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Abstract

This dissertation focuses on data-analytic approaches that improve our under-

standing of power system applications to promote better decision-making. It tackles

issues of risk analysis, uncertainty management, resource estimation, and the impacts

of climate change. Tools of data mining and statistical modeling are used to bring

new insight to a variety of complex problems facing todays power system. The over-

arching goal of this research is to improve the understanding of the power system risk

environment for improved operation, investment, and planning decisions.

The first chapter introduces some challenges faced in planning for a sustainable

power system. Chapter 2 analyzes the driving factors behind the disparity in wind

energy investments among states with a goal of determining the impact that state-

level policies have on incentivizing wind energy. Findings show that policy differences

do not explain the disparities; physical and geographical factors are more important.

Chapter 3 extends conventional wind forecasting to a risk-based focus of predict-

ing maximum wind speeds, which are dangerous for offshore operations. Statistical

models are presented that issue probabilistic predictions for the highest wind speed
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expected in a three-hour interval. These models achieve a high degree of accuracy

and their use can improve safety and reliability in practice. Chapter 4 examines

the challenges of wind power estimation for onshore wind farms. Several methods

for wind power resource assessment are compared, and the weaknesses of the Jensen

model are demonstrated. For two onshore farms, statistical models outperform other

methods, even when very little information is known about the wind farm.

Lastly, chapter 5 focuses on the power system more broadly in the context of the

risks expected from tropical cyclones in a changing climate. Risks to U.S. power sys-

tem infrastructure are simulated under different scenarios of tropical cyclone behavior

that may result from climate change. The scenario-based approach allows me to ad-

dress the deep uncertainty present by quantifying the range of impacts, identifying

the most critical parameters, and assessing the sensitivity of local areas to a changing

risk.

Overall, this body of work quantifies the uncertainties present in several opera-

tional and planning decisions for power system applications.

Readers:

Dr. Seth D. Guikema

Dr. Benjamin F. Hobbs

Dr. Charles Meneveau

iii



Acknowledgments

The Ph.D. process is a true test of willpower, motivation, and confidence. It is an

obstacle that cannot be tackled alone, and I owe the completion of this dissertation

to the support of my advisor, mentors, family, and friends along the way. My advisor,

Seth Guikema, has been unwavering in his enthusiastic encouragement of me and my

work. Seth allowed me to pursue my research interests with his full support and

was always ready to embrace a new project idea. His confidence in me was present

when I lacked it myself, and for this I am especially grateful. Thanks also to Ben

Hobbs whose curiosity and love of research are contagious. He has offered invaluable

insight on my work, and conversations with him, on topics ranging from wind energy

to travel destinations, are always educational.

Chapter 3 was a collaboration with Pierre Pinson at the Technical University

of Denmark. I learned so much from Pierre during my time at DTU, and he has

continued to serve as a valuable mentor. I am incredibly grateful that he agreed to

host me as a visiting student on two separate occasions. My time spent in Copenhagen

is a highlight of the PhD journey. Chapter 4 came about thanks to the assistance

iv



ACKNOWLEDGMENTS

and advice of Claire VerHulst and Charles Meneveau, and I am especially thankful

to Claire for providing the Jensen code and for helping me double check some of the

early analysis.

My time at Hopkins was made infinitely better due to the fantastic students and

postdocs that I had the pleasure of working with in DoGEE. Roshi, Sarah, Stefanie,

Allison, and Laura taught me everything I needed to know about grad school and were

the best lab mates, office mates, and friends that I could ask for. I am also thankful

to the wonderful teammates and tribemates of Chesapeake Rugby and November

Project for providing a great community in Baltimore and for helping to maintain

my sanity through late night practices and early morning workouts.

It goes without saying that I could not have done this without my family. My

parents have always been incredibly supportive of me, and their encouragement and

understanding has kept me going through the good times and the bad. My sister

Sarah has been my ultimate supporter and best friend, and I will always be incredibly

grateful to her for everything that she has done and continues to do for me. While

not quite family, I must also mention my dog Jasper. Getting a needy, energetic pup

was not the smartest idea, but I am nonetheless grateful to him for managing to both

drive me crazy and keep me sane over the past few years.

This work was funded by the Croft Fellowship, the Lee and Albert H. Halff Doc-

toral Student Award, the ARCS Foundation, and NSF PIRE Grant OISE 1243482.

v



Contents

Abstract ii

Acknowledgments iv

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Tools and Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Wind Capacity Investment and U.S. State Policy . . . . . . . . . . . 14

1.4 Wind Forecasting and Risks in Offshore Environments . . . . . . . . 15

1.5 Assessing Wind Farm Power Production . . . . . . . . . . . . . . . . 17

1.6 Climate Change, Hurricanes, and the Impacts on Power Systems . . . 18

1.7 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

vi



CONTENTS

2 Statistical Analysis of Installed Wind Capacity in the U.S. 22

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.1 Variable Importance . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Probabilistic Maximum-Value Wind Prediction for Offshore Envi-

ronments 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Background and Existing Literature . . . . . . . . . . . . . . . 49

3.1.2 Chapter Objectives and Structure . . . . . . . . . . . . . . . . 53

3.2 Probabilistic Forecast Methodology . . . . . . . . . . . . . . . . . . . 54

3.2.1 Model Development . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.2 Probabilistic Forecasts . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Data and Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Measured Data . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.2 Input Weather Forecast Data . . . . . . . . . . . . . . . . . . 62

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vii



CONTENTS

3.4.1 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.2 Prediction Performance . . . . . . . . . . . . . . . . . . . . . . 73

3.4.3 Variable Importance . . . . . . . . . . . . . . . . . . . . . . . 77

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Assessing Power Output in Non-Uniform Onshore Wind Farms 83

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.1 Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Implementing the Jensen Model . . . . . . . . . . . . . . . . . . . . . 98

4.3.1 Relevance of Wake Models . . . . . . . . . . . . . . . . . . . . 107

4.3.2 Choice of Wake Decay and Thrust Coefficients . . . . . . . . . 109

4.4 Alternative Methods for Power Prediction . . . . . . . . . . . . . . . 115

4.4.1 Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4.2 NREL Wind Integration National Dataset . . . . . . . . . . . 118

4.4.3 Aggregated Power Curves . . . . . . . . . . . . . . . . . . . . 120

4.5 Prediction Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5 Simulation of Tropical Cyclone Impacts to the U.S. Power System

Under Climate Change 129

viii



CONTENTS

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2 Climate Change and Tropical Cyclone Activity . . . . . . . . . . . . . 133

5.3 Simulation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.4.1 Baseline Impact . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.4.2 Potential Climate Impacts . . . . . . . . . . . . . . . . . . . . 141

5.4.3 Metropolitan Area Impacts . . . . . . . . . . . . . . . . . . . 146

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6 Conclusion 150

6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2 Final Remarks and Research Limitations . . . . . . . . . . . . . . . . 153

6.2.1 Statistical Analysis of Installed Wind Capacity in the United

States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.2.2 Probabilistic Maximum-ValueWind Prediction for Offshore En-

vironments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.2.3 Assessing Power Output in Non-Uniform Onshore Wind Farms 157

6.2.4 Simulation of Tropical Cyclone Impacts to the US Power Sys-

tem under Climate Change . . . . . . . . . . . . . . . . . . . . 159

A Chapter 2 Supporting Material 162

B Chapter 3 Supporting Material 165

ix



CONTENTS

C Chapter 4 Supporting Material 167

D Chapter 5 Supporting Material 170

D.1 Detailed Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

D.2 Overall Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

D.3 Sensitivity to Changes . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Bibliography 187

Vita 211

x



List of Tables

2.1 Characteristics of the variables used in the wind capacity analysis . . 32
2.2 Holdout analysis results . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3 Corrected t-test values . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Summary statistics for the statistical model input data . . . . . . . . 117
4.2 Normalized Farm 1 power prediction errors . . . . . . . . . . . . . . . 124
4.3 Normalized Farm 2 power prediction errors . . . . . . . . . . . . . . . 124

A.1 Dataset used for statistical analysis in Chapter 2 . . . . . . . . . . . . 163

B.1 Summary of ECMWF forecast data . . . . . . . . . . . . . . . . . . . 166
B.2 Summary of FINO1 actual measured data . . . . . . . . . . . . . . . 166

xi



List of Figures

2.1 Installed wind power capacity in the United States, 1999-2010. . . . . 24
2.2 Random Forest predicted values vs. actual wind capacity . . . . . . . 39
2.3 Variable importance plot for Random Forest model . . . . . . . . . . 40
2.4 Partial dependence of selected variables in Random Forest model . . 43

3.1 Maximum wind speed prediction errors . . . . . . . . . . . . . . . . . 69
3.2 CRPS across all lead times . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3 Probabilistic GAM predictions for the five-day period . . . . . . . . . 74
3.4 Probabilistic GAM predictions for the five-day period containing high-

est max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.5 Reliability diagrams of GAM predictions . . . . . . . . . . . . . . . . 77
3.6 Variable importance . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1 Turbine layout and meteorological tower locations for Farm 1. . . . . 93
4.2 Turbine layout and meteorological tower locations for Farm 2. . . . . 94
4.3 Turbine power vs nacelle wind speed . . . . . . . . . . . . . . . . . . 97
4.4 Relative power of turbines 2 and 1 . . . . . . . . . . . . . . . . . . . 99
4.5 Relative power of turbines 140 and 139 . . . . . . . . . . . . . . . . . 100
4.6 Wind deficit delta for Farm 1 . . . . . . . . . . . . . . . . . . . . . . 104
4.7 Wind deficit delta for Farm 2 . . . . . . . . . . . . . . . . . . . . . . 105
4.8 Wind velocity along line of turbines . . . . . . . . . . . . . . . . . . . 107
4.9 Minimum upstream turbine spacing for Farm 1 . . . . . . . . . . . . 109
4.10 Minimum upstream turbine spacing for Farm 2 . . . . . . . . . . . . 110
4.11 Errors for varying k and CT for Farm 1 . . . . . . . . . . . . . . . . . 112
4.12 Errors for varying k and CT for Farm 2 . . . . . . . . . . . . . . . . . 113

5.1 Baseline impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.2 Changes in 100-year wind speeds for varying storm intensity away from

baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

xii



LIST OF FIGURES

5.3 Changes in 100-year fraction of customers without power for varying
storm intensity away from baseline. . . . . . . . . . . . . . . . . . . . 142

5.4 Changes in the probability of at least 10% of customers without power
for varying storm frequencies. . . . . . . . . . . . . . . . . . . . . . . 144

5.5 Changes in the probability of at least 10% of customers without power
for varying landfall distributions. . . . . . . . . . . . . . . . . . . . . 145

5.6 Mean return periods for fraction of customers without power . . . . . 147

C.1 MAE for Farm 1 showing each method’s accuracy overall and as a
function of wind speed . . . . . . . . . . . . . . . . . . . . . . . . . . 168

C.2 MAE for Farm 2 showing each method’s accuracy overall and as a
function of wind speed . . . . . . . . . . . . . . . . . . . . . . . . . . 168

C.3 RMSE for Farm 1 showing each method’s accuracy overall and as a
function of wind speed . . . . . . . . . . . . . . . . . . . . . . . . . . 169

C.4 RMSE for Farm 2 showing each method’s accuracy overall and as a
function of wind speed . . . . . . . . . . . . . . . . . . . . . . . . . . 169

D.1 Landfall scenario distributions . . . . . . . . . . . . . . . . . . . . . . 171
D.2 Mapped landfall scenarios . . . . . . . . . . . . . . . . . . . . . . . . 172
D.3 Annual probability of at least 10% of customers without power for

metropolitan areas for scenarios of varying storm frequency . . . . . . 175
D.4 The 100-year wind speed plotted for metropolitan areas for scenarios

of varying storm intensity . . . . . . . . . . . . . . . . . . . . . . . . 176
D.5 The 100-year fractions of customers without power for metropolitan

areas for scenarios of varying storm intensity . . . . . . . . . . . . . . 177
D.6 Empirical CDF and inset density plot for the 100-year wind speed for

changes in storm intensity . . . . . . . . . . . . . . . . . . . . . . . . 179
D.7 Empirical CDF and inset density plot for the 100-year wind speed for

changes in storm frequency . . . . . . . . . . . . . . . . . . . . . . . . 179
D.8 Empirical CDF and inset density plot for the 100-year wind speed for

changes in storm landfall location . . . . . . . . . . . . . . . . . . . . 180
D.9 Empirical CDF and inset density plot for the 100-year fraction of cus-

tomers without power for changes in storm intensity . . . . . . . . . . 180
D.10 Empirical CDF and inset density plot for the 100-year fraction of cus-

tomers without power for changes in storm frequency . . . . . . . . . 181
D.11 Empirical CDF and inset density plot for the 100-year fraction of cus-

tomers without power for changes in storm landfall location . . . . . 181
D.12 Top 15 metropolitan areas ranked by sensitivity to changes in storm

intensity and frequency . . . . . . . . . . . . . . . . . . . . . . . . . . 185
D.13 Top 15 metropolitan areas ranked by sensitivity to changes in storm

landfall location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

xiii



Chapter 1

Introduction

The purpose of the electric power system is to provide energy to customers when

needed. At first glance, it seems like a simple task. In reality, there is a growing set

of secondary goals that complicate the basic operations of a power system. Not only

must the system provide power, this power must be reliable, it should be increasingly

clean so as to minimize negative externalities, and it should be profitable for producers

to provide. Meeting these secondary goals efficiently is challenging, and there is a

large body of research focused on improving the methods used to meet these goals.

Approximately six billion people have access to electricity around the world, and

finding better solutions to meet any one of these goals is advantageous to all those

invested in, and dependent on, the electric power system.1 The research presented

here tackles a small subset of the challenges that we are faced with in working towards

a clean, reliable, and sustainable energy system.
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CHAPTER 1. INTRODUCTION

1.1 Background

The electric power system is central to modern life in the developed world. We

are dependent on it for our safety, productivity, financial security, comfort, and enter-

tainment. It is also one of the most complex systems in operation today; it balances

electricity generators, consumer demands, and transmission constraints, all in real-

time. Broadly speaking, the power system seeks to minimize costs by planning ahead

efficiently. This happens both on the local and regional scale and for short, medium,

and long time horizons. Aside from cost, there are other considerations that are be-

coming increasingly important. Maintaining a high degree of reliability is essential,

as many of our other critical infrastructure systems rely on electric power to operate,

and failures in electric power can quickly cascade into other systems because of their

high degree of dependence, and often times even interdependence.2 Power losses or

interruptions can result in billions of dollars worth of losses across sectors.3 There-

fore, it is important to evaluate and mitigate any risks to the power system that could

result in inefficient operation, damage to the system, or a loss of power to consumers.

Efficient and reliable operations are the primary goal of the power system, but it

is also important to consider the impact that this infrastructure has on other sectors.

The adverse environmental impact of our electricity generation is an increasingly im-

portant consideration. Historically, we have relied heavily on fossil fuel-based sources

for electricity generation, and these fuel sources produce large amounts of harmful

pollutants when burned. There are significant detrimental health impacts from these

2



CHAPTER 1. INTRODUCTION

pollutants in the short term, but there are also concerning long term effects that

have only started to make their presence known.4 Most notably, carbon dioxide is a

byproduct of combustion and it is the main contributor to climate change on a global

scale.5 The effects of climate change will be widespread. Water resources, agriculture,

coastal infrastructure, and human health will all face increased risk.6 As a result, we

now have stronger motivation than ever to pursue cleaner energy sources. We need to

transition our electric power system towards generation sources that do not produce

harmful emissions, both for short-term local health impacts and for long-term goals

of climate change mitigation to lesson the forthcoming impacts.

Wind energy is one of the most promising sources of clean, renewable energy

around the world. The estimated wind energy resource potential is more than 40

times greater than the world’s current electricity demand.7 Currently, only a small

portion of this resource is being utilized, as we still rely heavily on fossil-fuel based

sources of electricity generation. Globally, wind energy made up only 0.4% of our

energy supply in 2013. However, it is one of the fastest growing sources with an

average annual growth rate of 24.8%.8 In 2014, the United States generated 4.4% of

its electricity from wind energy. While still a small percentage, it was also the largest

source of new generation installed that year.9 The advantages of wind energy are

significant. It is clean, renewable, and has no operational fuel costs. In addition, the

resource is available locally (i.e., it does not have to be imported to generate power),

and this fact turned out to be one of the main drivers of modern research into wind

3
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energy development. The U.S. invested heavily in wind energy following the 1973

oil crisis in an attempt to focus on domestic resources.10 Wind turbines themselves

have a relatively small footprint, and most of the land area of a wind farm remains

usable for other purposes. This makes wind energy a particularly good partner for

agricultural regions.11 It is also highly scalable; turbines come in a wide range of

capacities and wind farms can be built with any number of turbines. It is for these

reasons that many countries have been quickly expanding their wind capacity and

have implemented policies to promote wind energy development.12,13

Despite the advantages, wind energy also bring about significant challenges when

integrating it into the larger power system. Wind is inherently intermittent and

cannot simply be turned on or off when energy is needed. There have been continual

advancements in the area of wind forecasting, but a perfect forecast is still impossible

and some level of uncertainty in the variability of the wind will always remain. Wind

farms can, in theory, be constructed in almost any location, but it is important to

seek out areas with strong wind resources so that the resulting farm can generate

enough electricity to remain profitable. As the technology has advanced, wind energy

has become more and more cost-competitive with conventional generation. In 2014,

average wind energy prices across the United States fell below the range for the

nationwide wholesale price.14 Whether or not a project is cost-competitive, however,

depends on the strength of the wind resources present, and it is therefore critical to

assess this accurately before investing in new wind development. The costs of poor

4
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resource assessment can be substantial. Large-scale wind development often requires

significant investments in transmission capacity, as wind farms are typically located

far from population centers where the electricity demands are high.15 Poor planning

can result in large inefficiencies if the wind farms do not produce at the expected

levels or if the transmission lines are not sized properly.

Wind energy development can also be a contentious issue among local commu-

nities. The question of where a farm is built is dependent on more than just the

strength of the wind resources. Public support at the local level can play a large role

in the success or failure of a project, even if the benefits to society as a whole are

substantial.16–18 It is therefore important to understand the policies in place for in-

centivizing wind and to study the methods that have been successful previously.19–21

Better policy design can lead to increased integration of wind energy.

Consideration of long-term climate impacts is also essential when planning for

future power system investments and operation, as new investments will face a very

different environment than what we know now. Many aspects of our power system

will have to change in order to successfully adapt to a future with substantial climate

change. The infrastructure involved will face new risks and new demands.22 For

example, increased summer temperatures could push peak demands over our current

capacity limits, and changing weather patterns could bring more extreme storms to

at-risk regions. We have already started to see changes, and infrastructure decisions

made now will certainly have to account for this changing, but highly uncertain future.
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Planning challenges today involve attempts to anticipate what this future will look

like so that the decisions made today, in terms of investments, technology choice, and

operating environments, will still stand up to the challenges of tomorrow.

Addressing these planning concerns is challenging for several reasons. There is a

large amount of uncertainty present, and it exists at multiple scales, both spatially

and temporally. Many clean and renewable energy sources (such as solar and wind

power) are inherently uncertain, and they provide great examples of both spatial and

temporal uncertainties. For example, one cannot say for certain where or when the

wind will blow at a specific speed. These variable and intermittent resources need

to be carefully understood before being incorporated into the power system so that

the necessary measures can be used to manage the variability. If properly planned

for, renewable sources of energy can play a large role in reducing the emissions of

a region’s electricity generation, as renewables have zero marginal cost and tend to

displace dirtier forms of generation.23 However, they often need a flexible mix of

other generation units, intelligent operation strategies, or large amounts of storage to

compensate for the variability. Planning for renewables must take into account both

short- and long-term variability in the renewable resource (i.e., the wind forecast

for tomorrow and the annual capacity factor) and the regional variability (i.e., sites

with strong wind resources, correlation in wind production within a balancing area, or

solar production among multiple states.) If we can better understand and characterize

these inherent uncertainties, renewable generation can be incorporated into the power

6
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system more economically and in greater proportions of overall generation.

For conventional generation, there is still a large degree of uncertainty regard-

ing the climate impacts of greenhouse gas emissions. This is even more difficult to

characterize, as the eventual outcome in terms of climate change is dependent upon

our actions and decisions made around the entire globe today. The realization of

any change is dependent on many factors that themselves are unknown or highly

uncertain.5 The degree of global warming, for example, depends on the rate at which

we continue to emit carbon dioxide, and this is closely linked to policy implementa-

tion, which adds yet another layer of uncertainty. If we act quickly to sharply curb

our global emissions, the worst of the impacts may yet be avoided. On the other

hand, our continued reliance on fossil fuels will speed up the warming process and the

catastrophic impacts will be felt sooner rather than later. Aside from the temporal

uncertainty (i.e., when the impacts will occur), there are also spatial and physical

uncertainties that are equally important. Some regions of the world will be more

heavily impacted than others, and certain areas may even stand to benefit economi-

cally from climate change.24 The mechanisms of climate impacts are also subject to

uncertainty, and this is a critical area of research. Without knowing how a warming

climate will impact weather patterns, for example, it is nearly impossible to plan

for the risks of extreme weather in an uncertain future. Both electricity generation

and consumption depend on weather patterns to some extent (i.e., wind and solar

depend directly on weather systems, cooling capacity of thermal generators depends

7
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on the ambient temperature, and electricity demand will also change with temper-

ature.) Planning for a future in which these systems behave differently will require

projections of these changes to the best of our abilities. Research into these potential

changes needs to take place sooner rather than later, as many vulnerable systems

cannot afford to wait. In the United States, for example, many of our infrastructure

systems are long-lived projects. They are designed with 50+ year lifetimes, so invest-

ments made today will still be in operation in what could be a very different climate.

Adapting to climate change requires investing in such long-lived infrastructure sys-

tems to operate effectively and meet the needs of both current and future customer

demands. Decisions need to be made now based on the knowledge that we do have,

including an understanding of the deep uncertainties present.

Fortunately, we are quickly improving our knowledge and understanding of these

complex issues as well as the tools available to deal with planning and decision-making

under uncertain conditions. The growing amount of available data and the increasing

computational power of today’s machines are allowing for new types of analyses to

be performed. This dissertation makes use of some of this available data and uses

it in new ways to bring insight to the challenges facing power system risk analysis,

planning, and decision-making. I focus heavily on wind energy as a clean, renewable

source of electricity generation and provide improved understanding of how best to

take advantage of the benefits of wind despite the inherent uncertainty. The work

presented here is motivated by climate change at its most basic level, both from a
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mitigation standpoint with a focus on cleaner energy sources and from an adaptation

standpoint by assessing future climate hazards and the resulting impacts. I address

a subset of the challenges mentioned previously, and this body of work contributes

to solving the challenges facing wind energy development, presents new methods

for reducing the operational risks present in offshore wind farms, provides a critical

analysis of methods used to estimate wind farm power production, and quantifies the

uncertain risks expected in future hurricane seasons.

1.2 Tools and Techniques

The growing availability of data is allowing for innovative analyses to be carried

out on existing problems. In addition, computational resources are better able to

handle large amounts of data in meaningful ways. Throughout this dissertation, I

make use of statistical modeling techniques to learn from the available data in an

attempt to capture the relationships among variables that can then be employed in

a predictive capacity to provide greater insight into an unknown future.

The tools of statistical learning represent a wide-ranging suite of methods for un-

derstanding the relationships in data.25 At a high level, these techniques can be split

into two categories: supervised and unsupervised learning. In the supervised case,

there is a target response variable that one seeks to estimate or predict. The rela-

tionships between and among the response variable and other variables, or covariates,
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are used to generate these predictions. In the unsupervised learning case, there is no

response variable. Instead, the learning seeks to elucidate the relationships among

the different variables in order to better understand any structure that may exist in

the data.26 The methods used throughout this dissertation are all examples of super-

vised learning. In each application, there is one particular variable of interest that

is crucial to the problem at hand. I use the available data to find a function that

maps the input, or covariates, to the output, or response variable. Various types of

statistical models show up in the following chapters. In general, these models come

from one of two families: parametric or nonparametric. Parametric models assign a

specific function to the relationship between the covariates and response variable.26

This functional form is chosen upfront, before feeding any data into the model. The

modeling process then determines the parameters (hence the name parametric model)

that best fit the available data. This process seeks to minimize the errors present in

the fitted (or modeled) data. Nonparametric models do not require any assumption

about the function relating the inputs to the output. The steps to fit such a model

differ depending on the specific model type, but in general, they seek a function that

comes closest to capturing the true data points as possible, subject to a possible

smoothing function to avoid overfitting.27

There are tradeoffs between model types, and the choice of best model can depend

on many factors, both intrinsic to the dataset itself and external considerations due

to the nature of the problem, application, or end-user. Parametric models are often
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easier to interpret and do not require as many data points to provide a good fit. One

downside, however, is that they require an assumption about the form of the model at

the outset. If this assumption proves to be incorrect, the model will perform poorly.

