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Abstract

Fixed-wing unmanned aerial vehicles (UAVS) pose advantages in energy

efficiency, endurance, and speed, but also pose disadvantages in maneuver-

ability. These maneuverability challenges can be addressed by exploiting

high angle of attack maneuvers. However, navigation with fixed-wing UAVs

in constrained spaces is still extremely difficult when the system state and

environment are unknown.

This essay investigates the use of vision sensors in autonomous navigation

of aerobatic fixed-wing UAVs. Perception aware NMPC is explored through

the integration of a visibility metric into the trajectory optimization problem.

Additionally, a novel frontier-based NMPC method, which improves obsta-

cle avoidance capabilities while mapping, is proposed. These methods are

evaluated in a realistic real-time simulation.

Primary Reader and Advisor: Dr. Joseph Moore

Secondary Reader: Dr. Simon Leonard
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Chapter 1

Introduction

1.1 Motivation

Fixed-wing unmanned aerial vehicles (UAVs) pose significant advantages

in energy efficiency, endurance, and speed when compared to rotary wing

UAVs. For this reason, fixed-wings are particularly well suited for tasks

requiring long distance flight. However, for tasks requiring navigation in

constrained spaces, fixed-wing UAVs pose serious challenges. Constrained

spaces, for the purposes of this essay, are defined as environments which

impose substantial constrains on vehicle dynamics. In conventional flight

regimes, these vehicles possess large minimum turn radii; in more aggres-

sive flight regimes spanning larger flight envelopes, these vehicles lack the

differentially-flat representations available to their rotary-wing counterparts.

Together, these factors make achieving fast collision-free flight in tight spaces

with fixed-wing UAVs a challenging underactuated control problem.

Despite these challenges, there are cases in which fixed-wing UAVs are

an attractive choice over rotary-wing UAVs. Such scenarios exist when high
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maneuverability is required intermittently across long distances. For example,

it may be necessary to travel long distances prior to carrying out a mission

that requires maneuvering around obstacles. Similarly, when navigating

in urban environments or tunnels, a vehicle may be required to navigate

both long straightaways and tight turns. A fixed-wing UAV would be ideal

for these scenarios, if it could achieve both low-energy, low angle-of-attack

flight and more maneuverable post-stall flight to execute tight turns. In

(Basescu and Moore, 2020), the authors demonstrate a fixed-wing UAV control

system capable of such behavior, but assume full-state feedback and a known

environment.

While the control problem addressed in (Basescu and Moore, 2020) is chal-

lenging, it is greatly simplified by ignoring the impacts of onboard perception

to agile fixed-wing UAV navigation. Rapid attitude changes are necessary for

maneuverable post-stall flight. However, this results in deleterious effects for

many onboard sensors, such as cameras. The control problem also depends on

the seeding of previously generated trajectories to warm start the optimization

problem. This can be difficult to perform successfully in unknown spaces since

new obstacles may be revealed and potentially make previously generated

trajectories infeasible. Additionally, sensors commonly used for mapping and

SLAM, such as LIDAR, are too heavy for many fixed-wing models. These

issues motivate investigation into the use of vision sensors in autonomous

navigation of aerobatic fixed-wing UAVs in constrained environments.
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1.2 Related Work

In the past decade, significant research has been dedicated towards im-

proving control strategies for fixed-wing UAVs. Optimal trajectory generation

has been a key focus (Milam, Franz, and Murray, 2002). Executing aerobatic

and post stall maneuvers is especially important for improving overall ma-

neuverability, and thus obstacle avoidance, capabilities. Agile turnaround

maneuvers, which have been investigated for this purpose, provide a good

example (Matsumoto et al., 2010). Agile turnaround utilizes post stall maneu-

vers to reduce travel distance or turn radius to improve obstacle avoidance

capabilities.

Nonlinear model-predictive control (NMPC) has provided a robust method

suited for fixed-wing UAV control in recent research. Nonlinear model-

predictive controllers (NMPC) and linear quadratic regulator trees (LQR-Trees)

have been utilized to perform perching, a complex post stall maneuver (Moore,

Cory, and Tedrake, 2014). NMPC has also been utilized to control fixed-wing

UAVs in environments with large disturbances, such as high wind conditions

(Stastny, Dash, and Siegwart, 2017). NMPC methods have also been extended

to account for state uncertainty; recently, Tube NMPC was introduced as a

method for belief space motion planning for nonlinear systems (Garimella et

al., 2018). This essay directly builds upon the direct NMPC approach proposed

in (Basescu and Moore, 2020).

Uncertainty in vehicle dynamics, environmental knowledge, and state esti-

mation all pose challenges to control. Dadkhah provided a survey of common

existing methods, as of 2011, to deal with these uncertainties (Dadkhah and
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Mettler, 2012). However, simultaneously performing mapping, state estima-

tion, and navigation for fixed-wing UAVs is less prevalent in research. Lidar,

which is commonly used for mapping and localization in robotics systems, is

usually too heavy for use on smaller fixed-wing UAVs. While GPS sensors

are useful for localization, they they cannot be used in GPS denied locations.

Recently, stereo vision has been investigated for use in mapping and state esti-

mation (Mourikis and Roumeliotis, 2007a, Sun et al., 2018, Brossard, Bonnabel,

and Barrau, 2018). Stereo cameras can be much lighter than lidar sensors,

which makes them well suited for use on UAVs.

Simultaneous mapping and navigation is especially challenging when

high velocity motion occurs in constrained environments. Within the past

few years, machine learning methods have been proposed to address high

speed navigation. Machine learning models have been trained to approxi-

mate how the short path heuristic of control differs from the optimal control

strategy (Richter and Roy, 2017). This was useful for improving path plan-

ning around corners in an unknown map for systems with narrow fields of

views. One source proposes the use of deep neural networks for predicting

unknown map regions (Katyal et al., 2019). This could allow robots to make

navigation decisions based upon predicted obstacle locations. Bansal pro-

poses the use of Convolutional Neural Networks (CNNs) on camera images to

select waypoints that would avoid obstacles (Bansal et al., 2019). This method

has been combined with Hamilton-Jacobi reachability analysis to ensure safe

autonomous navigation (Bajcsy et al., 2019).

Active sensing can be defined as "weighting future information gain and

4



cost" to decide future actions (Mihaylova et al., 2003). Mihaylova provides

an overview of possible methods for incorporating covariance matrices and

probability density functions into optimization problems to achieve this goal.

Active sensing can be used to improve information gathering in order to

more efficiently explore maps and to minimize state uncertainty. Leung et al.

performed NMPC while minimizing the trace of a Extended Kalman Filter

(EKF) covariance matrix as a method of information gathering (Leung et al.,

2006). Ny and Pappas proposed a "suboptimal non-greedy trajectory opti-

mization scheme" that could tackle active sensing problems more efficiently

(Le Ny and Pappas, 2009). Recently, Cauchy-Schwarz Quadratic Mutual In-

formation (CSQMI) has been used to improve map exploration efficiency

(Charrow et al., 2015). In this method, control actions were chosen such that

the CSQMI was maximized. Frey introduces methods for efficiently perform-

ing observability-aware trajectory optimization and provides background on

common uncertainty metrics (Frey, Steiner, and How, 2019).

1.3 Contribution

This essay explores the use of vision sensors in autonomous navigation

of aerobatic fixed-wing UAVs in constrained environments. Specifically, the

issues of trajectory generation in unknown constrained environments and state

uncertainty associated with high speed and post stall motion are addressed.

This research integrates and augments existing control, mapping, and state

estimation strategies with data from vision sensors to improve fixed-wing

UAV obstacle avoidance during autonomous flight.
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The first contribution of this essay is the integration, and evaluation, of

a visibility metric with direct NMPC of a fixed-wing UAV. In this proposed

control strategy, obstacle avoidance and dynamical feasibility are formulated

as hard constraints while improved visibility of environmental features are for-

mulated as soft costs. The second contribution of this essay is a novel frontier-

based NMPC method. This method aims to improve obstacle avoidance

capabilities of fixed-wing UAVs in unknown environments. The effectiveness

of the visibility cost in improving state estimation and of the frontier-based

NMPC in improving obstacle avoidance are evaluated in simulation.

