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Abstract 

 

Optical spectroscopy is unique amongst experimental techniques in that it can be 

performed in near-physiological conditions, achieve high molecular specificity, and 

explore dynamics on timescales ranging from nanoseconds to days. In particular, Raman 

spectroscopy has emerged in the last two decades as a uniquely versatile method to 

investigate the structures and properties of molecules in diverse environments through 

interpreting vibrational transitions.  

In this thesis, we present four interconnected biomedical and biopharmaceutical 

applications of Raman spectroscopy that exploit its exquisite molecular specificity, non-

perturbative nature, and near real-time measurement capability.  

In the first presented study, we harness spontaneous Raman spectroscopy in conjunction 

with multivariate analysis to rapidly and quantitatively determine antibody-drug conjugate 

aggregation with the goal of eventual application as an in-line tool for monitoring protein 

particle formation. By exploring subtle, but consistent, differences in spectral vibrational 

modes of various monoclonal antibodies (mAb) aggregations, a support vector machine-

based regression model is developed which is able to accurately predict a wide range of 

protein aggregation. In addition, the investigation of these spectral vibrational modes also 

offers new insights into mAb product-specific aggregation mechanisms.  

Second, leveraging surface-enhanced Raman scattering (SERS) and localized surface 

plasmon resonance (LSPR), we present a design of plasmonic nanostructures based on 

rationally structured metal-dielectric combinations, which we call composite scattering 

probes (CSP). Specifically, we design CSP configurations that have several prominent 
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resonance peaks enabling higher tunability and sensitivity for self-referenced multiplexed 

analyte sensing. The CSP prototypes were used to demonstrate differentiation of subtle 

changes in refractive index (as low as 0.001) as well as acquire complementary untargeted 

plasmon-enhanced Raman measurements from the biospecimen’s compositional 

contributors. 

In the third study, we demonstrate that Raman spectroscopy offers vital biomolecular 

information for early diagnosis and precise localization of breast cancer-colonized bone 

alterations. We show that as early as two weeks after intracardiac injections of breast cancer 

cells in mouse models, Raman measurements in femur and spine uncover consistent 

changes in both bone matrix and mineral composition. This research effort opens the door 

for improved understanding of breast metastatic tumor-related bone remodeling and 

establishing a non-invasive tool for detection of early metastasis and prediction of fracture 

risk.  

In parallel with this effort, we also seek to identify the differences between organ-

specific isogenic metastatic breast cancer cells. By interpreting the informative spectral 

bands, we are able to unambiguously identify these isogenic cell lines as unique biological 

entities. Our spectroscopic study and corresponding metabolic research indicate that tissue-

specific adaptations generate biomolecular alterations on cancer cells. 
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solutions, water and air in the wavelength range of 320-500 nm 

(around the 440 nm peak region) in case of the SNPG-annealed 
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(E) PLS prediction residuals for absorption spectra of SNPG-
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spectrum, and the shaded region represents the ± standard 

deviations (SD). (B) Distribution of |E/E0|
4 in the XZ plane at 530 

nm excitation. All the panels are plotted with the same range of 

color scale for comparison. The scale bar is 20 nm. The STG 

configuration shows significant enhancement at the sharp corners, 
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in case of the SNPG-annealed substrate. The solid line denotes 

y = x. We have also provided an inset that zooms in on 
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Figure S3.7 Absorption spectra demonstrating a shift in the silver nanoparticle 

resonance peak due to the presence of a dielectric particle whereas 

the peak due to gold nanoparticle remains unaffected. Substrate 

with multi plasmon resonance peaks such as this can be used for 

self-referenced measurement techniques. 
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74 
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Figure 4.1 Schematic representation of experimental model of breast 

cancer bone metastasis and depiction of subsequent Raman 

spectroscopy measurements. (A) Intracardiac injected of breast 

cancer 435-tdT cells (top: left-hand panel) and ensuing metastases 

in the femur and spine as demarcated in red (top: central and right-

hand panels). Raman microspectroscopy (bottom panels) was used 

to record spectra from these affected femurs and spines. (B) Raman 

spectra were collected at 2 mm intervals along the length of the 

femurs as indicated by numbered spots. Raman spectra of the 

spines were collected from central regions of lumbar (L1-L6), 

sacral (S1-S4), and caudal (C1-C2) vertebrae. 
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Figure 4.2 Live animal optical and x-ray imaging. (A) Fluorescence 