Nonparametric models do not require these assumptions, and they are good candi-

dates for datasets about which little is known regarding the form of the relationships

in the data. However, without a functional form to rely on, nonparametric models

typically need a larger amount of data to produce an accurate model.26 I use both

parametric and nonparametric models in the following chapters, and in each instance,

the final model choice was determined based on the specifics of the data and appli-

cation. The models used throughout this dissertation are described in detail in the

relevant chapters, and references are provided for an even deeper understanding of

the specific algorithms used.

When using statistical models in practice, there is a very important distinction

between fit and prediction. The fit of a model is measured by how well it can capture

the relationships in the training data; that is, given a specific number of data points,

how well does the model recreate the response values that it has already seen? Pre-

diction, on the other hand, refers to a model’s performance on a new, independent set

of data points (often referred to as test data). This data has not been used to build

(or train) the model, so by feeding it into a given model, one can create a true test of

the model’s ability to accurately capture the relationships among the variables and

not just artifacts of the specific data used in training. The challenge of achieving both
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a strong fit and high predictive accuracy is captured in the bias-variance tradeoff. A

model with high variance would give very different results if it were instead trained

using a different set of data. Bias, on the other hand, measures a model’s ability to

capture the true problem well on average with something much simpler.26 Both bias

and variance are related to a model’s flexibility. Models with high flexibility tend to

overfit the available data. By trying to best capture each data point, we are left with

high variance but very low bias. A less flexible model will not capture every data

point, and this will result in low variance but much higher bias. By carefully selecting

a model so as not to overfit the data (i.e., by finding the correct level of flexibility),

both variance and bias can be controlled to produce high predictive accuracy in a

test setting. This is the goal of any predictive modeling exercise. Predictive accuracy

is often measured using mean squared error or root-mean squared error (other error

metrics may be better suited depending on the dataset), and these metrics can then

be used to compare different models and determine the best-performing ones.

Each chapter of this dissertation focuses on model prediction as a measure of

performance. I am interested in understanding how the models will perform in a

real-world setting, where the user is more interested in knowing what will happen

tomorrow than what happened yesterday. It is therefore important to test each

model using independent data so that the findings are not limited to the existing

information that I have access to currently. A model with strong predictive accuracy

can be used with confidence with new data going forward.
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Cross validation is a powerful tool for evaluating models in a predictive capacity.

At its simplest, it splits up a dataset into multiple parts so that a model can be

evaluated for predictive accuracy independent of the training data.27 Some portion

of the data is held out of the training set and is then used for prediction as a test

set. The holdout data is typically chosen randomly, and this process can be repeated

a number of times to also assess the standard error (or amount of variation) of the

test error. This is useful for model comparison to ensure that a particular model is

robust across all holdouts and did not just outperform the others because of some

discrepancy in the individual data chosen. If data is limited, various forms of cross-

validation can be employed. Leave-one-out cross-validation allows for the largest

training set possible while still maintaining an individual test set. In this approach, a

model is trained on all but one observed data point and then used to predict for the

single observation that was held out.26 This is repeated until each data point has been

held out for prediction exactly once. An extension of this is k -fold cross-validation.

It follows the pattern of the leave-one-out method except that the data is divided

into k partitions and each one is then held out in turn as the test set. These holdout

methods allow for a model to be tested across multiple datasets, all while using the

single dataset available.27
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1.3 Wind Capacity Investment and U.S.

State Policy

Wind energy has been a fast-growing source of generation in the United States over

the past decade. On the state level, there are large disparities in the amount of capac-

ity being built. There are also large disparities among the state policies designed to

incentivize renewable energy development. The renewable portfolio standards (RPS),

for example, are common mechanisms for states to reach renewable generation tar-

gets. State RPS’s range from nonexistent targets in some states to 100% renewable

generation in others. These policies may be contributing to the growth of wind en-

ergy in the states with large amounts of installed capacity, but there are other factors

at work as well. Strong wind resources are sought after for wind development, and

this also varies significantly by state. If these or other factors are the biggest drivers

of wind investment currently, knowledge of what works in wind development can be

used for improving policy development. If current policies are not driving wind in-

vestment, and if they were indeed designed to do so, they should be redesigned to

account for what has been found to work well in other areas.

Data mining methods can be used to understand the driving factors behind wind

energy investments, but there have been few attempts at doing so up until now. Much

of the existing research into the differences in regional investment or the different

success rates of renewable energy has been qualitative in nature. For example, see
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Breukers and Wolsink.28 The few attempts at quantitative modeling made use of a

limited dataset or a region outside the United States.20,29–31 In Chapter 2 I apply data

mining techniques to a wide range of variables that could potentially influence wind

energy investments in a state. This is an exploratory analysis to try to eek out the

important relationships and understand which factors have strong predictive accuracy

when it comes to determining whether or not a state is likely to have invested heavily

in wind. The central issue is determining the extent to which state-based policies are

strong predictors for wind capacity, and, if not, whether there are other factors that

are proving to be more important.

1.4 Wind Forecasting and Risks in Off-

shore Environments

Wind farms face greater challenges in offshore environments than they do onshore.

Weather is more extreme, maintenance is more expensive, and access can be limited.

This is also true for other operations taking place offshore, such as oil platforms and

shipping. Many of these offshore operations are dangerous to conduct during periods

of very high winds. Predicting these high winds has many advantages. Wind turbine

operations can be planned to avoid operating in potentially dangerous conditions,

maintenance or construction can be delayed so as to avoid dangerously high winds,

and workers can be kept out of severe danger. To date, there is a large and continually
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growing body of research focused on wind prediction.32 For the most part, however,

this research focuses on the mean value of a wind speed within a given time interval.

This quantity is of critical importance for many power system planning and operation

decisions, such as day-ahead bidding of a wind farm in an electricity market.

Mean-value wind predictions leave out a lot of information about the variability

of the wind within a given time period. Different aspects of the variability matter in

different contexts, but from a risk standpoint, the maximum wind speeds are the most

critical for maintaining safe and reliable operations. Several studies have identified

the importance of high-wind forecasting for purposes of informing decisions regarding

grid operation and system safety.33,34 With high-wind forecasts, a wind farm can be

operated in such a way to minimize the transients during time periods with expected

forays into wind speeds above the turbine threshold, for example. This is likely

to extend a turbine’s operating life. In Chapter 3 I focus on forecasting maximum

wind speeds in offshore environments for short- and medium-range applications. I

use statistical modeling techniques to predict both the expected value of maximum

wind and the uncertainty associated with that prediction. By offering probabilistic

forecasts, the user is able to better understand the situation at hand and makes better

decisions by incorporating this additional knowledge of the uncertainty.
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1.5 Assessing Wind Farm Power Produc-

tion

Accurate estimates of wind farm production are needed in many contexts. For

short time scales, this information is needed for power system operation. Knowledge

of future wind production is used to determine how much a wind farm operator

should bid in to the market or which power plants need to be turned on to meet

demand. For longer time scales, wind production estimates drive planning decisions

regarding if a farm should be built, where it should be built, and how it will be

financed. In addition, transmission expansion decisions are often heavily dependent

on future investments in new generation, and wind energy is quickly becoming one of

the driving factors behind new transmission planning.35 Many of these longer-scale

planning decisions rely on coarse estimates of potential wind power production. If the

eventual reality differs strongly from the initial estimates, inefficiencies and economic

losses often result.

Turbine wake effects are a strong determinant of a farm’s power production. With

given input wind conditions, wake losses typically cause downstream turbines to pro-

duce significantly less power than upstream turbines. These losses have been modeled

extensively and are well understood under certain conditions.36–41 Most notably, val-

idation of different model types has favored offshore farms. Models that capture the

dynamics of offshore wind conditions do not necessarily perform equally as well for
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onshore wind farms. In Chapter 4 I analyze the capabilities of several different meth-

ods for estimating wind farm power production in onshore farms. I compare a simple

wake decay model with a number of statistical models, with using no model at all,

and with the estimates produced using meteorological downscaling techniques. I show

that the complexities of some onshore farms result in wind conditions that are not

accurately modeled by simple wake decay techniques and that alternatives methods

have some strong advantages in practice.

1.6 Climate Change, Hurricanes, and the

Impacts on Power Systems

Climate change is progressing quickly and impacts are unavoidable. We are now

faced with challenges of adaptation in addition to the issues of mitigation that we

have been dealing with for decades. A changing climate will impact many different

sectors, and the impacts will be felt differently across the globe. One particular

concern is the changing nature of extreme weather events. The damages from these

extreme events has been steadily rising over the past few decades, and the potential

impacts will only grow as economies also grow, placing more and more of our valuable

assets at risk. The power system is especially vulnerable, and any negative impacts

in this sector have the potential to cascade into other critical infrastructure systems.

Historically, tropical cyclones in the United States have caused extensive damage to
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the power system. Widespread power outages are commonplace in the aftermath of

a large storm. If climate change continues to progress, the effects will be seen in

changing weather patterns, and this is likely to result in changes to tropical cyclone

behavior in the North Atlantic basin. The nature of these changes, however, remains

uncertain and traditional risk analysis is difficult in this context.

The large amount of uncertainty present is especially challenging to deal with;

decisions must be made with very little information about future climate realizations.

There are also multiple layers of uncertainty. For example, even if future climate

projections are known with certainty, the exact relationship between climate and

tropical cyclone strength, frequency, or location are still unknown. Fortunately, we

do have a large amount of data that can be used to bring some light to the problems

at hand. I use this available data, including data on the amount of uncertainty

present, to assess the sensitivity of the U.S. power system to potential changes in

tropical cyclone behavior. By employing this methodology, I can quantify the range of

impacts expected and analyze the regional variability of future risks. This information

is invaluable to decision-makers faced with difficult choices in the coming years. With

proper planning, we can invest wisely so that our power system can withstand the

risks faced in a changing climate.
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1.7 Scope

The research presented here consists of four essays and they are organized in the

following manner. Chapter 2 contains the first essay, and this project uses statisti-

cal models to gain insight into the reasons for the state-by-state disparities in wind

capacity investment. This work is motivated by state policies and the effects that

state-based policies have on wind energy growth. With better insight into the suc-

cesses or failures of policies, we can work to improve them going forward to promote

effective investments in clean energy. I present the data used in section 2.3, describe

the models in section 2.4, and present the results of the analysis and a discussion of

the research implications in section 2.5.

Chapter 3 contains the second essay and presents models developed to provide

short- and medium-term predictions of the maximum wind speed in offshore envi-

ronments. The motivation for this work is risk-based, as high winds cause safety

and operational issues for both offshore wind farms and other offshore operations

(i.e. exposed work on oil platforms.) The predictions are available for short- and

medium-term planning and operational decisions, and the full distribution is given

with each prediction to convey the uncertainty present. I introduce the problem and

provide some background on other research in this area in section 3.1. I describe the

methodology in section 3.2, including details of generating probabilistic predictions.

Section 3.3 presents the case study and available data that the models were tested on,

and section 3.4 provides the results for different training methods across lead times.
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Chapter 4 contains the third essay, and this project evaluates several methods for

wind power resource assessment and farm-level prediction. There are some standard

benchmark models that are heavily validated in offshore wind farms, and I show that

they are not necessarily appropriate for use in onshore farms with non-uniform turbine

layouts. I provide statistical models as alternatives that can be used in this context

instead, and I show that they perform well even with very little farm-specific data.

I introduce the problem and provide background information on relevant research in

this area in section 4.1. This essay focuses on two wind farms, and I present the

data and a discussion of data quality issues in section 4.2. The implementation of

the Jensen model is described in section 4.3, and the alternate methods tested are

described in section 4.4. I present the results in terms of each method’s predictive

accuracy in section 4.5.

Chapter 5 contains the fourth and last essay. This work seeks to quantify some

of the deep uncertainty facing the U.S. power system when it comes to future risks

from tropical cyclones. I present a simulation that can be used to assess the changes

in risk that would result from different scenarios of climate change in the future. I

introduce the problem and offer some background information on the climate-tropical

cyclone link in sections 5.1 and 5.2. The simulation structure and the models used

within are described in section 5.3. The simulation results for the different scenarios

are presented in section 5.4, and this includes a detailed look at metropolitan area

impacts.
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Chapter 2

Statistical Analysis of Installed

Wind Capacity in the United

States

2.1 Introduction

The United States had over 40,000 megawatts of installed wind power capacity at

the end of 2010.42 However, there is a great disparity among the states as to where

this wind capacity exists. Many states use specific policies to encourage renewable

energy development, or even wind energy development specifically. These policies can

vary widely among states both in scope and implementation. Many states have chosen

to implement renewable portfolio standards (RPS) in order to incentivize renewable
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energy. There is no federal goal for renewable energy, which allows the states to

set targets at a level that they choose, even if it is none at all. While the RPS is

one of the most popular forms of renewable energy policy, it does not always include

requirements for specific sources of renewable energy.43

The effectiveness of these and other policies that have been put in place is not

always reflected in the actual energy makeup of individual states. The installed wind

capacity has been growing steadily over the past decade, as shown in Figure 2.1.

This growth is not consistent across all states, and this chapter examines some of the

possible reasons for this inconsistency. Wind development is heavily dependent on

federal policies that incentivize renewable energy investment, but these apply to all

states and do not account for the differences in wind power across states. For example,

the Renewable Energy Production Tax Credit (PTC) has helped to make wind power

much more cost effective. Under this policy, producers receive 2.2 cents per kilowatt-

hour (adjusted for inflation) of qualified renewable energy that is produced and sold,

including wind power.44 However, the inconsistent history of the PTC is clearly

represented in the amount of wind capacity that has been built. The PTC was

initially instituted in 1992 and expired in 1999. It was then extended through the

end of 2001, when it was allowed to expire. Another brief extension carried it through

to the end of 2003, when it again expired and was not renewed until late in 2004. It

has continued to be extended since 2005, but only for a couple of years at a time,

which doesnt allow for financial long term planning.45 Of particular note in Figure 2.1
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Figure 2.1: Installed wind power capacity in the United States, 1999-2010.

are the sharp drops in new capacity being built from 2001-2002 and from 2003-2004.

These correspond to the years when the PTC was allowed to expire. This shows that

federal policies can have significant effects on energy investment and development,

and it is expected that state policies also influence these same decisions. The reasons

behind decisions to build wind capacity are complicated and the results have proven

difficult to model.

2.2 Background

There have not been many attempts made at using statistical methods to explain

or predict differences in wind power (or any other renewable energy sources) across
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regions. Much of the research into the discrepancies between renewable investments

among countries, regions, or states has been qualitative in nature, and the results

present more of a discussion of the reasons behind any differences that were found.

There have been a number of case studies that focused on European countries or

regions, but there are also a few attempts at studying these issues in the United

States as well.

Breukers and Wolsink28 performed a case study to evaluate the large differences

in wind power development in the Netherlands, England, and the German state of

North Rhine Westphalia. They compare a number of parameters such as policies and

policy stability, government involvement and ownership, public opinion and involve-

ment, and institutional capacity building. Their results are discussion-based and do

not include quantitative analysis of what worked or suggestions for future successes.

Similarly, Toke et al.20 compare the wind development in six European countries:

Denmark, Spain, Germany, Scotland, the Netherlands, and England/Wales. They

acknowledge that wind resources in a region are not always the driving factor, and

they study other factors in addition to the wind potential of a country. They find

that one of the most important factors is the level at which investment and siting

decisions are made and who is involved in those decisions. They also find that most

opposition to wind power is extremely localized, and supportive national policies are

not always enough to overcome local opposition. Both of these studies were highly

qualitative, and much of the data for their comparisons came from policy research
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and interviews with those involved in wind development.

In a related study, Toke uses regression analysis to look at local factors that

influence the outcomes of wind power projects in England and Wales.31 He focuses

on all of the players at the local level, and looks at the influence that support of

various groups has on the outcome of a project. Tokes findings show that developers

can achieve much better outcomes by engaging local groups in the decision-making

process. Economics also seem to play a big role, as local communities seek to benefit

directly from wind development and are unsatisfied if policies arent laid out to do

so. Tokes findings are insightful, but the studies were conducted on a small and local

scale, as the analysis was conducted for individual wind projects in England and

Wales. The data was focused on individual opinions of various local parish councils,

planning officers, and environmental groups. Policies play a much smaller role here,

as all of the sites in question fall under the same national policies and regulations of

the United Kingdom.

It is useful to take note of what has worked for certain countries in Europe, but

the politics, cultures, and economies of the United States differ substantially from

Europe and many of the results of these case studies will not apply in the U.S. Bird

et al.46 studied this issue as applied to the United States, and they looked at the

policies, financial incentives, gas price volatility, and market rules to see which were

influential in driving wind development in specific states. They studied the states in

which wind power has been successfully developed, and attempt to propose lessons
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learned that could be used to encourage wind projects in other states. They find

that the two most important factors are state financial incentives and renewable

portfolio standards (RPS) and that these work most effectively in states with high

wind resources to begin with. They also find that high natural gas prices are a

particularly strong driver for wind development, since it makes wind power much

more cost-competitive. It should be noted that this paper was published in 2005,

when gas prices were still rising quickly. The drastic drop in price in 2008 makes this

finding much less relevant in todays markets.

Menz and Vachon29 were the first to attempt regression analysis for factors af-

fecting wind power in the United States. They used four different response variables

with the same set of covariates. They looked at the fits of wind capacity in 2003,

capacity growth from 2000-2003, capacity growth from 1998-2003, and the number

of large projects using data that included wind energy potential and the following

policy aspects: renewable portfolio standards, generation disclosure requirements,

mandatory green power offering, public benefits funds, and retail choice. They also

looked at the duration that these policies had been in effect in order to capture the

time-dependence and lasting effects of certain policies. Their analysis was performed

for only a subset of states. They left out states with little or no wind development

or with poor quality wind resources available. After some initial regression analy-

sis, they also chose to leave out California and Texas, with the reason being that

these two states had significantly higher wind capacity than the other states being
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evaluated and they were throwing off the results. This left them with an analysis of

37 states, all with a moderate amount of wind capacity. This introduces a selection

bias in the results, since the records were chosen to be fairly similar to each other

and the very high and very low capacity states were purposely left out. In addition,

since this paper was published in 2006, Texas has become even more of a wind power

leader, and is more of an outlier today. California, on the other hand, has fallen to

third in terms of wind capacity, having been passed by Iowa, with several other states

following closely behind. Menz and Vachon only used linear models to fit their data,

and they looked only at R-squared values of fit when forming their conclusions. They

did not attempt to predict values based on their dataset. This makes it hard to judge

whether the factors they analyzed are the true reasons behind a given states wind

capacity, especially given the number of states that were left out of the analysis.

On a much more detailed scale, another analytical study was done by Mann et

al.30 for the state of Iowa. They divided the state up into one square kilometer

blocks and used a logistic regression model to predict the locations where wind power

developments have been built. The covariates in their analysis included wind energy

density at two different heights, population density, cropland, and distance from

power lines, highways, and airports. Their results show that analysis on an extremely

small and local scale can result in fairly accurate predictions. Unfortunately, many of

the covariates do not apply when looking at the state level, since there are significant

differences in factors such as policies and economics across states.
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2.3 Data

The data used in this analysis consists of variables that are thought to have a

possible influence on the amount of wind power capacity built in each state in the

United States. The response variable of interest is the built capacity, in megawatts,

as of the end of the year 2010 in each of the fifty states. The data have been gathered

from multiple sources in an attempt to collect information that can be used to describe

the reasons behind the amount of wind capacity that has been built in this country.

The data were chosen with the hope that these factors will be able to give a reasonably

accurate picture of the causes that affect the vast differences in wind power capacity

among the states and to inform decisions as to which factors are most effective in

encouraging investments in wind power.

The variables that were used in this analysis cover a broad range of categories, and

they include factors such as the political leaning of the individual states government

and the level of the states renewable energy portfolio standard. The response variable

is the amount of built wind power capacity in megawatts that each state had as of the

end of 2010. Similarly, one of the covariates is the installed wind capacity for the year

2000, because it was thought that a states past energy decisions could have a potential

impact on the installed capacity ten years later. This capacity information is from

the U.S. Department of Energy.42 Two of the covariates deal with the wind potential

for each state, since small and highly developed states are less likely to be able to

install widespread wind farms than large, rural states. For the dataset, I included
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the amount of land available for wind development (in square kilometers) and the

percentage of each state that is available for wind development. Available land is

defined as areas with a capacity factor of at least 30% at an 80-meter height, while

accounting for excluded regions such as National Parks, wetlands, and urban areas.

The National Renewable Energy Laboratory (NREL) performed the wind-potential

analysis, and the data was accessed through the Department of Energy.47 Next, I

included a few demographic indices. One of these indices is the median income in each

state averaged between 2008-2010 (in 2009 dollars), and this data came from the U.S.

Census Bureau.48 In addition, I included the percentage of the state legislature that

identifies as Democrat in the year 2006, with the thinking that any wind project would

take several years to be built, so a lag of several years was used. This information was

obtained from the National Conference of State Legislatures.49 I also chose to use

the amount of cropland in each state (in acres) as a covariate. It has been suggested

that agricultural landscapes and the people living there are more accepting of wind

development, and by using it as a covariate, the analysis will show whether the data

supports this claim (Sowers 2006). The crop data came from the US Department

of Agricultures Economic Research Service.50 Lastly, I included variables that are

related to the electricity market and incentives in place for renewable energy. The

first of these variables is the average price paid for electricity in each state, and

the data were obtained from the U.S. Energy Information Administration.51 Also

included is the renewable portfolio standard data for each state, in terms of the
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target percentage of their energy that each state is aiming to get from renewables.

This information comes from the Federal Energy Regulatory Commission.52 The

final pieces of information come in the form of any financial incentives for renewable

energy that are in place in each state. These demonstrate which types of incentives

each state has in place, and the incentive programs are broken down based on the

form that the incentive takes such as tax, rebate, loan, or other. The tax incentives

include personal tax, corporate tax, sales tax, and property tax incentives. The

incentive programs that fall into the other category include things such as grants,

bonds, and performance-based incentives. This information was available from the

Database of State Incentives for Renewables and Efficiency that is funded through

the U.S. Department of Energy.53

Table 2.1 shows the general characteristics of each variable. Many of the variables

have relatively high standard deviations, which shows that there is very high vari-

ability among the states in many of these areas. This may be obvious to anyone who

is familiar with the United States and renewable energy, but it a useful reminder as

to the wide ranges that I dealt with when analyzing this dataset.

2.4 Statistical Models

Several different types of models were compared in order to find the best performer

in terms of predictive accuracy. The most basic model used was a generalized linear
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Table 2.1: Characteristics of the variables used in the wind capacity analysis. The
response variable is the wind capacity in 2010, shown in bold.

Variable Mean Standard Deviation Minimum Maximum
2010 Wind Capacity (MW) 805.34 1606.64 0 10089.43

Available Land (sq km) 43827.65 76569.58 0 380305.9
Available Percentage of Land 18.2% 28.2% 0% 91.0%

RPS Mandate 15.35 11.6 0 50
Electricity Rate (cents/kwh) 10.04 3.55 6.2 25.12
Median Income (2009 $) $50,647 $7,607 $36,850 $66,303

Democratic Portion of Gov’t 0.50 0.15 0.19 0.87
Tax Incentives (binary) 0.94 0.24 0 1

Rebate Incentives (binary) 0.38 0.49 0 1
Loan Incentives (binary) 0.88 0.33 0 1
Other Incentives (binary) 0.74 0.44 0 1
2000 Wind Capacity (MW) 50.79 233.43 0 1615.99
Amount of Cropland (acres) 8,128,498 8,868,885 24,457 33,667,177

model, or GLM. This uses a linear function to model the relationship between the

covariates and the response variable by assigning a coefficient to each covariate.27

This type of model tends to work well when the relationship between the covariates

and the response variable is linear, or close enough to be well approximated by a

linear function. In addition to a GLM, a generalized additive model, or GAM, was

also used in the analysis. In contrast to a linear model, a GAM does not assume a

linear relationship between the response variable and the covariates. Instead, it uses a

smooth, continuous function that can take on any form.27 GAMs can work well when

the data is highly nonlinear, but they can often over-fit the data due to their ability

to pick up even slight fluctuations in the data. It is essential that GAMs be compared

on their predictive accuracy and not their fit for this reason. A multivariate adaptive

regression spline model, or MARS, was also tested on this dataset. This type of model

uses piecewise-linear functions to build up an estimate of the relationship between the

covariates and the response. These local linear approximations are added together
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to create the full basis function, after which individual terms are deleted in order to

simplify the model and obtain better predictive accuracy.54 It uses generalized cross

validation to decrease the size of the model, thus avoiding the problem of over-fitting

the data.

Lastly, a number of tree-based models were tested. Classification and Regression

Trees (CART), bagged CART, Bayesian Additive Regression Trees (BART), and

Random Forest models were applied to this dataset. The CART model grows a large

tree by splitting the data recursively into smaller and smaller partitions and then

prunes back the large tree into a smaller and simpler tree by penalizing complexity in

the model.55 The Bagged CART model is similar, but it applies bootstrap aggregation

in order to improve predictive accuracy. The BART model uses Bayesian priors and

builds a large number of very simple, weak learner trees, and then aggregates the

predictions from each tree using a Markov chain Monte Carlo method to sample from

the posterior distribution until convergence is reached.56 This method allows for

each relatively simple tree to be used to explain only a small portion of the response

variable.

