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ABSTRACT 

 Tissue engineered scaffolds are a powerful means of healing craniofacial bone defects 

arising from trauma or disease. Murine models of critical-sized bone defects are especially useful 

in understanding the role of microenvironmental factors such as vascularization on bone 

regeneration. In this thesis, we review the previously employed bone graft methods used to treat 

orthopedic tissue defects, the transition of therapeutic approaches to tissue engineering based 

regimes, and the various imaging modalities which may be used to characterize osteogenesis and 

angiogenesis within defect sites. Additionally, we demonstrate the capability of a novel 

multimodality imaging platform capable of acquiring in vivo images of microvascular 

architecture, microvascular blood flow and tracer/cell tracking via intrinsic optical signaling 

(IOS), laser speckle contrast (LSC) and fluorescence (FL) imaging, respectively in a critical-

sized calvarial defect model. Defects that were 4 mm in diameter were made in the calvarial 

regions of mice followed by the implantation of osteoconductive scaffolds loaded with human 

adipose-derived stem cells (ASCs) embedded in fibrin gel. Using IOS imaging, we were able to 

visualize microvascular angiogenesis at the graft site and extracted morphological information 

such as vessel radius, length, and tortuosity two weeks after scaffold implantation. FL imaging 

allowed us to assess functional characteristics of the angiogenic vessel bed such as time-to-peak 

of a fluorescent tracer, and also allowed us to track the distribution of fluorescently tagged 

human umbilical vein endothelial cells (HUVECs). Finally, we employed LSC to characterize 

the in vivo hemodynamic response and maturity of the remodeled microvessels in the scaffold 

microenvironment. In this thesis, we provide a methodical framework for imaging tissue 

engineered scaffolds, processing the images in order to extract key microenvironmental 

parameters, and visualizing this data in a manner that enables the characterization of the vascular 

phenotype and its effect on bone regeneration. Such multimodality imaging platforms can inform 

optimization and design of tissue engineered scaffolds and elucidate the factors that promote 

enhanced vascularization and bone formation.  
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acquired after injection of the fluorescent intravascular tracer FITC-dextran. 
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fluorescence intensity from the ROI (red circle) in (a) illustrating the transit of 

the intravascular tracer through the vasculature within the graft. Red points 

correspond to the time points for which snapshots are shown in (a). (c) Time-to-
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function of vessel radii according to the same classifications in (g) and (f).  The 

lack in variability across vessel sizes indicates that radius had no effect on 

carbogen response. (i) Similar distribution as seen in (h) but with the time to 

peak of each vessel. Again, the lack in variability indicates a lack of a 

relationship between carbogen response and time to peak response following 

injection of the dextran-FITC tracer. 
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CHAPTER 1: FUNDAMENTALS OF ORTHOPEDIC TISSUE ENGINEERING 

 

1.1 Bone defects and the need for orthopedic tissue engineering 

 Tissue engineering provides a powerful means for repairing defects in bone which result 

from trauma. Through the introduction osteogenic material, coupled with the appropriate 

biochemical cues, mechanical stimulation, or growth factors, tissue engineering therapeutics can 

initiate bone and vascular remodeling, facilitating the healing of bone defect sites (1-3). Such 

therapeutics have the potential to regenerate tissue in nonunion sites, and critical-sized bone 

defects, which may enable mobility and functionality in previously unusable injured areas. 

 

1.2 Preclinical models for studying bone defects 

 Traditional treatments for bone defects arising from trauma include either allogenic or 

autologous bone grafts. But these treatments do come with inherent advantages and 

disadvantages. Allogenic bone grafts incorporate the osteoconductive and osteoinductive 

properties needed to recruit progenitor cells and provide a suitable environment for bone repair 

through the transplantation of healthy tissue from a donor. However these grafts do not include 

any osteogenic material, capable of differentiating into new osteoblasts or osteocytes and include 

a risk of an immune response (4). Because autologous grafts are taken from the host, they 

prevent the possibility of an immune response, but may result in serious morbidity at the site 

from which the graft is harvested as well as limitations in tissue available for transplantation (5). 

Recently, tissue engineering has arisen as a viable alternative to circumvent the issues associated 

with these traditional bone graft treatments. Tissue engineering involves the design of custom 

scaffolds, seeded with stem cells, and biochemical factors to provide the needed 

osteoconductivity, osteogenic material, and osteoinductivity that enables bone regeneration in a 

safe and cost effective manner (5). To study the regenerative potential of tissue engineered 

scaffolds in bone defects, preclinical models become necessary. By analyzing the impact of types 

and concentrations of osteogenic materials in various tissue engineering approaches, the design 

and safety of materials can be optimized in preclinical models before translating them into 
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patients. Murine models are well suited for such bone tissue engineering purposes (6, 7) and for 

imaging stem cell facilitated vascular remodeling in vivo (8, 9). Since most tissue engineering 

studies focus on the use of human stem cells, immunodeficient mice are especially effective 

models as they do not exhibit graft rejection at the host site (10). To determine the effectiveness 

of engineering approaches in regenerating orthopedic tissue, an ideal model should focus on a 

defect that does not demonstrate spontaneous or complete healing without the aid of treatment. 

These injuries also present the greatest challenge due to a limited number of reconstructive 

options available (11) and are defined as critical-sized defects (CSD) for bone. 

1.2.1 Critical Sized Defects 

According to the international standards developed by the ASTM Standard Guide for 

Preclinical in vivo Evaluation in Critical Sized Segmental Bone Defects (F2721-09), a critical-

sized bone defect is defined as a defect from which an animal will exhibit “less than ten percent 

bony healing ten years after the initial injury without any intervention” (12). Characterizations of 

these defects vary according to animal species, age, anatomical location, and size. However, as 

an empirical rule, the length of the defect must be at least twice the diameter of the bone (13, 14). 

Critical-sized defects in murine models have been previously studied in multiple anatomical 

locations including femoral segmental defects, maxillary defects, and calvarial defects (6, 7, 15). 

For this thesis, we will focus on calvarial defects. Also known as the “skullcap”, the calvarium is 

comprised of the neurocranium, which can in turn be divided into the cranial base, 

chondrocranium, and cranial vault, and the viscerocranium (16). These regions serve to surround 

and protect the brain as well as form the base structures for the facial skeleton. Due to the 

anatomical location of this site, typical critical-sized defects used to study tissue engineering-

based bone formation include four millimeter (4 mm) circular defects (17, 18). 

 

1.3 The relationship between angiogenesis and osteogenesis 

Angiogenesis and osteogenesis are closely coupled processes during tissue regeneration. 