A final contribution is the simulation of state-estimation, mapping and

planning in parallel to demonstrate that real-time performance can be achieved.

1.4 Organization

Chapter 2 contains a review of core concepts that are utilized in the rest

of the essay. Chapter 3 contains an overview of the system dynamics and

sensors. Chapter 4 reviews the NMPC framework, proposed in (Basescu and

Moore, 2020) that is built upon in the following chapters. Chapter 5 addresses

state estimation and experiments with a visibility cost function to improve

state estimation. Chapter 6 expands the NMPC framework for planning

with frontier based planning for improved performance in an unknown map.

Chapter 7 presents simulation results for performing planning, mapping, and

state estimation in parallel. Chapter 8 concludes this essay.
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Chapter 2

Concept Overview

This chapter provides an overview of base concepts utilized in this essay.

This essay builds upon a control strategy that is achieved in four stages: RRT

generation, spline-based smoothing, direct trajectory optimization, and local

linear feedback control. Additionally, 3D stereo reconstruction and mapping

are utilized throughout the essay.

2.1 Rapidly-exploring Random Tree

Rapidly-exploring Random Tree (RRT) is a sampling-based motion plan-

ning method (LaValle, 1998). This method has a relatively simple implementa-

tion and is well suited to high dimensional spaces.

The algorithm is specified in Algorithm 1.

2.2 Direct Transcription

Direct Transcription (Canon, Cullum Jr, and Polak, 1970) is a commonly

used method for optimal trajectory generation. Trajectories are discretized

7



Algorithm 1 GENERATE_RRT(xinit, K, ∆t)
τ.init(xinit)
for k = 1 to K do

xrand ← RANDOM_STATE()
xnear ← NEAREST_NEIGHBOR(xrand, τ)
u← SELECT_INPUT(xrand, xnear)
xnew ← NEW_STATE(xnear,u,∆t)
τ.add_vertex(xnew)
τ.add_edge(xnear,xnew,u)

end for
Return τ

into knot points, where each knot point is defined by the state xk = x(tk) and

the control uk = u(tk). At each knot point, a cost function is evaluated and

constraints are imposed. Different cost functions can be chosen to optimize

trajectories over different metrics, such as time or distance to goal. This

method of optimal trajectory generation is especially useful for imposing

constraints directly on both controls and states.

A simple direct transcription problem can be written as

min
x,u

J(x, u, t) = ϕ(xN, tN) +
N−1

∑
i=0

Lk(xk, xk+1, uk, uk+1)

s.t. Sk(xk, xk+1, uk, uk+1) = 0 ∀ k

c(xk, uk, tk) ≤ 0 ∀ k

ψ(xk, uk, tk) ≤ 0

(2.1)

where Lk is the cost function, ϕk is the final cost function, Sk is the discrete

approximation of the dynamics, and c and ψ are additional constraints (Kobi-

larov, 2019b).

8



2.3 Time-Varying Linear Quadratic Regulator

Time-Varying Linear Quadratic Regulator (TVLQR) is a widely used tra-

jectory tracking method. The goal of this method is to generate a control,

u, which stabilizes the system state, x, to a given trajectory. The system has

dynamics ẋ = f(x, u) and the trajectory is defined by x0 and u0. The cost

function to be minimized can be written as

J =
1
2
∥x(t f )− x0(t f )∥2

Q f
+

1
2

∫ t f

t0

(∥x(t)− x0(t)∥2
Q + ∥u(t)− u0(t)∥2

R)

Where Q, Qf, and R are costs on the state, final state, and control errors

respectively. The system is linearized as ẋ(t) = A(t)x(t) + B(t)u(t) using

A(t) =
∂f(x0, u0(t))

∂x

B(t) =
∂f(x0(t), u0(t))

∂u

The stabilizing control signal is calculated as

u(t, x(t)) = K(x(t)− x0(t)) + u0(t). (2.2)

where K is calculated by integrating the Riccati ODE

−Ṡ(t) = A(t)TS(t) + S(t)A(t)− S(t)B(t)R−1B(t)TS(t) + Q

S(t f ) = Q f

backwards in time from t = t f to t = t0 (Kobilarov, 2019a).
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2.4 Nonlinear Model Predictive Control

Nonlinear Model Predictive Control (NMPC), also referred to as nonlinear

receding horizon control, is an iterative optimization-based control strategy

for nonlinear systems (Findeisen and Allgöwer, 2002). The control problem

is formulated to solve an optimal control problem over a finite prediction

horizon, in which the system dynamics are predicted. The control problem

is recalculated at a predetermined frequency, thus continuously replanning

the control. This replanning is useful for dealing with system disturbance and

constantly updating environment observations.

2.5 Unscented Kalman Filtering

The unscented kalman filter (UKF) (Julier and Uhlmann, 1997) addresses

approximation issues of the extended kalman filter (EKF). Since EKF linearizes

the dynamics using a first order approximation, it can diverge when the system

nonlinearities are large. UKF utilizes the unscented transformation, which

can calculate the statistics of a random variable after it undergoes a nonlinear

transformation. For a random variable x with mean x̄ and covariance Pxx,

sigma points χi and weights Wi are generated.

χ0 = x̄ W0 =
k

n + k

χi = x̄ + (
√
(n + k)Pxx Wi =

1
2(n + k)

(2.3)

χi+n = x̄− (
√
(n + k)Pxx )i Wi+n =

1
2(n + k)

10



where there are 2n + 1 sigma points and k ∈ R is a scaling parameter. Each

sigma point is passed through the nonlinear transform to obtain the trans-

formed sigma points. The mean of the transformed random variable is the

weighted average of the transformed sigma points, and the covariance is the

weighted outer product of the transformed sigma points.

The unscented transform is integrated into the kalman filter by augmenting

the state and covariance with process and noise terms. Sigma points are

drawn from the resulting random variable. When performing the prediction

and update steps, the state and covariance are updated using the unscented

transformation, rather than using linearized process and measurement models

as done in EKF

2.6 Stereo 3D Reconstruction

Stereo cameras are able to estimate the range to objects by comparing the

images from two cameras. This allows for the 3D reconstruction of an environ-

ment from stereo images. In order to reconstruct a 3D scene, disparity images

are first computed. Konolige provides details of a workflow for constructing

disparity images from stereo images (Konolige, 1998).

1. Geometry correction: Correct distorted stereo images into standard form

2. Image Transformation: Transform each pixel of grayscale images into

more appropriate form

3. Area Correlation: Compare small areas around pixels to others in a

search window
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4. Extrema Extraction: Best matches are determined from correlation, re-

sulting in a disparity image.

5. Post-filtering: Filters can be used to reduce noise on disparity image.

The resulting disparity image indicates the distance, in pixels, between corre-

sponding points in the two stereo camera images. Given the camera intrinsics

and the pose transformation between the two matrices, depth can be de-

termined from the disparity image. For a simple stereo camera, where the

cameras are offset from each other by a horizontal baseline, b, depth zi can be

calculated from disparity di as

zi =
b f
di

(2.4)

for each pixel (Shen, 2020). f represents the focal length of the cameras.

2.7 OctoMap

An OctoMap (Hornung et al., 2013) is a 3D mapping approach that makes

use of octrees and probabilistic occupancy estimation. An octree is a data

structure that can be used to represent 3D space. Each parent node is a cube,

and the child nodes split the cube into eight smaller cubes. If all children

nodes have the same state, occupied or unoccupied, then the parent can be

assigned that state. This data structure makes querying occupancy of 3D space

more efficient.