The last tree-based method that was applied to this dataset is random forest.

This method again uses bootstrapping, but it grows a tree from each bootstrap sam-

ple. This results in relatively uncorrelated trees. By averaging predictions across a

large number of these trees, the variance of the predictions is generally reduced.57

The trees in random forest use a randomly selected subset of variables and choose
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optimal splitting points until a selected minimum node size is reached. These trees

are not pruned, as they are in a CART model, for example. Instead, the minimum

node size and random bootstrap samples usually keep the individual trees from being

overly complex, and the averaging across all of the trees can often result in accurate

predictions for a dataset.

2.4.1 Model Evaluation

In order to compare the predictive accuracy of these models, a holdout analysis

cross-validation was performed. This method trains the models on a portion of the

data, setting aside a test sample to be used later. For this analysis, I held out a

randomly assigned 20% of the data for each of 100 holdout runs and compared the

results of different model types for each run. I included two linear models, since

they are relatively simple and a good point of comparison. One used variables based

on some initial studies of GLM fit, and the second GLM used a step-based form of

variable selection that allowed the model to choose the best variable combination

within the cross-validation. I included one GAM for comparison as well, although

some earlier attempts at using GAMs for this data did not produce very good results,

and the GAM was not expected to perform well in the holdout analysis. I included

a MARS model, even though this type of model is fairly similar to a GAM and is

again not expected to predict well for this dataset. Lastly, I included the tree models

discussed previously.
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The variables in the dataset did not have high correlation factors, and the vari-

able inflation factors were low for the linear models, so a principal component analysis

transformation of the data was deemed to be unnecessary. The data was standard-

ized before the models were trained. Many of the covariates are on different orders

of magnitude and standardizing the data allows for a more intuitive comparison of

variable influence. Many variable combinations were tried for the GLMs and GAMs.

Although it is easy to evaluate for fit using methods such as the likelihood ratio test,

assessing a models performance for prediction is only possible in the context of a

holdout analysis. Even so, some of the variables could be removed from the models

due to extremely high p-values. One of the linear models used in the holdout analysis

contains a subset of the covariates based on the best fitting model. The other linear

model allows for automatic variable selection by adding and subtracting covariates

in order to end up with the best predictive model. Similarly, it is easy to choose

variables for a GAM based on fit, but the GAM also allows for automatic variable

elimination in order to end up at a simpler model.

2.5 Results and Discussion

The holdout analysis compared 8 different models in addition to the mean-only

prediction, resulting in 9 total predictions to compare. The prediction error results

are shown in Table 2.2. The random forest model has the lowest overall mean absolute
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error (MAE) at 514. It also had the lowest mean squared error (MSE.) In order to

accurately compare the results of the 9 different models, a Bonferroni correction was

applied to the results of t-tests between all of the model combinations. A Bonferroni

correction accounts for the multiple, simultaneous hypothesis tests being conducted on

the same data. It is necessary in this case since there are 9 models being compared.

The corrected t-test values are shown in Table 2.3. The Random Forest model is

significantly better than the mean-only model in terms of predictive accuracy. It also

outperforms many of the other models tested, and I identified it as the best model

for this dataset.
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Table 2.2: Holdout analysis results: mean absolute error (MAE) and mean squared error (MSE)

GLM1 GLM2 GAM BART CART MARS
Bagged
CART

Random
Forest

Mean
Only

MAE means 1,048 1,033 1,171 600 636 1,140 555 514 924
MAE std dev 882 949 1,339 290 388 965 322 299 286
MSE means 10,049,311 10,643,473 21,379,770 1,510,463 1,705,590 11,051,960 1,456,377 1,280,061 2,174,501
MSE std dev 36,187,916 43,562,519 82,762,292 2,439,893 2,415,892 43,083,895 2,474,729 2,277,692 2,993,220

Table 2.3: Corrected t-test values for model comparison using Bonferroni correction

Model GLM1 GLM2 GAM BART CART MARS Bagged CART Random Forest
GLM2 1.00
GAM 1.00 1.00
BART 0.00015 0.00098 0.00222
CART 0.00129 0.00603 0.00729 1.00
MARS 1.00 1.00 1.00 0.00002 0.00012

Bagged CART 0.00002 0.00018 0.00067 1.00 1.00 0.00
Random Forest 0.00 0.00003 0.00019 1.00 0.47602 0.00 1.00

Mean 1.00 1.00 1.00 0.00 0.00 1.00 0.00 0.00
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The predictions for the random forest model are shown in Figure 2.2. As expected,

the plot for random forest shows low variance in the predictions. The data points are

closely grouped along a recognizable line, and the predictions match up well with the

actual values. It had the lowest absolute errors overall, although it appears that it

tends to underestimate capacity slightly across the board.

The random forest model does not assume linearity. Tree models in general are

very flexible and can handle high variance in the data very well.57 The wind data

for these models is, for the most part, non-linear. This is one of the reasons that

the random forest model outperforms some of the other models. Some of the other

tree-based models also performed reasonably well, probably for the same reason of

accounting well for non-linearity in the data. The GLM, GAM, and MARS models

have errors that are higher than the mean-only model. It is likely that the GAM and

MARS models tended to over-fit the data, which resulted in poor predictions. The

GLM models may have been too simplistic to represent the relationships in the data.

2.5.1 Variable Importance

The importance of variables in a Random Forest model is determined by assessing

the degree to which removing a variable from the model causes a reduction in the

out-of-bag error. Removing the most important variables will account for the largest

reductions in predictive accuracy, since the model is then left to use a subset of

less influential variables. This importance measure, which can be interpreted as

38



CHAPTER 2. STATISTICAL ANALYSIS OF INSTALLED WIND CAPACITY
IN THE U.S.

0 2000 4000 6000 8000 10000

0
10
00

20
00

30
00

40
00

50
00

60
00

Random Forest Predictions

Wind Capacity in 2010 (Actual)

P
re

di
ct

ed
 W

in
d 

C
ap

ac
ity

Figure 2.2: Random Forest predicted values vs. actual wind capacity
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Figure 2.3: Variable importance plot for Random Forest model

the relative influence of the covariates, is shown in a Variable Importance Plot in

Figure 2.3. The top four most influential variables are consistent with the most

significant variables identified in many of the other models. The amount of available

land is identified as the most important in terms of error reduction, followed by the

amount of cropland, the built wind capacity in 2000, and the available percentage of

land.

In order to visualize the level of influence of each of these variables, partial de-

pendence plots are shown in Figure 2.4. Each plot shows the marginal influence that

that particular variable has on the response. This is done by varying one variable
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at a time over its range and then evaluating how the response variable changes with

respect to that variable alone. It should be noted that the ranges of each variable

have been standardized for these plots, so a value of zero on the x-axis represents the

mean value for each variable. These partial dependence plots are highly nonlinear for

most of the variables of interest. This helps to explain why the Random Forest model

generally outperforms many of the models that assume linear relationships between

the covariates and the response, since it is able to deal with highly nonlinear data.

The individual plots depict the nature of that variables influence on the response

variable, which is the amount of installed wind capacity in the year 2010. The partial

plot for the amount of available land for wind development shows a positive influence

on the response, and there seems to be a threshold at which the response takes a

big jump up, showing that the states with extremely high wind resources are more

likely to invest in wind power. A similar relationship can be seen for the amount of

cropland. It has a steadily increasing positive influence on the wind capacity in 2010,

and the plot also jumps up towards the end for states with extremely large areas

of cropland. The plot for the wind capacity in 2000 shows a positive influence, as

expected, but it stays level after the initial jump. This seems to show that there is a

barrier to a states initial investment in wind power, but after the first project, they

are more likely to continue investing in wind. The available percentage of land in

each state has a positive influence on the response variable for the most part, up until

the higher values when it starts to drop off slightly. In addition to the top four vari-
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ables, the partial plots for median income and RPS mandate are also included. The

median income of a state seems to have a slight positive influence, but only up to the

point of the initial jump, and the plot stays fairly steady from there on. The shape

of the RPS mandate plot seems to be counterintuitive. Higher renewable portfolio

standards would be likely to drive more investment in wind projects, but that doesnt

necessarily seem to be the case. After the large initial spike and subsequent drop,

the latter part of the plot levels out. The reason for the initial spike is unknown, but

I hypothesize that it is greatly influenced by a few individual states, such as Texas

and Iowa. Texas has, by far, the most installed wind capacity, but it also has one of

the lowest RPS mandates. Similarly, Iowa has the second most wind capacity and a

very low RPS mandate. These states show that the relationship between the RPS

mandate and wind capacity is not as well defined as expected. It should be noted

that the importance of these last few variables (available percentage, mandate, and

income) are much lower than the top three mentioned previously. Looking again at

Figure 3, there is a large gap between the importance of the capacity in 2000 and the

rest of the variables below that.

2.6 Conclusion

As expected, the amount of wind resources in a given state has a strong positive

influence on the amount of built wind capacity in that state, and it proves to be
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Figure 2.4: Partial dependence of selected variables in Random Forest model
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the most influential parameter in making accurate predictions. This result is not

surprising, nor is the finding that the amount of cropland also has a strong, positive

influence. Previous studies have looked at the reasons for this and noted that agri-

cultural areas are receptive to wind power. The results of our analysis support the

idea proposed by Sowers that cropland would be a positive predictor for the amount

of wind development.11 The most surprising finding is that state policies seem to

play a very small role in predicting wind power development. From the qualitative

studies discussed earlier, policies should be very influential in driving state renewable

energy investments. However, this turned out not to be the case in the models tested.

Since these policies are specifically developed to incentivize investments in renewable

energy (and sometimes even in wind energy explicitly,) they do not seem to be as

effective as intended. A states renewable portfolio standard is designed to encour-

age investment and development of renewable energy sources, and yet it is only the

fifth most important variable in the random forest model. Of course, the RPS is not

specific to wind energy, and a state can meet its requirements by using any number

of renewable sources. States that have a large solar resource, for example, would be

more likely to meet the RPS using solar power as opposed to wind, and this flexibility

could account for part of the reason behind the RPS not showing up as significant in

the model. Our study also does not account for renewable energy contracts between

states or the trading or renewable energy credits. Renewable energy credits (RECs)

allow for states to meet their RPS mandates by purchasing credits for energy gener-
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ated elsewhere. This leads to a complicated system of trading clean energy, which is

not captured in the models presented. There were also financial incentives included

in the dataset, and these did not show up as being significant at all. One reason for

this could be that federal policies take precedence when deciding to invest in wind en-

ergy, and something like the production tax credit drives development far more than

any local incentives that are put in place by individual states. The production tax

credit has been shown to be very effective in encouraging wind energy development

nationwide, but the state-based incentives do not seem to have much impact at all

on wind power expansion in a given state.

It makes sense that the amount of wind resources available in a region would be

important in terms of predicting the wind power development in that region. High

quality wind resources will increase the likelihood that a project is profitable, since

the farm will be producing more power than a farm located in an area of poor wind

resources. The states that had previously made investments in wind power have been

shown to be more likely to continue building their capacity. Although this study does

not look into the reasons for the investment in wind prior to 2000, it is safe to assume

that the same major factors, such as wind resource and cropland, were driving those

decisions as well.

One of the drawbacks to this study is the small dataset. With only 50 states, it

is difficult to deal with any outliers that may exist. States with extremely high or

extremely low values of installed wind capacity can throw off the results of the trained
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model. Texas, for example, has almost three times more installed wind capacity than

Iowa, which is second in capacity values. More accurate results could be possible by

breaking the country up into smaller regions. Since state policies do not seem to have

a strong influence on wind development, the geographic and demographic parameters

could easily be captured on a smaller scale, and may prove to give even more accurate

predictions for each region. This approach would be similar to the study conducted

by Mann et al. discussed earlier.30

The interactions of policies and incentives for developing renewable energy in

general, and wind power specifically, are complex. The decisions made by investors

looking to build new wind farms are surely based on a number of considerations that

are not captured in these models. Even so, this study has shown that there are some

factors that are easy to measure and track, which can help to explain many of the

differences in wind development among states. The policies currently in place do not

provide enough of an incentive for significant investment in wind development. If

individual states are looking to take advantage of wind power, the current policies

need to be evaluated for effectiveness. If the United States is committed to developing

renewable energy, it is likely that new policies will need to be instituted that will be

more effective than the ones currently in place.

This research was originally published in Energy Policy .58
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Chapter 3

Probabilistic Maximum-Value

Wind Prediction for Offshore

Environments

3.1 Introduction

Many offshore commercial activities are heavily reliant on weather forecasts for

safe and efficient operations. Offshore wind farms are an obvious example; wind

predictions are heavily relied upon for planning both farm and power grid operation

schedules, but other offshore operations (i.e. oil platforms and shipping) are just

as dependent on weather forecasts, and wind forecasts in particular. Knowledge

of future wind speeds can improve the reliability, safety, and profitability of many
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operations. High wind speeds in particular can pose a significant risk to offshore

structures and to workers exposed to high-wind conditions. A study of helicopter

crashes related to oil and gas operations in the Gulf of Mexico, for example, found

that 16% of accidents were due to adverse weather conditions that hinder work for

offshore facilities, and almost a third of those cases were attributed to high winds.59

With wind turbines specifically, they are designed to shut off when wind speeds

reach a certain threshold, but even below this threshold, frequent operation at high

wind speeds can cause significant damage to a turbine. Turbine reliability decreases

with increasing exposure to high wind speeds or high accelerations.60,61 Managing

these risks can be done, in part, by integrating forecasts specifically for maximum

wind speeds into the decision-making process when planning offshore operations, and

these operations may extend to the fields of wind farm scheduling, wind turbine

control, maintenance planning, offshore oil platforms, or shipping operations. In this

chapter, I take a risk-based view of wind variability and focus on this one aspect of

wind behavior: very high wind speeds for offshore applications. I demonstrate the

capabilities of simple statistical models to forecast maximum wind speeds, and these

predictions can be used to improve safety and operations for wind farms, offshore

platforms, and shipping traffic.
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3.1.1 Background and Existing Literature

There is a large body of work on wind speed prediction, and it has only continued

to grow as the penetration of wind energy increases worldwide. The economic via-

bility of wind is directly dependent on high quality wind forecasts, and this has led

to great interest in improving wind-forecasting techniques. Wind is highly variable,

and this can make accurate predictions difficult, especially when forecasting for very

short time periods. It is usually more straightforward to forecast mean-value wind

speeds for larger time scales, and much of the work in this field has focused on these

mean-value forecasts and building better models with higher degrees of accuracy. An

excellent overview, which details the various methods and techniques used in this

field, can be found in a literature review by Giebel et al.32 This chapter details the

different forecasting approaches, including persistence models, numeric weather pre-

diction, statistical models, and combinations of the aforementioned methods. For

those interested in the use and application of wind forecasts, a report by Argonne

National Laboratory gives a broader look at these issues.62 This report covers the

full spectrum of challenges present when integrating wind power: wind forecasting,

subsequent power forecasting, estimating and presenting uncertainty, unit commit-

ment of wind, and power grid operation with wind generation. Of the many proposed

methods for wind prediction, strong examples include artificial neural networks, linear

models, ensemble methods, and nonparametric approaches.63–66

Average-value forecasts are needed for planning, but they fail to capture the vari-
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ability occurring within the associated time periods being evaluated, which are often

one hour or more. The wind speeds within that period can deviate drastically from

the mean-values forecasted.67 Of this variability, maximum wind speeds are particu-

larly important when assessing the risks to structures, workers, and ongoing activities.

This risk is more of a concern in offshore environments because the wind speeds are

often higher in general.

The field of offshore wind in particular would benefit strongly from maximum-wind

forecasts, since farm operations are often scheduled a day in advance and turbines

are susceptible to damage from extremely high winds. Power systems are already

designed to deal with uncertainties and variability, historically in the realm of load

forecasts.33 Adding in the variability of wind is within the experience of system

operators. However, as with load forecasts, wind forecasts are also needed to manage

the uncertainty. An accurate knowledge of wind speeds is critical for efficient planning

and operation of wind farms.33,34,68 Electric grid operations are scheduled based on

predicted mean wind speeds and subsequent power output estimates. Knowledge

of the mean wind speed, however, does not give a full depiction of wind behavior,

which can often vary greatly within very short time periods.69 Therefore, in addition

to mean value wind predictions, there is also a benefit to be gained from knowing

what the maximum value winds will be in a certain time period. A careful operation

scheme, where, for example, turbines are preventatively shut down when very high

maximum wind speeds are predicted, could greatly increase turbine life and improve
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the current operating condition of the grid.

Several studies have identified the importance of high-wind forecasting for pur-

poses of informing decisions regarding grid operation and system safety.33,34 With

the added high-wind forecasts, a wind farm can be operated in such a way to mini-

mize the transients during time periods with expected forays into wind speeds above

the turbine threshold, for example. In addition to farm operations, there are con-

siderable safety concerns associated with high wind speeds. Wind farm construction

and maintenance are all dependent on acceptable weather conditions, and the safety

of the workers can be severely jeopardized if wind speeds pick up when they werent

expected to. The same applies to offshore drilling platforms. Exposed maintenance

operations, for example, should not be conducted if wind speeds rise above certain

safety thresholds. Scheduled maintenance can be planned for periods with low pre-

dicted maximum wind speeds, thus reducing the exposure of the crew and equipment

to high, and often dangerous, winds.

The body of work focusing on maximum winds, gust winds, or extreme value winds

in short-term wind applications (i.e. on the order of several hours to a day) is much

smaller than the work focused on mean-value winds. Gusts are usually defined as a

three-second average above a threshold. Maximum winds are similar, but represent

only the highest value recorded in a given time-period, without averaging and without

a threshold. While the definitions of maximum wind speed and gust wind speed differ,

the motivation for forecasting these high-speed wind events is similar. There are risks
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associated with both high maximum winds and strong gusts, and the literature looks

at both.

Extreme-value theory is an often-used method for analyzing extremes of a param-

eter, but it is usually applied on long time scales, on the order of years.70–72 Several

studies have analyzed the annual maximum wind values using a generalized extreme

value distribution.73,74 This type of analysis is useful when deciding on design crite-

ria to ensure that structures can withstand the fifty or one-hundred-year winds, but

these values can often be underestimated.75 In addition, these longer time scales are

not useful for many planning operations, since decisions are made for time periods of

hours or days ahead. This method has been successfully applied to daily wind speeds,

however.76 Research in the realm of gust predictions has been done by Brasseur us-

ing purely physical factors and by Ágústsson and Ólafsson using atmospheric models

and highly localized terrain data, among others.77,78 Thorarinsdottir and Johnson

have developed a model to predict wind gusts using a gust factor and a probabilistic

forecast for the maximum wind speed and appearance of gusts.79 They use nonhomo-

geneous Gaussian regression to predict the distribution of daily wind speed and gust

speed. The probabilistic nature of their models conveys a lot of information to the

user, but the forecast is issued as the distribution for a given day in the future, and

this time interval is often too long to be of great use when planning operations and

maintenance. With a more risk-centric application, Petroliagis and Pinson evaluate

the relationship between extreme wind events and medium-term (i.e. on the order of
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several days) warnings of extreme events.80 The motivation for their work is similar

to the research presented here; advance knowledge of high wind speeds can result in

better decision-making regarding the safety of many operations, both onshore and

offshore.

3.1.2 Chapter Objectives and Structure

In this chapter, I build upon the techniques used for predicting average-value wind

speeds and instead focus on predicting, probabilistically, the maximum-value winds

for a given location with forecast lead times reaching from zero hours out to five

days (120 hours). I use simple statistical models and focus on maximum-winds that

are not necessarily extreme, according to statistical properties. I compare several

models and assess their predictive performance at various lead times using different

training methods. The probabilistic predictions accurately capture the variability

of the maximum wind speed and convey more useful information to the end user.

I present the methodology in section 3.2. I apply these methods to a dataset of

measured and modeled meteorological parameters for a chosen location in the North

Sea, as discussed in section 3.3, and the results are shown in section 3.4.
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3.2 Probabilistic Forecast Methodology

Our goal is to produce accurate probabilistic predictions, for both short- and

medium-range forecast windows, for the maximum wind speed in a given time in-

terval and a given location. For our purposes, I define maximum wind speed as the

highest value sampled at a rate of 1 Hz during a ten-minute interval. By issuing

probabilistic forecasts, I capture the variability of the maximum wind speeds and

allow the user to factor in this uncertainty when making decisions about offshore op-

erations, whether for a wind farm, offshore platform, or shipping activities. Although

I am developing statistical models for the maximum-value wind speeds, our proposed

method first determines the expected value, or mean, of the maximum wind speed

and then determines the full probabilistic distribution around this mean (of the max-

imum) wind speed. The models used are trained to predict the expected value of the

maximum wind speed. I assume that the maximum wind speed values are Gaussian

of the form N (µ, σ2) with mean µ and variance σ2. In order to build up the full

distribution of wind speed, I estimate the mean and variance parameters separately.

The models are developed to predict the mean value of the maximum speed, µ, and

I use the parameters of the residual training errors to determine the variance, σ2 (or

standard deviation, σ.) The standard deviation of the residual training errors is used

as the standard deviation of the new predicted distribution for each individual point

forecast issued. The resulting predictions portray a normal distribution for the max-

imum wind speed in each time interval, so that any probabilistic prediction intervals
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can easily be calculated.

The model training and prediction process is conducted independently for each

lead time. The full dataset is subset according to lead time. This subset is then split

into two sequential groups; the first is used to train the models and the second is used

to issue predictions. The models are trained on each training set for each lead time

and then applied to predict new data points for the same lead time. The models,

and therefore the model residuals, are specific to each lead time. The relationships

among the covariates and the relative importance of the covariates in the models will

likely differ for predictions issued at different lead times. Our method allows for the

models to capture these changing interactions and variable importance.

3.2.1 Model Development

For preliminary model evaluation, I tried a large number of statistical model types

and variable combinations. Based on the models that performed well in a few sample

test cases, I was able to narrow down the field of feasible options. The model types

initially tested included linear models, generalized additive models (GAM), random

forests, multivariate adaptive regression splines (MARS), bagged classification and

regression trees, and support vector machines.27 For each of the models, variable

selection was used to determine the best combination of parameters to be used; the

combination of variables included differs for the different model types as a result. The

models were compared based on their predictive errors: mean absolute error and root
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mean squared error. Based on the preliminary testing, three models were identified

for further testing. A linear model, a GAM, and a MARS model all performed well.

These three were then tested extensively for different forecast times, lead times, and

training methods. The formulation of these three models is as follows. Given a vector

of inputs, XT
t = (X1t, X2t, . . . , Xpt) and a response variable, Yt for lead time t and

the number of covariates p, the three model types discussed are given by the following

formulations:

Linear Model Formulation:

Yt = β0t +

p∑
j=1

Xjtβjt + ϵt

where β0t is the intercept term for lead time t, the βjt’s are the coefficients of each

input variable for lead time t, and ϵt is the error term of the form N (0, σ2
t ), a normal

distribution with zero mean and finite variance, σ2
t . This assumes a purely linear

relationship between each of the input variables and the response variable, maximum

wind speed.

GAM Formulation:81

Yt = β0t + f1t(X1t) + f2t(X2t) + · · ·+ fpt(Xpt) + ϵt
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where β0t is the intercept term, each fit(Xit) specifies a function of each Xit, and

ϵt is the error term of the form N (0, σ2
t ). The smoother functions take the form of

cubic regression splines. The model is fitted by simultaneously estimating all p func-

tions, allowing for nonlinear relationships between some or all of the input variables

and the response.

MARS Formulation:54

Yt = β0t +
M∑

m=1

βmthmt(X t) + ϵt

where β0t is the intercept term, the βmt’s are the coefficients associated with each

basis function, hmt(X t), M is the number of basis functions, and ϵt is the error term

of the form N (0, σ2
t ). The basis functions can be formulated as hinge functions of

the form h(Xt) = (Xjt − c)+ with c representing the location of the hinge, or as the

product of two or more functions of the same form. These allow for nonlinearities of

certain input variables or interactions between multiple input variables.

The models were trained using the R software environment, and the functions for

linear models, GAMs, and MARS models can be found in the stats, mgcv, and earth

packages, respectively.82–84 The variable selection process is conducted separately for

each model type. I initially assess variables using model fit as the guiding parameter,

and well-performing variable combinations are then compared based on predictive
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accuracy.

3.2.2 Probabilistic Forecasts

Any prediction made is associated with a certain degree of uncertainty; this is

inherent in the process. Predictions are often given as one deterministic value; for

example, a typical weather forecast may predict that tomorrow will have a high tem-

perature of 36 degrees. The uncertainty in this forecast is not passed along to the

public. The uncertainty around a deterministic forecast is often as important as

the forecast itself. For this reason, I focus on developing statistical models to pro-

vide probabilistic predictions of the maximum-value wind speeds instead of a single,

deterministic value. There is a real benefit to be gained through the use of proba-

bilistic weather forecasts, and this has been demonstrated frequently in the literature.