The co-localization of blood vessels and osteoprogenitor cells allows for the creation of suitable 

metabolic and biochemical environments that enable enhanced progenitor cell survival, 

proliferation and differentiation (19). Additionally, blood vessels provide the nutrient and 
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oxygen deposition needed to foster bone growth (20). In animal models, vascular endothelial 

growth factor (VEGF), a key signaling protein for guiding the branching and anastomosis of 

developing vessels, has also been shown to enhance osteogenesis in low doses (19, 21). 

Recently, the identification of a new blood vessel subtype, Type H, in the metaphysis region of 

long bones has elucidated some of the previously unknown signaling steps in angiogenesis-

osteogenesis cascade. The type H endothelial cells that make up these blood vessels have been 

found to mediate growth of local vasculature and upregulate important osteogenic factors 

through the Notch signaling pathway (22). For these reasons, tissue engineering approaches 

should seek to facilitate remodeling of both, the damaged vascular network and bone reformation 

when treating critical-sized defects. 

 

1.4 Tissue engineering approaches and regenerative medicine 

The goal of tissue engineering and regenerative medicine is to stimulate the body’s 

natural regenerative capabilities through the introduction of mechanical or biochemical factors 

and to provide suitable angiogenic and osteogenic material to reform and replace lost tissue. For 

this reason, nearly all tissue engineering approaches now incorporate stem cells. 

1.4.1 Stem Cell Overview 

Stem cells are a powerful means regenerating lost tissue due to their availability and 

capacity to differentiate into nearly any cell type if provided with the proper environment and 

growth factors (23). Stem cells can be categorized into three types based on their source: adult 

stem cells, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). Types of 

adult stem cells include hematopoietic, mesenchymal, neural, epithelial, adipose and skin stem 

cells (24). Embryonic stem cells are derived from the inner cell mass of an embryo 3-5 days after 

fertilization, and exhibit potential to differentiate into almost any cell type (25). More recently, 

human umbilical vein endothelial cells (HUVECs) have also been resected from the endothelium 

of umbilical cord veins after childbirth and used in tissue engineering approaches because of 

their potential to regulate angiogenesis through interactions with other enzymes and small 

binding proteins (26). IPSCs are stem cells created in the laboratory setting through the 

introduction of embryonic genes into a somatic cell, causing them to revert back to a pluripotent 
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state (27). Their source origin and therefore varying phenotype is commonly identified using the 

antigen binding of markers to cell surface glycoproteins, classification determinants (CDs). 

When designing tissue engineering approaches, the type of stem cell must be chosen carefully 

because different stem cell subtypes will more readily differentiate into subsequent lineages 

when given stimulatory factors. Many tissue engineering approaches that seek to promote bone 

reformation use mesenchymal stem cells (MSCs) due to their osteogenic properties and high rate 

of differentiation in the presence of osteoconductive materials such as bone morphogenetic 

protein (BMP) (28, 29). More recently, adipose-derived stem cells (ASCs) have also been 

investigated as a potential source of osteoconductive material due to their osteogenic potential 

and wider availability compared to MSCs (30). 

1.4.2 Current treatment methods for critical-sized segmental bone defects 

Standard treatment procedures for critical-sized, segmental bone defects involve the use 

of either autografts through vascularized bone transfer or cortical and cancellous bone allografts. 

However, these approaches are not without serious limitations such as donor site morbidity, a 

limited supply of graft tissue material, risk of an immune response and variable graft efficacy 

due to differences in donor bone quality (31). Due to the challenge associated with treating 

critical-sized defects, and the disadvantages of these traditional methods, limited efficacy has 

been seen in long term follow up studies of patient trials (32, 33). As such, there is a clear need 

for tissue engineered therapeutics that circumvent issues associated with conventional grafts and 

permit the healing of severe orthopedic tissue injuries. In this thesis, we aimed to characterize the 

vascular remodeling within a critical-sized defect in the calvarial region of mice implanted with a 

3D printed polycaprolactone (PCL) scaffold seeded with human ASCs embedded in a fibrin gel 

medium. To analyze this vascular remodeling, we imaged the defect site two weeks after scaffold 

implantation using a custom built multimodal imaging system. Our system enabled intrinsic 

optical signaling (IOS) imaging, fluorescence (FL) imaging, and laser speckle contrast (LSC) 

imaging during a single experimental session in order to provide information on various aspects 

of angiogenesis. These imaging methods will be described in detail in Chapter 2. A setup of our 

imaging system is illustrated in Fig. 1. 
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Fig. 1: In vivo imaging of the calvarial defect model. (a) Benchtop multi-contrast optical 

imaging system used to acquire in vivo images of the microenvironment of engineered 

scaffolds implanted in a calvarial defect model. (b). Diagram of the calvarial defect area 

location on a mouse skull. (c) Superior view of a 3D-printed polycaprolactone scaffold 

implanted in the calvarial defect. (d) Magnified view of 4 mm 3D printed scaffold seeded with 

ASCs suspended in a fibrin gel. (Calvarial Diagram adapted from: Zhang W, Zhu C, Ye D, Xu 

L, Zhang X, Wu Q, et al. Porous Silk Scaffolds for Delivery of Growth Factors and Stem Cells 

to Enhance Bone Regeneration. PLoS ONE. 2014;9(7):1.) 
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CHAPTER 2: IMAGING TECHNIQUES FOR VISUALIZING VASCULAR AND BONE 

REMODELING 

2.1 In vivo vs. Ex vivo Imaging 

Imaging is a powerful tool for characterizing the extent of bone and blood vessel 

regeneration in clinical and preclinical tissue engineering applications. By visualizing the 

angiogenic vascular network and bone formation in the defect site, we can quantitatively assess 

the effect of the stem cell mediated therapy on wound healing at the injury site. This section 

describes the types of imaging modalities that can be used as well as the quantitative information 

that can be extracted from each modality. One could employ in vivo or ex vivo imaging methods 

to assess angiogenesis and osteogenesis in preclinical bone injury models. In vivo imaging is 

advantageous in such models because it allows for the visualization of the native environment 

with minimal disturbance to the site. Additionally, in vivo imaging techniques provide important 

information about the dynamic characteristics of blood vessels during the angiogenic process. 

Since visualization of vessels and bone is often limited by the penetration depth of incident light, 

maintaining spatial resolution at increased imaging depths becomes challenging (34). Ex vivo 

imaging techniques can be advantageous in studying preclinical models because they often 

include staining and clearing techniques that improve visualization of the sample and allow for 

the clear distinguishing of vascular structures, often in 3D (35). Recently, ex vivo samples have 

been used to study retinal angiogenesis in mice (36). The disadvantages of ex vivo imaging stem 

from the fact that they require excision of the imaged samples, which may damage the tissue. 