OctoMap stores occupancy probabilistically in octree nodes as a method

of dealing with sensor noise and changing environments. The probability of

12



occupancy of node P(n) given measurement zt is calculated as

L(n|z1:t) = L(n|z1:t−1) + L(n|zt) (2.5)

L(n) = log
[

P(n)
1− P(n)

]
A threshold is applied to this probability to determine occupancy of a node.
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Chapter 3

System Overview

3.1 Dynamics

The fixed-wing dynamics used in this essay are the same as those found

in (Basescu and Moore, 2020). Here follows a brief review of those system

dynamics.

The equations of motion are described as

ṙ = Rr
bv

θ̇ = R−1
ω ω

δ̇ = ucs

δ̇t = atδt + btut (3.1)

v̇ = f/m−ω× v

ω̇ = J−1(m−ω× Jω)

14



The input to the system is u = {ωar, ωal, ωe, ωr, ut}T and the state is x =

{rT, θT, δT, δ̇t, vT, ωT}T, where

• r =
[
xr, yr, zr

]T is the center of mass position in the world frame

• θ =
[
ϕ, θ, ψ

]T are the (z-y-x) euler angles

• δ =
[
δar, δal, δe, δr

]T are the control surface deflections

• v =
[
vx, vy, vz

]T is the center of mass velocity in the body-fixed frame

• ω =
[
ωx, ωy, ωz

]T is the angular velocity in the body-fixed frame

The forces acting on the vehicle, f, and the moments acting on the center of

mass, m, are calculated as follows

f = ∑
i

Rb
si

fsi + Rr
b

Tgezr + ∑
i

Rb
t ft

m = ∑
i
(rsi ×Rsfsi),

fs = fn,sieys =
1
2

Cnρ|vsi |
2Sieys

vsi = Rsi(v + ω× rh + γivbw) + (Rsi ω + ωsi)× rsi (3.2)

vbw = vbwex =

√
∥vp∥2

2 +
2δt

ρSdisk
− ∥vp∥2.

rsi = lhex + Rs(lsexs)

Listed below are definitions for the referenced variables.

• m is the mass
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• J is the inertia tensor (about the center of mass)

• Rr
b is the rotation from the body-fixed frame to the world frame

• Rω is the rotation which maps the euler angle rates to an angular velocity

in body-fixed frame.

• fsi are the forces due to the aerodynamic surfaces

• ft are the forces due to the propeller,
[
δt 0 0

]T

• Rb
ti

is the rotation of the thrust source with respect to the body fixed

frame

• Rb
si

is the rotation of the aerodynamic surface reference frame with re-

spect to the body fixed frame

• rh is the displacement from the vehicle center of mass to the aerodynamic

surface “hinge” point

• Rsi is the rotation that transforms vectors in the body-fixed frame into

the aerodynamic surface frame

• ωsi is the rotation rate of the aerodynamic surface in the aerodynamic

surface frame

• vbw is the velocity due to the backwash of the propeller.

• δt is the thrust input

• Sdisk is the area of the actuator disk

• ρ is the density of air
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• vp is the velocity at the propeller

• γ is an empirically determined backwash velocity coefficient.

• Cn = 2 sin αw comes from the flat plate model in (Hoerner, 1985)

• gezr is the gravity vector in the world frame

• Rs is the rotation between the aerodynamic surface frame and the body

fixed frame

• lh is the length of the from the center of gravity to the surface hinge

• ls is the length of the surface hinge to the surface center

• ex is the unit vector in the x direction of the body frame

• exs is the unit vector in the x direction of the surface frame

3.2 Sensors

The following sensors were simulated to perform mapping and state esti-

mation.

3.2.1 LIDAR

While the main goal of this essay is implement robust navigation with

vision based sensors, a LIDAR sensor was simulated for algorithm develop-

ment. While most LIDAR sensors are too heavy for use on a small fixed-wing

UAV, LIDAR is relatively simple compared to camera sensors. LIDAR often

has much large ranges and less noise than cameras and are commonly used to
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perform mapping, and simultaneous mapping and localization (SLAM), on

robotic systems. Thus, in simulation, LIDAR provides a simple sensor for use

in algorithm testing and development. The LIDAR sensor simulated in this

essay is attached to a gimbal on the fixed wing; the roll and pitch of the sensor

are fixed to zero. Therefore, the lidar stays horizontal.

3.2.2 Stereo Camera

Stereo camera sensors are, generally, much lighter than LIDAR; therefore,

they are well suited to fixed wing UAVs. They are not only more complex to

simulate, but also more complex algorithms must be implemented to utilize

them for mapping and state estimation. While an RGBD camera may also be

applicable, the state estimate algorithm utilized in this essay, UKF S_MSCKF,

uses a stereo camera for state estimation. Thus, to simplify the simulation, the

stereo camera is utilized for both state estimation and mapping. The simulated

stereo camera is also attached to a gimbal on the fixed wing.

3.2.3 Inertial Measurement Unit

An Inertial Measurement Unit (IMU) is simulated for use in state estima-

tion. It outputs the linear acceleration and angular velocity of the system. The

simulated IMU has added gaussian noise.
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Chapter 4

Nonlinear Model Predictive
Control

This essay expands upon the NMPC approach proposed in (Basescu and

Moore, 2020). An overview of this approach, utilized in a known map with

a known state, is reviewed here. The aim of this control strategy is to fly the

fixed-wing from an initial state to a goal state without colliding into obstacles.

The control strategy achieves this in four stages: RRT generation, spline-based

smoothing, direct trajectory optimization, and local linear feedback control.

During each control interval, a trajectory is planned to a time horizon, which

is selected along a smoothed RRT path. This occurs at a control frequency of 5

Hz.

4.1 RRT Generation

Once a new control is to be generated, the system is simulated forward by

the control period, 0.02 sec, to determine what it’s approximate state will be

once the control trajectory is generated. From the position of this state to the
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position of the goal state, an RRT is generate with a 10% bias towards the goal

position. The RRT is generated in three dimensional Eulidean space (x, y, z).

The path from the start to goal positions is pruned.

4.2 Spline-Based Smoothing

G2 Continuous Cubic Bézier Spiral Path Smoothing (G2CBS) is used to

create a continuous, smooth curve, F(s) from the RRT path. Details of this

approach are presented in (Yang and Sukkarieh, 2010).

The path is reparametrized in terms of time. This aids in picking a more

accurate time-horizon endpoint for use in direct trajectory optimization. Cur-

vature of the path is calculated as,

κ(s) =
√
(z′′y′ − y′′z′)2 + (x′′z′ − z′′x′)2 + (y′′x′ − x′′y′)2

(x′2 + y′2 + z′2)
3
2

where

F′(s) =
[
x′ y′ z′

]
and F′′(s) =

[
x′′ y′′ z′′

]
Curvature is mapped to velocity as,

v(s) =
dx
dt

(s) = vmax − κ(s) ∗m, s ∈ [0, sp]

where x(s) is the full path as a function of s, vmax is the maximum velocity

for the kinematic model, m is the linear kinematic mapping parameter which

relates curvature to velocity, and sp is the overall path length. The path is then

reparametrized by time with,

t =
∫ s

0

1
v(s)

ds, s ∈ [0, sp]

20



.

4.3 Direct Trajectory Optimization

In this context, trajectory generation is formatted as a feasibility problem

where constraints are imposed on the trajectory dynamics and the end state.

This feasibility problem can be expressed as a direct transcription problem.

Direct transcription is utilized to generate a dynamically feasible and obstacle

free path from a start state to an end state (Pardo et al., 2016). The start state

is determined by simulating the current state forward, as described above.

The end state is determined by evaluating the position and velocity at time

horizon TH along the time parameterized smoothed RRT path.

This feasibility problem is written as

min
xk,uk,h

0

s.t. ∀k ∈ {0, . . . N} and

xk − xk+1 +
h

6.0
(ẋk + 4ẋc,k + ẋk+1) = 0

x f − δf ≤ xN ≤ x f + δf

xi − δi ≤ x0 ≤ xi + δi

xmin ≤ xk ≤ xmax, umin ≤ uk ≤ umax

d(x) ≥ r

hmin ≤ h ≤ hmax

(4.1)

21



where

ẋk = f(t, xk, uk), ẋk+1 = f(t, xk+1, uk+1)

uc,k = (uk + uk+1)/2

xc,k = (xk + xk+1)/2 + h(ẋk − ẋk+1)/8

ẋc,k = f(t, xc,k, uc,k). (4.2)

The referenced variables are defined as,

• x is the system state

• u is the control actions

• h is the time step

• δf are the bounds on the desired final

• δi are the bounds on the initial state

• N is the number of knot points.