imaging of tdTomato signals from tumor-bearing mouse at week 2 
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(left panel) and tumor-bearing mice at 4 and 5 weeks post 435-tdT 

inoculations. In the week 5 image, fluorescent metastatic lesions in 

the scapulae (small arrows), lower thoracic-upper lumbar region of 

the spine (large arrow), and left proximal femur/pelvis region 

(arrowhead) were evident. Note, to better ascertain bone 

fluorescence signals, intense brain fluorescence was masked in the 

middle and right panel images. (B) X-ray images from a Faxitron 

x-ray scanner displaying the femur of the same mice shown in the 

corresponding panels in (A). No metastatic bone lesions were 

revealed in any of the x-ray images. 

Figure 4.3 Representative Raman spectra acquired from metastatic 

breast cancer affected femurs and spines. Spectra (normalized to 

PO4
3- 1 peak) were acquired from week 0 control group (blue 

tracings) and 5 weeks after tumor cell inoculations (red tracings). 

The solid lines depict the mean spectrum of each sample group with 

associated shadings representing the ±1 standard deviations (SD). 

Spectra are vertically offset for visualization purposes. 
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Figure 4.4 Raman spectra-derived metrics of bone compositional changes 

at each week of the study and corresponding radial 

visualization plots. Characteristics analyzed were: collagen 

mineralization as the PO4
3-/amide I (phosphate 1/amide I) ratio, 

phosphate-to-carbonate ratio: PO4
3-/CO3

2- (phosphate 

1/carbonate) ratio, remodelling as the CO3
2-/amide I ratio, and 
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mineral crystallinity from 1/FWHM PO4
3- (1/FWHM phosphate 1 

peak) calculations. Relative to week 0, average compositional 

changes of (A) femurs and (B) spines at 2, 4, and 5 weeks post 

tumor cell inoculations were quantified. Error bars = ±1 SD. (n,s, 

denotes not significant, *p<0.05, **p<0.005) (C) Distinct 

clustering of the spectral data corresponding to each week was 

revealed in the case of the femur analyses while two clusters 

emerged in the analysis of the spine data, namely, an early stage 

cluster: week 0 + week 2 and a late stage cluster: week 4 + week 5. 

Blue circles = week 0, red squares = week 2, green triangles = week 

4, and orange diamond = week 5. 

Figure 4.5 Raman spectral-derived metrics of bone compositional changes 

as a function of the position of the measurements on the bone. 

(A) Relative to week 0, average compositional changes (see Figure 

4.4) at the distal metaphysis, diaphysis, and proximal metaphysis 

of femurs. (B) Relative to week 0, compositional changes at lumbar 

vertebrae (L1 – L4), lumbar – sacral vertebrae (L5 – S2), and sacral 

– caudal vertebrae (S3 – C2) of spines. Orange bar = week 0 and 

blue bar = week 4. Error bars = ± 1 SD. (* p<0.05, ** p<0.01, *** 

p<0.001). 
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Figure 4.6 Fluorescent imaging-based assessment of the metastatic lesions 

in femurs. (A) Fluorescence images of anterior and posterior views 

of right (top panels) and left (bottom panels) femurs from each 
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week (0, 2, 4, 5) of the study. Autofluorescence was low (week 0 

images), metastasis specific fluorescent signals from tdT-435 cells 

within the metaphysis regions was relatively weak at week 2 and 

much more intense at week 4 and 5. (B) Fold increases in 

fluorescent intensities from the metaphysis regions of femurs in (A) 

relative to week 0 autofluorescence as well as between weeks as 

determined by the semi-quantitative measurements. Error bars = ±1 

SD. Two-tailed Students t-test was employed for evaluating 

statistical significance (asterisk depicts p<0.05). 

Figure 5.1 Use of fluorescent microscopy to assess the locations of 

metastatic lesions in ex vivo organ samples and the growth 

patterns of the subsequent pure metastatic cell lines. (A) 

Fluorescence and corresponding phase-contrast images of brain, 

lung, liver, and spine tissue explants immediately after dissection. 

