compared

to CDnCNN-B, while producing comparable or even better NIQE values to S-SAID (especially at

smaller σs). We further observe that U-SAID is usually able to preserve sharper edges and textures

than CDnCNN-B, sometimes even better than S-SAID. Figure 4.2 displays a group of examples,

where U-SAID finds clear advantages in preserving local fine details on the sail. Please referring

more visualizations to 4.3.
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PSNR = 34.31 PSNR = 34.02 PSNR = 34.27
NIQE = 3.01 NIQE = 2.76 NIQE = 2.71 σ = 25

(a) CDnCNN-B (b) S-SAID (c) U-SAID (d) Ground Truth

Figure 4.2: Visual comparison on one Kodak image at σ = 25.

We show the full images (top) and zoom-in regions (bottom) of the ground truth as well as three
denoised images by CDnCNN-B, S-SAID and U-SAID (Best viewed on high-resolution color
display, lower NIQE is better). Their corresponding segmentation label maps are shown below.
The zoom-in region is displayed in the green box.

4.3.5.2 Denoising for Unseen Dataset Segmentation

We choose two real-world datasets, whose class categories are substantially different from

PASCAL VOC: i) The ISIC 2018 dataset [38]3. We choose the validation set of Task 1: Le-

sion Segmentation, whose goal is to predict lesion segmentation boundaries from dermoscopic

lesion images; ii) The DeepGlobe dataset4. We choose the validation set of Track 3: Land Cover

Classification, whose goal is to predict a pixel-level mask of land cover types (urban, agriculture,

2http://r0k.us/graphics/kodak/
3https://challenge2018.isic-archive.com
4http://deepglobe.org
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PSNR = 35.52 PSNR = 35.31 PSNR = 35.45
NIQE = 3.0163 NIQE = 3.0701 NIQE = 2.9791 σ = 15

CDnCNN-B S-SAID U-SAID Ground Truth

PSNR = 30.71 PSNR = 30.49 PSNR = 30.66
NIQE = 2.6303 NIQE = 1.9944 NIQE = 2.3407 σ = 25

CDnCNN-B S-SAID U-SAID Ground Truth

PSNR = 33.75 PSNR = 33.41 PSNR = 33.63
NIQE = 3.6207 NIQE = 3.0099 NIQE = 3.0905 σ = 35

CDnCNN-B S-SAID U-SAID Ground Truth

Figure 4.3: More denoised visualizations from Kodak data set by CDnCNN, S-SAID and U-SAID.
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Table 4.6: The average Image denoising performance comparison on the Kodak dataset, with noise
σ = 15, 25, 35, respectively.

CDnCNN-B S-SAID U-SAID
σ=15 PSNR 34.75 34.57 34.62

SSIM 0.9242 0.9217 0.9222
NIQE 2.7570 2.6288 2.5690

σ=25 PSNR 32.27 32.07 32.17
SSIM 0.8812 0.8770 0.8790
NIQE 2.8493 2.6006 2.6355

σ=35 PSNR 30.69 30.48 30.50
SSIM 0.8418 0.8366 0.8395
NIQE 2.9753 2.5619 2.6687

Figure 4.4: Example image from ISIC 2018 (left: dermoscopic lesion image) and DeepGlobe
(right: land satellite image) dataset.

rangeland, forest, water, barren, and unknow) from satellite images. Example images can be found

in Fig 4.4.

We add σ = 25 noise to both validation sets, to create unseen testing sets for the trained denois-

ers. For either denoised validation set, we apply a pyramid scene parsing network (PSPNet) [39],

that is pre-trained on the original clean training set. Table 4.7 reports the generalization effects of

three denoisers when serving as preprocessing for segmenting unseen noisy datasets: U-SAID per-

forms the best on both datasets, again verifying the benefits of segmentation awareness (that comes

“for free” with no knowledge of true segmentation on any dataset). What is noteworthy, while we
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Table 4.7: Segmentation results (mIoU) on denoised images of ISIC 2018 and DeepGlobe valida-
tion sets.

noisy CDnCNN-B S-SAID U-SAID
ISIC 2018 0.8061 0.8076 0.8084 0.8095
DeepGlobe 0.1309 0.4260 0.4198 0.4263

observe in the PASCAL-VOC segmentation experiment that the fully-supervised S-SAID is always

superior to the segmentation-unaware CDnCNN-B, it is no longer always the case when applied to

unseen datasets of different semantic categories: even CDnCNN-B is able to outperform S-SAID

on DeepGlobe. Our hypothesis is that, the full supervision of S-SAID might cause its certain

overfitting with PASCAL-VOC object categories. Trained in the unsupervised fashion but still

equipped with segmentation awareness, U-SAID is not closely tied with original class semantics

on the training set, and might thus generalize better to extracting and preserving semantics from

new categories.

4.3.5.3 Denoising for Unseen High-Level Tasks

We now investigate if the segmentation-aware image denoising can also enhance other high-

level vision applications, and choose classification and detection as two representative examples.

While also listing PSNR and SSIM, we primarily focus on comparing their utility metrics (i.e.,

accuracy and mAP).