• d is the minimum distance from state x to an obstacle.

• r is the minimum allowable distance to obstacles

• xmin and xmax are the state bounds

• umin and umax are the control bounds
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Note that the feasibility problem is formulated as a constrained optimiza-

tion problem with no cost function. As a result, the cost function is set to zero.

The distance function, d(x) is generated using a known OctoMap (Hornung

et al., 2013). The Sparse Nonlinear Optimizer (SNOPT) was used to solve this

optimization problem (Gill, Murray, and Saunders, 2005).

4.4 Local Linear Feedback Control

A time-varying linear quadratic regulator (TVLQR) is used to track the

trajectory generated by direct transcription. The control is calculated as

u(t, x) = K(x− x0(t)) + u0(t). (4.3)

where K is calculated by integrating

−Ṡ(t) = A(t)TS(t) + S(t)A(t)− S(t)B(t)R−1B(t)TS(t) + Q (4.4)

A(t) =
∂f(x0, u0(t))

∂x

B(t) =
∂f(x0(t), u0(t))

∂u

backwards in time from t = T to t = 0.

The referenced variables are defined as,

• x is the system state

• u is the control actions

• x0(t) is the state trajectory generated by direct transcription

• u0(t) is the control trajectory generated by direct transcription
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• f is the system dynamics

• Q is the cost on the state

• R is the cost on the control

• Q f is the final cost, which defines S(T)
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Chapter 5

State Estimation and Perception
Aware Trajectory Optimization

5.1 Perception Aware Trajectory Optimization

Rapid attitude changes can make it difficult to reliably observe features in

the environment, which may negatively impact state estimation. Perception

aware trajectory optimization aims to generate trajectories that allow the

system to better observe features and thus improve state estimation. This can

achieved by integrating a visibility term into the trajectory generation cost

function.

A visibility cost term for limited field of view cameras is presented in (Frey,

Steiner, and How, 2019). It aims to bring features into the center of the field of

view of the camera. The proposed visibility cost term is

σ(x, l) =

{
1
2(cos(aθ) + 1) |θ| < θmax

0 else
(5.1)

θ = cos−1(
crTê
||cr||2

) ∈ [0, π]
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where x is the camera state, l is a features, ê is the optical axis, cr is the

feature location in the camera frame, θmax is the maximum view angle, and

a = π/θmax is a scaling term.

We can naturally extend the NMPC feasibility problem to an optimization

problem where we use the cost term to affect behavior while still ensuring dy-

namic constraint satisfaction. Integrating this term into the direct transcription

problem, we have

min
xk,uk,h

N

∑
k=1

M

∑
i=1
−σ(xk, li)

s.t. ∀k ∈ {0, . . . N} and

xk − xk+1 +
h

6.0
(ẋk + 4ẋc,k + ẋk+1) = 0

x f − δf ≤ xN ≤ x f + δf

xi − δi ≤ x0 ≤ xi + δi

xmin ≤ xk ≤ xmax, umin ≤ uk ≤ umax

d(x) ≥ r

hmin ≤ h ≤ hmax

(5.2)
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where

ẋk = f(t, xk, uk), ẋk+1 = f(t, xk+1, uk+1)

uc,k = (uk + uk+1)/2

xc,k = (xk + xk+1)/2 + h(ẋk − ẋk+1)/8

ẋc,k = f(t, xc,k, uc,k).

li, ..., lM are all features observed within the last 20 time steps (0.2 seconds).

5.2 State Estimation

State estimation is an important aspect for any robotic system. While

ground truth state is accessible within a motion capture system, it is not ac-

cessible in many situations. If a fixed-wing UAV is to be deployed in the real

world, it must have access to accurate state estimation. State estimation can

be difficult for fixed-wing UAVs. Since the system moves in three dimen-

sional space at high velocities with many degrees of freedom, state estimation

must be fast and accurate in order to perform trajectory generation, obstacle

avoidance, and control.

5.2.1 S-UKF-LG

For this essay, an Unscented Kalman Filter implementation of the Stereo

Multi-State Constraint Kalman Filter, proposed in (Brossard, Bonnabel, and

Barrau, 2018), is utilized for state estimation. Sun et al. proposed the stereo
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multistate constraint Kalman filter (S-MSCKF) to perform stereo visual inertial

odometry on UAVs (Sun et al., 2018). This estimator had a computational cost

similar to state of the art monocular methods. This work was built heavily

upon a prior work for monocular visual inertial odometry which formulated

a multistate constraint Kalman filter (MSCKF) (Mourikis and Roumeliotis,

2007a). Brossard et. al proposed S-UKF-LG, which built upon the S-MSCKF

by utilizing an Unscented Kalman Filter (UKF) (Brossard, Bonnabel, and

Barrau, 2018). Furthermore, the UKF was formulated specifically for use

on Lie Groups, as formulated in their prior paper (Brossard, Bonnabel, and

Condomines, 2017a). S-UKF-LG removed the need to compute Jacobians and

takes into account the Lie group structure of the system’s state.

This method has good accuracy when compared to other visual inertial

odometry methods and can be performed efficiently. Brossard reported that

S-UKF-LG performed well in terms of root mean square error (RMSE) on

the EuRoC dataset (Burri et al., 2015) compared to S-MSCKF. While OKVIS

(Leutenegger et al., 2015) and VINS-MONO (Qin, Li, and Shen, 2018) outper-

formed S-UKF-LG, they did so at the cost of significantly more CPU Load.

Here follows a brief overview of the S-UKF-LG algorithm.
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5.2.1.1 Dynamical and Measurement Model

The dynamical model of the IMU states is represented as

∂R
∂t

= R(ω− bω + nω)×

∂v
∂t

= R(a− ba + na) + g

∂x
∂t

= v (5.3)

∂bω

∂t
= nbω

∂ba

∂t
= nba

where R is the orientation of the body frame, v is the velocity, x is the position,

and bω and ba are the IMU biases

The dynamical model of the camera states is represented as

∂TIC

∂t
= 0 (5.4)

∂TC
i

∂t
= 0, i = 1, ..., N

where TIC is the transformation between the IMU and left camera frame and

TC
i are previously recorded left camera poses.

The noise of the IMU is represented as

n = [nT
ω nT

a nT
bω

nT
ba
]T ∼ N (0, Q) (5.5)

Where nω, na, nbω
, nba are the various white Gaussians noises and Q is
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the noise covariance matrix. The state and error are embedded on Lie Groups.

Please refer to (Brossard, Bonnabel, and Barrau, 2018) for the necessary mathe-

matical background. After this embedding, the IMU error is represented as

ξ = [ξT
R ξT

v ξT
x ξT

ω ξT
a ξT

IC ξT
C1

... ξT
CN

]T (5.6)

5.2.1.2 Propagation Step

The IMU state is propagated using a 4-th order Runge-Kutta numerical

integration. To propogate the IMU uncertainty, first the rate of change of the

IMU uncertainty is linearized.

ξ̇ = Fξ + Gn (5.7)

where

F =

⎡⎢⎢⎢⎢⎣
0 0 0 0 −R

(g)× 0 0 −R −(v)×R
0 I 0 0 −(x)×R
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦

G =

⎡⎢⎢⎢⎢⎣
0 R 0 0
R (v)×R 0 0
0 (x)×R 0 0
0 0 I 0
0 0 0 I

⎤⎥⎥⎥⎥⎦
Then, the discrete state transition matrix and noise covariance matrix are

calculated.