Additionally, ex vivo imaging cannot be used to study vascular perfusion and the scope of 

experiments can be limited by the amount of time required to perform the optical clearing and 

staining of tissue samples. For the purpose of our studies, we chose to utilize in vivo imaging 

techniques to avoid the damage that can occur to tissue samples during excision or tissue 

clearing procedures, which would result in aberrations throughout imaging (37). 
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2.2 Imaging vascular morphology 

To assess vascular remodeling in bone defect sites, imaging techniques that enable 

visualization at microvascular spatial resolution (~5-10 µm) are needed. Such techniques include 

widefield and confocal microscopy, intrinsic optical signaling, multiphoton microscopy, optical 

coherence tomography (OCT), and micro-computed tomography (micro-CT). Optical imaging 

techniques often include optical sectioning to provide depth-resolved 3D images along with the 

administration of fluorescent dyes to augment visual contrast. 

2.2.1 Optical sectioning techniques 

Optical sectioning is not its own type of imaging modality, but instead a process by 

which 3D structures can be visualized without the need for physical sectioning of the tissue 

being imaged into thin slices. By removing the out-of-focus light within images across multiple 

focal planes, optical sectioning provides much greater contrast and allows for 3D reconstruction 

of specimens via the combination of all image planes into a single stack of images (38). This 

process is implemented in many types of optical imaging such as standard confocal, line 

scanning, spinning-disk, and multiphoton microscopy in order to increase resolution along the z 

axis, and is commonly implemented by introducing a pinhole aperture. By placing a pinhole 

aperture in front of the detector, most of the scattered and out-of-focus light can be eliminated 

without impeding the light from the desired in-focus plane (38). As such, the pinhole’s 

effectiveness is directly correlated to its size and must be chosen carefully to maintain 

effectiveness without compromising the difference in brightness between the signal and the 

background that is needed to distinguish structures. Optical sectioning techniques have recently 

been utilized to study regeneration in rat femoral defects (39) and angiogenesis in critical-defects 

within the calvarial region of mice (40) using multiphoton microscopy. 

 

2.2.2 Widefield and confocal microscopy 

Widefield and confocal microscopy are similar imaging techniques which deliver 

fluorescent excitation light through on objective lens onto the target specimen (41). As 

previously mentioned, the main difference between these two techniques stems from the fact that 
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confocal microscopy uses a pinhole aperture where widefield does not. As such, widefield 

microscopy enables visualization of whole samples whereas confocal only allows image capture 

of a single focal spot at a time. This narrower field of view comes with the benefit of drastically 

increased spatial resolution, optical sectioning and image contrast. Laser confocal microscopy 

has been used to characterize electrospun fibrous membranes for bone defect repair (42). While 

not commonly employed in studying tissue defects, widefield microscopy has been used to 

image microvasculature in mice in order to monitor thrombus formation (43). 

 

2.2.3 Intrinsic Optical Signaling, Multiphoton, OCT, and micro-CT 

Intrinsic optical signaling is an imaging technique that relies on a endogenous contrast 

mechanisms in native tissue to produce images that may be used to study morphological 

characteristics of vessels. As such, it can be used to visualize vascular networks without the need 

for dye administration, which requires an injection and may disrupt the normal blood flow 

patterns, and therefore the morphological observed characteristics. In biological systems, IOS is 

based on the differential absorption spectra of oxy- and deoxyhemoglobin (44). At an excitation 

wavelength of 573 nm, an isobestic point between oxygenated and deoxygenated hemoglobin 

can be observed. Therefore at 573 nm, since the absorption coefficients of oxygenated and 

deoxygenated hemoglobin are approximately equivalent, both components can be visualized 

together as total hemoglobin. Since hemoglobin is physiologically compartmentalized to the 

blood vessels, images acquired under 573 nm illumination make the blood vessels appear as dark 

structures against the grayscale background of the surrounding tissue. While IOS has been used 

to image the vascular networks in cerebral regions of mice and monkeys (45, 46), such 

techniques have not been used to observe vascular remodeling in bone defect sites. 

 Multiphoton microscopy is a fluorescence imaging technique that enables the imaging of 

live tissue up to a depth of approximately 1 mm (47). Multiphoton microscopes rely on “high-

order nonlinear light-matter interactions, where multiple photons are required for contrast 

generation” (48) As such, the localization of excitation in photons results in greatly improved 

penetration depths and minimized photobleaching or photodamage to the specimen. Two-photon 

fluorescence is the most commonly employed multiphoton microscopy technique, however other 
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methods such as second harmonic generation, three-photon fluorescence, and even four-photon 

fluorescence do exist (48). Multiphoton microscopy is primarily used to visualize cells in 

immuno-oncology studies (47, 49) however it has recently been used to analyze tissue 

engineered scaffolds seeded with MSCs for diabetic wound healing (50) as well as angiogenesis 

in critical-sized defects of the calvarial region (51). 

 Optical Coherence Tomography is a well-studied imaging technique with applications 

ranging from animal studies to neurosurgical and tumor diagnostic tools (52). OCT utilizes the 

reflection of relatively low-wavelength light off biological tissue in a cross-sectional plane to 

produce high resolution images (53). Similar to multiphoton microscopy, OCT can be used for 

cellular and even subcellular level resolutions depending on the coherence length of light source 

used. OCT has also been used to map vascular networks in the cerebral regions of animal models 

(54, 55). 

Micro-Computed Tomography is an x-ray transmission imaging technique that uses 

multiple 2D image slices to reconstruct a 3D visualization of the target specimen (56). It is a 

widely used technique in tissue engineering applications for its ability to image both blood 

vessels and bone structures on a micron scale. μCT has recently been used to image rhBMP-2 

mediated segmental bone defect repair in murine models (57) as well as angiogenesis during 

bone regeneration in both non-critical (58) and critical-sized defects in the calvarial region of 

mice (59). 

 

2.3 Monitoring Hemodynamic Response 

 To determine the success of tissue engineering treatments in repairing orthopedic trauma 

is it important to evaluate not only the morphology of the newly regenerated vessels, but also 

their functionality. As such, complementary imaging modalities are needed in order to provide 

information on the hemodynamic response within defect sites. Commonly used methods that will 

be discussed in this section include laser speckle contrast (LSC) imaging, dynamic contrast 

enhanced-magnetic resonance imaging (DCE-MRI), and dynamic susceptibility contrast-

magnetic resonance imaging (DSC-MRI). Additionally, we will discuss the administration of 
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vasodilators during the course of blood flow imaging in order to assess vascular maturity and 

compliance. 