Reliable, and even moderately reliable, probabilistic forecasts outperform standard

forecasting practices, resulting in lower costs and higher value to the user.85 When

dealing specifically with wind forecasts, it has been shown that including the uncer-

tainty in forecasts results in an increased market value for the forecast itself.86 This

increase in value is important, as it represents one of the three main measures of

forecast goodness as described by Murphy.87 The statistical models aim to produce

accurate (i.e. high quality) and consistent forecasts, and the probabilistic aspect of

the predictions only serves to increase the value to the user.

As stated earlier, I assume that the maximum wind values are Gaussian of the
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form Yt ∼ N (µ, σ2). The models presented here offer mean-value predictions, µ, for

the maximum wind speed in a given time period. The predicted values represent the

expected value of the probabilistic density function for the maximum wind speed in

that time period. To estimate the distribution around this expected-value point pre-

diction, I use the residuals to obtain the variance, σ2 (and standard deviation, σ) in

order to develop the prediction intervals around the expected value. I start by looking

at the model residuals from the training set. The residuals are defined as ri = yi − ŷi

where yi is the actual value and ŷi is the predicted value for all i data points. I fit a

normal distribution to the residuals, and determine the standard deviation based on

the fitted curve. This standard deviation (of the residuals from each model) is then

applied to each prediction made by the model to estimate the full distribution of the

errors around the predicted expected value, µ. With the assumption of normality

in the errors, the residual standard deviation, and the predicted expected value for

the response, the distribution is fully defined for each future observation being pre-

dicted. The probabilistic predictions for a given data point can then be issued either

as a full distribution or as defined quantiles of the distribution. This method was

compared to the standard method for obtaining predictive intervals and found to be

in good agreement. The method used here has the advantage of estimating the full

distribution directly, and it can be used for any type of statistical model for which

the residuals can be easily calculated.

The usual methods for assessing model predictive performance, such as mean ab-
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solute error or (root) mean squared error, cannot be used for probabilistic forecasts,

since there is no single value of the distribution to compare. Instead, alternative met-

rics need to be used for evaluating probabilistic forecasts; here, I use the continuous

ranked probability score, or CRPS, as our method of comparison. The CRPS com-

pares the cumulative distribution function (CDF) of the prediction with that of the

actual. In this case, the actual is simply an observation, but it can still be represented

as a CDF. The CRPS is defined as follows:

CRPS(F, x) =

∫ ∞

−∞
(F (y)− 1{y ≥ x})2dy

where F is the CDF of the probabilistic forecast, x is the actual observation, and

1{y ≥ x} designates the function that takes a value of 1 if y ≥ x and 0 otherwise.

The CRPS is exactly equivalent to the mean absolute error (MAE) in the case where

the forecast is also deterministic.

3.3 Data and Application

In order to demonstrate the proposed models and assess the performance of the

probabilistic predictions, I apply the methodology discussed in the previous section

to a dataset of forecasted and measured wind and meteorological conditions for a

location in the North Sea. I couple measured data from a meteorological tower with

forecasts issued for the same location. The forecasted data is used to train and
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develop the models, and I assess the performance of the predictions against the actual

measured data. Both the measured data and forecasted data were obtained for the

time period starting in February 2010 and ending in May 2013. Wind data typically

cycles on several different temporal scales. The most familiar cycles are daily and

seasonal fluctuations. In addition to these, wind data sometimes has longer-scale

cycles, lasting a year or more.88 Having over three years worth of data allows for

models that are not dependent on a single cycle, and this amount of data serves as

a good representation of typical behavior in the designated area. The details of the

data used for our application are discussed subsequently.

3.3.1 Measured Data

Germany has installed three large offshore meteorological towers in order to collect

data in designated areas where they are planning for large amounts of future offshore

wind development. The three towers are referred to as FINO1, FINO2, and FINO3,

and are all located in the waters north of Germany. For the purposes of this project,

I chose to use the FINO1 data because of its long history of data collection and its

location in a prime wind-development region. This tower is located in the North Sea

waters off the coast of Germany, just north of the border between Germany and the

Netherlands. The tower has been collecting data since 2003, and Germany is planning

for projects adding up to almost two gigawatts of installed wind capacity in the area

around the FINO1 tower in the near future.89
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These towers are collecting a wide variety of data, including measures of wave

height, wave direction, pressure, temperature, humidity, lightning events, sea cur-

rents, shipping traffic, and, of course, wind. The wind available data includes mea-

sures of wind speed and direction at 33, 40, 50, 60, 70, 80, 90, and 100-meter heights.

The data is given as ten-minute averages, with the minimum speed, maximum speed,

and variance also given for each ten-minute interval.90 This additional information

about the range and variability of the wind speeds give a more detailed picture of

the actual wind behavior. With wind turbines increasing in both capacity and size,

I chose to use the 100-meter data for our model development and predictions. This

is expected to be the closest to turbine hub-height for the next generation of offshore

wind turbines. This actual, measured data from the FINO1 tower is used to test and

train models in tandem with the forecast data, which is discussed below. Missing

values make up 3% of the measured data, but this is a very small percentage overall,

and dropping the missing values in model development is not expected to have much

of an effect.

3.3.2 Input Weather Forecast Data

In addition to the measured data discussed above, the models also use a number

of parameters from weather forecasts issued by the European Center for Medium-

Range Weather Forecasts (ECMWF).91 These parameters are used as inputs to our

models, and I use them to then issue our own predictions for maximum wind values.
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ECMWF runs their global meteorological models to issue forecasts twice a day, at 00

and 12 UTC. This data can be downloaded for a specific location, with the earths

surface divided into small grid cells of 16 kilometers for which the forecast data is

determined through a bilinear interpolation from the four points located at the corners

of the grid cell as output by the global model; in this case, the data is taken from

the grid cell that contains the FINO1 tower. Each of these forecasts contains data

looking out five days (120 hours) in three-hour increments. The data used includes

the u and v components of wind speed at 10 meters and 100 meters, gust wind speed

at 10 meters, temperature at 2 meters, mean sea-level pressure, convective available

potential energy (CAPE), and Charnock. CAPE represents a measure of atmospheric

instability based on the buoyancy of air over a vertical reference frame.92 Charnock

is a means of characterizing sea surface roughness in relation to wind stress, which,

in a way, represents part of the relationship between wind and waves.93 The data

available from ECMWF has been shown to have generally high forecast skill scores

and significant usefulness when performing further analysis and evaluation.94

3.4 Results

The models and methods described in section 3.2 were applied to the data de-

scribed in detail in section 3.3. I identify the importance of the training approach

when developing models using the meteorological parameters taken from the ECMWF
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forecasts. I tested both static and sliding training windows of various sizes, and the

size and type of training window can make a big difference in model performance.

I also assess the performance of the probabilistic predictions for the different lead

times and training windows and identify the variables that are the most influential

for each model across all lead times. The skill scores of our probabilistic predictions

are compared to traditional baseline measures. Our models outperform these base-

lines and, as expected, offer a higher skill than a deterministic prediction alone. Our

probabilistic forecasts are shown to be highly skilled in terms of accuracy. I also

provide reliability diagrams for the probabilistic predictions.

All models were developed using the entire dataset encompassing three years and

four months of forecasted and measured data. Predictions were statistically tested

on a minimum of one year of data, with some model iterations tested on almost three

years of data (in the case of the smallest training windows.) The large test sets used

allow for high quality assessments of model accuracy and performance. Subsequently,

an observation refers to one data point taken from a forecast issued at one point

in time for one specific lead time. When training models for a given lead time and

forecast time, only one observation per day is used. So, a model trained on 365

observations would be trained on one year of data from forecasts issued once each

day for one specific lead time.

In terms of specific model formulation, the linear model is simplest; maximum

wind speed is a function of the forecasted 10-meter gust speed, CAPE, and the u and
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v components of wind speed at both 10 and 100 meters. The GAM includes the same

parameters listed for the linear model, with the addition of the Charnock parameter.

The MARS model adds another two more variables to those included in the GAM:

mean sea-level pressure and temperature at 2 meters. The addition of these other

meteorological variables to the wind speed data gives the models more to work with

when it comes to predicting high-value wind speeds.

3.4.1 Model Training

With any model development and prediction process, the choice of training data

is critical. The training set should be large enough to capture enough information to

accurately model any future data complexities that arise in the testing data; larger

is generally better if sufficient data is available, but the marginal benefit may be

minuscule after reaching a certain size. The size of the training set also depends on

model complexity. As the model complexity increases, the model learns to capture

even small perturbations in the training data, and the training error decreases. When

using the same model to instead look at the test set error, or predictive error, errors

tend to decrease only up to a certain point. Beyond that point, additional model

complexity leads to an increase in predictive error—the classic bias-variance tradeoff

problem.27 The large dataset that I am working with, over three years worth of data,

allows us to evaluate whether there is a significant performance improvement for

very large training windows and to answer the question of what an optimal window
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size would be for this particular case of wind data. It should be noted, however,

that even three years of data might not be enough to capture the very large time-

scale variations that may exist for wind in certain regions.88 Our models work by

evaluating the relationships of the variables, and if these relationships were to change

significantly due to large temporal fluctuations, the models may need to be retrained

on more recent data in order to ensure optimal performance.

Here, I focus on test, or predictive, errors as a performance metric and analyze

the predictive accuracy for the three models for a wide range of training window sizes

under both static and sliding training conditions. Static training windows work by

setting aside a subset of the data, training the model on that subset, and then using

that model to predict the response variable for the remainder of the data. In the

case of weather data, a static window tends to work best with large amounts of data

spanning at least a year, since many climatological parameters cycle on a seasonal

or annual time scale. Static windows are very simple to use, and the models never

need to be retrained. Sliding training windows, on the other hand, use only the

most recent data when predicting a given response data point. For a given training

window size, n, a model is retrained for each individual data point (for a specific day

and time) to be predicted, using only the n most recent observations (or days, in the

case of the models presented here) for that point in the training set. This results in a

custom model for each separate data point. Sliding windows tend to work well with

meteorological data when the windows are small, since there is a tendency for the
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present weather to resemble the recent past weather. For issuing predictions on large

amounts of data, the model has to be retrained for each individual data point. This

is extremely time consuming, especially when the models become more complex and

more computationally intensive to run.

Figure 3.1 shows the CRPS and MAE for the three models as a function of training

window size for both static and sliding windows. Shown here are the plots for a

72-hour lead time. The behavior of the curves is similar for all other lead times,

but the values differ as expected: lower errors for shorter lead times and higher

errors for longer lead times. In the case of static training windows, the model errors

do not settle into any sort of pattern until the training window reaches a size of

200 observations (corresponding to 200 days). After 200 observations, the model

errors stay fairly stable for increasing window sizes. The plot of the sliding training

windows has several distinct differences when compared to the static training plot.

The models do not behave erratically for even very small training windows. The

smallest window tested here is 25 observations—25 days using daily predictions for

one specific lead-time—and the errors are relatively low and lack the erratic behavior

seen in the small static training windows. The errors of the three models are grouped

very closely, regardless of training window size, but there is a subtle minimum value

for windows of around 600 observations (600 days). Although not all lead times

are plotted here, the 600-observation minimum is consistent across lead times. For

the dataset under evaluation, I show that a sliding training window of 600 days
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results in the smallest prediction errors on average. The relatively flat CRPS curve

for these models demonstrates the extent to which these models are generalizable.

With a sliding training window, the models can accurately predict maximum value

wind speeds even in areas where data collection has only been ongoing for a couple of

months. The predictive errors are less than 2 meters/second on average for predictions

up to three days in the future and close to 1 meter/second on average for day-ahead

predictions.

For all lead times, the dashed lines representing the MAE values lie above the

solid lines representing the CRPS values. Issuing the predictions as probabilistic

distributions, instead of deterministic point predictions, improves the overall value

of the information provided in the prediction. The probabilistic predictions are able

to convey more information regarding the uncertainty of each prediction, and this

additional information results in lower overall errors and greater value when predicting

the maximum-value wind speed.

I have identified three different models that all perform well for predicting max-

imum value wind speeds in time intervals stretching out to five days. The specific

model performance depends on the training method and training window size, and

the strength of this dependence depends on model type. In general, if large amounts

of data are available, a training window of 600 days of observations will outperform

other window sizes, both for static and sliding windows. The errors, as measured by

the CRPS, are shown in Figure 3.2 for a training window of 600 observations (600
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(a) static
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(b) sliding

Figure 3.1: A comparison of maximum wind speed prediction errors for static 3.1(a)
and sliding 3.1(b) training windows for the three models, shown with a lead time of
72 hours. The shape and behavior of the curves is consistent across lead times, but
the values will differ. One observation equates to one day of training data, with one
point per lead time per day.
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days) for all models. It should be noted that the spike in the CRPS for the linear

model with a lead time of zero is a result of a discrepancy in the dataset. The input

forecast data does not include the 10-meter gust parameter for the zero-hour forecasts.

This causes the higher-than-expected error, since the linear model would otherwise

be heavily dependent on the gust parameter for issuing accurate predictions.

For both static and sliding training methods, the models outperform traditional

baseline forecasting methods for large training windows (greater than 200 days.) The

baselines used for comparison are climatology and persistence forecasts. Using cli-

matology as a means of predicting the future is done by looking at the historical

distribution of the parameter of interest, and making the assumption that the future

will mirror the past. In our case, the climatology forecast, which is used as a base-

line, requires the assumption that the distribution of maximum wind speed for each

future time period being predicted will match that of the historical distribution of

maximum wind speeds for our chosen location. This is an extremely simplistic means

of prediction as it ignores any hourly, daily, or seasonal variation, but it does serves

as a useful point of comparison because of its simplicity. The persistence forecast

is another simple prediction tool that is often used as a baseline for comparison. A

persistence forecast assumes that the conditions in the future will be the same as the

conditions at the present moment, i.e. the maximum wind speed that is observed now

is the prediction for the maximum wind speed in the next time period. Persistence

forecasts are often very accurate in the very short term (a few hours or less), but the
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(b) a closer look at the model errors

Figure 3.2: CRPS across all lead times of models trained with 600 observations
(600 days) shown with baseline measures (climatology and persistence) in 3.2(a).
Figure 3.2(b) gives a closer look at the individual model errors, again for all lead
times and with a 600-observation (600 day) training window. Note the different
y-axis values.

errors tend to become high when trying to predict values even one day in the future.

For the case of comparison presented here, the persistence forecast is gathered for

each separate five-day issued ECMWF forecast. I take the maximum wind speed

observed at the time that the forecast is issued and use that value as the persistence

prediction of the maximum wind speed for each time period during the following five

days.

All three of the models presented here outperform the two baseline comparisons,

climatology and persistence forecasting, for training windows of 600 observations

(600 days). Not shown are plots for smaller training windows, but the models all
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outperform the baseline measures for training windows larger than 200 observations

(200 days) for both static and sliding windows. The linear model, which is the

most consistently behaved for the range of training window sizes, outperforms both

baseline measures when using sliding training for all window sizes tested. Even with

50 observations (50 days) and 5-day lead times, the linear model trained with sliding

windows results in a lower CRPS than both the climatology and persistence forecasts.

In fact, a small sliding window outperforms the baseline measures for all three models.

In the case of static windows, however, the training window size becomes significant.

Small, static training windows (i.e. 100 days or less) are not reliable; errors are

especially erratic for the GAM and MARS, and they are higher than the climatology

forecast at certain lead times.

The simplicity of a linear model makes it much more resilient when it comes to

changes in training methods or training window sizes. The GAM and MARS models

are slightly more complex, and the higher degree of model complexity results in poor

performance when the models are developed using very little data (100 days or less),

and they end up being highly specific to the training data and not as generalizable

as a simple linear model when applied to the unknown test data. For the most part,

the sliding errors are lower than the static errors for each model. The GAM with a

sliding window of 600 observations (600 days) has the lowest errors over the most lead

times. For this reason, the GAM model will be used to demonstrate the predictive

performance in the following section.
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3.4.2 Prediction Performance

Two sample prediction plots are shown in Figures 3.3 and 3.4. Both have been

plotted using the GAM with a sliding window of 600 observations (600 days), meaning

that for each lead time, the previous 600 observations that came prior to the start

of the period for which the prediction is being issued were used to train the models.

It should be noted that in actuality, the training window size varies slightly due

to occasional missing data in the dataset of measured values. Depending on the

forecast period, training windows nominally set for 600 observations usually ended

up containing between 545 and 595 observations. Figure 3.3 plots the probabilistic

forecasts issued by the GAM for a randomly selected five-day period in April 2013.

The shaded areas depict the 10-90% probabilistic predictions for each three-hour

time interval. In this instance, the 10-90% prediction interval encapsulates all of

the actual measured values for maximum wind speed. The spread of the 10-90%

prediction interval varies over time, and the variance tends to increase as the lead-

time of the prediction increases. Intuitively, this makes sense as predictions should

be more accurate for smaller lead times, since the very near future is more likely to

resemble most recent past data available than periods further out will.

Figure 3.4 shows another set of GAM predictions with a nominal 600-observation

(600-day) sliding training window, but this prediction interval was chosen specifically

because it includes the highest observed maximum wind speed value in the entire

dataset that I am working with. This was done to test the predictive skill of our
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Figure 3.3: Probabilistic GAM predictions for the five-day period starting on 4 April,
2013 at 00 UTC. The shaded grey regions represent the 10–90% prediction intervals
for each prediction. Also shown are the actual observations for both maximum and
mean value winds for each time period.
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Figure 3.4: Probabilistic GAM predictions for the five-day period starting on 4 Jan-
uary, 2012 at 00 UTC. The shaded grey regions represent the 10–90% prediction
intervals for each prediction. Also shown are the actual observations for both maxi-
mum and mean value winds for each time period. This interval contains the highest
maximum wind speed observed in the available dataset.

models for the most extreme cases and to verify that they still maintained a reasonable

level of accuracy far out into the tail of the distribution. For reference, the highest

observed maximum-value wind speed is 40.52 meters per second, the median value for

maximum wind is 12.61 meters per second, and the 99th percentile is 28.50 meters

per second. For the extreme wind values in Figure 3.4, the 10-90% prediction interval

misses only three of the peak values in the actual wind curve. The general shape of

the predictions follows the curve of the actual data well, and only three data points, or

7.3% of the measured data, fall outside of the 10-90% prediction interval. Our models

show that the prediction accuracy still holds for the most extreme wind values.
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Instead of looking at individual five-day forecasts, I can assess the overall perfor-

mance of the models by looking at their calibration, or reliability. Figure 3.5 shows a

reliability diagram for the predictive performance of the GAM at two different lead

times. With a large enough sample size, such as the one analyzed here, the reliability

of the predictions can be estimated accurately. While most of the literature on relia-

bility diagrams is applied to ensemble forecasts or binary events, the same principle

can be applied here, where I have a parametric distribution for the predictions.95,96

For the reliability diagrams in Figure 3.5, the x-axis represents probability intervals

of the density distribution for the predicted values of maximum-wind. The y-axis

measures the frequency with which the actual maximum-wind values fall below the

associated predicted interval on the x-axis (i.e. what percentage of actual values cor-

respond to the matching percentage of predictions). For perfect forecasts, the points

lie along the diagonal, as shown by the dashed line.

There is a recognizable bias in the reliability plot for a 24-hour lead time. The

prediction intervals capture a smaller portion of the true data than they ideally should.

This bias likely stems from the parametric assumptions made throughout. The bias

is significantly reduced for longer lead times, as seen in 3.5(b). The variance of the

predicted distribution grows with increasing lead time, since there is more expected

variability in predictions that are made further in advance. As shown, this results

in a more reliable forecast for a lead time of 120 hours than for a lead time of 24

hours. The bias shown in the diagrams is present, but minimal for longer lead times.
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Figure 3.5: Reliability diagram of GAM predictions for 24-hour 3.5(a) and 120-hour
3.5(b) lead times. These plot the frequency with which the actual maximum wind
values fall below a given prediction quantile.

The models capture the expected behavior of the maximum-wind speeds well, but

the accuracy of the predictions varies with lead time.

3.4.3 Variable Importance

The three models each include a set of covariates, made up of meteorological

parameters, that were used in training the models and issuing predictions for new

observations. The covariates in each model were chosen based on a variable selection

process to minimize errors in model fit and predictive accuracy. The linear model

makes use of the following forecasted values: wind velocities at 10 and 100 meter

heights, the gust wind velocity at 10 meters, and CAPE. The gust speed is expected
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to be especially important here, since I am predicting maximum wind speeds, which

are more similar to gust speeds than to the average wind speeds given by the other

forecasted values. In addition, gust wind forecasts have been previously shown to

be significant when predicting extreme weather events.80 CAPE is a measure of

atmospheric instability and can be useful in predicting severe weather. The GAM

also includes the Charnock parameter. This is a rough equivalent to a measure of

surface roughness specific to offshore conditions, and it is used to characterize the

near-surface wind speeds over water. The inclusion of Charnock as a covariate can

show the influence of roughness if it is present in the data.97,98 Finally, the MARS

model adds two more covariates: mean sea-level pressure and temperature at 2 meters.

These standard meteorological measures give the MARS model more to work with.

The model does not necessarily use all of the variables available; it performs variable

selection during the fitting process in order to select the best combination of variables

which result in the lowest GCV (generalized cross validation) score. This allows the

model to use only those variables that help to improve the performance for each lead

time, and the remaining variables are left out.

As discussed previously, the models are re-trained for each lead-time and training

window. This results in different models with different levels of variable importance,

and the importance is calculated differently based on model type. For the linear

model, the importance is taken as the absolute value of the t-statistic for each vari-

able. For the GAM, it is calculated using the log of the p-values. The MARS model
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(a) Linear Model
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(c) MARS

Figure 3.6: Variable importance, as measured relative to other variables in each
model, plotted against lead time for linear 3.6(a), GAM 3.6(b), and MARS 3.6(c)
models.
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calculates the total reduction in GCV error for each individual variable. Figure 3.6

shows the variable influence plotted against lead-times for each of the three models.

The parameter plotted is the importance of each variable in model fit, not in predic-

tion. There is a general decreasing pattern for the linear model and GAM as lead time

increases. This is because predictions become less accurate at longer lead times, and

the individual covariates do not contribute as much to error reduction. The MARS

model calculates importance quite differently than the linear model or GAM, and the

decreasing pattern does not show up for this reason. The MARS model can choose

to exclude variables in each formulation, and Figure 3.6(c) shows that this exclusion

occurs regularly for some variables, such as CAPE and MSLP. The 10-meter gust

variable is the most important overall for all of the models, especially at shorter lead-

times. Even with the MARS, the gust variable was of maximum importance in all

but two lead times.

3.5 Conclusion

The need for high-wind forecasts in offshore environments is clear; turbine safety,

worker safety, and efficient power grid operations all stand to benefit greatly from

accurate short- and medium-range forecasts of maximum winds, in addition to the

established practice of forecasting mean wind speeds. A probabilistic prediction of

maximum winds will help to fill in a portion of the knowledge gap regarding the
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inherent variability and uncertainty of wind. I show that this can be done with a high

degree of accuracy using relatively simple models. Three different types of models

— a linear model, a GAM, and a MARS model — perform very well for predicting

maximum wind speeds, and they are also able to convey the intrinsic variability of

the predictions by describing the full parametric distribution around the expected

value of maximum wind speed. The choice of the ‘best’ model depends greatly on the

conditions used, available data, and the level of simplicity desired by the user. The

CRPS (prediction errors) for the three models are low, but the values do depend on

training method and lead-time. Our models achieve errors of less than 1 meter per

second at lead times of six hours; even for lead times of five days, the errors are as

low as 2.31 meters per second. For short-term planning of offshore operations, errors

of this level are small enough to accurately inform decision-makers and to ensure

operational safety of structures, components, and workers. Day-ahead predictions

are essential for power system operation decisions, and predictions on the order of

several days would be useful in the planning of maintenance or construction projects,

whether for wind farms or other offshore operations.

I recognize the weakness of the prediction reliability for shorter lead times. The

bias introduced is a function of the parametric assumptions made throughout the

modeling process. Although the normal assumption is reasonable, it introduces biases.

These biases could potentially be reduced by using a different distribution or by not

assuming a parametric distribution at all and using non-parametric models. The lack
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of calibration would likely be improved, but the extent of improvement is not known.

Even with this bias, however, the models have great value. They offer accurate

predictions with an extremely high degree of simplicity. Our methods are highly

skilled and cheap to implement, both in terms of complexity and computational cost.

The simplicity presented here allows the methods to be adopted by a larger audience

of users, and I leave the alternative modeling techniques as an interesting avenue for

future work.

The model details associated with this finding are specific to the dataset used

here, but the techniques and methodology are highly generalizable. The ECMWF

forecasts provide high-quality data that allows us to accurately model the maximum

wind speed, which is not represented in the forecasts. However, the success of these

models, or any type of wind-forecast model, depends on the appropriate integration

of the predictions into the decision-making process. The information should be com-

municated early enough and often enough so as to allow planned operations and any

resulting dependencies to adapt. The cost savings realized by using such maximum-

wind predictions could be calculated for the various industries mentioned that stand

to benefit, but it is not assessed here. Such calculations would be interesting exten-

sions and are left for future work.