(B) Phase contrast images of the different colony growth patterns 

of pure brain, liver, lung, and spine metastatic sublines as well as 

the primary tumor cell line, compared to the monolayer growth 

pattern of parental 435-tdT cells. Scale bars in all images depict 

100 μm. 
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Figure 5.2 Representative images of the brain cell line growth patterns on 

adherent plastic compared to monolayer growth of the parental 

cell line. (A–B) Two fields-of-view of characteristic monolayer 

growth of the parental cell line. (C) Distinct separate colony growth 
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was apparent at 48 hr post inoculation of the plate with distinct 

small spherical cells making up each colony (arrow heads) and thin 

cellular extensions/filopodia (micro- or nanotubes; arrows). (D) 

After 120 hr the interconnected colony pattern remained. (E–F) 

Two examples of the characteristic growth pattern at “confluency” 

of the brain cell line with colonies elaborately linked together by 

nanotubes. These interconnections between cells/colonies have 

consistently been recorded at > 100 μm in length. (G) Higher 

magnification of the central portion of image (E). (H) Expanded 

image of the lower left-hand corner of image (G). These magnified 

images allow for a very clear visualization of the complex and 

intricate web of interconnections between colonies that were in 

place. Scale bars in all images depict 100 μm. 

Figure 5.3 Representative images of the brain cell line colony and 

mammosphere growth patterns. (A) Images highlighting 

(arrows) the very long (> 100 μm) nanotube interconnections (or 

filopodia; e.g., middle right-hand image) that consistently form 

during: 24 hr (top row), 48 hr (middle row), and 120 hr (bottom 

row) of growth. (B) Examples, under adherent culture conditions, 

of the large free-floating mammospheres (arrows) that consistently 

formed during subculturing of smaller floating mammospheres 

retrieved from confluent brain cell line culture medium. Scale bars 

in all images depict 100 μm. 
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Figure 5.4 Growth curves and estimation of average specific growth rates 

(μ) off of plots of ln(Nt/No) versus time. (A) Growth curves of 

viable cell numbers vs. days of growth depicting distinctions in 

growth characteristics between cell lines. Each data point of the 

growth curves represents a mean (n = 3 to 4 wells of cells) ± 1 

standard deviation except for the last point of the brain and the last 

two points of the liver where these are averages of two wells of 

cells. (B) The same data sets use in (A) plotted as ln(Nt/No) vs. 

growth interval in hr where Nt is the number of cells at time ‘t’, No 

is the initial number of cells, i.e., viable cell counts on day 1 (24 hr 

after seeding the plates), and t is time. As, ln (Nt/No) = μt, it can be 

seen that the slope (μ) of each treadline (shown in red) provides an 

estimate of the average specific growth rates over the course of 

each growth interval (red lines) shown. 
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Figure 5.5 Principal component analysis (PCA) maps along with 

hierarchical clustering’s of metabolites and lipids. (A) 3D PCA 

mapping of aqueous metabolites (top panel) displaying sample 

classes as spheres. Bottom panel displays hierarchical clustering of 

the samples along with the associated heat map of aqueous 

metabolite distributions. (B) 3D PCA mapping of lipid soluble 

metabolites (top panel) with spheres representing the sample 

classes. Panel at the bottom displays a heat map of lipid soluble 

metabolite distributions along with the associated dendrogram. 
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Expression values for the heat maps are indicated by a key at the 

bottom of the maps. 

Figure 5.6 Raman spectroscopic analyses of organ-specific metastatic 

breast cancer cell lines reveals distinct spectral characteristics 

for each cell line. (A) Representative Raman spectra acquired from 

brain, primary tumor (1o Tumor), liver, lung, and spine cell lines. 

The solid profile depicts the mean spectrum of each sample group 

and the shadow represents ±1 standard deviation. Spectra were 

normalized and offset for visualization. Dashed vertical lines 

delineate Raman shifts (cm-1) detailed in Table 5.3. (B) Principal 

component (PC) loadings for PC 1, 2, 3 and 5, for the Raman 

measurements are shown. Dashed vertical lines delineate 

prominent Raman shifts (cm-1) detailed in Table 5.3. (C) Radial 

visualization principal component scores plot, corresponding to the 

most discriminative PCs (PC 1, 2, 3, and 5), shows the clustering 

of the spectral data corresponding to each organ-specific cell line, 

red: primary tumor, blue: brain, green: liver, orange: lung, and 

purple: spine. (D) Dendrogram of organ-specific breast cancer cell 

lines cluster analysis. Each color bar represents one organ-specific 

cell line. (E) Identification of informative spectral regions via PCA 

data exploration as exemplified by the PC loadings corresponding 

to the spectral dataset acquired from: primary tumor and liver (left 

panel) and primary tumor and spine (right panel) cell lines. The top 
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to bottom profiles in each panel show difference spectra: (DS) 

between liver/primary or spine/primary spectra along with their PC 

1 and PC 2 loadings, respectively. The highlighted yellow bars (1–

4), represent the wavelength regions elucidated from the difference 

spectra (DS) as those with the most significant variability amongst 

the considered cell lines. 