Φn = Φ(tn+1, tn) = expm(
∫ tn+1

tn
F(τ)dτ) (5.8)

Qn =
∫ tn+1

tn
Φ(tn+1, τ)GQGTΦ(tn+1, τ)Tdτ (5.9)
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The covariance matrix is propagated as follows

Pn+1 =

[
PI I

n+1 ΦnPIC
n

P(
NCI)ΦT

n (P)CC
n

]
(5.10)

PI I
n+1 = ΦnPI I

n Φn + Qn

When new images are received, the camera state and covariance matrix are

augmented.

Pn+1 =

[
I
J

]
Pn+1

[
I
J

]T

(5.11)

J =
[

I 0 0 03×6 R 0 0 03×6N
0 0 I (0)3×6 (x)×R 0 R 03×6N

]

5.2.1.3 Update Step

The state and covariance are updated based on measurements as follows.

For each feature position and estimated feature position (Mourikis and Roume-

liotis, 2007b), the residual is calculated as

rj
i = yj

i −
UKF yj

i =
UKF Hj

iξ + Hi
pj ξpj + nj

i (5.12)

Hi
pj = Jj

i

[
(RL

i )
T

(RR
i )

T

]

where (RL
i )

T and (RR
i )

T are the orientations of the i-th left and right cameras

and

J j
i =

⎡⎢⎢⎣
1/zl 0 −xl/z2

l
0 1/zl −yl/z2

l
1/zr 0 −xr/z2

r
0 1/zr −yr/z2

r

⎤⎥⎥⎦
UKFyj

i and UKFHj
i are numerically inferred using UKF-LG (Brossard, Bonnabel,

and Condomines, 2017b).
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These equations are then stacked to form the full residual, rj. This is

projected into the null space of Hi
pj , which results in

rj
o = Hj

oξ + nj
o (5.13)

These equations are stacked to form ro and Ho. The updated state is

χ× = exp(ξ̄)χ (5.14)

ξ = Kro

K = PnHT
o /S

S = R + HoPnHT
o

The updated covariance matrix is

P×n = P(I−KHo) (5.15)

5.2.2 UKF S_MSCKF Validation

The system is simulated while performing both S-UKF-LG and a naive

IMU state integration to evaluate if the S-UKF-LG algorithm is suitable for

fixed-wing UAV state estimation. The system is controlled using the true state

and has access to the true map.

The simulation map represents a hallway with corners and branches. The

fixed wing is initialized in the middle of the hallway, and the goal point

is around two corners. These corners are challenging to plan through due

to the restricted field of view. The dynamics are run at 100 Hz with euler
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integration. Ten knot points are used for direct transcription, with Hermite-

Simpson Integration as the integration method between knot points. SNOPT

is used for numerical optimization and is capped at 5 major iterations, which

is similar to what has been observed on hardware.

For the constraints on direct transcription, strong bounds on final knot

points were enforced:

δ f = [0.1, 0.1, 0.1, 0.1, 1, 0.1, 100, 100, 100, 100, 3, 3, 0.5, 0.5, 0.5, 0.5]

These strong bounds correspond to the maximum distance the final knot point

is allowed to vary from the desired final state, as formulated in Equation 4.1.

The diagonals of the cost matrices Q and R for TVLQR were set to,

diag(Q) = [10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10]

diag(R) = [1, 1, 1, 1]

with final costs:

diag(Qf) = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

The stereo camera used in this essay is simulated in Gazebo. Gazebo

is a powerful platform, capable of simulating dynamics and graphics. It is

also able to simulate sensors through plugins, and has tight Robot Operating

System (ROS) integration. This has made it a powerful tool for designing

robotics systems and algorithms.

A mesh, which mirrors the occupancy map used in the fixed wing simula-

tion, was created and loaded into Gazebo. This mesh is textured with a brick
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pattern, shown in Figure 5.1. A stereo camera Gazebo plugin uses this mesh

and an assigned model pose to generate stereo images (Figure 5.2). These

images are published at a rate of 30 Hz.

Figure 5.1: Gazebo Map

The camera images are 320x240 pixels and have no distortion. The horizon-

tal field of view is 1.5 radians, which is similar to that of commercially available

stereo/depth cameras ( add source ). The IMU has Gaussian noise added to

acceleration ( m
s2 ) and angular velocity ( rad

s ) measurements, N (0, diag(1,1,1))

and N (0, diag(0.1, 0.1, 0.1)) respectively. The acceleration and angular veloc-

ity measurements also have added biases, [0.1, 0.1, 0.1] and [0.01, 0.01, 0.01]

respectively.

When the simulation is run, the state acquired with IMU integration

rapidly diverges, while the state estimate acquired with S-UKF-LG stays
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Figure 5.2: Stereo Image from Gazebo

within an error bound of the ground truth state. Figures 5.3, 5.4, and 5.5 dis-

play visualizations of the ground truth state, the estimated state, and the IMU

integrated state in an example simulation run. In Figure 5.3, the blue fixed-

wing is the ground truth state, the green fixed-wing is the IMU integrated

state, and the red fixed-wing is the S-UKF-LG state estimation. The white

trajectory is the smoothed RRT, the yellow trajectory is direct transcription tra-

jectory currently being tracked, and the green trajectory is direct transcription

trajectory being optimized for next control interval.

5.2.3 Simultaneous State Estimation and Planning

The S-UKF-LG state estimation can be used to control the system. The

simulation was run ten times, and resulting trajectories are plotted in Figure

5.6. Each simulation is run with a different random number generation seed,

resulting in different IMU measurements and RRT sampling. An example

simulation run is shown in Figure 5.7. Each simulation run was successful; the

fixed-wing was able to navigate the hallway, avoid walls, and reach within 0.5
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Figure 5.3: S-UKF-LG validation

Blue fixed-wing UAV: ground truth state
Green fixed-wing UAV: IMU integrated state

Red fixed-wing UAV: S-UKF-LG state estimation.
White trajectory: smoothed RRT

Yellow trajectory: direct transcription trajectory currently being tracked
Green trajectory: direct transcription trajectory being optimized
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Figure 5.4: Visualization of trajectories in Figure 5.3

Figure 5.5: Errors associated with trajectories in Figure 5.3
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meters of the goal position.

Figure 5.6: Trajectories while controlling fixed-wing with S-UKF-LG state estimation

5.3 Simulation and Results

Simulation was performed with and without the visibility cost. Across

ten runs, the positional error and the trace of the positional covariance of the

state estimation were collected. In the case of a high-speed fixed-wing UAV,

features are continuously updated and are coming in and out of the field of

view. Therefore, the cost function may fight against the constraints imposed

upon trajectory generation by penalizing features leaving the field of view and

rewarding features entering the field of view. The objective of the resulting

constrained optimization problem is to find a balance in which the constraints

are met while feature observability is maximized.
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Figure 5.7: Control using state estimation from S-UKF-LG

Blue fixed-wing UAV: ground truth state
Green fixed-wing UAV: IMU integrated state

Red fixed-wing UAV: S-UKF-LG state estimation.
White trajectory: smoothed RRT

Yellow trajectory: direct transcription trajectory currently being tracked
Green trajectory: direct transcription trajectory being optimized
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Unfortunately, no significant improvements in state estimation were ob-

served while using the visibility cost. Although the error and covariance trace

while using the visibility cost tended to be smaller at the final state (Figures 5.8

and 5.9), it was not significantly so. The mean error along the entire trajectory

was almost identical, and the mean covariance trace tended to be slightly

larger (Figures 5.10 and 5.11).

These results indicate that this cost term is not a viable method for improv-

ing state estimation for the given system and environment. It may be that

the optimizer (SNOPT) is unable to significantly minimize the cost function

within the major iteration constrain imposed. The cost functions ineffectively

could also be caused by the fact that the fixed-wing is navigating a feature

rich environment. Thus, the system may be able to view enough features no

matter which direction the camera is pointed. Future experiments can be run

to investigate if the visibility cost could generate trajectories that improve state

estimation in feature deficient environments, such as hallways with relatively

blank walls.