This research was originally published in Wind Energy .99
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Chapter 4

Assessing Power Output in

Non-Uniform Onshore Wind Farms

4.1 Introduction

Wind energy is a fast-growing segment of the energy sector worldwide, and as

wind starts to play a larger and larger role in our electricity systems, there is a

growing research interest in using it efficiently. Wind power is not a dispatchable

form of energy; it can not be turned on to a desired production level when needed,

and managing its variability and intermittency is the biggest challenge faced when

integrating it into the power system.100 Reducing the uncertainty present in wind

energy is highly beneficial. Knowledge of the amount of power that a wind farm

will produce in a given hour, day, or year will improve the way that the farm is
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operated and financed. In reality, perfect knowledge of future wind power production

is impossible. Recent research, however, has made great strides in estimating and

predicting these quantities. Power estimation and prediction is important for multiple

applications within the timeline of a wind energy project. In the initial planning

stages of a farm, an important first step is to develop accurate estimates of what the

wind conditions will be once the farm is built. This typically involves the installation

of meteorological towers (or met towers) for data collection. Once enough data has

been gathered, this information is used to determine the turbine layout and alignment

within the farm that will best capture the available energy. These initial estimates of

long-term expected wind conditions are used to then estimate the amount of power

produced over time. This, in turn, is used to asses the financial viability of a wind

farm, and small discrepancies can often make or break a new project. Thus, the

decision of farm design and resource assessment is critical for questions of financing,

as the return on investment is dependent on the ability of the wind farm to generate

enough energy to recoup costs and remain profitable.

On a much different time scale, wind power production estimates are also needed

for operational decisions, often looking at day-ahead production. These estimates are

needed for efficient and profitable market operations. In a typical system, a wind farm

operator will submit a bid for the energy they will provide in a given time period,

and these quantities are chosen based on forecasts of future wind speeds. A mismatch

between the forecasted wind and the actual wind can result in penalties, added costs,
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or lost revenue, as overproduction needs to be curtailed and underproduction requires

another generator to make up the difference.

The benefits of accurate wind power estimates are clear. Research advancements

have greatly improved these estimates for both time scales mentioned: long-term

planning of annual farm production and short-term operational decisions in a market

setting. The long-term planning analysis has spurred research into understanding

the interactions among turbines in a large farm, as this can be used to optimize the

placement and spacing of turbines within a farm. The wake from an operational wind

turbine results in lower wind speeds behind the blades, since some of the energy has

been extracted from the ambient flow. This will result in lower power production

for any other turbines sitting behind the leading turbine in its wake. Our ability to

model and characterize these wake effects can help when choosing a layout of turbines

that will result in the highest amount of power produced.

For short-term (i.e., day-ahead, for example) decisions, the goal of accurate power

estimates is the same, but the approach is typically different. Large-scale physical

models are used to forecast the wind conditions across the globe. These are generally

downscaled to provide a forecast for wind conditions at a much smaller regional or

local level. Wind speed is certainly the greatest determinant of wind power, but,

as noted above, turbine wake interactions complicate the simple translation of speed

to power. For this, the same wake models can be used to calculate the winds seen

throughout a farm given a certain known input condition, and this information can
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then be used to calculate the power produced by each turbine in the farm using the

power curve and each turbine’s unique input wind. Another approach involves the

use of statistical models or data-mining techniques. If a farm has been operational

long enough, there is, in theory, enough production data that can be used to train

models so that overall farm production can be accurately predicted for specific input

conditions.

Offshore wind farms have some strong advantages over onshore installations. The

winds are generally stronger and more consistent offshore, the ‘land’ area does not

typically have competing ownership, and offshore installations do not bother local

communities. (These latter two points do not necessarily apply in every situation,

and attempts at U.S. offshore wind development may tell the opposite story. In

general though, offshore sites avoid conflicting interests more than many onshore

installations.) In addition, turbine sizes and heights are increasing to capture more

energy and higher altitude winds, and finding acceptable onshore sites for such large

turbines is difficult due to constraints on proximity to communities and to other

turbines themselves. For these reasons, the large wind farms in the near future will

likely be built offshore, and much of the recent research has been focusing on offshore

applications as a result.

Several factors are very likely to differ when analyzing a wind farm that is offshore

instead of on. As noted, offshore sites see steadier wind. Onshore locations typically

have higher turbulence that results in more mixing and less dramatic wake losses.37
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Onshore farms also have the local geography to take into account. Complex terrain,

or terrain of any sort, can strongly influence the wind flow in a region. In addition,

offshore farms are often built with a uniform grid of turbines in evenly spaced rows and

columns. This is not always the case onshore where there are significant constraints

to turbine placement, such as roads, houses, hillsides, or protected lands. In theory,

the models used to analyze wind farms can easily be modified to account for these

factors. In practice, however, much of the research and model validation is done only

on offshore (and occationally very near-shore) farms.37,38,41,101 The model results

do not always match up with reality in onshore farms and therefore should be used

carefully so as not to promote false assumptions in the industry.

This chapter aims to take an analytical look at the performance of various model

types used to analyze wind farm power production. In contrast to much of the existing

research into wind farm wakes and turbine interactions, the models presented here

are applied to onshore farms that are not aligned in a uniform grid. The findings

show that validation done in offshore settings does not always maintain its accuracy

when applied in these contexts. I focus on the performance of a simple wake model

and compare it to other alternatives for estimating wind farm power production.

This work presents a comparative analysis of several very different techniques for

estimating wind farm power production. It is not meant to be a comprehensive study

of all available methods; there are many different wake decay models that could be

used in addition to or instead of the simple Jensen wake model employed here.36 I
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chose to use the Jensen model because of its simplicity and accuracy. There are a

number of studies that compare different types of wake models, and the Jensen model

has been found to perform well in a variety of settings.39,41 However, as mentioned

previously, the comparisons are most frequently conducted in offshore settings. This

research seeks to characterize the level of accuracy achieved for onshore wind farms

instead.

4.1.1 Background

Estimates of wind farm power production are needed for many types of planning

problems. Most power production estimates are used for short-term tasks such as

load scheduling and dispatching, and these are usually conducted for an individual

wind farm or a small group of farms within a region.102,103 There is a sizable body

of research on predicting power output for existing wind farms, and the methods are

varied.102,104 Generally, power forecasting models combine wind speed forecasts and

farm-specific data, such as turbine characteristics, farm layout, and past generation

data in order to generate power forecasts for that farm.

In practice, most of the work done on predictions for wind energy applications

has been focused on generating accurate wind speed forecasts. As a result, there

have been many advancements over the years in wind speed forecasting, both from a

physical and statistical standpoint.99,105,106 Many models focus on wind speed only,

as this is obviously the most important factor in determining the amount of wind
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power that will be produced. Other models take a wind speed forecast as input and

focus on improving the power estimate itself. See32 for an overview. Even with a

perfect wind speed forecast, translating from wind speed to wind power for an entire

farm is not as straightforward as many would like.

Despite the growing focus on wind speed predictions, the subsequent conversion

to wind power is often highly simplified. In fact, a lot of research does not distinguish

between forecasts for wind speed and power, and this is generally acceptable for

predictions regarding just one turbine.107 The power curve of an individual turbine

is well-understood and, for the most part, an accurate wind speed is the only piece

of information needed to then determine the power output. However, the process

is much more complex when dealing with an entire farm. Turbine wakes strongly

affect the wind, and therefore power, of downstream turbines. The wake effects also

depend on farm layout and wind direction.108 Despite this, practitioners still often

combine wind data with a single turbine power curve, that is then aggregated across

the entire wind farm. The performance of an entire farm can differ greatly based on

the wind conditions at a given time. The layout of the farm and the surrounding

terrain determine the manner in which wind flows across each turbine. This changes

with wind direction and wind speed, so the performance of a wind farm and the losses

associated with turbulent wind also then depend on these factors. With reliable wind

speed forecasts and detailed farm data, power estimates can be fairly accurate.109

In practice, the wind speeds seen by each individual turbine in a large wind farm
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are rarely known exactly. This is even more difficult when planning for a new farm

that does not yet exist. Turbine wake interactions and complex terrain (for onshore

farms) result in these differences in wind speeds seen at each turbine throughout a

farm. There has thus been a strong focus on advancing the modeling techniques

to better understand and represent the realities of fluid flow within a wind farm.

Even with an accurate forecast for wind speed, conversions from wind speed to power

are typically done by heuristics in practice, such as simply adding up the individual

power curves of each turbine and applying a penalty to account for wakes.110 Al-

though these estimates are far from perfect, they are still useful for many large-scale

planning decisions when simplicity is best. Farm power production estimates are also

used for longer-term planning, integration, and optimization problems.111,112 These

often involve planning for future wind farms, understanding potential power grid im-

pacts of additional wind, possible correlation among multiple farms, and transmission

expansion to incorporate untapped wind potential. These integration studies need

estimates of wind production for virtual wind farms, and these estimates use a lot of

simplifying assumptions about actual farm behavior. Often the turbines are aggre-

gated, despite the acknowledgement that deviations from the farm power curve are

common and can be caused by a number of factors.111 Therefore, accounting for some

of these factors can increase the accuracy of the farm-wide power estimation.

This farm-level power estimation is difficult to do in a large wind farm or when

planning for the production of a new wind farm. A site or a farm with met towers
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present can provide information on the wind at that particular location, but the

resulting power production depends on the turbine layout. There are many tools

available to help with choosing the layout of a wind farm. The goal of these tools is to

model the farm as it would exist in an operational setting. It is therefore important

to capture the wake effects of the turbines in the farm and the terrain effects of

surrounding geography. Many of these models rely on computational fluid dynamics

to model the fluid interactions with the turbines, but fast and simple analysis using

the Jensen model, for example, can often be accurate enough.

The Jensen model is a basic wake decay model that has become the standard base-

line in the research and industrial communities.36 It is based on a simple, geometric

calculation of the wake expansion behind a turbine and can be used to calculate the

velocity deficit relative to the freestream at any point behind the turbine. It has

been used as a point of comparison in countless experiments (sometimes referred to

as the Park or Jensen/Park model). See38–41 for a selection of examples where the

Jensen/Park model is used. There have been many advancements in wake modeling

that move beyond the Jensen model, especially as large eddy simulations of large tur-

bine arrays have become computationally feasible. However, the Jensen wake model

is still used with high degrees of accuracy in many cases.41 There are some known

weaknesses of the Jensen model due to its simplicity. The model focuses on individual

wakes and, for very large farms, this can result in an under-prediction of the wake

losses present.37 However, these findings have been tested in offshore settings and
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there may be other factors that complicate the application to onshore farms. Still,

the Jensen model serves as such a strong benchmark measure for comparison, and

this model will be used for the analysis of the wind farms presented here in order to

estimate the wake deficits, and therefore power production, within the farms.

4.2 Data

I have wind farm production data from two different onshore farms in the United

States. The details of the farms must remain anonymous, and they will be referred to

throughout as Farm 1 and Farm 2. Farm 1 is located in the south-central region of the

country and is made up of 100 turbines with a rotor diameter of 77 meters and a hub

height of 80 meters. The turbines have a cut-in wind speed of 3.5 m/s, a cut-out wind

speed of 25 m/s, and a rated wind speed of 14 m/s. Farm 1 sits in a relatively flat

geographical area in the midst of agricultural land. The turbine layout of Farm 1 can

be seen in Figure 4.1. Farm 2 is located in the north-central region of the country and

is made up of 140 turbines (of the same make and model as in Farm 1.) It also sits in

a flat geographical area in the midst of agricultural land. The turbine layout of Farm

2 can be seen in Figure 4.2. Both farms have two met towers installed, the locations

of which are also shown in Figures 4.1 and 4.2. Neither farm has a ’standard’ layout,

with turbines arranged in evenly spaced rows and columns, and the turbine spacing

varies quite significantly both across the farm and with varying wind direction. For

92



CHAPTER 4. ASSESSING POWER OUTPUT IN NON-UNIFORM ONSHORE
WIND FARMS

0 1 2 km

Met 1

Met 2

T1T2T3T4

T5T6
T7T8T9T10T11T12

T13T14T15T16T17T18T19T20
T21 T22

T23

T24

T25T26T27
T28T29

T30

T31
T32

T33T34

T35T36T37T38
T39

T40T41T42
T43

T44T45
T46T47T48T49T50T51

T52T53T54T55
T56T57

T58
T59

T60
T61T62T63T64

T65T66
T68T69

T70T71T72

T73T74T75
T76

T77T78

T79T80
T81T82

T83

T84
T85

T86

T87
T88

T89
T90

T91T92T93
T94T95T96

T97T98T99
T100

T67

0
30

60

90

120

150
180

210

240

270

300

330

Wind Speed (m/s)
0 - 4
4 - 8
8 - 12
12 - 16
16 - 20
20 - 24

Figure 4.1: Turbine layout and meteorological tower locations for Farm 1.

Farm 1, the minimal turbine spacing is approximately 3 turbine diameters. In Farm

2, the minimal spacing is approximately 3.6 turbine diameters.

The available data from Farm 1 runs from November 2010 through October 2013,

and the available data from Farm 2 runs from November 2010 through October 2014.

For turbine data for both farms includes 10-minute averaged power production, wind

speed (as measured on the nacelle), availability, and curtailment. The availability and
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Figure 4.2: Turbine layout and meteorological tower locations for Farm 2.
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curtailment data are 0-1 metrics representing the portion of the 10-minute period that

a turbine was either available or curtailed, respectively. The met tower data consists

of 10-minute averaged wind speed, wind direction, temperature, and, in the case of

Farm 2 only, air pressure.

The supporting analysis for this work is specific to the data used. The findings

represent these two wind farms only, although they are fairly representative of other

large onshore wind farms in the United States. Ideally, all results would be corrobo-

rated with more wind farm cases, but it is often difficult to gain access to production

data from wind farms and this is left as a future research area should more data

become available. A more comprehensive analysis would include many more farms in

a wide variety of sizes, locations, and layouts.

4.2.1 Data Quality

The data for both farms was cleaned and filtered based on several metrics. For

Farm 2, the met tower data was filtered to remove extreme datapoints (i.e., where

temperature or pressure values were outside of a normal range for the area) and

datapoints with very large disagreement between the two temperature readings within

the farm. In this case, the values were filtered according to historical measured data

at a nearby airport. Deviations larger than 10°C were removed. Additional filtering

was done based on the availability and curtailment data for both farms in order to

have as complete of a dataset as possible for accurate comparison to wake models.
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Ideally, only data in which availability equalled 1 and curtailment equaled 0 would be

used so that every turbine would be fully operational, as is the case in the model runs.

In reality, this limited the size of the dataset quite considerably and I instead chose

more lenient thresholds for filtering. The remaining data used for analysis contains

all of the data points in which all turbines have an availability value above 0.8 and a

curtailment value below 0.2, meaning that every turbine was available at least 80%

of the 10-minute interval and was curtailed no more than 20% of the interval. This

limits the viable data considerably, resulting in approximately 11,400 observations for

Farm 1 and 15,600 observations for Farm 2.

When working with real data, there is always the question of its accuracy. The

results of any analysis using the data are only meaningful if the data itself is trusted.

There are several possible sources of error in the available wind farm data. The met

towers could be out of calibration, either in wind speed or direction. The turbines

themselves could have sensors that are out of calibration, either for power or wind

speed. The data provider assured us that the power measurements were accurate.

This is, to the farm owner, the most important parameter and they have a strong

interest in ensuring its validity. However, the power data can also be checked against

the nacelle wind data, and vice versa. The wind data is measured behind the blades,

so it is not identical to the incoming wind seen by the turbine. However, it is safe

to assume that the drop in velocity through the blades remains consistent over time

for different wind speeds and that is also similar across turbines. Thus, a plot of the
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Figure 4.3: Turbine power is plotted as a function of the wind speed measured on the
turbine nacelle behind the blades for Turbine 2 in Farm 2. The turbine power curve
is overlaid.

individual turbine wind speed versus power should follow the manufacturer’s power

curve quite closely, but with a slight offset due to the wind measurement taken behind

the blades, as opposed to in front. Figure 4.3 shows this plotted for a single turbine

from Farm 2. The plots for all turbines in both farms are remarkably similar. It is

safe to conclude that the turbine data (power and wind) are accurate.

The wind direction as measured at the met towers can be checked against expected

farm performance metrics. For example, it is known that there will be reductions in

power production for a turbine sitting directly behind another turbine when the wind
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is aligned with the turbines. This can be used to check the calibration of the measured

wind direction. Figures 4.4 and 4.5 show the average power ratio of two adjacent

turbines as a function of wind direction in Farm 1 and Farm 2, respectively. When

the wind is aligned with an imaginary line connecting the two turbines, one would

expect to see a drop in the power (or wind) ratio. This often has a shape similar to a

bell curve as there is partial wake interaction as the wind direction moves away from

direct alignment. This dip in relative power does not occur at the expected measured

wind direction for either of the farms or either of the met tower measurements. For

Farm 1, both met towers seem to have a direction offset error in the measurements.

Further comparisons of turbines in Farm 1 confirm an offset at met tower 1 of +30°and

at met tower 2 of +22°. For Farm 2, further comparisons confirm an offset at met

tower 1 of -79°and at met tower 2 of -58°. The measured wind direction has been

corrected by these values for subsequent comparisons across models.

4.3 Implementing the Jensen Model

The Jensen model takes as input two parameters: the wake decay coefficient

and the thrust coefficient of the wind turbines. Use of the model when analyzing

a real wind farm, however, requires that certain assumptions be made. The Jensen

model can be used to calculate the velocity deficits in the turbine wakes, and this

calculation is based on steady-state wind. For one constant wind direction, the deficits
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Figure 4.4: Relative power of turbine 2 compared to turbine 1 as a function of mea-
sured wind direction at met tower 2 in Farm 1. The turbines are aligned at an angle
of 105°, and the expected drop in power should occur at this wind direction. In
fact, we can see that the actual drop occurs at approximately 83°, so the direction
measurement is too high by 22°for met tower 2.
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Figure 4.5: Relative power of turbine 140 compared to turbine 139 as a function of
measured wind direction at met tower 1 in Farm 2. The turbines are aligned at an
angle of 353°, and the expected drop in power should occur at this wind direction.
In fact, we can see that the actual drop occurs at approximately 73°, so the direction
measurement is too high by 281°(or too low by 79°) for met tower 1.

100



CHAPTER 4. ASSESSING POWER OUTPUT IN NON-UNIFORM ONSHORE
WIND FARMS

are calculated as a snapshot in time. Thus, the Jensen model is best suited for large

scale resource assessment and is not the best option for evaluating real-time or rapidly

changing wind power production. For the cases presented here, the data exists as 10-

minute averages and, for some of the analysis, has been filtered to represent only

conditions that are as close to steady-state as possible by using only the datapoints

where both met towers in the farm agree in the measured wind direction. The Jensen

model should work well under these limitations and can be used for farm power

production estimates.

The Jensen model determines the effect that a turbine wake will have on a down-

stream turbine. The wake velocity deficit at a downstream turbine relative to the

velocity seen by an upstream turbine is determined by

δV =
1−

√
1− CT

(1 + 2kx)2

(
Ao

A

)

where CT is the turbine thrust coefficient, k is the wake decay coefficient, and x

is the downstream distance at which the deficit is measured. For a turbine that sees

only a partial wake from an upstream turbine, a correction is applied based on the

fractional area of overlap, Ao and the swept rotor area A. For a large wind farm

with multiple turbines, the deficit seen by any one turbine is a combination of all

of the upstream wakes that interact with that turbine. This results in the following

formulation that gives the overall velocity deficit as a result of the superposition of

multiple upstream wakes as given by Katic et al.113
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u

u0

= 1−
√∑

j∈J

(δVj)
2

where J is the set of upstream turbines with wakes impacting a given downstream

turbine. The choice of the parameter k determines the rate at which the wake decays

behind a turbine, and it is dependent on the ambient turbulence, turbine-induced

turbulence, and atmospheric stability. The choice of k should depend on the at-

mospheric stability, and this has been shown to have a strong influence on wake

behavior.101 Namely, stable conditions result in a slower wake recovery and therefore

larger velocity deficits at downstream turbines. There is some consensus on a value of

0.075 for onshore applications and lower values (i.e., 0.04 or 0.05) for offshore appli-

cations to reflect the lower turbulence generally found offshore or near-shore.114 The

thrust coefficient, CT , comes in the form of a turbine-specific curve that is a function

of incoming wind velocity. A typical curve has the highest CT value at low wind

speeds (i.e., CT = 0.9 for winds 5 m/s) and then drops off as wind speed increases

(i.e., to a value of 0.2 above 20 m/s.)

With set values of k and CT , the velocity deficits can be evaluated at each turbine

in a farm for a given wind direction and compared to the actual data averaged over

that same wind direction. The difference between the actual data and the Jensen

deficit calculations for a wind direction of 180°are shown in Figures 4.6 and 4.7 for

Farm 1 and Farm 2, respectively. The Jensen models used here were run with k =

0.075 and CT = 8/9. These actuals are calculated using a subset of the farm data that
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should, in theory, most closely resemble the conditions used in the Jensen model. The

farm data has been subset into only those datapoints with wind directions that fall

between 180°±5°for both met towers. Since the two towers are spaced fairly far apart

in both farms, agreement in the wind direction measurements indicates a relatively

steady wind direction which should be consistent across all turbines in the farm.

Even with the actual data reduced to the ’best’ cases, there is a large discrepancy

between the Jensen wind speeds and the actual data for both farms. The leading

turbines in the Jensen plots all have a normalized velocity equal to 1, by definition.

The turbines further back in the farm see lower velocities as the wakes from upstream

turbines show their influence. In the actual farm data, however, the results deviate

significantly from what is expected. Instead of seeing a trend toward lower wind

speeds at the back of the farm in Farm 1, some of the rear turbines have much higher

speeds than expected. Although most of the turbines have fairly small deficit errors,

Farm 1 tends to have higher actuals than the Jensen model predicts while Farm 2

tend to have lower actuals.

There is not enough data to determine the exact cause of the mismatch between

the Jensen-model predictions and the actual farm data. High turbulence or atmo-

spheric instability are likely at play, although the extent of their influence is not

known. The farms are quite large, spanning more than 6 kilometers in some direc-

tions. Two measurement points (i.e., the two met towers) may simply not be enough

to provide information on the conditions present throughout the entire farm. The
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Figure 4.6: The difference between the actual data and the Jensen model estimates
for wind velocity deficit relative to leading turbines for Farm 1. The wind direction
is from the south (180°) and the wind speed deficit is relative to the leading turbines
on the south side of the farm. The plot shows the actual data minus the Jensen
estimates, so positive values are underestimates of the actual wind speeds whereas
negative values are overestimates.
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Figure 4.7: The difference between the actual data and the Jensen model estimates
for wind velocity deficit relative to leading turbines for Farm 2. The wind direction
is from the south (180°) and the wind speed deficit is relative to the leading turbines
on the south side of the farm. The plot shows the actual data minus the Jensen
estimates, so positive values are underestimates of the actual wind speeds whereas
negative values are overestimates.
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surrounding areas of both farms are flat and homogeneous by many standards, but

small deviations could result in different conditions far from the met towers that

would not show up in the available data. As given, the Jensen model does not cap-

ture the dynamics of these two farms and results in significant errors for production

estimation using the given data.

This mismatch can be partially explained by the complex wake structure and prop-

agation that is likely present in the farms. For the case of Farm 1, another study has

measured these flow structures using Doppler radar, and the wake structures present

are driven by short-term wind transients and terrain features.115 This behavior has

been shown to result in high momentum channels throughout the farm, and these

channels could explain the discrepancies between the actual data observed and the

expected behavior of the Jensen model. Turbines exposed to these higher-speed chan-

nels further back in the farm produce more power than otherwise would be expected,

and in some cases they produce more than the leading turbines in the farm.115 This

phenomena is observed in the actual data from Farm 1.

The Jensen model can also be used to look at some standard benchmarking per-

formance measures for wind farms. In a limited context, I can evaluate whether

the Jensen model is capturing the localized effects expected in a wind farm. In

closely-spaced lines of turbines, the wind speed typically drops off significantly after

the leading turbine and may sustain smaller decreases in the downstream turbines.37

This behavior is also predicted by the Jensen model and is expected to be seen in any
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Figure 4.8: Comparison of wind velocity along a line of turbines. Shown here are
the wind speeds (relative to Turbine 1) for Turbines 1-4 in Farm 1 when the wind is
aligned with the line of turbines ±2°. The Jensen model shows the expected drop in
wind speeds behind each turbine, and the actual farm data shows similar behavior
on average, even if there is a large spread in the data. The standard errors for the
relative power of turbines 2, 3, and 4 are 0.071, 0.084, and 0.084, respectively.

line of turbines subjected to oncoming winds parallel to the line. Figure 4.8 shows

the comparison of the expected behavior of the Jensen model and the actual farm

data. There are not many datapoints for this particular wind direction ( 105°), but

there are enough to show that the wind farm does behave as expected in a limited

setting with simple turbine interactions.