Figure 5.7 Raman spectroscopic analysis to probe the presence of cell line 

specific expression of molecules identified through 

metabolomics analysis. The top panel highlights the differential 

expression of spectral markers in the spine cell line. The primary 

cell line spectrum was used as the control to calculate the difference 

profiles. Additionally, principal components (PC) 1 and 2, 

calculated from the spine and primary cell line data, are provided 

to capture the variance. The presence of spectral features, 

corresponding to the peaks of dityrosine and gentisate aldehyde, are 

highlighted by the dashed lines and detailed vibrational mode 

assignment is presented in Table 5.5. Similarly, the middle panel 

compares the Raman spectra of the primary cell line with a control 

group, i.e., Raman spectra acquired from the liver cell line, to 

illustrate the presence of features of overexpressed metabolites L-

dihydroorotic acid and L-thyroxine. The bottom panel compares 

the Raman profiles of the liver cell line with the control group 

(primary) to delineate the overlap with features of 1-
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phenylethylamine. Profiles in blue represent the difference spectra: 

(DS) whereas the red and green profiles show the PC 1 and PC 2 

loadings respectively for each chosen pair of cell lines. 

Figure S5.1 Schematic illustration of Raman microspectroscopy system. 

The system incorporates confocal Raman, confocal reflectance (not 

shown here) and bright field imaging modalities for visualization 

and characterization of unstained live cells. LPF: Long Pass Filter; 

DM: Dichroic Mirror 
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Figure S5.2 Evaluation of motility through porous (8 µm) membrane 

inserts in standard 24 well Transwell® plates. During day two 

(green bars) and three (red bars), the parental cell line’s motility 

was relatively high as compared to the isolated isogenic cell lines. 

On day two, the motility of the parental cell line was significantly 

higher than the primary tumor and all metastatic cell lines (P < 

0.05, two tailed t-test) and this remained the case on day three for 

all cell lines except the liver cell line. By day three the liver cell 

line’s motility was significantly higher than the primary tumor and 

metastatic cell lines (P < 0.005) but not the parental cell line. Error 

bars depict ± 1 SD. 
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Chapter 1. Introduction 

 

1.1 What is Raman spectroscopy 

Raman spectroscopy is a fundamental form of molecular spectroscopy that exploits the 

inelastic scattering of light, which was first experimentally observed by C.V. Raman in 

1928s1. Briefly, when a photon interacts with a molecule, the molecule can be excited into 

a transient virtual energy state. The electrons at this virtual energy state can only exist for 

a very short time, usually 10-12 second2, before they relax back to the initial ground state 

by releasing photons with the same energy as the excitation. This process is known as 

elastic (Rayleigh) scattering. However, there is a small but finite possibility, ca. 1 in 108 

interacted photons, that the light-matter interaction occurs in an inelastic manner by 

scattering photons with different energy compared with the incident photons. This 

phenomenon is known as Raman scattering3. Under different nuclear motions, the energy 

difference between the incident photon and released photon could be positive or negative. 

If the energy of released photons is lower than the incident photons, the scattering is known 

as Stokes Raman scattering. In contrast, for anti-Stokes Raman scattering, the scattered 

photons have greater energy than incident photons4,5.  

The energy differences between the incident light and Raman scattering light, which is 

typically presented in intensity versus wavenumber plots, directly reflect the specific 

molecular bond vibration status. In addition, the intensity of the Raman spectral feature(s) 

is linearly related to the molecule’s concentration. These attributes make Raman 

spectroscopy a powerful label-free analytical tool for fingerprinting and quantitation of 

molecules. Furthermore, Raman measurements can be made in near real-time, and do not 
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necessitate substantial sample preparation thereby ensuring minimum disturbance to the 

native condition of the interrogated sample3.  

Although Raman scattering was first observed nearly a century ago, its application 

particularly in biomedical research and pharmaceutical development has attracted 

significant attention, due to the spectacular advances in laser and charge-coupled device 

technology.  A number of related analytical tools, including but not limited to resonance 

Raman spectroscopy (RRS), surface-enhanced Raman spectroscopy (SERS), spatially 

offset Raman spectroscopy (SORS), coherent anti-stokes Raman spectroscopy (CARS) and 

stimulated Raman scattering (SRS), have also substantial development.  