 

2.3.1 LSC, DCE-MR, and DSC-MR Imaging 

Laser speckle contrast imaging relies on the interference pattern that results when 

biological tissue is illuminated by a coherent light source (60). Tissue that contains blood vessels 

display particular interference patterns due to the movement of red blood cells through the 

vascular network. As such, blood vessels can be easily identified from the surrounding tissue, 

and the recorded interference or ‘speckle’ pattern integrated over a finite exposure time to 

produce maps of the relative blood flow values over the entire field of view (61, 62). LSC 

imaging has been previously used to monitor in vivo blood flow in cerebral (63) and retinal (64) 

areas in murine models. However, to the best of our knowledge it has not yet been used to map 

hemodynamic changes in tissue engineering applications. 

DCE and DSC MRI are similar imaging techniques that require administration of a 

paramagnetic contrast agent in order to visualize hemodynamic responses in vascular networks. 

Gadolinium chelates are commonly used for both methods (65). DCE focuses on quantifying the 

permeability of blood vessels by measuring the leakage of the contrast dye from the vasculature 

using T1-weighted MRI, while DSC can be used to estimate vessel density and blood volume in 

the vascular network using T2 and T2*-weighted MRI (66). These techniques are used to image 

perfusion in tumors (67), or in areas of the brain affected by strokes (68). However recently, 

DCE-MRI has also been employed to monitor angiogenesis in tissue engineering constructs for 

calvarial bone regeneration (69). 

 

2.3.2 Administration of vasodilators to map vascular maturity and compliance 

Vasodilatory agents can cause vasodilation of blood vessels, resulting in increased blood 

flow and blood volume in the region of interest (70). Frequently used vasodilators in preclinical 

studies include prazosin, verapamil, cromakalim, and carbogen gas (71, 72). Regardless of the 

method chosen, the effect on the vascular network is similar. Each serves to slightly alter the pH 
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of the environment. This change in pH causes relaxation of the smooth muscle surrounding 

blood vessels, allowing them to dilate and prompting increased blood flow (73). Since smooth 

muscle takes time to develop around the newly formed vessels in a bone defect site, the 

administration of vasodilators can inform on the relative maturity of the blood vessels present. 

 

2.4 Vascular tracer kinetics and stem cell tracking 

 To further characterize vascular hemodynamics within an angiogenic vessel bed, 

alternative imaging modalities may be implemented. Fluorescence imaging is well suited for 

assessing the tracer kinetics of fluorescent dyes passing through vessel networks (74), while 

positron emission tomography (PET) may be used to create 3D reconstructed visualizations of 

nuclide tracers (75). Additionally, because cells can be fluorescently tagged, bleached, or 

transfected to display fluorescent proteins, fluorescence imaging can be used to track stem cells 

and monitor their differentiation (76, 77). 

 

2.4.1 Fluorescence Imaging 

Fluorescence imaging is the visualization of fluorescent dyes or proteins and has a wide 

range of applications from guiding medical diagnostics (78) to measuring vascular characteristics 

(74). Fluorescence imaging has been previously utilized to assess the integration of tissue 

engineering grafts in mice (79) in addition to the tracking of induced pluripotent stem cells (76). 

 

2.4.2 Positron emission tomography 

Positron emission tomography (PET) uses computer analysis to reconstruct images of 

gamma rays given off by positron emitting radionuclide tracers as they transit blood vessels in 

the target tissue (80). While often used for oncology diagnostic purposes (75), these 3D 

reconstructed maps have recently been used to analyze the stem cell mediated repair of 

segmental long-bone defects (81), and track human muscle precursor cells for the purpose of 

skeletal muscle tissue engineering (82). 
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2.5 Bone Visualization 

 In addition to imaging the morphological, hemodynamic, and tracer kinetic 

characteristics of vascular networks in bone defect sites, the volume of regenerated bone can also 

be used as a metric for treatment success. To determine the amount of regrown bone, several 

other imaging modalities including x-ray imaging, micro-computed tomography (μCT), MRI, 

and ultrasound imaging can be used. In this section, we will review each method’s capabilities 

generating images of bone in vivo. 

 

2.5.1 X-ray (radiography) and Micro-Computed Tomography 

X-ray imaging is one of the oldest imaging techniques and uses electromagnetic radiation 

to produce 2D images of dense biological tissue. Electromagnetic waves are projected into the 

specimen and are absorbed by increasing amounts based on the density of the material they come 

into contact with. By placing a detector behind the specimen, any x-rays that pass through the 

specimen can be captured and used to produce images of the darker areas (e.g. bone) surrounded 

by less dense areas (e.g. blood and tissue) (83). μCT can be considered a direct advancement of 

x-ray imaging as this method uses the same principles but incorporates multiple 2D images at 

varying angles to produce a 3D reconstructed visualization of bone areas (56). μCT has been 

used in recent years to study bone formation around bioactive scaffolds in noncritical-sized 

defects within the mandibles of pigs (84), and to visualize bioactive glass foam scaffolds 

implanted into the legs of mice (56). 

 

2.5.2 Ultrasound Imaging 

Modern advancements in ultrasound techniques have enabled it to become a viable 

alternative to the traditional x-ray and μCT imaging of bone (85). Instead of monitoring the 

behavior of light or electromagnetic radiation when passing through biological tissue, ultrasound 

measures the absorbance and scattering of high frequency (~MHz) sound waves (86). The 
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specific type of ultrasound used to visualize bone is known as quantitative ultrasound and uses 

lower frequencies (4-10 MHz) which correlate to the density and composition of bone. As such, 

ultrasound has been used successfully to evaluate fracture healing in bone defects, even showing 

precise enough measurements to allow for the discrimination of distinct healing stages (86). 
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CHAPTER 3: EXPERIMENTAL PROTOCOL AND IMAGING PROCESSING 

 

3.1 3D scaffold fabrication 

 

For the purpose of our tissue engineering experiments we created porous 3D-printed PCL 

scaffolds using a LulzBot TAZ printer with a 375 μm diameter nozzle (Aleph Objectives, Inc.; 

Loveland, CO). Scaffold sheets with 0.5 mm thickness, 30% infill density, and rectilinear infill 

pattern were designed, sliced, and converted to G-code using Cura software (Ultimaker B.V.; 

Geldermalsen, Netherlands). PCL scaffold sheets were printed according to the G-code using an 

extrusion and cooling bed temperature of 105°C and 45°C, respectively. Cylindrical scaffolds 

were punched from the sheets using a 4 mm diameter drill bit. Prior to cell culture studies, 

cylindrical 3D-printed scaffolds were treated with 1 M NaOH for 1 h to increase surface 

hydrophilicity and washed 3 x 10 min in PBS. Scaffolds were then sterilized in 100% ethanol for 

1 h, followed by 3 x 20 min washes in sterile PBS. One day prior to seeding, scaffolds were 

incubated in stromal medium (DMEM, 10% v/v FBS, 1% v/v P/S) at 37°C overnight to allow for 

serum proteins to adsorb to the scaffold surface. 