4.3.1 Relevance of Wake Models

Wake models such as the Jensen model are appropriate in cases where turbines in

a farm are spaced closely enough so that the wakes from leading turbines do interact

with downstream turbines. The exact distance at which a wake ceases to impact
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downstream turbines depends on the turbine size, the amount of turbulence in the

surrounding flow, and any characteristics interfering with the flow, such as terrain

features. At a minimum, it has been found that a wake can propagate for a distance

of 8-10 rotor diameters, and this distance can be even longer if the turbulence is low.116

Optimal turbine spacing, taking into account both wake effects and the economic cost

of increased spacing, may be closer to 15-25 rotor diameters in some settings.108 In

the case of Farm 1, empirical evidence has shown wake effects propagating more than

15 diameters downstream under certain flow conditions.115 Thus, it is reasonable to

expect wake effects to be present in these two farms for spacings of 15 diameters, and

the effects are expected to be substantial for spacings less than 10 diameters.

Figures 4.9 and 4.10 show the distribution of minimum spacing for the turbines

in Farm 1 and 2, respectively. These plots incorporate the farm layout throughout

the entire dataset, i.e., I have calculated the minimum upstream turbine distance for

any turbines sitting within a 15°cone of potential influence. This upstream distance

obviously varies with wind direction, but these figures capture the frequency for which

any turbines see a certain level of upstream spacing in the dataset based on the actual

observed wind directions. For each farm, a significant portion of upstream turbine

spacing falls below 15 rotor diameters. For Farm 1, 26% of turbine datapoints have a

minimum spacing of less than 15 diameters. For Farm 2, that number jumps to 60%,

with almost 32% of datapoints at 10 diameters or less. These two wind farms should

be good candidates for wake-effect models. The direction-dependent spacing in the
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Figure 4.9: Minimum upstream turbine spacing for Farm 1

farms is low enough that significant wake effects are expected.

4.3.2 Choice of Wake Decay and Thrust Coeffi-

cients

There is no data on the levels of turbulence or atmospheric stability in either Farm

1 or Farm 2, and the best guess for the value of k, the wake decay coefficient for use in

the Jensen model implementation, is therefore the industry-standard value for onshore

farms of 0.075. The exact thrust coefficient curve is also unknown for these turbines,
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Figure 4.10: Minimum upstream turbine spacing for Farm 2
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but again, an initial guess was used for the previous comparison. Initial tests of the

Jensen model with these ’best-guess’ parameter values led to poor representation of

the actual farm behavior. Therefore, I decided to perform a sensitivity analysis on

the choice of the k and CT parameters.

Here, k is varied between 0.01 and 0.1, in increments of 0.01, and CT is varied

between 0.2 and 0.9 in increments of 0.1 to represent a wide range of plausible values

for both parameters. The calculated velocity deficits were then used to predict the

power output of each turbine, and the sum of turbine predictions was compared to

the actual results for the farm power production. The predictions were also compared

for different wind speed values to account for the variation of CT with wind speed.

Data was separated into three bins of either low (< 5 m/s), medium (5− 10 m/s), or

high (> 10 m/s) wind speed and prediction errors (in terms of mean absolute error

and root-mean squared error) were calculated separately for each. The prediction

error results from this sensitivity analysis can be seen in Figures 4.11 and 4.12 for

Farm 1 and 2, respectively.
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Figure 4.11: Mean absolute error (MAE) and root-mean squared error (RMSE) for Farm 1 power production as a
function of k (y-axis) and CT (x-axis) calculated using velocity data from met tower 1
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Figure 4.12: Mean absolute error (MAE) and root-mean squared error (RMSE) for Farm 2 power production as a
function of k (y-axis) and CT (x-axis) calculated using velocity data from met tower 1
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The mismatch between the Jensen model and the actual data was high for the

initial ’best-guess’ values for k and CT , and it intuitively follows that a reduction in

prediction error would drive the values away from these initial guesses. The lowest

errors occur on the extreme ends of the tested ranges, and these end values are at

the very edge of what could reasonably be expected in a real wind farm. The Jensen

model simply fails to capture the true wind dynamics present, even when accounting

for the possibility of extreme turbulence or unrealistically low thrust coefficients.

The one exception is the case of Farm 2 at high wind speeds. The lowest errors

for this particular case occur across a band of low wake decay coefficients and mid-

high thrust coefficients. High wind speeds are generally associated with increased

atmospheric stability and therefore decreased turbulence, and the model may be

capturing this relationship. However, thrust coefficient values are typically lower at

high wind speeds, so the trend towards higher CT values is counterintuitive.

Overall, the errors are lower for higher wind speeds. This in an artifact of the

shape of a turbine power curve, since the steepest part of the curve lies in the medium-

range wind speeds of 5− 10 m/s. Here, small errors in wind speed result in relatively

large errors in power production. At higher wind speeds, where the power curve

flattens out, the same small error in wind speed results in only a marginal error in

power due to this flattened curve.
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4.4 Alternative Methods for Power Pre-

diction

The Jensen model fails to capture the true dynamics of either Farm 1 or Farm 2

when it comes to wind speed deficits and farm power production. It cannot be used as

an accurate tool for either resource assessment or power prediction for the case studies

presented here. There are alternatives to wake models for both resource assessment

and power prediction, and I compare the accuracy of these other methods. Statistical

models have been used for short-term wind power forecasting as well as wind farm

production characterization (i.e., such as developing a farm-level power curve109). For

resource assessment alone, the National Renewable Energy Laboratory (NREL) has

developed a database of potential wind farm sites and offers virtual production data

from each one. This data will also be used as a point of comparison for estimating

power production from the two wind farms. Details of each of these methods are

presented in the following sections.

4.4.1 Statistical Models

Statistical models have several advantages over wake-based modeling techniques.

There is no need for explicit information about the physical details of the farm, at-

mosphere, surface roughness, or turbulence in a statistical model. If this information

is not known outright, the relationships are intrinsically captured in the existing data

115



CHAPTER 4. ASSESSING POWER OUTPUT IN NON-UNIFORM ONSHORE
WIND FARMS

when training the model. A model trained on Farm 1, for example, will have assump-

tions about the relationships in the data already built in, and they then are used

when making predictions for Farm 1.

Initial testing was performed using a number of different statistical models. Gener-

alized Linear Models (GLM), Generalized Additive Models (GAM), Random Forests,

and Multivariate Adaptive Regression Splines (MARS) were initially tested for their

predictive accuracy. For the wind farm datasets, the nonparametric models (Random

Forest and MARS) resulted in much lower errors than the parametric models tested

(GLM and GAM). From here, I further tested just these two model types, comparing

their performance under different training conditions and testing across a varying

number of trees in the case of the Random Forest model. While the two model types

both performed well, the Random Forest model (implemented in R using the package

RandomForest57,117) consistently outperformed the others. For each farm, several

versions of a Random Forest model were created, both on the turbine level and the

farm level. For the turbine level, a separate model was created for each individual

turbine in the wind farm. This was done in one of two ways: 1) training the model

using only data from the met towers or 2) using the met tower data along with tur-

bine layout data. These are denoted Tmet and Tlayout respectively in Tables 4.2 and

4.3. The met tower data consisted of wind speed, direction, and temperature. The

layout data for each turbine was made up of the streamwise distance and angle rela-

tive to any upstream turbines within a symmetric 30°cone pointing upstream. These
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Table 4.1: Summary statistics for the statistical model input data

Minimum Median Mean Maximum

Farm 1

Wind Speed 0.8 9.0 9.0 21.1
Wind Direction 0.0 191.1 187.2 360.0

Temperature -14.4 19.1 18.3 43.1
Minimum Turbine Spacing 2.9 18.5 19.8 121.4

Farm 2

Wind Speed 1.7 7.8 8.1 21.4
Wind Direction 0.0 196.1 185.3 360.0

Temperature -18.7 7 8.7 35.6
Minimum Turbine Spacing 3.3 13.0 15.5 139.2

data values change with wind direction, and the resulting information is used in the

statistical model as a proxy for possible wake interactions present at a given turbine.

Models that incorporated seasonal and diurnal effects were also tested, but the re-

sulting errors were higher in some cases and marginal at best in others, with changes

in mean absolute error ranging from a 7% increase to a 0.4% decrease, and they are

not presented here. Summary statistics for the data used in the statistical models

is shown in Table 4.1. All upstream turbine distances were included, but only the

minimum is shown here as it is the most critical distance parameter for wake effects.

The farm level models were also implemented in one of two ways: 1) training the

model on Farm 1(2) using met tower data to predict Farm 1(2) power production or

2) training the model on Farm 1(2) using met tower data to predict Farm 2(1) power

production. For the models trained using the same farm data, a holdout analysis was

also performed to assess the consistency of the results. The training sample is drawn

randomly in each case, using 70% of the available data to predict the remaining 30% of

the observations. For the models used to predict the opposite farm, this was not done
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as the entire dataset was used for training in order to predict for the entire dataset of

the alternate farm. The models trained on one farm and used to predict the other are

expected to perform poorly compared to the other training methods. The intrinsic

information that is captured when training the model does not necessarily (and in

this case, is likely not to) apply to the other farm. Specific relationships between

wind direction differences and farm power could imply a certain level of turbulence

in one farm that affects power production. That may not be the case in the other

farm, and farm-level power curves have been found to be specific to an individual

farm.109 Nevertheless, if such a model can provide a reasonable degree of accuracy,

this technique can go a long way towards assessing wind production for farms that

may not even exist yet.

4.4.2 NREL Wind Integration National Dataset

NREL provides an open-source database of potential wind sites that can be used

for resource assessment, planning, and integration studies. The dataset consists of

112,471 onshore grid cells that contain up to 8 virtual turbines each. Each turbine

is assumed to be a 2MW machine with a 100-meter hub-height. The power curve

used in each grid cell is dependent on the assessed wind class, and each class power

curve is made up of a number of representative manufacturer power curves for similar

turbines.110 The power production of each grid cell is estimated using the appropriate

power curve and the wind speeds resulting from reanalysis of meteorological conditions
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using a Weather Research and Forecasting (WRF) model to provide 2km by 2km

resolution on a 5-minute scale. Instead of explicitly modeling wake effects for the

virtual farms, a correction is applied to reduce the wind speed in order to account for

the presence of wakes. The power curve is then applied based on these new, corrected

wind speeds. The correction is applied as follows

Cwake = 1− 1

20

(
nturbines − 1

7

)

where nturbines is the number of turbines in the grid cell. With a maximum number

of 8, the wake reduction is no more than 5%. This correction, Cwake, is then multiplied

by the met data wind speed to get the corrected grid cell wind speed for all turbines

in the farm.

The dataset includes multiple grid cells within the areas of both Farm 1 and

Farm 2. For the most accurate comparison between the actual data and the NREL

dataset, I chose the individual grid cells located closest to the two met towers in each

of the farms. The two sites in Farm 1 closest to met towers 1 and 2 contain 6 and

8 turbines, respectively, and use the power curve for class 1 winds. The two sites

in Farm 2 closest to met towers 1 and 2 contain 8 turbines each and use the power

curve for class 3 winds. The power data from these grid cells are normalized based

on total grid capacity and then used as the ’predictions’ for comparison to the actual

farm data. The predictions are used individually from each met tower site and as an

average of the two grid cells’ production in each farm, so as to include wind conditions
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from locations spread across the area of the farms.

4.4.3 Aggregated Power Curves

If wakes are ignored, it can be assumed that the wind measured at one point in

the farm is the same as that seen elsewhere in the farm. Therefore, a farm-wide power

prediction can be made using no model at all, but by simply aggregating the individual

power curves across the farm using met tower wind data. For these predictions, it

was assumed that the wind seen by each turbine in the farm was the same as that

measured at a given met tower. This wind speed was then translated into power

using the turbine power curve and this power value is multiplied by the number of

turbines to get the farm-level power. This was done using both met tower 1 and 2

data separately, and then using the mean value predicted from both. This aggregated

method is the simplest to implement. There are no assumptions or corrections made

about the wake effects in the farm. The farm layout does not matter at all; only

the number of turbines. In theory, this method should result in an over-prediction of

power production, since wake effects are ignored.

4.5 Prediction Errors

Predictions for the total farm power production were made using each of the

methods previously mentioned. All predictions were normalized based on the installed
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farm capacity so that the errors can be compared across farms and across methods.

The results of the model comparison for Farm 1 are shown in Table 4.2 and for Farm 2

in Table 4.3. The tables show the mean absolute error (MAE) and root mean squared

error (RMSE) for statistical models, Jensen wake models, aggregated predictions (i.e.,

no model), and the NREL dataset predictions. All predictions have been normalized

by total capacity, so the errors are in the units of normalized capacity as well. As

mentioned previously, a holdout analysis was performed for some of the statistical

model cases where applicable. For these, the errors reported in Tables 4.2 and 4.3

represent the mean value across all holdouts and the number shown in parenthesis is

the standard error across all holdouts. There is very little variation across holdouts,

showing that the models are robust in their predictive accuracy. For the statistical

models, T refers to models created for each turbine individually and then aggregated

and F refers to models trained on the farm as a whole. The subscripts met and layout

refer to models trained using met data only and both met data and farm layout data,

respectively. The subscripts self and other refer to models that were trained on

Farm 1 to predict its own power and trained on Farm 2 to predict Farm 1’s power,

respectively. The mean values are the errors when the predictions from both met

tower 1 and met tower 2 were averaged, and the average used as the prediction.

For the first three error columns, the values shown are the result of a 20-replication

holdout analysis with the mean of the 20 holdouts shown along with the standard

deviation in parentheses.
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The statistical model have the lowest errors overall, and they are significantly lower

than the other methods tested. There is no advantage to be gained by including

information about the layout of the farm; using the met data alone outperforms

the model incorporating data on upstream turbines. A statistical model is able to

intrinsically capture any critical turbine interactions present in the data, and nothing

is gained by forcing it to explicitly include it. Most surprisingly, the errors stay quite

low even when predicting for the opposite farm that the models were not trained on.

A statistical model can still do a reasonably good job of estimating power production

on an independent farm with no farm-specific data. The Jensen models have already

been shown to disagree with the actual data, and this is reflected in the high error

values. However, there is an advantage to be gained in terms of predictive accuracy

by averaging the predictions from two different Jensen models applied using the data

from the two met towers separately. In many cases there is poor agreement between

the two met towers, and the errors therefore tend to cancel each other out, and

this results in a lower combined error. The combined errors are still higher than

the statistical model errors for Farm 2, but the mean Jensen predictions in Farm 1

actually fall below the level of the farm-level statistical model errors when predicting

the opposite farm. In the third method tested, aggregating individual turbine power

curves (and thus ignoring any wake effects) results in comparable, and in some cases,

lower errors than the Jensen models. Again, the errors are reduced significantly

by averaging the predictions from the two met towers, and these combined error
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measurements are similar to those obtained by the farm-level statistical model trained

on the opposite farm. The NREL dataset predictions had the highest errors out of

all the models tested and do not provide a strong estimate for farm power production

at these locations. The individual site errors from the NREL data (from the two

different met tower locations) were similar to that of the mean value, and they are

not included in the tables.
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Table 4.2: Normalized Farm 1 power prediction errors

Statistical Models Jensen Model Aggregated Turbines NREL
Tmet Tlayout Fself Fother Met1 Met2 Mean Met1 Met2 Mean Mean

MAE 0.050 (0.0008) 0.053 (0.0008) 0.050 (0.0006) 0.082 0.095 0.101 0.079 0.095 0.095 0.080 0.156
RMSE 0.074 (0.0021) 0.077 (0.0021) 0.076 (0.0015) 0.110 0.140 0.144 0.114 0.139 0.139 0.113 0.217

Table 4.3: Normalized Farm 2 power prediction errors

Statistical Models Jensen Model Aggregated Turbines NREL
Tmet Tlayout Fself Fother Met1 Met2 Mean Met1 Met2 Mean Mean

MAE 0.051 (0.0006) 0.051 (0.0006) 0.052 (0.0007) 0.087 0.127 0.111 0.099 0.116 0.116 0.085 0.227
RMSE 0.072 (0.0010) 0.070 (0.0009) 0.073 (0.0012) 0.114 0.160 0.147 0.128 0.148 0.148 0.112 0.295
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The predictions derived from the NREL data have high errors compared to the

other models used. This is largely due to the added layer of uncertainty present in

this data. The wind speeds come from reanalysis data, and they are downscaled from

larger weather models. They might be very accurate for capturing the dynamics of

large weather patterns, but it is a lot more difficult to model weather at a very small

spatial scale, and most reanalysis datasets in existence offer data at a much larger

spatial resolution.118 Wind speeds in particular are difficult to model for local areas,

and this problem is worsened in areas of complex terrain.119 To support this point,

the correlation between the temperature values in the NREL dataset and the actual

measured temperature at the met towers ranges from 0.97 to 0.98. The correlation

for wind speeds, on the other hand, sits in a range of 0.66 to 0.69. This discrepancy

in the local wind speeds carries over into discrepancies for farm power estimates.

4.6 Discussion

Statistical models achieve the lowest errors for estimating wind farm power pro-

duction, and the errors stay reasonably low compared to the alternative methods

even when the models are not trained on the same farm that they are predicting.

The two farms are similar in that they are both situated in flat, agricultural areas,

but they are in different regions of the country, have very different turbine layouts,

and see different wind conditions. All of the existing literature suggests that the tur-
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bine layout is critical to characterizing farm power production because of the large

effect that wakes have within a farm. The Jensen model was used to explicitly model

the turbine wakes, but the complexities in these real farms are not captured by the

Jensen model. There are a number of issues present when comparing wake models

to actual measurements, including measurement errors, accounting for wake trans-

port time, natural fluctuations of speed and direction, and time averaging, to name

a few.37,38 In addition, the actual wind conditions within an onshore wind farm with

just minor terrain variation are more complex than the steady input flow used in

the Jensen model. Because of the simplistic assumption of steady-state input flow

to a wind farm, the Jensen model fails to capture these complex issues and there-

fore cannot provide accurate power predictions. The potential sources of error are

plentiful, and I can speculate as to the sources, but a thorough investigation into the

most critical parameters that result in these errors is left as an interesting avenue for

future research. Data issues with the met towers are certainly one suspect (both in

terms of calibration and location, if the met towers are not in freestream flow), but

the natural variation of wind throughout such a large spatial area could also result in

a significant mismatch between what the Jensen model predicts (based on what the

met towers see) and the actual data.

The statistical models do not model the wakes at all, but they have the ability

to intrinsically capture relationships between the turbines. If the farms presented

here have unique but consistent wake behaviors, the statistical models will capture
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these relationships. It is especially surprising that the statistical models are still fairly

accurate when predicting power production for another farm, since any unique wake

behavior should not carry over to a different case study. Still, the results have impor-

tant implications. It is likely that the geographical similarities are enough to result

in accurate cross-farm statistical models even if substantial wake-effect differences

exist. In addition, for rough estimates of farm power production, one can argue that

no model is needed at all. The simplest approach is aggregating the power curves

of a large number of turbines, and this method produces predictive accuracy on the

same order of, or better than, the Jensen model. By using the aggregation method,

however, no model of the farm nor data on the position of the turbines is needed.

This method can be used for any farm estimates, even one that is not built or planned

yet. Good estimates can be obtained with just a met tower installed.

Wake models are heavily tested on large offshore wind farms with uniform turbine

alignment. The models have been continually improving and can capture the wake

behavior in a number of case studies. Any user of these models, however, should be

very careful when applying them to onshore sites. The two case studies presented here

demonstrate the many ways that onshore farms do not follow the same well-behaved

patterns seen in offshore farms, leading the models to break down.

Luckily, alternatives do exist and statistical models can be used for power predic-

tion if training data exists for similar conditions to that which is to be predicted. For

resource assessment when there is no training data available, it may be more advanta-
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geous to use a simple summation to aggregate the turbine power curves than to model

the wakes explicitly. Obviously, the layout of the farm should be chosen carefully, but

the real-world effects can result in drastically different behavior than what a model

may predict, and the models should be used to inform but not determine a farm’s

design.

The results presented here also bring up practical questions about the value of

wind forecasting. Accurate wind forecasts are highly sought after and are used to

make operating decisions regarding wind integration in power systems. It has been

shown, however, that even with a perfect forecast (i.e., the wind conditions are known

exactly at the met towers in real time), the amount of power produced still contains

uncertainty. The errors with statistical models are low but nonzero; errors in translat-

ing wind speed to power are present even with a perfect forecast. This is an interesting

extension of this research and is left as future work.
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Chapter 5

Simulation of Tropical Cyclone

Impacts to the U.S. Power System

Under Climate Change

5.1 Introduction

Tropical cyclones, and hurricanes in particular, have been the cause of extensive

damage and financial loss in many regions of the United States. They rank among

the most destructive natural hazards for coastal areas.120–122 Hurricane Sandy, for ex-

ample, left more than 8 million customers without power, resulting in estimated costs

of $65 billion.123 Power outages caused by tropical cyclones are one of the biggest

concerns for affected communities; a lack of power can result in business interrup-
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tions, healthcare stresses, and cascading effects for dependent infrastructure systems,

such as telecommunication or water networks.124 While there have been strong devel-

opments in power-outage prediction models that have proven useful for local utility

companies,125–130 the focus has been on outage-forecasting in the days before a storm

and not on long-term changes in risk. There is a need for infrastructure providers

and emergency managers to plan for hurricanes on much longer time scales, i.e., on

the order of decades. This planning must consider how future climate conditions may

influence storm behavior.

The relationship between tropical cyclone hazard and climate change has been

studied extensively, but there is still a great deal of uncertainty involved.121,131–138

For example, the physics-based models developed by Knutson et al. suggest that

the frequency of Atlantic hurricanes and tropical storms will likely be reduced in the

future.134 Results obtained by downscaling IPCC AR4 simulations also suggest a

reduction in the global frequency of hurricanes in a warmer future climate scenario,

with a potential increase in intensity in some locations.131 Statistical models argue

that the intensity and frequency of TCs will likely increase in a warmer future.139,140

These examples from the literature highlight the deep uncertainty remaining; the

direction of change (e.g., more storms vs. fewer storms) and, to a greater extent, the

magnitudes of change remain uncertain.

Because many traditional risk and decision analysis methods struggle under such

deep uncertainty, more robust planning tools are needed in this area.141 One promis-
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ing approach is to focus on actions that perform well under a range of scenarios that

are within the realm of physical possibility as supported by the research literature.

These scenarios can be modified over time as conditions change and new information

comes to light.142 Long-term planning for major infrastructure projects, such as up-

dates to the electric grid, can leverage scenarios to assess the robustness of possible

actions rather than as a basis for determining an optimal solution by assigning fixed

probabilities to the scenarios. A key component of this is the ability to estimate the

performance of infrastructure systems under future climate scenarios in a way that

builds upon accurate models of system behavior and offers both broad-area insight

and locally detailed performance estimates.

This chapter offers insight into one aspect of this long-term planning problem for

areas along the Gulf and Atlantic coasts of the United States. It focuses on what

tropical cyclone impacts might look like if climate change causes changes in storm

behavior. I assess impacts for a wide range of future storm scenarios, including the

status quo if the climate remains stable and tropical cyclone seasons remain within the

observed historic variability. Here, the term scenario is used to represent potential

realizations of climate-induced changes to tropical cyclone behavior in the North

Atlantic basin. Using a simulation informed by the historical hurricane record, I

compare baseline impacts to the outcomes under various scenarios for 23 states lying

along the U.S. Gulf and Atlantic coasts. I create plausible scenarios of future tropical

cyclone behavior based on the literature on the relationship between climate change
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and hurricanes. This literature offers a wide range of possible realizations. Regarding

changes in intensity, for example, the general consensus is that storms will strengthen,

although the degree of change varies.133,143 There is less consensus on changes in

storm frequency, with the literature showing both increases and decreases.134,144 I

vary storm intensity, storm frequency, and the distribution of landfall locations. For

each scenario, the simulation results represent tropical cyclone impacts to the United

States in terms of wind-induced power outages. The analysis is done at the census-

tract level, resulting in localized projections of extreme wind speeds, the fraction of

customers without power, and probabilities of power outages. In a field where much

of the focus is global in scale, I provide more localized information for decision-makers

that can aid in long-term planning for their specific area of concern.