Spontaneous Raman spectroscopy is the first and, perhaps, still the most commonly 

employed Raman scattering technique used in biomedical analyses. Combined with light 

microscopy, spontaneous Raman spectroscopy allows the generation of high-resolution 

composite images that bridges the biomolecular and morphological domains. Several 

publications have been reported with this such spectroscopic imaging to visualize the 

distribution of chemical components, and to identify the biochemical alteration regions, for 

instance in tumor-bearing tissue6-8. 

The low likelihood of Raman scattering determines the intrinsic weak signal intensity. 

Researchers have worked hard to overcome this disadvantage and one solution is using 

RRS. Theoretically, Raman scattering could happen using any excitation wavelength. 

However, selection of a excitation line corresponding to the electronic absorption 

maximum of the target analytes substantially enhances the intensity of those specific 

Raman bands (amplification of ~103 – 105)9-11. RRS has been applied to study mitochondria 



3 

 

cytochrome-c release during cell apoptosis12,13, and to investigate the solvent-dependent 

coexistence of localized & delocalized dinitroaromatic radical anions14. 

Besides RRS, SERS provides another solution to enhance the weak spontaneous Raman 

signal. Instead of changing the hardware of the spectroscopic system, SERS employs noble 

metal nanoparticles or substrates with the rough metal surface to generate localized surface 

plasmons. Depending on the type of nanoparticle or nano-structured substrate, the signals 

of adsorbed molecules (or those in the vicinity) can be enhanced by a factor of 106 to 1010 

5,15-17. The distance between the metal surface and analyte is the most dominant factor of 

signal enhancement, and the enhancement factor decays exponentially with distance 

increase18-21. It is worth noting that the fluorescence signal coming from the analyte(s), 

which often dominates the weak Raman signatures, gets quenched when the molecules are 

close to the noble metal surface while the Raman signal is significantly enhanced22-25. In 

terms of noble metal selection for nanoparticle synthesis or nanostructure fabrication in the 

biological field, gold is the first choice due to its good biocompatibility26,27. In addition, 

gold nanoparticles can be readily functionalized by DNA and antibodies through thiol 

group binding28-30. Recently, functionalized gold nanoparticles-Raman reporter 

combination has been applied in cancer diagnosis, bioimaging, and photothermal therapy31-

33. 

For tissue analyses, a significant challenge for optical measurements (Raman 

scattering or otherwise) is overcoming the limited light penetration depth. It is 

challenging to acquire biochemical information from deeper layers of the tissue. One 

possible solution is using near-infrared laser, as there is less absorption of light by water 

in the tissue at this wavelength range34,35. Another recently proposed solution for this 
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problem is utilizing SORS that advocates the collection of diffuse Raman scattering 

photons at different spatial offsets from the laser excitation spot. A SORS measurement 

consist of at least two Raman measurements; one at the source and one at an offset 

position of typically a few millimeters away. The two acquired spectra can be subjected 

using a scaled subtraction to generate two spectra representing the subsurface and 

surface spectra. With help from SORS, it is possible to acquire biochemical information 

from 40 mm below the sample surface36,37, which is much deeper than that possible 

using near-infrared light alone (approximate 5 mm)38,39. Due to this deeper imaging 

ability, SORS has been employed in diverse applications such as recovering hidden 

images in art as well as in non-invasive bone disease and breast cancer diagnosis40,41. In 

addition, SORS can be coupled with SERS to retrieve Raman signals from even deeper 

layers in diffusely scattering samples. This joint technique first reported by Stone and 

co-workers is called surface-enhanced SORS (SESORS)42,43. Similar to SORS, SESORS 

has a wide range of application in non-invasive detection field, such as in vivo glucose 

sensing and brain tissue characterization through the skull in a non-invasive manner44,45. 

Unlike other Raman-related techniques that use a single wavelength laser for 

excitation, CARS and SRS require two pulsed lasers with different wavelengths to reveal 

the chemical information from samples with the help of nonlinear optical processes46,47. 