5.4 Simplified Test Case

In order to further analyze the visibility cost function, a simulation of a

greatly simplified test case was run. In this test case, the goal state is straight

down the hallway instead of around corners. A single group of features is

placed to the left of the hallway. Additionally, the camera is simulated at

100Hz to maximize the amount of camera data received.
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Figure 5.8: Positional error at final state with and without visibility cost

Figure 5.9: Positional covariance trace at final state with and without visibility cost
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Figure 5.10: Mean positional error along trajectory with and without visibility cost

Figure 5.11: Mean positional covariance trace along trajectory with and without
visibility cost
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This test case was run ten times with and without the visibility cost func-

tion. The use of the cost function improves feature visibility along the trajec-

tory and slightly reduces positional covariance trace. However, the positional

error of state estimation is not improved: the mean final error without the

visibility cost was 0.2503 m and 0.2776 m with the visibility cost. The results

of this test case are shown in Figures 5.12, 5.13, and 5.14.

Figure 5.12: Visibility along trajectories with and without visibility cost

Note that there is a second spike in visibility while using the visibility

cost. This occurs because the fixed wing slows and briefly rotates such that

the camera points towards the features. Also note the covariance appears to

diverge towards the end of the simulation. This is due to the fact that there

are no features at the end of the hallway. However, there is a minor decrease

in covariance before features move out of the field of view.
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Figure 5.13: Positional error along trajectories with and without visibility cost

Figure 5.14: Positional covariance Trace along trajectories with and without visibility
cost
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This test case verifies that the cost function is able to improve feature

visibility despite the constraints placed on the trajectory generation problem.

The minor covariance improvement and lack of error improvement suggests

that this cost function may not be an effective method for improving state

estimation for this system.

45



Chapter 6

Simultaneous Mapping and
Navigation

6.1 Issues Posed

While the framework outlined in Chapter 4 is quite effective with a known

map, there are challenges to using this framework in an unknown environ-

ment. If the system plans a trajectory that passes through an unseen obstacle,

this trajectory will not be feasible. Since this trajectory is used as a seed for

the next one, this can pose issues even once the obstacle is sensed. Given that

the optimizer is time constrained, it may not be able to generate a feasible

trajectory in time if seeded with this infeasible one. This situation can occur

when the system is turning a corner in a hallway map. The sensor is unable to

see the wall or obstacles around the corner due to a limited field of vision.

The main way to address this challenge is to generate trajectories that have

a very low chance of being generated in obstacles in the unknown region of

the map. This can be done in a couple ways: only plan trajectories in known

areas of the map, or plan trajectories based off a prediction of where obstacles
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will be in the unknown map.

6.2 Mapping

We perform mapping using an OctoMap (Hornung et al., 2013), which

utilizes an Octree and probability thresholds to maintain occupancy maps.

The system is navigating a "2.5D" environment where the walls are uniform

along the z dimension. Due to this uniformity, the OctoMap is only built

along the x and y dimensions. While generating the RRT and perform di-

rect transcription, obstacle constraints are imposed according on the x and

y coordinates. Therefore, 3D trajectories are generated using the 2D map.

While building this map with LIDAR measurements is fairly straightforward,

building it with stereo camera images requires more processing.

Here follows the mapping proccess using the stereo camera sensor. First,

3D reconstruction is performed from the two stereo images. For this essay,

stereo_image_proc was utilized (source). This ROS node undistorts and

colorizes the images. It then calculates a disparity map using OpenCV’s

block matching algorithm. Using the camera’s intrinsic properties, a 3D point

cloud of the viewed scene can be generated (Figure 6.1). This point cloud is

the filtered using the Point Cloud Library (PCL).

First, the Point Cloud is transformed from the camera frame to the world

frame. Then, it is down-sampled using a Voxel Grid with a leaf size of (0.3 m,

0.3 m, 0.3 m) (Figure 6.2). This down-sampling greatly reduced the number of

points, which is important for efficiently adding it to the OctoMap. The ground

points are removed, and a slice of the point cloud around the camera’s height is
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extracted (Figure 6.3). A slice size of 0.4 m was used. The remaining points are

projected onto the z = 0 plane (Figure 6.4). The result of these transformations

is a measurement which resembles the LIDAR sensor’s measurement; a point

cloud measurment contained to the horizontal plane.

Figure 6.1: 3D Reconstruction

6.3 Frontier Search

The occupancy map can be defined by three regions: occupied, unoccupied,

and unknown. Regions which have been sensed to contain obstacles are

occupied, while open space is defined as unoccupied. Regions of the map

that have not been observed are unknown. Frontiers define edges between

unoccupied and unknown regions of the map.

While unknown space can be treated as unoccupied for trajectory genera-

tion, it is a safer option to avoid planning trajectories in unknown space, if
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Figure 6.2: Down-sampled Point Cloud

Figure 6.3: Sliced Point Cloud
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Figure 6.4: Projected Point Cloud

possible. In order to do so, frontiers between known and unknown regions

of the map are searched for. These frontiers are generated using a flood fill

algorithm. The algorithm takes in an occupancy grid where each cell is either

occupied, unoccupied or unknown. The cell closest to the system’s current

state is set as the initial pixel. Each unvisited neighboring pixel is visited. If

the neighboring pixel is occupied, then it’s neighbors are not marked to be

visited. If it is unoccupied, then it’s neighbors are marked to be visited. If it is

unknown, then it is marked as a frontier, and it’s neighbors are not marked to

be visited.

Once flood fill is finished, frontier cells are grouped together by adjacency

into frontiers. For every frontier cell, each existing frontier is checked for

adjacency. If there is one adjacent frontier, the frontier cell is added to it.

If there are no eligible frontiers, a new frontier with this cell is formed. If
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there are two eligible frontier, they are merged together, and the frontier cell

is added to the merged frontier. Any frontiers that are too small (below a

threshold of number of cells) are removed. These frontiers are likely gaps

in the system’s sensing, rather than true frontiers. The algorithm is outlined

in Algorithm 2 and an example of the result is shown in Figure 6.5. The

translucent white cells are the map, the blue cells are the observed map, and

the solid white cells belong to a frontier.

6.4 Horizon Point Selection

The NMPC framework reviewed in Chapter 4 is adapted for use while si-

multaneously mapping by modifying the horizon point selection. The horizon

point, which is selected at a time horizon along the RRT, may be in unknown

regions of the map. This is can be due to both the limited field of view of

the sensor and the constrained space. Since trajectories are optimized using

previous trajectories as seeds, a trajectory becoming infeasible due to new

obstacles being observed could be detrimental to the optimization process.

To reduce risk of generating infeasible trajectories, this horizon point can be

adjusted by using the detected frontiers.

6.4.1 Frontier Midpoint

At the beginning of a control interval, frontiers are searched for. After

the RRT path to the goal is generated and smoothed, it is searched to see

if it passes through any frontiers. If it does, that frontier is used to select

the horizon point. The location of the horizon point is shifted to the mean
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Algorithm 2 FIND_FRONTIERS(posinit, map, thresh)

queue← QUEUE()
boundary_points← VECTOR()
boundaries← VECTOR()
queue.PUSH(posinit)
while not queue.EMPTY() do

pos← queue.FRONT()
queue.POP()
if not map.UNKNOWN(pos) then

if map.UNOCCUPIED(pos) and not map.VISITED(pos) then
queue.PUSH(map.NEIGHBORS(posinit))
map.SET_VISITED(pos)

end if
else

if pos ̸∈ boundary_points then
boundary_points.PUSH_BACK(pos)

end if
end if

end while
for boundary_point ∈ boundary_points do

candidates← ADJACENT_BOUNDARIES(boundary_point, boundaries)
if candidates.EMPTY() then

new_boundary← VECTOR()
new_boundary.PUSH_BACK(boundary_point)
boundaries.PUSH_BACK(newboundary)

else if candidates.SIZE() = 1 then
boundaries.AT(candidates.AT(0)).PUSH_BACK(boundary_point)

else
boundaries.AT(candidates.AT(0)).PUSH_BACK(boundary_point)
boundaries←MERGE_BOUNDARIES(boundaries, candidates)

end if
end for
for boundary in boundaries do

if boundary.SIZE() < thresh then
boundaries.REMOVE(boundary)

end if
end for
Return boundaries
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Figure 6.5: An example of a detected frontier

Translucent White Cells: true map
Blue Cells: observed map

Solid White Cells: detected frontier
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location value of this frontier (Figure 6.6). If the RRT does not pass through

any frontiers, then the trajectory is planned to a time horizon or the goal point,

whichever comes first (Algorithm 3).