The sensitivity to changes in tropical cyclone hazards can vary greatly among

regions. This chapter provides insight into how power systems along the Gulf and

Atlantic coasts of the United States may be affected by climate changes, which areas

should be most concerned, and which areas are unlikely to see substantial changes

under any tested scenario. The range of potential impact is a key component of

informed planning models, since potential actions can be tested across this range to

ensure robust and sustainable solutions.
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5.2 Climate Change and Tropical Cyclone

Activity

Depending on the model used, the projected climate change impact on North

Atlantic tropical cyclones can vary significantly. Several studies suggest that the fre-

quency of storms may decrease in the North Atlantic Basin, but the intensity may

increase, perhaps substantially.136 There is also concern that storm genesis location

and track movement will be influenced by climate change, but there is not enough

information to assess the nature of this impact with a reasonable degree of spatial

precision.145 There is potential for substantial changes in tropical cyclone hazard, but

there also remains substantial unresolved uncertainty. Under such conditions, know-

ing the range of reasonable possible outcomes at a local level can result in more robust

planning decisions. Scenario-driven planning can help local communities understand

if they are particularly sensitive to climate-induced changes in tropical cyclone haz-

ards or if they are in a relatively insensitive area. Plans can then be designed to

perform adequately across this range of impacts, instead of optimizing for a single

future or a small set of futures driven by highly uncertain insights into the climate-

tropical cyclone relationship.142

I develop a range of plausible tropical cyclone scenarios and assess the impacts

of these scenarios in terms of electric power outages and extreme wind speeds in the

U.S. I simulate a large number of replicated tropical cyclone seasons in the United
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States for 12 plausible tropical cyclone scenarios. A replicated tropical cyclone season

represents one virtual year of tropical cyclone activity, in which the number of storms

can vary from replication to replication. Virtual storms are independently generated

and the resulting impacts are modeled through a power outage estimation model that

was developed using the data of Han et al.129,130 and Nateghi.146

I chose the scenario-based approach largely due to the high degree of uncertainty

in future climate projections and the resulting impact on hurricanes. This approach

gives great insight into the range of possible consequences and what different regions

of the country may need to prepare for. The sensitivity analysis conducted here allows

us to study which factors drive changes in impacts, how these impacts may vary over

location, and which areas might be more or less sensitive to potential changes.

Catastrophe modeling is prevalent in industry, and it often focuses on financial

losses for insurance companies. Companies such as AIR, RMS, and EQECAT all

have their own versions of hurricane risk models for the U.S. Model details are not

available publicly, but some models do attempt to characterize future risks as the

climate changes. AIR, for example, has a version of their model that is conditioned on

warm sea-surface temperatures.147 RMS uses their model to assess short-term climate

threats in the Risky Business report, but publicly available details are limited and

the results focus only on changes in financial loss.148 Validation is done on losses from

past storms, so their ability to validate under climate change conditions is limited.149

Our scenario-based approach focuses more on long-term future outcomes that deviate
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from the historical record, so there is no longer an applicable validation dataset to be

used.

5.3 Simulation Methodology

The simulation uses historical hurricane and tropical storm data. The baseline

runs take the historical data as input, and the alternative scenarios alter parame-

ters from the historical data to simulate plausible climate-induced changes to storm

behavior. For each replication in the baseline case, I first sample from a Poisson

distribution, with a mean equal to the historical mean, to determine the number of

storms making landfall in that replicated year. For each storm, I randomly sample a

landfall location from a smoothed distribution that assigns a probability to each 50

km stretch of coastline from Texas through Maine on the basis of the historic landfall

counts in each of the 50km coastal segments. I randomly sample a maximum wind

speed at landfall from the historical record. Based on which section of the coastline

the storm hits, I subset the historical tracks, keeping only those that made landfall in

the same region. These tracks are then used to train a random forest model, which is

a statistical model used to predict the storms movement in each six-hour time step.

For each time step, the wind speed decays according to the hurricane decay models

of Kaplan and Demaria150 until the wind speeds fall below the tropical cyclone clas-

sification level. This relatively simple model was chosen because it uses wind speed
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as input (instead of pressure) and does not require a priori knowledge of storm size

or movement. With the storm track and intensity determined, these parameters are

fed into a wind field model based on the methods of Willoughby et al. and Holland

to calculate the storm radius and wind distribution.151,152 This model generates es-

timates for the maximum 3-second gust wind speed and the duration of wind speeds

above 20 m/s for the centroid of each census tract.120,129,130 This wind data is then

passed to a statistical outage prediction model, which uses a random forest model

that has been trained on past hurricanes in different areas of the U.S..146,153 The

outage prediction model is a simplified version of the work of Nateghi et al.146 in

that it uses only publicly available data and a reduced set of variables to estimate

the number of customers without power as a result of a hurricane.

Using the baseline case as a point of comparison, I also simulate different climate-

induced storm scenarios to examine the influence of climate-induced changes in trop-

ical cyclone behavior in the North Atlantic Basin. The scenarios represent changes in

intensity, frequency, and location. I vary intensity by taking the randomly sampled

maximum wind speed for each storm and multiplying it by a factor. I simulate sce-

narios for intensity factors of 0.8, 1.2, and 1.4, meaning a decrease in strength of 20%,

an increase of 20%, and an increase of 40%. These intensity changes are based on

bounding the estimates of intensity changes in the climate literature. For scenarios

of frequency, I adjust the mean of the Poisson distribution that is used to sample

the number of storms in each replicated year. The baseline case has a mean of 2,
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and I simulate scenarios for means of 0.5, 1, 3, and 4, again based on bounding the

frequency change estimates that I found in the climate literature.

The location scenarios are more subjective, and there is even more uncertainty

about track changes than about frequency and intensity changes. I adjust the prob-

ability distributions while still retaining the general shape of the spatial probability

distribution of landfall locations because it is based on actual geographical charac-

teristics. For example, some land areas are more prone to hurricanes because they

jut out into the path of oncoming storms. I created four modified distributions to as-

sess the changing impacts as storm location changes. The first scenario shifts storms

further up along the mid-Atlantic coast, the second shifts them further down into

the Gulf of Mexico, the third spreads the distribution out more evenly to reduce the

natural peak around Florida, and the fourth concentrates the peak around Florida,

thereby reducing the probabilities in the Gulf and in the Northeast. All scenarios

maintain the original shape of the smoothed distribution.

For each scenario, I ran the simulation for 1600 replications in order to reach

convergence. The aggregated results from 1600 simulated years of tropical cyclone

activity allow us to calculate expected return periods for the output values. I calculate

the 100-year, 50-year, 25-year, and 4-year, and 2-year return periods for maximum

wind speed, duration of winds above 20 m/s, and the fraction (and number) of cus-

tomers without power for each census tract. I also calculate the probability of each

census tract having at least 10% of customers without power in a given year. The
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aggregated results allow for many such calculations, but I chose these parameters to

portray the potential climate change impacts on both a large and small spatial scale.

5.4 Results

The simulation results show the impact under both the status quo of the baseline

case and the climate-change induced scenarios that were evaluated. The scenarios

demonstrate the sensitivity of various areas of the country to potential changes in

tropical cyclone behavior, and the results can be evaluated on a local level.

5.4.1 Baseline Impact

For an initial baseline, I simulate tropical cyclone impact assuming that the fre-

quency, intensities, and locations of tropical cyclones follow the observed historical

distributions as discussed above. For each storm, I forecast wind-induced power out-

ages in each census tract within the range of the storm. I repeat this process for 1600

simulated years, yielding a probabilistic estimate of the impact of tropical cyclones on

power systems in the United States at the census tract level using the power outage

model of Guikema et al.153 The key physical hazard input to the power outage model

is the estimated spatial wind field of a given hurricane. The impacts of surge, rainfall,

and inland flooding are incorporated only indirectly; outages due to these causes were

included in the training data, but the differences in surge, rainfall, and inland flood-

138



CHAPTER 5. SIMULATION OF TROPICAL CYCLONE IMPACTS TO THE
U.S. POWER SYSTEM UNDER CLIMATE CHANGE

Figure 5.1: Baseline impacts of 100-year wind speed, annual probability of at least
10% of customers losing power, and 100-year fraction of utility customers without
power plotted for each census tract.

ing between storms is not explicitly modeled. Other work has shown that excluding

explicit modeling of surge impacts does not substantially impact the accuracy of the

power outage predictions.154

Figure 5.1 shows the impact for 1600 replicated years with impact measures of (1)

the 100-year wind speed (the wind speed with an annual probability of exceedance

of 0.01), (2) the probability of at least 10% of customers losing power in a given

year, and (3) the 100-year fraction of customers without power from a given storm,

as assessed for each census tract individually.

These results show the estimated conditions under the historic state of tropical

cyclone activity. I assume both a static population and a static power system (i.e.

no upgrades or new technologies), so this level of impact represents the status quo.

Some regions are expected to be more heavily impacted than others. The annual

probability of at least 10% of the population being without power is 0.21 when av-

eraged across the census tracts in the state of Florida. In contrast, when averaged
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over the entire region evaluated, this probability is 0.06. As expected, our simulation

shows that the tropical-cyclone-induced 100-year wind speed drops off sharply as you

move inland. The fraction of customers without power tells a slightly different story.

This calculation depends not only on wind speed and duration of high winds, but

also on the population of each census tract. Tracts with very low populations can

appear as discrepancies among neighboring tracts. Information regarding the number

of customers without power, instead of the fraction without power, is easily obtained

as well and may be most useful for those planning storm responses, but it is more

difficult to visually see impact trends due population variability among tracts.

As one point of comparison, our estimated baseline 100-year wind speeds can be

compared to standard design criteria wind speeds given by the American Society

of Civil Engineers (ASCE) design manual, ASCE 7-10, that are based on historical

data.155 For hurricane-prone coastal areas, the simulation output matches well with

the ASCE 7-10 100-year wind speeds. The 100-year wind speed for Houston, TX,

for example, is only 1% lower in our simulation output than in the ASCE design

standard. Similarly, our estimated 100-year wind speed for Orlando, FL is about 2%

higher than in ASCE 7-10. Most areas of interest are within 10% of the ASCE wind

speeds, although some inland areas have larger deviations. The simulation has some

inherent variability. This, along with the choice of the smoothed landfall probability

distribution and the wind decay model used may account for some of the larger

differences. However, this generally close match to independent estimates of 100-year
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wind speeds gives confidence that I am estimating the long-term wind environment

well, at least in the baseline situation.

5.4.2 Potential Climate Impacts

If climate were to impact tropical cyclone intensity, strength, or track, the resulting

impact would not be felt equally across the country. The regional effects also vary

depending on the measure of interest. To model the effects of varying intensity, I

simulated an additional 1600 hurricane years but multiplied the intensity of each

generated storm by an intensity factor, k. I repeated this for k = 0.8, 1.2, and

1.4, generating 1600 hurricane years for each k, to represent a reasonable range of

changes in intensity as suggested by the literature. When looking at wind speeds,

the effects of varying intensity are felt primarily in coastal areas. This can be seen in

Figure 5.2, where the changes are seen primarily along the coasts. The biggest changes

are in those areas that receive the most frequent hurricanes indicating that they are

particularly sensitive to changes in hurricane intensity. The fraction of customers

without power, however, depends both on wind speed and storm size. Stronger storms

are generally larger, and our simulations show the effects of storm size as the reach

of the stronger (or weaker) storms creates bands of increased (or decreased) impact.

These are the areas on the margins of the impacted area and are areas of the country

particularly sensitive to changes in hurricane intensity. Figure 5.3 shows this result,

as, on average, the stronger storms impact areas further inland than in the baseline
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Figure 5.2: Changes in 100-year wind speeds for varying storm intensity away from
baseline.

-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

(a) Intensity Factor 0.8! (b) Intensity Factor 1.2! (c) Intensity Factor 1.4!

C
hange in 100-Year Fraction W

ithout Pow
er !

Figure 5.3: Changes in 100-year fraction of customers without power for varying
storm intensity away from baseline.

case. The areas that fall on the edge of the impacted area see the largest changes

when the average storm intensity varies. This is of particular interest because may

of these areas are farther inland and do not have a strong history of experience

with hurricanes. Additional consideration of hurricane preparation planning may be

appropriate in such areas.

To examine the effects of varying hurricane frequency, I simulated an additional

1600 hurricane years but substituted in a different value for λ, the mean number of

tropical cyclones making landfall per year. I repeated this for λ = 0.5, 1, 3, and 4,
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simulating 1600 hurricanes years for each, to represent a reasonable range of changes

in frequency as suggested by the literature. A change in tropical cyclone frequency,

as opposed to intensity, brings about changes of a different nature. The 100-year

wind speeds change slightly, but not substantially. Extreme winds are driven by the

strongest storms, not the frequency of more moderate storms. However, there is a

more substantial impact on the annual probability of power outages, since more (or

fewer) storms directly results in a larger (or smaller) probability of any given tract

being impacted by a storm, and subsequently losing power. Figure 5.4 shows a com-

parison of these changes under different storm frequency conditions. The historical

baseline is approximately 2 tropical cyclones making landfall in the U.S. per year

(λ = 2). An average change of just one storm per year (more or less) can change the

annual probability of at least 10% of the population without power by over 15% in

some census tracts.

Although there is less evidence to support shifts in tropical cyclone location as a

result of climate change, there is speculation that the locations of tropical cyclogenesis

may shift in a warmer climate.145 It is worth assessing how such changes may impact

the U.S., but the scientific understanding is too weak to confidently support direct

simulation of specific scenarios. Instead, I examined the sensitivity to changes in

landfall location by adjusting the smoothed historical spatial probability distribution

of landfall locations to shift storms further north and south, and also to spread out

or concentrate the distribution (see Appendix D for details). As expected, the areas
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Figure 5.4: Changes in the probability of at least 10% of customers without power
for varying storm frequencies.

hardest hit by tropical cyclones shift along with the shifting distributions, but our

modified distributions are all based on the original distribution. This ensures that I

still account for the geography of the coastline in determining landfall probabilities.

Even with the modified distributions, some areas are still strongly impacted even

when the probabilities of landfall are sharply reduced. For instance, Figure 5.5 shows

the change in the probability of at least 10% of customers without power as the

average landfall location distribution varies. I see that areas along both the Gulf

Coast and southern Atlantic coast area particularly sensitive to changes in landfall

locations, but in all scenarios I examined, the Florida peninsula continues to have a

relatively high annual probability of at least 10% of the population losing power. The

changes in maximum wind speeds and fraction of customers without power follow

similar patterns, but there is more local variability.
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Figure 5.5: Changes in the probability of at least 10% of customers without power
for varying landfall distributions.

I conducted additional analysis to compare the relative impacts of changes in fre-

quency, intensity, and landfall location based on graphs of the empirical distribution

of outages at the census tract level. The details of this process and the results are

available in Appendix D. The overall conclusion is that changes in storm intensity

have a greater potential impact on the U.S. power system than changes in frequency

or landfall location. The impacts, both in terms of customers without power and

maximum wind speeds, grow substantially worse as storms get stronger, on average.

Changes in frequency or landfall, on the other hand, show relatively tightly grouped

overall impacts, although the changes do depend strongly on location. When eval-

uating the entire United States as a whole, intensity largely dictates the severity of

the outcome. Thus, characterizing the nature of future climate impacts on storm

intensity should be an important focus of future work.
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5.4.3 Metropolitan Area Impacts

Changes at the national level provide insight into the overall impact of potential

future changes in tropical cyclone activity and are useful for federal agencies. Local

decision-makers, however, are more concerned with smaller areas of potential impact,

and the simulation results can also provide information at a much higher resolution. I

demonstrate this by examining the impacts at the scale of several metropolitan areas:

Houston (TX), New Orleans (LA), Miami (FL), Washington (DC), and New York

(NY).

As expected, the results depend strongly on location because some areas of the

country are more prone to tropical storms and others are more sensitive to climate

changes affecting tropical cyclones. Figure 5.6 shows the return periods for the frac-

tion of customers without power for the selected metropolitan areas under different

hurricane intensities, together with the average return periods for the entire coastal

area. The Houston, New Orleans, and Miami metropolitan areas are heavily impacted

even for scenarios of lower intensity storms. These cities sit in already hurricane-prone

areas, and strong storms only increase the already significant impacts. On the other

hand, Washington and New York behave very differently. Both have relatively low

impacts for low intensity storms, but New York sees sharp increases in the fraction

of customers out as storm intensity increases, whereas Washington has a small range

across all scenarios. New York is highly sensitive to changes in storm intensity, much

more so than Washington. The Washington area is relatively protected from changes
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Figure 5.6: Mean return periods for the fraction of customers without power as
intensity varies, plotting the average for five metropolitan areas and for all census
tracts (bottom right) evaluated.

in intensity by virtue of its more inland location. The severe effects of higher wind

speeds from stronger storms will be felt primarily along the coasts, as shown previ-

ously in Figure 5.2. The resulting power outages have the potential to be widespread

in many regions of the country. In addition, the difference between the 100-year and

50-year storm impacts is minimal, and this has strong implications for design and

mitigation to withstand tropical cyclones and the potential effects of climate change.

New Orleans, Miami, and New York all see greater than 90% of customers without

power for both the 50- and 100-year return periods.
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I conducted additional analysis of the sensitivity of different regions to changes in

frequency and landfall location, and I direct the reader to Appendix D for the details.

I find that shifts in landfall location will have strong regional effects. Increases in

storm frequency will worsen the impacts in already hurricane-prone areas. However,

in general, the strongest changes in tropical cyclone hazard are seen in the scenarios

of high storm intensity. For most regions of the country, increases in storm intensity

will result in the most severe damages, but frequent, milder damages could occur if

the frequency of tropical storms increases.

5.5 Conclusion

Planning for future climate change is a difficult task due to the high degree of

uncertainty about potential changes in tropical cyclone frequency, intensity and track.

This chapter examines a range of potential changes in tropical cyclone activity and

quantifies how these changes could influence power outage risk. Tropical cyclones

can cause substantial damage to power system infrastructure and can leave local

utility companies and government agencies with high repair costs in the aftermath of

a storm. Anticipating the nature of potential impacts allows for proactive mitigation

against damage, reduced costs, and a more resilient power grid.

The scenarios assessed here were chosen to represent a range of plausible outcomes

for a future affected by climate change and the resulting tropical cyclone impacts, but
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they are not tied to specific climate projections (i.e., they are not associated with a

specific emissions scenario or GCM results). The range of results demonstrates the

sensitivity of the U.S. power system to changes in storm behavior, and these impacts

can be evaluated for small regional areas. Inland areas are generally more protected

from the strongest impacts, but some areas may still see considerable changes in

maximum wind speeds, power outage likelihood, and the number of customers los-

ing power during a hurricane. A shift in landfall location could result in impacts to

areas of the country with little experience in dealing with hurricanes. Coastal areas

are particularly sensitive to increases in storm intensity. 100-year wind speeds are

projected to increase by more than 50 percent in some areas with a 20% increase in

storm intensity. The probability of customer power outages in a given area increases

slightly, but the actual number of customers losing power would change more drasti-

cally as a result of stronger, and often larger, storms. A reduction in storm frequency,

on the other hand, is projected to have a corresponding reduction in the likelihood

of power outages. Future work remains, particularly in linking models such as this to

specific climate scenarios, but the results presented here provide a starting point for

improved climate adaptation, and the framework can be extended to explicitly link

to specific climate scenarios.

This research was originally published in Climatic Change.156
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Conclusion

The four research projects presented here form a body of work tied together by

the similarity in both the tools used and the overall application area. Each project

makes use of statistical modeling and data analysis to broaden our understanding of

power system planning. This dissertation sits at the intersection of the fields of power

system modeling, risk analysis, uncertainty management, and decision support, and

each project makes use of these areas to bring new insight to a variety of complex

problems facing today’s power system. Improved understanding of these problems

and the required solutions will result in better operation, investment, and planning

decisions.
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6.1 Summary of Contributions

In this thesis, I have demonstrated the various ways that data analysis can be used

to inform planning problems for power system applications. The four chapters tackle

different problems, but they are tied together by their focus on improving decisions in

the face of the many uncertainties facing our electric generation infrastructure. Each

project makes use of statistical modeling in order to understand the relationships and

influential factors present in the available data. With careful application, these data-

analytic tools can increase our understanding of a problem, and this new information

can then feed into the planning and decision-making process to improve the outcome.

The projects all seek to provide value to decision-makers by offering knowledge or

insight that did not exist previously.

Three of the four chapters focus on wind energy, and this research addresses a

subset of the challenges faced in the industry. The analyses presented in Chapters 2,

3, and 4 provide advancements to our current understanding and methods for plan-

ning and operating wind farms for better integration into the greater power system.

The findings in Chapter 2 can be used for improved policies regarding wind invest-

ment. The influence of state-based policies is dwarfed by geographical considerations.

Renewable energy resources are highly location-dependent and policies should be de-

signed to reflect that fact. A national renewable energy policy could take advantage

of this fact more easily than the size-constrained states. The models and methodology

presented in Chapter 3 address safety and reliability concerns associated with offshore
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wind farms in particular, but they are equally valuable for other offshore operations

more generally. This work changes the traditional focus of wind forecasting away

from mean-value forecasts for maximizing revenues and towards a risk-based view of

wind farm operations. Frequent exposure to high wind speeds reduces turbine life,

and high winds can also threaten worker safety while performing installation or main-

tenance work on a wind farm. I developed models that issue probabilistic forecasts

of what the maximum wind speed will be in a given time interval. This information

can then feed into decisions about farm operations, maintenance planning, or safety

precautions. Chapter 4 addresses the difficulty of estimating wind farm power pro-

duction. Turbine wake interactions complicate the flow through a wind farm. This is

well-understood in some contexts—namely in uniformly aligned, offshore farms—but

there are problems when applying this knowledge to other contexts. I provide a com-

parison of various methods for estimating onshore wind farm power production using

two farms as case studies. I find that statistical models outperform other methods,

including the Jensen model. This is not entirely surprising, but I also show that the

same statistical models do not even need to incorporate knowledge of a particular

wind farm to outperform some other methods, and this has strong implications for

the way in which we plan for future wind farms and assess wind resources.

Moving away from strictly wind energy applications, Chapter 5 instead focuses on

risks to the entire electric power distribution system from future tropical cyclones. In

this work, I tackle the challenge of planning for long-lived infrastructure investments
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when faced with the deep uncertainty associated with climate change. I use wind

speed and power outage estimates as proxies for the risks faced by the power system

and demonstrate the range of impacts that can be expected under various climate

change scenarios. By performing this sensitivity analysis, I quantify the impacts,

compare them to baseline measures, and provide insight into the regional variability

of the tropical cyclone hazard. I also offer localized results, which serve as valuable

input for decision-makers faced with questions of building stronger infrastructure,

relocating assets, or investing in protective measures.

6.2 Final Remarks and Research Limita-

tions

The work presented throughout this dissertation represents a finite contribution

to the infinite field of power system risk analysis and planning. In many cases, simpli-

fications and assumptions must be made due to limited data, modeling capability, or

simply because the benefits to be gained by using more advanced techniques are not

worth the time or effort required to implement them. All research has limitations,

and I will address some of the known areas for potential improvement in the projects

presented here.
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6.2.1 Statistical Analysis of Installed Wind Capac-

ity in the United States

The findings in Chapter 2 can be used to inform policy development. The role of

state policies are not as dominant as expected, but the mechanisms for incentivizing

wind energy development are complex. Economic viability will always be the driving

factor for new development, and thus, policies are designed to defray some finan-

cial burden when it makes sense to do so. For wind power, however, the economic

viability of a project is highly location-specific. Wind resources, land rights, and con-

struction costs can vary drastically from region to region, and these factors are likely

to dominate small policy incentives. One particular weakness of this analysis is that

it fails to capture some of these other considerations that may play an important role.

Many of these factors are too complex to incorporate into a statistical model, and,

in these cases, a mixture of quantitative and qualitative analysis is probably better

suited. It is impossible to consider every variable, and I chose a set of variables that

covered a wide range of influential categories in an attempt to identify any surprising

relationships in the data. Other variables may well play an important role, and it

may be useful to perform additional analysis with some other variables to determine

whether or not there are other dynamics present that have not been captured by my

analysis.

I performed the analysis on the state level to focus on the role that state-based
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policies play in incentivizing wind investment. By doing so, I limited the dataset

to 50 observations. This relatively small number meant that the results are heavily

influenced by outliers. There is high variability in the level of capacity present in

each state, and the states with the most wind capacity are on a different order of

magnitude from many of the other states. This may downplay the role that policies

or other factors have in certain states if they do not follow the same trend of the

dominant states.

I do not account for the trading of renewable energy credits (REC) in this analysis

and focus instead on just the renewable portfolio standards (RPS) in each state. Since

many states do trade REC’s, renewable targets can often be met without actually

having the capacity present in a given state. One could incorporate the allowable REC

trading schemes and the utilization of REC trading among states to get a better idea

of how much influence this has on where the actual capacity is built. This is left as a

future research direction and would be important to consider for any potential policy

changes going forward.

6.2.2 Probabilistic Maximum-Value Wind Predic-

tion for Offshore Environments

The statistical models described in Chapter 3 can be used to modify farm opera-

tions or plan for maintenance operations to as to avoid periods of dangerously high
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wind speeds. This is done for short- and medium-term decisions, with forecasts being

issued for lead times of 0–120 hours. This type of risk-based forecasting fills a gap

in the field of wind forecasting by issuing a prediction for the maximum value only.

This piece of information helps to improve our understanding of the inherent vari-

ability and uncertainty present in wind speeds, and it is of value for decisions made

in offshore environments where people and equipment are typically exposed to higher

wind speeds than land-based sites.

The model specifics are applicable for the dataset used here, which comes from

a given location in the North Sea. The methods and model development process,

however, are generalizable to any location where the same types of data are available.