By tuning the wavelength differences between the pump laser and Stokes laser to match 

a particular sample’s vibrational mode, the Raman signal intensity is significantly 

increased. Unlike spontaneous Raman and RRS, CARS and SRS have a clean spectral 

background without fluorescence interference. Furthermore, the nonlinear nature of 
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CARS and SRS opens the door for three-dimensional sectioning and for deeper tissue 

imaging48,49. 

 

Figure 1.1 Schematic of Raman scattering, molecular band vibration and representative 

Raman spectra acquired from triamterene (a diuretic) and serous otitis media. 

 

1.2 Specific research questions and thesis outline 

This dissertation is organized in the following manner, as illustrated in Figure 1.2.  

In Chapter 2, we discuss our efforts to build a rapid, quantitative tool for determination 

of aggregation and particle formation in antibody drug conjugate therapeutics. The contents 

of this work have been recently published in Analytica Chimica Acta (2019). The recent 

shift of therapeutic focus towards antibody-based drugs has led to continuous discovery 

and development of new biologics, and concerted efforts in their rapid translation to the 

clinic. While the commercialization of monoclonal antibodies (mAbs) is gathering 

momentum, addressing critical challenges in manufacturing and quality control of these 

products is vital to the long-term success of this sector. One of the principal quality control 

challenges is stability testing of mAbs, particularly protein aggregation characterization, in 
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order to ensure therapeutic material dosed to patients is safe and efficacious, and consistent 

with previous clinical and toxicological experience. While important, real-time 

identification and quantification of subvisible particles in the mAb drug products remain 

inaccessible with existing techniques due to limitations in measurement time, sensitivity or 

experimental conditions. We propose to harness Raman spectral markers to offer a new 

route for real-time, quantitative determination of aggregation and to understand how 

physiochemical properties may impact the formation of high molecular weight species. 

Meeting these needs also requires the ability to deal with complex spectral datasets that 

encode underlying multivariate interactions. Here, we report the application of spontaneous 

Raman spectroscopy coupled with multivariate data analysis for predicting aggregation 

level of mAbs – with minimal sample preparation and in a near real-time manner.  

In Chapter 3, we report composite-scattering plasmonic nanoprobes for label-free, 

quantitative biomolecular detection that combine SERS with localized surface plasmon 

resonance (LSPR) sensing. This chapter is reproduced with permission from Small (2019), 

where the findings of this study were published. Despite the significant advances in the 

development of SERS nanostructured substrate, the potential of core-shell nanoparticle-

based designs for enabling both SERS and LSPR sensing has been has been surprisingly 

underappreciated - even though such constructs have received attention as a way to tune 

plasmon resonance and electromagnetic enhancement. Using simple microfabrication 

techniques, notably physical vapor deposition and thermal de-wetting, we have 

successfully fabricated a uniform, large-area plasmonic substrate with facile spectroscopic 

tunability. Combining spectroscopic data with partial least squares has enabled resolving 

refractive index differences as low as 0.001. The refractive index related change in the 



7 

 

absorption spectra and SERS measurements, using albumin as a model analyte, closely 

agree with our finite element method-based simulations for different configuration of the 

nanostructures. 

Chapter 4 focuses on the development of Raman spectroscopy as a label-free, non-

invasive tool for recognizing breast cancer metastases to the bone significantly before it is 

detected by existing imaging technologies. This research effort was published in Chemical 

Science (2018) and is reproduced here from the published article.  Our research aims to 

realize automated and objective cancer diagnoses and grading that betters human 

performance, and to establish early cancer detection not detectable by current pathologic 

examinations. Epithelial cancers including breast and prostate commonly progress to form 

incurable bone metastases. For this to occur, breast cancer cells must adapt their phenotype 

and behavior to enable detachment from the primary tumor, invasion into the vasculature, 

and homing to and subsequent colonization of bone. Yet, existing imaging tools offer 

frustratingly little information on the bone’s biochemical and mineral composition and 

whether it has been compromised. Here, by studying femurs and spines of mouse models 

inoculated with fluorescent-expressing MDA-MB-435 cells that recapitulate spontaneous 

breast cancer dissemination to the bone, we reveal that Raman spectroscopy has the 

capability to detect biochemical changes to the structure of bones associated with early 

cancer metastasis without a priori imaging or pathological knowledge of lesion location. 

Our findings create a new landscape for Raman spectroscopic monitoring by: (A) 

uncovering discriminative spectroscopic features that map to molecular alterations in the 

bone following breast cancer metastasis; (B) offering quantitative measures to determine 

longitudinal and location-specific osteolytic/osteoblastic variations caused by the tumor 
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involvement; and (C) demonstrating the feasibility of using Raman spectroscopy for early 

detection of metastatic disease in bone. 