For classification, We choose the challenging CIFAR-100 dataset and add σ = 25 noise to its

validation set. We then pass it through three denoisers, followed by a ResNet-110 classification

model, pre-trained on the clean CIFAR-100 training set. As seen from Table 4.8, while U-SAID

is second best in terms of both PSNR and SSIM (marginally inferior to CDnCNN-B), it demon-

strates a notable boost in terms of both top-1 and top-5 accuracies, with a good margin compared

to CDnCNN-B and S-SAID. While S-SAID also outperforms CDnCNN-B in improving classifi-

cation, U-SAID proves to have even better generalizablity here.

For detection, We choose the MS COCO benchmark [40], and add σ = 15, 25, 35 noise to its
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Table 4.8: Classification results after denoising noisy image inputs (σ = 25) from CIFAR-100.

noisy CDnCNN-B S-SAID U-SAID
PSNR 20.17 29.13 28.94 28.98
SSIM 0.6556 0.9232 0.9203 0.9219

Top-1 Acc 11.99 56.86 57.87 58.16
Top-5 Acc 29.83 82.64 83.65 83.70

Table 4.9: Detection results after denoising noisy MS COCO images.

noisy CDnCNN-B S-SAID U-SAID
σ = 15 PSNR 24.61 35.14 34.92 35.01

SSIM 0.4796 0.9440 0.9410 0.9411
mAP 0.5110 0.5573 0.5565 0.5590

σ = 25 PSNR 20.17 32.70 32.48 32.60
SSIM 0.3233 0.9137 0.9095 0.9108
mAP 0.4401 0.5296 0.5268 0.5330

σ = 35 PSNR 17.25 31.12 30.89 31.02
SSIM 0.2383 0.8861 0.8803 0.8821
mAP 0.3663 0.5023 0.4972 0.5056

validation set. We evaluate three denoisers in the same way as for the classification experiment,

using a pre-trained YOLOv3 detection model [41]. Table 4.9 shows consistent observations as

above: U-SAID always leads to the largest improvements in the detection mean average prediction

(mAP), and hence has the best task generalizablity among all. Another interesting observation is

that S-SAID is not as competitive as CDnCNN-B for the detection task, which we leave for future

work to explore.

Both experiments show that the high-level semantics of different tasks are highly transferable

for U-SAID, in terms of low-level vision tasks, as in line with [1].

4.3.6 Statistical Significance Study of U-SAID’s Improvement

How consistent and statistically meaningful is U-SAID’s performance advantage? To answer

this, we report the detailed statistics: (1) the p-values of the denoising quality improvement over
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Table 4.10: Performance and variance on three different tasks

CDnCNN-B S-SAID U-SAID
PASCAL VOC Segmentation

mIOU 39.46% 40.19% 40.35%
Variance 3.30E-6 3.98E-6 3.15E-6

Cross-set Kodak Denoising
NIQE 2.87 2.60 2.62

Variance 1.74E-4 1.78E-4 6.00E-4
Cross-task CIFAR-100 classification

top-1 Accuracy 56.89% 57.82% 58.47%
top-1 Variance 0.03 0.06 0.02
top-5 Accuracy 82.89% 83.57% 83.91%
top-5 Variance 0.02 0.05 0.06

different testing images; and (2) the variance of the performance improvements with different

simulated noise patterns, for three representative experiments: PASCAL VOC segmentation (Table

4.5), cross-set KODAK denoising (Table 4.6), and cross-task CIFAR-100 classification (Table 4.8).

For each test, we simulated i.i.d. random Gaussian noise (σ = 25) for each image ten times, and

repeat the experiments on them accordingly. Experiment results are shown in Table 4.10.

In the PASCAL VOC segmentation experiment, we performance hypothesis tests to check if U-

SAID leads to better segmentation results than CDnCNN-B. Being 95% confident, we obtained p-

value = 1.7305E−9, which demonstrates the statistical significance of improvement. On the other

hand, U-SAID and S-SAID’s results do not show significant difference with p-value = 0.0744 >

0.05. Without using any segmentation ground truth, our method achieved statistically similar

results to S-SAID, even under a disadvantageous setting.

For the cross-set Kodak denoising experiment, the NIQE of U-SAID is statistically significantly

better than that of CDnCNN-B, with p-value = 2.6638E − 16. Similarly, S-SAID is better than

U-SAID in NIQE with p-value = 6.7845E − 3.

In CIFAR-100 experiment, for top-1 accuracy, U-SAID yields mean accuracy of 58.47%,

which is significantly higher than DnCNN, which has mean = 56.89%, with p-value = 3.6147E-14.
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U-SAID has also higher accuracy than S-SAID (mean = 57.82%) with p-value = 1.3486E-6. Sim-

ilarly for top-5, U-SAID’s performance ( 83.91%) is statistically significant better than DnCNN

(82.89%), and S-SAID (83.57%), with p-values of 1.3982E-9 and 4.3994E-3, respectively.
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5. CONCLUSION

This paper proposes a segmentation-aware image denoising model that requires no ground-

truth segmentation map for training. The proposed U-SAID model leads to comparable perfor-

mance with its supervised counterpart, in terms of both low-level (denoising) and high-level (seg-

mentation) vision metrics, when trained on and applied to the same noisy dataset (without utilizing

extra segmentation information as the latter has to). Furthermore, U-SAID shows remarkable gen-

eralizablity to unseen data, semantics, and high-level tasks, all of which endorse it to be a highly

robust, effective and general-purpose denoising option.
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