Algorithm 3 FRONTIER_MIDPOINT(map, boundaries)

RRT ← GENERATE_RRT()
intersect_boundaries← DETECT_INTERSECTIONS()
if intersect_boundaries.EMPTY() then

horizon← TIME_HORIZON(RRT)
else

horizon←MIDPOINT(intersect_boundaries.AT(0))
end if
Return horizon

Trajectories planned to the frontier midpoints will be completely contained

within known regions of the map. This will reduce the risk of planning

trajectories through unseen obstacles. Since the frontiers are updated at the

beginning of each frontier interval, new frontiers will take into account newly

revealed obstacles. However, if obstacles are very close to the frontier, yet

hidden from view, the system may have trouble avoiding collision.

6.4.2 Map Prediction

Instead of containing trajectory generation within known map regions,

trajectories can also be planned within unknown regions that have a low

chance of containing obstacles. While predicting unknown regions of the map

is outside of the scope of this essay, doing so is an ongoing field of research

(Katyal et al., 2019).

Ideally, at the beginning of each planning interval, the observed map

would be passed to a map prediction function, which would return a map
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Figure 6.6: Frontier Midpoint Method

White trajectory: smoothed RRT
Green trajectory: direct transcription trajectory being optimized

Translucent White Cells: true map
Blue Cells: observed map

Solid White Cells: detected frontier
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with unknown regions filled in with predicted obstacles. Instead, to determine

the effectiveness of planning off of future map predictions, we assume that we

have access to a perfect prediction of the future map. This prediction expands

the observed map by updating it with future observations.

These future observations are obtained by simulating the sensor forward

in time along the current trajectory to collect measurements. The RRT is

generated in the predicted map, and the time horizon point is selected along

this ’predicted RRT’. Figure 6.7 displays an example where the sensor is

simulated forward by 0.1 sec. The red cells represent the predicted map. Note

that the predicted map enables the trajectory being optimized (green) to better

avoid the mostly unobserved wall.

6.4.3 Frontier and Map Prediction

This horizon selection method combines the frontier approach and the

map prediction approach. Assuming we have access to a prediction of the

future map, we may be able to improve upon frontier midpoint selection. We

simulate a perfect map prediction and generate the RRT using the predicted

map. However, frontiers are still generated using the current map. The

horizon point location is shifted to the intersection of the RRT and the frontier

(Figure 6.8). As a result, trajectories are only planned within the known map,

but they are planned to a goal on the frontier that might be more likely to put

the system on a trajectory within unoccupied space.
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Figure 6.7: Predicted Map

Blue fixed-wing UAV: ground truth state
Green fixed-wing UAV: IMU integrated state

Red fixed-wing UAV: S-UKF-LG state estimation.
White trajectory: smoothed RRT

Yellow trajectory: direct transcription trajectory currently being tracked
Green trajectory: direct transcription trajectory being optimized

Translucent White Cells: true map
Blue Cells: observed map
Red Cells: predicted map
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Figure 6.8: Frontier and Predicted Map

Blue fixed-wing UAV: ground truth state
Green fixed-wing UAV: IMU integrated state

Red fixed-wing UAV: S-UKF-LG state estimation.
White trajectory: smoothed RRT

Yellow trajectory: direct transcription trajectory currently being tracked
Green trajectory: direct transcription trajectory being optimized

Translucent White Cells: true map
Blue Cells: observed map
Red Cells: predicted map

Solid White Cells: detected frontier
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6.5 Simulation

The system is run both with the LIDAR sensor and the stereo camera

sensor. The LIDAR sensor is simulated using C++. It has a horizontal range

of π
3 radians, 100 beams, and a range of 10 meters. It is simulated at a rate of

100 Hz. The sensor is provided with an occupancy map, which it generates

measurements from using ray casting. An image of the sensor can be seen in

Figure 6.9.

It is assumed that the controller has access to the ground truth system state,

but not the ground truth map. The initial state is randomized to evaluate

robustness. Navigation performance is compared using the time horizon,

horizon point selection, and prediction methods explained above.

6.6 Results

6.6.1 Time Horizon

Directly planning on the unknown map, using the feedback motion plan-

ning framework described in the last chapter, is often unsuccessful (Figures

6.10 and 6.11. When turning the first corner of the hallway, the system’s view

of the inside wall is obscured. As a result, trajectories are planned through it.

Once the wall is revealed to the system, the optimizer is unable to generate

a viable trajectory for the system within the major iterations constraint. This

is due to the fact that the prior trajectory being used for seeding is infeasible.

Also note that the lidar and stereo camera sensors result in very similar maps.
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Figure 6.9: Lidar Sensor

Red lines: Lidar Beams
Translucent White Cells: true map

Blue Cells: observed map
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Figure 6.10: Time Horizon planning with LIDAR

Red lines: Lidar Beams
White trajectory: smoothed RRT

Yellow trajectory: direct transcription trajectory currently being tracked
Green trajectory: direct transcription trajectory being optimized

Translucent White Cells: true map
Blue Cells: observed map
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Figure 6.11: Time Horizon planning with stereo camera

Blue fixed-wing UAV: ground truth state
Green fixed-wing UAV: IMU integrated state

Red fixed-wing UAV: S-UKF-LG state estimation.
White trajectory: smoothed RRT

Yellow trajectory: direct transcription trajectory currently being tracked
Green trajectory: direct transcription trajectory being optimized

Translucent White Cells: true map
Blue Cells: observed map
Red Cells: predicted map

Solid White Cells: detected frontier
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6.6.2 Frontier Midpoint

When planning to the frontier midpoint, the system is able to successfully

reach the goal point (Figure 6.12).

6.6.3 Planning with Predicted Map

When planning based on the predicted map, the system is able to reach the

goal point more often than when planning on the current map (Figure 6.13).

6.6.4 Planning with Frontier and Predicted Map

When planning to the intersection between the frontier and the predicted

map RRT, the system is able to successfully reach the goal point (Figure 6.14).

6.6.5 Comparison

The simulation was run ten times using each strategy to compare their

effectiveness. This was done with both the LIDAR sensor and the stereo cam-

era sensor. The initial states were randomized using a uniform distribution,

U[−0.2, 0.2] for the position states and U[−0.1, 0.1] for the orientation states.

Figures 6.15 and 6.16 compare the trajectories of the system without frontier

planning (using the standard time horizon approach), with frontier midpoint

planning, and with frontier and map prediction planning.

Additionally, the simulation was run using the time horizon approach with

different prediction lengths to compare the effectiveness of map prediction

alone. In these cases, frontiers are not detected or utilized and the RRT is gen-

erated on the prediction map. Figures 6.17 and 6.18 compare the trajectories
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Figure 6.12: Frontier Midpoint with stereo camera

White trajectory: smoothed RRT
Yellow trajectory: direct transcription trajectory currently being tracked

Green trajectory: direct transcription trajectory being optimized
Translucent White Cells: true map

Blue Cells: observed map
Solid White Cells: detected frontier
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Figure 6.13: Predicted Map with stereo camera

White trajectory: smoothed RRT
Yellow trajectory: direct transcription trajectory currently being tracked

Green trajectory: direct transcription trajectory being optimized
Translucent White Cells: true map

Blue Cells: observed map
Red Cells: predicted map
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Figure 6.14: Frontier and Predicted Map with stereo camera

White trajectory: smoothed RRT
Yellow trajectory: direct transcription trajectory currently being tracked

Green trajectory: direct transcription trajectory being optimized
Translucent White Cells: true map

Blue Cells: observed map
Red Cells: predicted map

Solid White Cells: detected frontier
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of the system without prediction, with 0.05 sec of prediction, and with 0.1 sec

of prediction. A summary of success rates with different frontier selection

methods and prediction times is show in Tables 6.1 and 6.2, respectively. A

successful simulation run is defined as the system reaching within 0.5 meters

of the goal position without collision. It is clear from this data that both the

frontier method and the prediction method perform better; in simulation, the

system tended to fly into obstacles less often.