In Chapter 5, we present, to the best of our knowledge, the first demonstration that a 

label-free spectroscopic technique can be used to assess organ-specificity of distant 

metastases. Identifying distinct molecular signatures of matched primary breast cancer and 

metastatic lesions with the principal goal of designing therapeutic regimens directed at 

eradicating lethal metastatic disease is an ongoing investigation. Currently the preclinical 

validation of this process has been based on generating metastatic lesions using either tail-

vein or intra-cardiac injections of breast cancer cells. Subsequent genomic and proteomic 

analyses of the isolated metastatic cell lines have been relied upon as guidelines to profile 

potential therapeutic options. However, this approach has generated inconsistent data sets 

that have undermined the development of successful clinical treatments. Our findings, 

originally published in Oncotarget (2017), underscore the importance of establishing an 

appropriate preclinical breast cancer metastasis model that takes into account the effect of 

organ-specific microenvironments on the differential evolution of tumor cells. 

In Chapter 6, the major findings and conclusions of our work are summarized and the 

future directions outlined. We believe that further research along these specific directions, 

coupled with the work presented in this thesis, will enable further development and 

translation of this powerful spectroscopic tool to the clinic.  
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Figure 1.2 Schematic representation of the structure of this thesis. The reported Raman 

spectroscopic applications could be classified as molecular fingerprints characterization 

and biological tissue profiling measurement. The spontaneous Raman spectroscopy and 

surface-enhanced Raman spectroscopy are discussed in corresponding chapters. 
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Chapter 2. Rapid, quantitative determination of aggregation and particle 

formation for antibody drug conjugate therapeutics with label-free 

Raman spectroscopy 

 

2.1 Abstract 

 Lot release and stability testing of biologics are essential parts of the quality control 

strategy for ensuring therapeutic material dosed to patients is safe and efficacious, and 

consistent with previous clinical and toxicological experience. Characterization of protein 

aggregation is of particular significance, as aggregates may lose the intrinsic 

pharmaceutical properties as well as engage with the immune system instigating 

undesirable downstream immunogenicity. While important, real-time identification and 

quantification of subvisible particles in the monoclonal antibody (mAb) drug products 

remains inaccessible with existing techniques due to limitations in measurement time, 

sensitivity or experimental conditions. Here, owing to its exquisite molecular specificity, 

non-perturbative nature and lack of sample preparation requirements, we propose label-

free Raman spectroscopy in conjunction with multivariate analysis as a solution to this 

unmet need. By leveraging subtle, but consistent, differences in vibrational modes of the 

biologics, we have developed a support vector machine-based regression model that 

provides fast, accurate prediction for a wide range of protein aggregations. Moreover, in 

blinded experiments, the model shows the ability to precisely differentiate between 

aggregation levels in mAb like product samples pre- and post-isothermal incubation, where 

This chapter has been published in the peer-reviewed journal (Zhang, C., Springall, J.S., Wang, X. 

and Barman, I., 2019. Rapid, quantitative determination of aggregation and particle formation for 

antibody drug conjugate therapeutics with label-free Raman spectroscopy. Analytica Chimica Acta, 1081, 
pp.138-145.) 
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an increase in aggregate levels was experimentally determined. In addition to offering fresh 

insights into mAb like product-specific aggregation mechanisms that can improve 

engineering of new protein therapeutics, our results highlight the potential of Raman 

spectroscopy as an in-line analytical tool for monitoring protein particle formation. 

  

2.2 Introduction 

Since their first licensing for clinical use nearly three decades ago, monoclonal 

antibodies (mAbs) have offered a powerful therapeutic route for targeting specific 

mutations and defects in protein structure and expression. The high specificity and affinity 

of mAbs have catalyzed their development for treating a wide range of pathologies1, such 

as cancers, infectious diseases and inflammatory conditions, making them the fastest 

growing group of biotechnology-derived molecules in clinical trials2. By the end of 2017, 

57 mAbs and 11 biosimilars had been approved by the U.S. Food and Drug Administration 

(FDA) and European Medicines Agency (EMA)3 with the global value of the market 

estimated to be $20 billion per year4.  