Use of these models does require high-quality meteorological forecast data. In this

instance, I used data from ECMWF. If the available forecast data is of a lower quality

or accuracy, the models will suffer and will likely have larger predictive errors. The

choice of technique used to create the probabilistic forecasts relies on an assumption

of normality in the residual errors. While this assumption did simplify the process

somewhat, it came at a loss in accuracy for the residuals themselves. As the reliability

diagrams show in Chapter 3, the normal distribution is a very good fit for long lead

times, but it introduces a slight bias at shorter lead times. More work is needed

to determine the best distribution to be used in this application, and this extension

is left as an area for future research. A related extension of this work focuses on

the choice of models for the maximum-wind predictions. Because the residuals were
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used to create the probabilistic distribution for each prediction, I chose to work with

model types for which the residuals were fairly easy to calculate. Some other model

formulations are very difficult to derive residuals from, but they may offer better

overall prediction accuracy. Extending the techniques to other model types is again

left as an interesting area for future research.

One last potential extension of this work would be a link between the predictions

and the decisions to be made based on them. Currently, the models are designed to

predict the highest wind speed observed in a three-hour time interval. It would be

interesting to instead focus only on instances where that highest wind speed value is

above a chosen threshold. Some improvements in model accuracy and in overall value

as a risk-based decision support tool could be gained from focusing only on periods

of concern and ignoring all those time periods with relatively low ’maximum’ speeds.

6.2.3 Methods for Assessing Power Output in

Non-Uniform Onshore Wind Farms

Planning for future wind farms requires a careful assessment of the available wind

resource in a given location. Estimates of farm power production are critical to the

financing decisions that determine a wind farm’s success. These power production

estimates are created using a number of different techniques depending on the nature

of the application. For offshore farms, models that analyze the wake decay and

157



CHAPTER 6. CONCLUSION

subsequent turbine interactions have been shown to be accurate. The Jensen model,

one of these wake decay models, performs poorly in the case of two onshore wind

farms as demonstrated in Chapter 4. I compare a number of alternate methods to

the Jensen model results and show that, surprisingly, statistical models do well even

when no farm-specific data is used to train the models. This information can be used

to generate greatly improved power production estimates for wind farms subject to a

few limitations.

I only tested the models on two farms, and both were large farms located in

relatively flat areas. More data would be required to generalize the results beyond

this. It would be interesting to see these models applied to additional onshore farms

with different layouts and also to offshore farms, where the Jensen model is expected

to perform better. As for wake models, I tested only the Jensen model. While this

is a popular benchmark model for good reason, it would be useful to compare some

other types of wake models and even a full large eddy simulation model run. These

extensions are left as suggestions for future research.

Complex terrain is known to induce unusual flow patterns in a wind farm. The

farms tested here are both located on flat terrain, but, although flat, any small dis-

crepancies can have large effects on the flow patterns and mixing throughout a farm.

The impacts of terrain are somewhat incorporated into the Jensen model through the

wake decay parameter, but the results of wake models could be improved by explicitly

modeling these effects using a different modeling environment.
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Finally, this project brings up a very important question: if the power produced

by a wind farm is so difficult to predict when the wind conditions are known exactly,

what then is the value of a perfect wind speed forecast? Improved accuracy in wind

prediction may not matter at all when the power output predictions are driving the

bulk of the error. Determining the value of a perfect forecast would be a fascinating

extension of this research.

6.2.4 Simulation of Tropical Cyclone Impacts to

the US Power System under Climate Change

It is difficult to tackle any long-term planning decisions in the face of climate

change. Tropical cyclone behavior is expected to be strongly affected by a changing

climate, but the exact nature of this effect is uncertain. The uncertainty is expansive;

little is known regarding the timing of climate change and how long it will take for

other weather patterns to become altered, and there is conflicting research on the

exact mechanisms of change expected in storm behavior. The simulation presented

in Chapter 5 addresses some of this uncertainty by evaluating the risks to the power

system under a wide range of climate change scenarios. By looking at these what-if

scenarios, we can start to understand which changes could potentially be the most

harmful and which can safely be ignored or dealt with at a later time. There is a lot

of regional variability when it comes to tropical cyclone risk, and the high level of
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spatial detail in the simulation model allows for better information to inform localized

decisions.

The structure of the simulation makes several key assumptions that could be

improved upon in future research. I assume that the power system is static, i.e., the

power distribution system remains the same in each of the climate scenarios, and it

responds to wind-induced stresses the same way as it did in the past based on the

data for which the models were trained. This could be a problematic assumption

when trying to assess risks far into the future. It is likely that investments will be

made to improve the infrastructure over time, and perhaps this is especially true in

regions that are expected to see more damages from tropical cyclones. Power system

improvements could easily be incorporated into the simulation model in a simplistic

way; a more rigorous approach would require significant changes to the internal model

components and would be an interesting focus for further research. Another similar

assumption is a static population level. Although I issue predictions in terms of the

fraction of customers in a given area instead of simply a raw number, any major

shifts in population or population density would affect the accuracy of the results.

Population growth over time could be factored into the simulation, and this would

have to be done in accordance with a time-dependent link to the climate scenarios.

The best way to do this involves use of the database of climate projection data offered

by the Intergovernmental Panel on Climate Change (IPCC). Additional analysis could

be done to link the timeline of expected climate changes given by IPCC projections
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to a specified level of change in tropical cyclone behavior. Adding the temporal

component to this analysis would improve the value for decision-makers. The timing

of investments could be evaluated against the projected risk level in future years.

The models within the simulation could also be improved upon. The hurricane

track model used is relatively simple. Although it produces reasonable results, there

have been many advancements in hurricane track modeling. The tracks themselves

can be linked to IPCC climate projection data to some extent as well, as there are

some suggested links between hurricane movement and meteorological variables. The

scenarios modeled are only a subset of possibilities. They represent a wide, but

feasible, range of expected future climate outcomes. As our understanding improves

in the area of tropical cyclones and climate, we can narrow down the scenario space

and focus in on the most likely outcomes or the outcomes with the greatest potential

for increased risk. These improvements are left as interesting extensions for future

research.
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The full dataset used for the analysis can be found in Table A.1. 2010 Capacity

and 2000 Capacity refer to the installed wind capacity in MW in 2010 and 2000,

respectively. Avail. Land (sq. km.) and Avail. Percent are the amounts available

for potential wind development. RPS is the level of the renewable portfolio standard

mandate. Electricity Rate is the average price paid for electricity in cents/kWh.

Median Income is averaged between 2008 and 2010, in 2009 dollars. Portion Democrat

is the portion of the state legislature that identifies as Democratic as of 2006. Tax,

Rebate, Loan, and Other refer to types of incentive programs.
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Table A.1: Dataset used for statistical analysis in Chapter 2

State
2010
Cap.

Avail.
Land

Avail.
Percent

RPS
Electric-

ity
Rate

Median
Income

Portion
Democrat

Tax
Re-
bate Loan Other

2000
Cap.

Cropland

Alabama 0 24 0% 0% 8.89 $42,218 63% 1 0 1 1 0 3,142,958
Alaska 9 98,941 7% 50% 14.76 $61,872 37% 1 0 1 1 1 86,238
Arizona 128 2,181 1% 15% 9.69 $47,093 37% 1 0 0 1 0 1,205,425
Arkansas 0 1,840 1% 0% 7.28 $38,600 73% 0 0 1 1 0 8,432,221
California 3253 6,822 2% 33% 13.01 $56,418 61% 1 1 1 1 1616 9,464,647
Colorado 1299 77,444 29% 30% 9.15 $59,669 53% 1 0 1 0 22 11,483,936

Connecticut 0 5 0% 23% 17.39 $65,958 66% 1 1 1 1 0 163,686
Delaware 2 2 0% 25% 11.97 $53,196 45% 0 1 1 1 0 432,773
Florida 0 0 0% 0% 10.58 $45,350 31% 1 0 1 0 0 2,953,340
Georgia 0 26 0% 0% 8.87 $44,992 43% 1 0 1 0 0 4,478,168
Hawaii 63 653 4% 40% 25.12 $59,125 80% 1 1 1 1 2 177,626
Idaho 353 3,615 2% 0% 6.54 $47,528 19% 1 0 1 1 0 5,918,899
Illinois 2045 49,976 34% 25% 9.13 $52,811 54% 1 1 1 1 0 23,707,699
Indiana 1339 29,646 32% 10% 7.67 $46,156 43% 1 0 0 0 0 12,716,037
Iowa 3675 114,143 78% 6% 7.66 $50,504 49% 1 0 1 0 242 26,316,332

Kansas 1074 190,474 89% 20% 8.35 $46,722 32% 1 0 1 1 2 28,216,064
Kentucky 0 12 0% 0% 6.73 $42,091 52% 1 1 1 1 0 7,278,098
Louisiana 0 82 0% 0% 7.8 $41,896 63% 1 1 1 0 0 4,691,344
Maine 266 2,250 3% 30% 12.84 $48,081 51% 1 1 1 1 0 529,253

Maryland 70 297 1% 20% 12.7 $64,596 70% 1 1 1 1 0 1,405,442
Mas-

sachusetts
18 206 1% 15% 14.26 $60,923 87% 1 1 1 1 0 187,406

Michigan 164 11,809 8% 10% 9.88 $47,871 45% 1 0 1 1 1 7,803,643
Minnesota 2205 97,854 45% 25% 8.41 $55,063 50% 1 0 1 1 291 21,948,603
Mississippi 0 - 0% 0% 8.59 $36,850 59% 0 0 1 1 0 5,530,825
Missouri 457 54,871 30% 15% 7.78 $47,460 39% 1 0 1 0 0 16,405,595
Montana 386 188,801 50% 15% 7.88 $42,005 51% 1 0 1 1 0 18,241,710
Nebraska 213 183,600 92% 10% 7.52 $51,504 35% 1 0 1 0 3 21,486,025
Nevada 0 1,449 1% 25% 9.73 $53,082 56% 1 1 1 1 0 753,718
New

Hampshire
25 427 2% 23.8% 14.84 $66,303 37% 1 1 1 1 0 128,938
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State
2010
Cap.

Avail.
Land

Avail.
Percent

RPS
Electric-

ity
Rate

Median
Income

Portion
Democrat

Tax
Re-
bate Loan Other

2000
Cap.

Cropland

New Jersey 8 26 0% 22.5% 14.68 $65,173 59% 1 1 1 1 0 488,697
New Mexico 700 98,417 31% 20% 8.4 $43,998 59% 1 0 1 1 1 2,334,018
New York 1274 5,156 4% 30% 16.41 $50,656 62% 1 1 1 1 18 4,314,954
North

Carolina
0 162 0% 12.5% 8.67 $43,275 54% 1 0 1 1 0 4,895,204

North
Dakota

1424 154,039 84% 10% 7.11 $50,847 30% 1 0 0 0 0 27,527,180

Ohio 10 10,984 10% 12.5% 9.14 $46,752 37% 1 0 1 1 0 10,832,772
Oklahoma 1482 103,364 57% 15% 7.59 $45,577 47% 1 0 1 1 0 13,007,625
Oregon 2104 5,420 2% 25% 7.56 $50,938 50% 1 1 1 1 25 5,010,408

Pennsylvania 748 661 1% 18% 10.31 $49,826 45% 1 1 1 1 11 4,870,287
Rhode Island 2 9 0% 16% 14.08 $52,771 82% 1 0 1 1 0 24,457

South
Carolina

0 37 0% 0% 8.49 $42,059 41% 1 0 1 1 0 2,151,219

South Dakota 709 176,483 88% 10% 7.82 $48,168 28% 1 0 1 0 0 19,094,311
Tennessee 29 62 0% 0% 8.61 $40,026 52% 1 0 1 1 2 6,047,348
Texas 10089 380,306 56% 5% 9.34 $47,601 41% 1 0 1 1 184 33,667,177
Utah 223 2,621 1% 20% 6.94 $59,857 26% 1 0 0 1 0 1,837,904

Vermont 6 590 2% 20% 13.24 $53,490 60% 1 1 1 1 6 516,924
Virginia 0 359 0% 15% 8.69 $61,544 41% 1 1 1 1 0 3,274,137

Washington 2104 3,696 2% 15% 6.66 $58,330 55% 1 0 0 1 0 7,609,210
West Virginia 431 377 1% 25% 7.45 $40,824 66% 1 0 0 0 0 942,132
Wisconsin 469 20,751 14% 10% 9.78 $51,484 40% 1 1 1 0 23 10,116,279
Wyoming 1412 110,415 44% 0% 6.2 $53,236 23% 1 0 1 0 91 2,576,017
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The input data used to develop the models in Chapter 3 came from two sources.

Forecast data came from the European Center for Medium-Range Weather Forecast-

ing (ECMWF), and actual measured data came from FINO1, a meteorological tower

installed in the North Sea, off the coast of Germany. Summary statistics for the

ECMWF forecast data are found in Table B.1, and statistics for the actual measured

data at the FINO1 met tower are found in Table B.2.
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Table B.1: Summary of ECMWF forecast data

Variable Mean Std. Deviation Minimum Maximum
u at 10m (m/s) 1.80 6.22 -17.67 25.44
v at 10m (m/s) 0.58 5.43 -18.71 21.53
u at 100m (m/s) 2.35 7.58 -21.70 34.39
v at 100m (m/s) 0.81 6.61 -23.57 27.76

Wind Direction at 10m (°) 202.0 96.2 0 360
Wind Direction at 100m (°) 203.8 96.0 0 360

Gust at 10m (m/s) 10.64 4.90 0.00 39.05
Temperature at 2m (K) 282.4 5.4 267.9 296.2

CAPE (J/kg) 9.5 51.4 0.0 2082.7
Charnock 0.020 0.011 0.006 0.111

Mean Sea Level Pressure (Pa) 101,417 983 95,478 104,783

Table B.2: Summary of FINO1 actual measured data

Variable Mean Std. Deviation Minimum Maximum
Wind Speed at 100m (m/s) 9.62 4.51 0.00 28.19

Minimum (m/s) 6.17 3.72 0.22 20.85
Maximum (m/s) 13.14 5.54 1.07 40.52
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The prediction errors can be broken down based on the same wind speed categories

used in the evaluation of the wake decay coefficient and the thrust coefficient. It is

interesting to compare the different methods as a function of wind speed. Figures

C and C show the mean absolute errors (MAE) for Farms 1 and 2, respectively, for

the low, medium, and high wind speed bins. Figures C and C show the root mean

squared errors (RMSE) for Farms 1 and 2, respectively, for the same wind speed bins.

The statistical models consistently outperform the other methods for all wind speeds

in both farms. Some of the other methods are particularly bad at certain wind speeds

but not at others.
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Figure C.1: MAE for Farm 1 showing each method’s accuracy overall and as a function
of wind speed
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Figure C.2: MAE for Farm 2 showing each method’s accuracy overall and as a function
of wind speed
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Figure C.3: RMSE for Farm 1 showing each method’s accuracy overall and as a
function of wind speed
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Figure C.4: RMSE for Farm 2 showing each method’s accuracy overall and as a
function of wind speed
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The scenarios of varying storm intensity and frequency are straightforward. The

landfall scenarios are less obvious, and are better understood through visualization.

To create the landfall scenarios, I first divided the entire coastline into 50-kilometer

segments. These segments are labeled from 1 to 98, starting at the Texas-Mexico

border and ending at the Maine-Canada border. Each storm in the historical record

was binned according to these segments. I then created a smoothed distribution based

on the probability that a storm makes landfall in a given segment of coastline. This is

the baseline distribution, from which the simulation sampled from to get the landfall

location of each simulated storm. Each of the alternative scenarios is a modification of

the baseline. The shape of the distribution is tied to the geographical characteristics

of the coastline, so I tried to maintain the shape as much as possible while still

creating enough variety among the alternative scenarios. The alternate scenarios are
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Figure D.1: Landfall scenario distributions: Landfall 2 spreads the distribution out
more, Landfall 3 focuses more on the Gulf of Mexico, Landfall 4 shifts the distribution
towards the mid-Atlantic and Northeast, Landfall 5 concentrates more on the Florida
peninsula.

not designed to represent actual realizations informed by climate models; instead,

they are designed to assess the sensitivity of various coastal regions to changes in

storm location. The scenario distributions are shown in Figure D.

The variation in landfall distribution is more clearly seen when plotted on a map

showing the actual changes for each location. Figure D plots the color-coded proba-

bilities for each segment of the coastline under each landfall scenario.
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Figure D.2: Mapped landfall scenarios, with the darker color showing the highest
probabilities of a virtual storm making landfall in that stretch of coastline. Value
represent annual probability of landfall in each segment.
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D.1 Detailed Results

The impacts of tropical cyclones in the U.S. are not felt equally in all areas.

Some areas are more prone to damage than others, and, while the level of impact

may change, the spatial trends remain consistent in the scenarios of varying storm

intensity and frequency. Scenarios of varying intensity, as expected, strongly impact

the maximum wind speeds and fraction of customers without power. In contrast,

scenarios of varying frequency do not result in large changes in 100-year wind speed or

fraction out, but they do have large impacts on the probability of outages. Scenarios of

varying landfall distributions, in contrast to intensity and frequency, result in changes

to the location of impacts. The changes in wind speed and fraction out are subtle,

but the probability of outages shifts noticeably as the landfall probability distribution

shifts.

For the five metropolitan areas presented in Chapter 5, the changes are not felt

equally. Coastal areas in hurricane-prone areas are sensitive to changes in storm in-

tensity and frequency. Inland areas and regions not typically prone to hurricanes are

less sensitive to these changes, and the range of impact is not as high. The worst

impacts in terms of both wind speeds and fraction of customers without power occurs

for the scenarios with a 40% increase in storm intensity (the highest intensity evalu-

ated). The annual probability of power outages, however, sees the greatest increase as

storm frequency increases. For changes in landfall, the resulting impacts depend on

the landfall scenario and the area of interest. Washington DC, for example, sees shifts
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in impacts as the probability of landfall in that region shifts. The outage probability

changes significantly, but the changes in wind speed and fraction of customers out

are still dominated by the storm intensity.

D.2 Overall Impacts

I also examine the parameters that are most important when assessing the overall

expected impact on the entire U.S., regardless of the local changes. Figures 6 and

7 plot the empirical cumulative distributions for both the 100-year wind speed and

the 100-year fraction of customers without power. These are not strictly probability

distributions. Rather, they are an exceedance plot the fraction of census tracts that

exceed a given wind speed or fraction without power. The estimated density is shown

in the inset of each plot. These plots show how much the impacts change as I vary

storm intensity, frequency, and landfall location. In the case of both 100-year wind

speed and 100-year fraction of customers without power, changes in intensity cause

the largest shifts in the empirical distributions. For wind speed in Figure 6(a), the

distribution shifts to the right as storm intensity increases. This results in larger

probabilities of seeing higher wind speeds. The shifts are significant; for example,

the percentage of census tracts with the 100-year wind speed falling below 60 m/s

is almost 100% in the baseline case. When the intensity is increased to a factor of

1.4, that percentage drops to 70%. The changes in frequency (lambda) and landfall
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Figure D.3: Annual probability of at least 10% of customers without power for
metropolitan areas for scenarios of varying storm frequency
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Figure D.4: The 100-year wind speed plotted for metropolitan areas for scenarios of
varying storm intensity
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Figure D.5: The 100-year fractions of customers without power for metropolitan areas
for scenarios of varying storm intensity
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do not result in such drastic shifts in the distributions; all scenarios are fairly tightly

grouped, with only small deviations. Varying frequency and landfall location can

result in large changes to some local areas, but the overall impact is not as large as

it is for changes in intensity.

Similar results appear in the plots of 100-year fraction of customers without power,

shown in Figure 7. Again, changes in intensity result in substantial shifts in the

distributions. Looking at the inset density plot in Figure 7(a), for example, the

increasing intensity results in the appearance of an increasingly large spike for 100%

of customers without power. This shows that for the 100-year storm, the probability of

a given census tract losing power completely rises sharply as storm intensity increases.

The empirical CDFs show that for the baseline case, the percentage of census tracts

with a fraction out of less than 0.6 is about 70%. This goes down to just under 50%

when the intensity factor is increased to 1.4. The likelihood of having a large fraction

of customers without power rises substantially as the storm intensity increases.

D.3 Sensitivity to Changes

I also focus on the sensitivity of coastal metropolitan areas to changes in trop-

ical cyclone behavior. While the simulation is run for the the entire coastline, I

selected several smaller areas to better compare regional differences. I singled out the

metropolitan areas of San Antonio, TX; Dallas, TX; Houston, TX; Austin, TX; New
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Figure D.6: Empirical CDF and inset density plot for the 100-year wind speed for
changes in storm intensity
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Figure D.7: Empirical CDF and inset density plot for the 100-year wind speed for
changes in storm frequency
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Figure D.8: Empirical CDF and inset density plot for the 100-year wind speed for
changes in storm landfall location
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Figure D.9: Empirical CDF and inset density plot for the 100-year fraction of cus-
tomers without power for changes in storm intensity
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Figure D.10: Empirical CDF and inset density plot for the 100-year fraction of cus-
tomers without power for changes in storm frequency
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Figure D.11: Empirical CDF and inset density plot for the 100-year fraction of cus-
tomers without power for changes in storm landfall location
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Orleans, LA; Birmingham, AL; Atlanta, GA; Miami, FL; Tampa, FL; Orlando, FL;

Jacksonville, FL; Charlotte, NC; Raleigh, NC; Virginia Beach, VA; Richmond, VA;

Washington, DC; Baltimore, MD; Philadelphia, PA; New York, NY; Hartford, CT;

Providence, RI; and Boston, MA. For each of these 22 metropolitan areas, I assessed

the changes in risk level that would be expected under each scenario. This shows

which areas are the most sensitive to changes in climate. The results are not con-

sistent across the board. The selection of most sensitive metropolitan area depends

heavily on both which variable of climate change I am assessing and which measure

of risk (or impact) I am using to determine sensitivity. For example, the top ranked

metropolitan areas in Figure D.12 change positions depending on the metric used.

When assessing the change in the wind speed with a 1% exceedance probability for

the highest intensity scenario, Virginia Beach, VA is in the top position with a 44%

increase when compared to the baseline case. However, if we instead look at the

sensitivity of the fraction of customers expected to be without power that one would

expect to exceed once, on average, every 100 years, the top-ranked metropolitan area

is Philadelphia, PA, with an increase of almost 57%. Virginia Beach moves down to

the sixth position in this ranking. These results are calculated for the highest inten-

sity scenario as compared to the baseline case in the left-hand column, and for the

highest frequency scenario as compared to the baseline case in the right-hand column.

The wind speed and fraction of customers out both represent the impacts that are

expected to be exceeded, on average, once every 100 years.

182



APPENDIX D. CHAPTER 5 SUPPORTING MATERIAL

In addition, one can see that changes in intensity drive the worsening impacts more

so than changes in storm frequency. The impacts that are expected to be exceeded

once every 100 years, both in terms of maximum wind speed and customers without

power, are significantly higher for the scenario of a 40% increase in hurricane intensity

than they are for the scenario of a 100% increase in the average hurricane frequency.

Having twice as many storms, on average, still does not drive the worst of the impacts

on the power system.

It is particularly interesting to compare the top-ranked cities in terms of sensitivity

to maximum wind speed and the fraction of customers without power for the high-

est intensity scenarios (see Figures 5.2 and 5.3. The three highest increases in wind

speed occur in what are thought to be hurricane-prone areas: Virginia Beach, VA;

Jacksonville, FL; and New Orleans, LA. It is intuitive that places that have histori-

cal experience with strong storms will see even stronger storms in the future, should

this scenario play out. On the other hand, the three highest increases in fraction of

customers without power are Philadelphia, PA; Atlanta, GA; and New York, NY.

These are not typically places associated with extreme hurricane risk. The assess-

ment of power outages depends also on the power distribution system, as opposed to

hurricane characteristics alone, as in the case of maximum wind speed values. Strong

storms cause more power outages, but proportionally fewer in regions that already

see a lot of strong storms. Therefore, the change in impact is not as large in some of

the most hurricane-prone areas. Instead, places with relatively low baseline risks see

183



APPENDIX D. CHAPTER 5 SUPPORTING MATERIAL

the largest potential increases; they are the most sensitive to an increase in hurricane

intensity.

The scenarios of varying storm location are more subjective than those for either

intensity of frequency. It is difficult to compare the baseline case to the worst alterna-

tive scenario in this case, since the alternatives that may be worst for some areas will

be much better for others. In this case, instead of simply comparing two scenarios,

I show the standard deviation of the impacts across all of the five scenarios. This

allows us to assess which areas have the largest spread based on where storms make

landfall. Of course, this is somewhat dependent on our choice of alternative landfall

probability distributions to use as our scenarios. I show the results of these impacts

in Figure D.13.
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Figure D.12: Top 15 metropolitan areas ranked by sensitivity to changes in storm in-
tensity and frequency. These values represent the percentage change in the maximum
wind speed (D.12(a) & D.12(b)), the fraction of customers expected to be without
power D.12(c) & D.12(d)), and the annual probability of a power outage (D.12(e) &
D.12(f)).
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Figure D.13: Top 15 metropolitan areas ranked by sensitivity to changes in storm
landfall location. These values represent the standard deviation of impacts across all
scenarios for the maximum wind speed D.13(a), the fraction of customers expected
to be without power D.13(b), and the annual probability of a power outage D.13(c).
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