Figure 6.15: Comparison of trajectories using frontier methods using LIDAR
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Figure 6.16: Comparison of trajectories using frontier methods using stereo camera
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Figure 6.17: Comparison of trajectories using different map prediction times, and no
frontiers, using LIDAR
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Figure 6.18: Comparison of trajectories using different map prediction times, and no
frontiers, using stereo camera
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Sensor No Frontier Frontier Midpoint Frontier/Predict intersection

LIDAR 6/10 10/10 10/10
Camera 5/10 10/10 10/10

Table 6.1: Frontier methods success rates

Success rates across ten simulation runs. A successful simulation run is defined as
the system reaching within 0.5 meters of the goal position without collision.

No Frontier: direct transcription goal position is a time horizon
Frontier Midpoint: direct transcription goal position is the midpoint of a frontier

Frontier/Predict Intersection: direct transcription goal position is the intersection of
the RRT on the predicted map and a frontier on the known map

Sensor 0 sec 0.05 sec 0.10 sec

LIDAR 6/10 10/10 9/10
Camera 5/10 7/10 9/10

Table 6.2: Prediction map success rates

Success rates across ten simulation runs. For these runs, no frontiers are detected or
utilized. Direct transcription goal positions are selected according to a time horzion
along an RRT generated in a predicted map. A successful simulation run is defined

as the system reaching within 0.5 meters of the goal position without collision.
0 sec: no predicted map is used

0.05 sec: predicted map generated by simulating sensor forward by 0.05 sec
0.10 sec: predicted map generated by simulating sensor forward by 0.10 sec
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Chapter 7

Simultaneous Navigation,
Mapping, and State Estimation

The fixed-wing UAV is simulated while performing mapping and state

estimation; the system itself does not have access to the ground truth state

or map. Given the results in Chapters 5 and 6, the simulation is run using S-

UKF-LG, without the visibility cost function, and using the frontier midpoint

NMPC method. The IMU has Gaussian noise added to acceleration ( m
s2 ) and

angular velocity ( rad
s ) measurements, N (0, diag(1,1,1)) and N (0, diag(0.1, 0.1,

0.1)) respectively. The acceleration and angular velocity measurements also

have added biases, [0.1, 0.1, 0.1] and [0.01, 0.01, 0.01] respectively. The camera

is simulated at 30Hz.

The simulation is run ten times from the same initial state. Figure 7.1

displays an example run, and Figure 7.2 displays the trajectories associated

with an example run. Figure 7.3 displays the error associated S-UKF-LG state

estimation and with naive IMU integration. Figure 7.4 displays the trajectories

of the ten simulation runs. In nine out of ten runs, the fixed-wing UAV was

able to reach within 0.5 meters of the goal position. In one cases, the system
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reached within one meter of the goal position, but collided with the wall at

the very end of its trajectory.

Figure 7.1: Trajectory of simulated fixed-wing while performing mapping and state
estimation. Blue fixed-wing is ground truth state red fixed-wing is UKF S_MSCKF
state estimation Blue map is built from camera
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Figure 7.2: Visualization of example trajectory

Figure 7.3: Errors associated with example trajectory
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Figure 7.4: Trajectories of simulated fixed-wing while performing mapping and state
estimation.
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Chapter 8

Discussion and Conclusion

This essay investigate the use of stereo vision to aid in autonomous navi-

gation of aerobatic fixed-wing UAVs. To improve state estimation, a visibility

metric was integrated into a direct NMPC method and was evaluated in simu-

lation. While results were not particularly promising, this the first instance

of perception aware direct NMPC for fixed-wing UAVs that we are aware of.

Perception aware trajectory generation is especially helpful in environments

that contain few observable features. The simulation environment used in this

essay was rich with features, which may indicate why no significant improve-

ment was observed while using the visibility metric. Future experiments will

expand upon this research using new simulation environment with varying

levels of observable features.

Performing direct NMPC using a time horizon while in an unknown

environment was found to be ineffective. Due to time constraints on the

optimizer, the system was often unable to re-plan trajectories effectively when

new obstacles were observed. Replacing the time-horizon with a frontier-

based horizon resolved this issue. Furthermore, the use of map predictions for
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planning was investigate. It was found that if the system could have access to

an accurate prediction of the future map, even as little as a prediction of 0.1

seconds ahead, obstacle avoidance behavior was much improved. Through

the use of the S-UKF-LG state estimator and the frontier-based NMPC, the

fixed-wing UAV was able to navigate to the goal aread with a high rate of

success, even while planning with an unknown state on an unknown map.

All simulations in this essay were run in real time. Future work will

include running these experiments on board hardware. This transition will

introduce new challenges, such as motion blur in camera images and external

disturbances to the dynamics, such as wind. However, this will also be an

opportunity to explore other vision sensors, such as RGB-D cameras and

tracking cameras. These cameras are often capable of performing on-board

processing, such as the Intel Realsense cameras (Intel RealSense Technology),

that may help with the computation load.
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KEY COURSEWORK & COURSE PROJECTS     

Master’s Research: Real Time Trajectory Optimization for Vision Based Navigation with Aerobatic Fixed Wing 
Vehicles                                                                                                                                                                                                     Fall 2019- Spring 2020

 Integrated and evaluated visibility metric with direct NMPC of a fixed-wing UAV

 Formulated and evaluated novel frontier-based NMPC method for improved obstacle avoidance

 Simulated state-estimation, mapping, and planning in parallel for fixed-wing UAV to demonstrate real-time 

performance 

Robot System Programming: AR Tag Tracking and Searching                                                                                        Spring 2020

 Implemented ROS packages enabling Turtlebot WafflePi to track and search for AR tags

 Integrated Gazebo for realistic simulation

 Integrated existing ROS packages to perform SLAM and frontier exploration

Applied Optimal Control: Perception Aware Trajectory Generation                                                                                Fall 2019

 Implemented perception aware optimal trajectory generation for stochastic dynamical system

 Formulated visibility and covariance based cost functions for use in direct transcription

 Utilized time varying linear quadratic regulator (TVLQR) for feedback control

Robot Devices, Kinematics, Dynamics, and Control: Place & Mark with Intention                                          Spring 2019

 Wrote code to teach starting and target position to UR5 robot arm

 Programmed several control schemes to plan a trajectory for the UR5 to follow

Mechatronics: Hockey Playing Robots                                                                                                        Spring 2019

 Created a goalie robot and forward robot capable of playing hockey

 Designed custom chassis for robots in Solidworks

 PIXY camera, microphones, and IMUs as sensors for puck detection and orientation updating

Computer Integrated Surgery: Tool Gravity Compensation on Galen Microsurgical Robot               Spring 2019

 Force sensor used by robot was unable to distinguish applied forces and gravitational forces/torques on tool

 Used robot kinematics and least squares method to estimate center of mass and weight of tools

 Compensated force sensor readings online using center of mass, weight, and kinematics

Algorithms for Sensor-Based Robotics: UR5 Obstacle Avoidance                                                                       Spring 2018

 Implemented sampling-based planner to plan a path for a UR5 arm to move through a car door window

 Used Gaussian Sampling Probabilistic Road Map to avoid collision with obstacles 

 Programmed in C++, utilized ROS and MoveIt!

Robot Sensors/Actuators: Smart Steering Wheel                                                                                                      Fall 2018

 Created smart steering wheel capable or alerting drunk or sleepy drivers

 Arduino Uno for computation and control

 BAC calculated with MQ-3 ethanol sensor, sleepiness calculated from angle corrections measured via IMU
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