 

3.2 Stem cell isolation and calvarial defect preparation 

 

Lipoaspirate from a Caucasian female donor (39 y.o.) was obtained from Johns Hopkins 

Medical Institutions under an approved Institution Review Board protocol. To isolate adipose-

derived stem cells (ASCs), lipoaspirate was digested with 1 mg/mL Collagenase I (Worthington 

Biochemical Corp.; Lakewood, NJ) at 37°C for 1 h and centrifuged at 300 g for 10 min to obtain 

a pellet of stromal vascular fraction. Following cell resuspension, RBCs were removed by lysing 

RBCs in a buffer (155 mM NH4Cl, 10 mM KHCO3 and 1 mM EDTA) for 7 min and 

centrifuging at 300 g for 5 min. The stromal vascular fraction pellet was resuspended and plated 

onto T-175 flasks to allow for expansion of the adherent ASC population. ASCs were expanded 

using expansion medium (DMEM, 10% v/v FBS, 1% v/v P/S, 1 ng/mL FGF-2) for two passages 

(P2) before use in experiments.  
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3D-printed scaffolds were then seeded with ASCs encapsulated within a fibrin gel as 

previously described (87). P2 ASCs were trypsinized and resuspended in 10 mg/mL fibrinogen at 

a density of 25 x 106 cells/mL. Thrombin (10 units/mL) was added to the ASC-fibrinogen 

mixture (1:4 v/v) to yield a cell concentration of 20 x 106 cells/mL, and 6 μL of the solution was 

infused into the pore spaces of 3D-printed scaffolds. Scaffolds were incubated at 37°C for 30 

min to allow for fibrin to completely crosslink prior to adding culture medium. Scaffolds were 

incubated in stromal medium overnight prior to in vivo implantation.  

 

All animal procedures were approved by the Johns Hopkins Animal Care and Use 

Committee (JHU ACUC). Male 11-week-old homozygous Nu/J mice (Jackson Laboratories; Bar 

Harbor, ME) were anesthetized using isoflurane and injected subcutaneously with 0.2 mg/kg 

buprenorphine (Reckitt Benckiser Pharmaceuticals, Inc.; Slough, UK) prior to surgery. After 

sterilizing skin at the surgical site with betadine, an incision was made to expose the calvarium, 

and the pericranium was gently removed to allow for drilling of the defect. A 4-mm diameter 

defect was drilled in the right calvarium using an Ideal Micro-Drill (Harvard Apparatus; 

Holliston, MA) and 4 mm circular knife (Xemax Surgical Products, Inc.; Napa, CA). Special 

care was taken to avoid disrupting the underlying dura mater. Scaffolds were implanted by 

briefly washing them in sterile 0.9% NaCl and press-fitting them into the defect. The incision 

was then sutured using 6-0 nylon sutures to close the surgical wound. Animals were treated with 

an intraperitoneal injection of 0.2 mg/kg buprenorphine twice a day for 2 days following surgery 

for pain management. 

 

3.3 Multimodal Imaging Acquisition 

 

 To image microvascular structure and function in the scaffold and tissue 

microenvironment, we used a minimally invasive multicontrast optical imaging setup. This 

imaging system acquires high temporal (10 fps) and spatial resolution (5 μm) images, and is 

capable of three imaging modalities: intrinsic optical signal (IOS), laser speckle contrast (LSC) 

and fluorescence (FL) imaging. . Fig. 2 summarizes the microenvironmental parameters obtained 

from the three imaging techniques used. 
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We used a white light 

source (NI-150, Nikon 

Instruments Inc., NY) coupled 

with two band-pass filters (560 

and 570±5nm) to provide 

illumination for IOS imaging 

along with a filter wheel 

(FW102C, Thorlabs,NJ). A 

632.8 nm HeNe laser (0.5mW, 

Thorlabs, NJ) was used to 

acquire LSC images, and a 

473 nm laser (100mW, Cobalt 

AB, Sweden) along with a 496 nm long-pass filter (FF01-496/LP-25, Semrock Inc.,NY) was 

used for acquiring fluorescence images. Mice were first anesthetized using a controlled flow rate 

of 1.5% isoflurane (Iso Flo, Cat. No. 06-8550-2/R1) in 1L/min air with a Vapomatic Model: 2 

(AM Bickford Inc., NY) before being placed on an adjustable platform with their heads secured 

in place using a custom designed stereotaxic frame. A multi-lens set (AF Micro Nikkor 60mm 

1:2:8D, Nikon Instruments Inc., NY) was used for image acquisition at 0.5 magnification using a 

CCD camera (Infinity 3, Lumenera, ON, Canada) controlled by a customized MATLAB® 

(MathWorks; Natick, MA) program. IOS images were used to characterize in vivo changes in 

microvascular morphology and fluorescence images were used to detect RFP-tagged cells and 

intravascular FITC conjugated dextran (70 kD). Lastly, we employed LSC imaging for analyzing 

perfusion changes and microvessel maturity within the scaffold microenvironment. 

 

3.3.1 IOS 

 For IOS, the governing equation was developed from a modified version of the Beer-

Lambert’s Law (44) as shown in Eq. 1. Here the logarithmic ratio of the incident light (Io) and 

the reflected light (Iα) divided by the length traveled by the light (L) is equal to the absorption 

coefficient (μ) multiplied by the concentration of both oxygenated and deoxygenated 

hemoglobin. 

Fig. 2: Multi-contrast in vivo imaging of the graft microenvironment. 

Flow chart illustrating key microenvironmental factors that are interrogated 

in vivo (green) within the calvarial defect site; the in vivo optical contrast 

mechanism employed (red) to assay these factors; the imaging method 

employed (blue), and the metrics computed for characterizing the in vivo 

graft microenvironment. * Can also be used to track fluorescently labeled 

stem cell survival and location. 
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ln⁡(
𝐼𝑜(𝛾)

𝐼𝛼(𝛾)
)

𝐿(𝛾)
=⁡𝜇𝐻𝑏𝑂(𝛾) ∙ [𝐻𝑏𝑂] + 𝜇𝐻𝑏(𝛾) ∙ [𝐻𝑏] (1) 

At the isobestic point of 570nm, where the absorption coefficients of oxygenated and 

deoxygenated hemoglobin are approximately equal, one can reduce Eq. 1 to Eq. 2. 

𝑙𝑛(𝐼𝑜) − 𝑙𝑛(𝐼𝛼) ⁡∝ 𝐻𝑏𝑇 (2) 

Therefore, if we consider background pixels within our image to be points where nearly all light 

is reflected then the images we capture show background tissue as bright since they lack 

hemoglobin and blood vessels appear dark, since they are hemoglobin rich structures. For our 

experiments, IOS images were acquired at 10 fps with an exposure time of 60 ms. 

 

3.3.2 FL 

 For FL tracer experiments, 0.2 mL of 10 mg/mL 70 kD dextran-FITC was administered 

through a tail-vein injection. The transit of FITC through the microvascular bed at the graft site 

was then imaged under blue laser (i.e. 473 nm) illumination at 10 fps with an exposure time of 

150 ms for ~3 min. 

 

3.3.3 LSCI 

For LSC, speckle fluctuations or the degree of ‘blurring’ was quantified using Eq. 3 (88). 

Acquiring a temporal stack of the speckle pattern with a CCD camera over a given exposure time 

allows us to quantify the degree of blurring, which is inversely proportional to the relative 

perfusion. Each pixel in our FoV was assigned a speckle contrast or K value, which was the ratio 

of the standard deviation, σ, to the mean pixel intensity, <I>, where K
2
 is inversely proportional 

to the moving object’s flow velocity. For each pixel, a moving average was calculated in order to 

obtain a smoothed image.  

𝐾 =⁡
𝜎

<𝐼>
, 𝐾2 ⁡ ∝ ⁡

1

𝑉
  (3) 
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The variance of the time-averaged pixel intensity was equal to its temporal fluctuations and is 

given by Eq. 4, below (62). Here, T is the camera exposure time, c  is the temporal average of 

the intensity autocorrelation function, and 𝜏 is the decorrelation time.  

𝜎2 =⁡
1

𝑇
∫ 𝑐𝜏(𝜏)
𝑇

0
𝑑𝜏  (4) 

Using LSC, we also employed a carbogen gas challenge to assess the in vivo hemodynamic 

response and map vessel maturity. Carbogen gas, a mixture of 95% oxygen and 5% carbon 

dioxide, increases cerebral blood flow via vasodilation (71). At a microvascular level, increased 

oxygen delivery causes changes in tissue perfusion, which alters vascular resistance and 

perfusion pressure (89). Carbon dioxide causes a decrease in pH within the blood which is 

detected by receptors in the vessels walls that then cause the vessel smooth muscle to relax, 

resulting in vasodilation (90). In our protocol, mice were administered alternate cycles of room 

air and carbogen gas in 3 minute and 30 second blocks respectively, and LSC image stacks were 

acquired during the entire experiment. The raw speckle data was smoothed using a 10×10 pixel 

median filter, and a 33 pixel temporal Gaussian filter to reduce noise and increase the signal to 

noise ratio (SNR) of the LSC images. Images were acquired at 10 fps with an exposure time of 

60 ms. 

 

3.4 Image Processing Methods 

  

Prior to analyzing our acquired image stacks, a number of resampling, registration, 

smoothing, filtering, and thresholding steps were required. In this way, we were able to generate 

clear ‘vessel masks’ which could then be used to study the vascular morphology, tracer kinetics, 

and hemodynamics of our newly regenerated vessel beds. 

 

3.4.1 Resampling Fixed Time Points and Image Registration  

 

For processing of FL images, the acquired image stack was first imported into MATLAB® 

and resampled using linear interpolation to create image stacks with 50 ms temporal resolution. After 

acquiring image stacks using IOS, LSC, and FL imaging, image processing was performed using 

ImageJ (91) and MATLAB®. Image stacks from each imaging modality were co-registered 
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using the ImageJ plugin TurboReg (92). This allowed us to directly compare microvascular 

parameters across each modality. 

 

3.4.2 Smoothing, Gaussian, and Low-Pass Filters 

 

For IOS and LSC images, maximum intensity projection (MIP) images of each image 

stack were generated and corrected for non-uniform illumination using a rolling ball background 

subtraction of 50 pixels in radius. FL image stacks were subjected to a low pass filter at a cutoff 

frequency of 1 Hz to remove ‘spot’ noise 

 

3.4.3 Gaussian and Hessian Filter for distinguishing vessels 

 

Next, blood vessels were segmented using an ImageJ plugin called a ‘tubeness’ filter that 

distinguishes curvilinear or tubular structures such as blood vessels, bronchi or neurons by 

computing the 3D Hessian (93). The plugin employs Gaussian convolution with standard 

deviation, σ, which we varied to segment blood vessels of different radii. We selected three σ 

values ranging from 0.5-3 for each IOS MIP image in order to segment every vessel. 

Subsequently, IOS output images from the tubeness filter were combined using a ‘maximum’ 

operator while LSCI output images were combined using an average intensity projection of the 

baseline blood flow stack. This step was necessary to preserve blood vessel morphology because 

blood vessels dilated during administration of the carbogen gas. 

 

3.4.4 Thresholding and Particle Filtration  

 

After producing maximum and average intensity projections of our image stacks, these 

output images were thresholded to yield binary ‘vessel masks’. Next, morphological operations 

such as image opening and closing were used to restore portions of blood vessels lost during the 

thresholding step. Finally, any residual noise outside the graft area was removed using a 

minimum size filter of 10 square pixels to yield the final blood vessel masks. Finally, the IOS 

and LSC derived blood vessel masks were combined to yield an overall mask that allowed us to 

accurately analyze the morphology of the microvasculature within the field of view. 
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3.4.5 Euclidean Distance Maps and Tagged Skeletons 

 

Next, we generated a tagged skeleton and a Euclidean distance map (EDM) of the overall 

blood vessel mask using ImageJ. A tagged skeleton is an image wherein the morphology of the 

segmented blood vessels is represented as single pixel-wide branches along their centerline. 

These pixels were then classified based on the number of connected neighbors as ‘end points’ or 

‘junctions’ (94). The tagged skeleton image can therefore be used to identify branch points in the 

microvascular tree, the total number of vessels present, and assess vessel length. The Euclidean 

distance map computed from our overall vessel mask replaces background pixels with grayscale 

values corresponding to their distance from the nearest blood vessel boundary (95). Therefore, 

when logically combined with the tagged skeleton, the EDM can be used to represent the average 

radii of all vessel segments in the overall blood vessel mask. This approach yields maps of the 

blood vessels within the graft site coded by their morphological parameters (i.e. vessel radii, 

vessel length, and tortuosity) and depict valuable information that can be used to quantify 

angiogenesis at the graft site. 

 

To assess the relative blood flow within the vessels permeating our scaffold, we began by 

using the aforementioned methods for determining and mapping vessels within the overall mask. 

Next, we created average intensity projection images from the baseline blood flow (i.e. LSC) 

time series over 12 min, as well as the blood flow time series during carbogen gas experiments 

(i.e. three cycles of air for 3.5, 5.5, and 4.5 min interspersed with two cycles of carbogen gas 

inhalation for 1 min). By utilizing the vessel segment information from the tagged skeleton 

image, the blood vessel dimensions from EDM images and computing the grayscale pixel 

intensity from the average projection images, we were able to map the relative blood flow per 

vessel segment. In order to more easily compare the baseline and carbogen blood flow values, 

we normalized these data by dividing the grayscale intensity values assigned to each vessel 

segment by the maximum value that occurred across all LSC trials during the carbogen 

inhalation experiment, resulting in a relative blood flow value scaled between 0 and 1. To assess 

the change in blood flow in response to carbogen gas inhalation, the percent increase in the 
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average pixel intensity per vessel segment between baseline air and carbogen inhalation states 

was computed and mapped to the overall vessel mask. By quantifying carbogen gas-induced 

changes in blood flow we could quantify the relative maturity of each vessel segment within the 

angiogenic graft site. These changes correspond to fluctuations in blood flow caused by 

vasodilation in mature blood vessels. 
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CHAPTER 4: ANALYZING VASCULAR REMODELING DATA 

 

After processing out images and creating vessel masks, we used a k-means clustering 

approach implemented in MATLAB® to classify each vessel segment based on its change in 

blood flow during carbogen gas inhalation. The input to the k-means clustering was an array 

containing the flow values of each vessel segment and the output was a list of four classes that 

partitioned these flow values based on their nearest means. The index values allocated to these 

classes were then mapped to the corresponding vessels. 

 

4.1 Results 

 

 Using IOS and LSC images of the calvarial defect site (Fig. 3a, b) we generated binary 

vessel masks derived from each modality (Fig. 3c, d), which were combined to create an overall 

mask (Fig. 3e) that was used to analyze all morphological parameters. With the tagged skeleton 

Fig. 3:  Analysis of vascular morphology in the in vivo graft microenvironment. (a) IOS image of the calvarial 

defect site two weeks after implantation wherein the vasculature is dark due to green light absorption. PCL scaffold 

is outlined by the gray circle.  (b) LSC image of the same FoV wherein perfused blood vessels appear bright due to 

red laser light being scattered by moving erythrocytes. PCL scaffold is again outlined by a gray circle. (c, d) Images 

in (a, b) overlaid with their respective binary vessel masks. (e) Combination of the vessel masks in (c, d) to provide 

a holistic mask of all the vessels that are visible using either imaging method. (f) Map of the average vessel radius 

corresponding to the vessel segments identified in (e). (g, h, i) Distribution of vessel characteristics for the sample 

shown in (e). 
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and EDM derived from the overall mask we were able to visually represent characteristics of the 

vascular network as shown in Fig. 3f. Here we can see that there was a wide range of vessel radii 

distributions within the scaffold site. The minimum measureable radius was 5.6 μm due to the 

resolution of the camera sensor and optics. Fig. 3g, Fig. 3h, and Fig. 3i show the distributions of 

vessel characteristics assessed from the overall vessel mask (Fig. 3e). For the distribution shown 

in Fig. 3g the average vessel length was 93.4 μm with the most frequently occurring bin falling 

between 20-40 μm and a maximum vessel length of 793.1 μm. Similarly, from Fig. 3h we see 

the most frequent range of vessel tortuosities was between 0.7-1 with an average of 1.22 and a 

maximum 4. Additionally from Fig. 3i, the most frequent range of vessel radii was from 16-17 

μm with an average of 16.6 μm and a maximum of 40.2 μm which matched the values displayed 

in the vessel map (Fig 3f). This morphological data regarding the blood vessels within the graft 

site provides invaluable information regarding angiogenesis within the scaffold. Furthermore, 

these measurements can be used to characterize the vessel phenotypes as described in the 

Discussion. 

 

 From the image stacks of the dextran-FITC injections obtained using FL imaging we 

were able to clearly observe the transit of the tracer through the vascular bed (Fig. 4a) within the 

graft site. To illustrate the first-pass of dextran-FITC through the microvasculature, we plotted 

the mean fluorescent signal intensity of from a sub-region (Fig. 4b) wherein one can clearly 

observe the wash-in and wash-out of the tracer and the contribution of individual time points to 

the overall tracer curve. By importing the image sequence into MATLAB we could determine 

the time-to-peak value per vessel segment and map these values to our overall vessel mask (Fig. 

4c). Finally, using FL imaging we were also able to capture the distribution of HUVEC tagged 

with RFP within the scaffold (Fig. 4d). 
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From the overall vessel mask and the average intensity projections during air and 

carbogen breathing blocks, we were able to map changes in blood flow within the microvascular 

network at the graft site (Fig. 5a, b). In order to compare measurements, these values were 

normalized to the highest recorded blood flow value across all experiments. Using these 

normalized blood flow maps, we calculated the percent change in blood flow due to carbogen 

inhalation (Fig. 5c). Blood flow changes as high as 25% were observed in some vessels. In order 

to more closely analyze the blood flow response, we plotted the percent change in blood flow for 

a single vessel (Fig. 5d) over the course of the carbogen inhalation experiment as shown in Fig. 

5e. Here we can see that blood flow in the target vessel responded clearly and consistently during 

the carbogen inhalation blocks. Finally, using a k-means clustering approach we classified each 

blood vessel based its magnitude of blood flow change (Fig. 5f, g) and then applied the same 

cluster class to additional vessel characteristics in order to ascertain the relationship between 

parameters such as vessel radii or TTP and the observed change in blood flow. As shown in Figs. 

Fig. 4:  Analysis of tracer kinetics and cell distribution in the in vivo graft microenvironment. (a) 

Representative time series of fluorescent images acquired after injection of the fluorescent intravascular tracer 

FITC-dextran. PCL scaffold is outlined by the large gray dashed circles.(b) Plot of the fluorescence intensity from 

the ROI (red circle) in (a) illustrating the transit of the intravascular tracer through the vasculature within the graft. 

Red points correspond to the time points for which snapshots are shown in (a). (c) Time-to-peak (TTP) map 

computed from the tracer data for each vessel segment within the FoV. (d) Fluorescent image of a scaffold seeded 

with a mixture of ASCs and red fluorescent protein (RFP) labeled HUVECs (red channel) illustrating the utility of 

the fluorescent channel for cell tracking. 
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5h and 5i, vessel radius did not correlate with the blood flow response, while the TTP in vessels 

tended to be longer for vessels that exhibited larger blood flow changes within the graft site. 

 

 

Figure 5:  Analysis of perfusion and vessel maturity in the in vivo graft microenvironment. (a) Baseline blood 

flow map (normalized to the maximum flow across all samples). (b) Normalized blood flow map generated by 

computing the average blood flow during the carbogen inhalation periods. (c) Map of the percent change in blood 

flow induced by carbogen inhalation. More mature blood vessels exhibit larger changes in blood flow. Note only 

positive changes are displayed. (d) LSC image indicating ROI (red circle) corresponding to the blood flow time 

course in (e). PCL scaffold is outlined by gray circle. Time series were baseline corrected and only positive 

perfusion changes were plotted. The robust response to carbogen inhalation in (e) during the 240-300 s (blue bar) 

and 540-600 s (blue bar) intervals indicate the degree of maturity of the blood vessels within the red circle in (d). (f) 

Vessel classification of carbogen response in (c) using k means clustering. Vessels appearing as red are those that 

indicated the greatest degree in blood flow change while black indicates the lowest change. (g) Probability 

distribution function of change in blood flow in response to carbogen as seen in (f). (h) Probability distribution 

function of vessel radii according to the same classifications in (g) and (f).  The lack in variability across vessel sizes 

indicates that radius had no effect on carbogen response. (i) Similar distribution as seen in (h) but with the time to 

peak of each vessel. Again, the lack in variability indicates a lack of a relationship between carbogen response and 

time to peak response following injection of the dextran-FITC tracer. 
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4.2 Discussion 

 

Achieving adequate vascularization in tissue engineered bone grafts is critical to their 

engraftment, long term survival and eventual clinical success. It is well known that blood vessels 

are essential for graft survival because they deliver O2 and essential nutrients, while also 

removing cellular waste products. However, vasculature is also essential for bone development 

and homeostasis, with several studies demonstrating that the coupling of angiogenesis and 

osteogenesis is necessary for bone growth and remodeling (96, 97). Additionally, the blood 

vessel phenotype plays a critical role in this process. For example, vessels that contribute to bone 

growth – termed “Type H vessels” – exhibit higher blood flow, CD31 and endomucin 

expression, and secretion of pro-osteogenic factors (97, 98), and have a thinner, more elongated 

morphology than other bone vessels (8). Furthermore, osteoprogenitors and osteoblasts are 

intimately associated with Type H vessels, typically residing within 20 μm of the nearest vessel 

(96). In light of these findings, some investigation into blood vessel phenotypes within implanted 

tissue engineering bone grafts has been performed (99). However, most current tissue 

engineering approaches do not utilize imaging techniques capable of adequately assessing the 

role of the vascular phenotype and angiogenic-osteogenic coupling in bone regeneration.  

 

Herein lies the value of our imaging system, which combines IOS, LSC, and FL imaging 

in a way that enables the robust characterization of the vasculature in tissue engineered bone  

grafts in vivo. Since our system was designed to specifically image microvascular networks in 

vivo, it avoids the disadvantages of tissue clearing approaches used for ex vivo imaging such as 

distortion of the microvascular architecture and a lack of blood flow information (37).  

Blood vessel maturity can be estimated by quantifying the degree to which blood vessels 

respond to a vasodilatory challenge, such as carbogen gas inhalation. The underlying premise 

being that this blood flow response is proportional to the degree of smooth muscle coverage that 

has developed around blood vessels at the graft site. Here, we chose to evaluate vessel maturity 

by measuring the blood flow responses during carbogen challenges with LSC imaging because it 

is less sensitive to inaccuracies such as motion within the FoV. Although one could derive such 

estimates from IOS imaging by determining changes in microvessel diameter induced by 

carbogen, such measurements are challenging since small changes in blood vessel diameter are 
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susceptible to noise resulting from subject motion. LSC imaging is not without its own 

drawbacks however, as it is difficult to determine whether blood vessels within the graft site are 

themselves responding to the carbogen or if the increased blood flow is the result of upstream 

vasodilation. Additionally, while LSCI does provide valuable information on the relative blood 

flow changes, an imaging method that permits absolute blood flow measurements would be 

preferable for certain applications.  

 

By permitting the evaluation of parameters such as vascular morphology, blood flow, and 

blood vessel maturity, our imaging system facilitates the characterization of the vascular 

phenotype. Combining this multimodal imaging platform with clustering and 

structural/functional blood vessel mapping enables us to quantify changes that accompany the 

developing or angiogenic vascular bed within a tissue engineered scaffold. Such observations are 

critical for accurately assessing the regenerative potential of bioactive scaffolds as well as for 

informing their design. Future applications of this imaging platform involve its use to understand 

the effect of vessel phenotypes on the regenerative microenvironment within the graft. 

Furthermore, quantitative comparison of these vascular phenotypes across various tissue 

engineered scaffolds would enable us to better understand the success or limitations of different 

approaches for treating critical size calvarial defects. Finally, by tracking the location of 

implanted stem cells relative to the angiogenic blood vessels, one could follow their 

differentiation and impact on bone reformation. 
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CHAPTER 5: CONCLUSIONS AND FUTURE RESEARCH 

 

In this thesis, we have review the previously used bone grafts techniques used to treat 

orthopedic defects, their shortcomings, and novel approaches to improve upon defect treatment 

using tissue engineering methods. Additionally, we have reviewed an extensive list of imaging 

techniques that may be used to characterize defect sites either through visualization of bone or 

the angiogenic network during wound healing. Finally, we have described a novel multimodal 

system for imaging the microenvironment of bioactive scaffolds for tissue engineering 

applications in vivo. Our system facilitates the use of IOS, FL, and LSC imaging during a single 

experimental session in order to provide extensive data on the regrowth of the vascular network 

and characterization of the vascular phenotypes involved in bone healing. IOS imaging allows us 

to assess changes in vascular morphology, while FL imaging enables tracking of cell distribution 

within the scaffolds as well as measurement of tracer kinetic phenomena. LSC imaging provides 

crucial information on relative blood flow and vessel maturity within a vascular bed that is being 

dynamically remodeled during osteogenesis. Finally, the multimodal imaging in conjunction 

with the analyses methods described here make it possible to compare angiogenesis within defect 

sites across different experimental paradigms. We believe that such tools provide critical 

information to help optimize the design, implementation and deployment of future tissue 

engineering approaches for critical sized calvarial defects. 

 Future experiments should therefore seek to improve upon the healing capabilities of 

tissue engineering scaffolds by studying the types and compositions of osteogenic and 

biochemical factors that best facilitate bone and vascular remodeling. In order to further study 

the characteristics associated with improved regeneration using our imaging system and 

processing techniques, more animals should also be imaged. In this way, we may achieve a better 

understanding of important vessel characteristics through a k-means clustering analysis with a 

more suitable population size. 
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