However, the production of these therapeutic antibodies requires the use of very large 

cultures of mammalian cells followed by extensive purification steps leading to extremely 

high production costs. This is exacerbated by the lack of suitable metrology tools for rapid 

characterization of key attributes of the biologic product that are directly linked to its safety 

and efficacy. For instance, there is a critical unmet need to rapidly assess antibody stability 

during the development and manufacturing phases of a mAb product. Of all possible 

instabilities, protein aggregation presents a singular challenge. In addition to the mAb-

specific aggregation propensity5, the interplay of physicochemical parameters such as 
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protein and ion concentrations, particulate contamination, pH, and temperature plays a key 

role in inducing aggregation in therapeutic formulations. Severe protein aggregation 

(resulting in protein particles) could lead mAbs to lose their pharmaceutical properties, 

hinder various upstream/downstream processes, and even stimulate immune response in 

patients causing harmful effects6. Although the latter response is poorly defined, there is 

emerging evidence of a difference in immune response for aggregated material in 

comparison to non-aggregated material7,8. By achieving rapid and accurate aggregation 

evaluation, the downstream purification of biopharmaceuticals can be optimized in real-

time with the ultimate goal of enhancing the product quality during manufacturing 

campaigns.  

High-performance size exclusion chromatography (HP-SEC) is widely employed for 

detailed characterization of therapeutic proteins and is often considered as the reference 

method for qualitative and quantitative evaluation of aggregates9-11. Besides HP-SEC, 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)12, asymmetrical 

field flow fractionation (AF4)13, fluorescence spectroscopy14, circular dichroism 

(CD)15,16 and dynamic light scattering (DLS)17 are also applied for quantification of protein 

aggregation. In addition, mass spectrometry and its variants are extensively used to confirm 

the fragment masses and, increasingly, to characterize oligomeric protein aggregates18,19. 

Although these techniques have been employed for protein aggregation characterization 

under various conditions, each has well-known limitations. For instance, mass 

spectrometry can be time-consuming and requires substantial expertise to properly execute. 

Meanwhile, DLS has relatively low sensitivity with the obtained size distribution being 

biased towards larger particles owing to the dependence of the intensity on the sixth power 
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of the diameter20. This is particularly limiting in quantifying solutions with low aggregation 

content. On the other hand, additional (often complicated) sample-specific preparation is 

needed for enabling fluorescence measurements. For the most widely employed technique, 

HP-SEC, the major limitation is that the run times can be long making the analysis time-

consuming and difficult to employ as an in-line mAb evaluation tool. Overall, current 

limitations of the analytical tools used to detect subvisible particles in the mAb drug 

products make meaningful measurements challenging with different methods often 

offering widely conflicting results21.  

Development of an in-line method to support real-time analysis requires a rapid, label-

free technique, which can detect and quantify low aggregation levels under standard mAb 

manufacturing conditions. We propose label-free Raman spectroscopy (RS) as a solution 

to this unmet need based on the wealth of molecular information encoded in the vibrational 

spectrum. Protein secondary and tertiary structural information are extensively studied 

through analysis of Raman peak positions and ratios of spectral features that characterize 

amide-I, amide-II, amide-III, and other backbone vibrations22-24. It has also been 

successfully leveraged to investigate conformational changes in single protein crystals25 as 

well as to monitor lyophilization26 and side chain confirmation27. While RS has been 

previously reported for the elucidation of conformational transitions and aggregation 

mechanisms in antibodies28-31, its quantitative power has yet to be utilized for real-time 

determination of aggregation and to reveal how physiochemical properties may impact the 

formation of high molecular weight species.  

Here, we seek to significantly extend the RS approach by combining it with multivariate 

analysis of frequent patterns expressed in the spectral profiles for predicting aggregation 
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level of mAb like products – with minimal sample preparation and in a near real-time 

manner. For this pilot study, antibody drug conjugate (ADC) samples were first measured 

by HP-SEC to determine the initial aggregation level. ADCs, which are mAbs attached to 

cytotoxic drugs by chemical linkers with labile bonds, present a particularly important and 

understudied cohort for determining protein aggregation. Following fractionation of the 

initial ADC sample solution a series of mixture samples was established with various levels 

of aggregate content. Raman spectral data were acquired from these characterized mixture 

samples using a spectrometer customized for solution measurements. In addition, part of 

the initial ADC sample solution was stressed at 40°C for a month to rapidly generate 

product degradation at a faster rate than the anticipated storage condition. Spectroscopic 

measurements were subsequently performed on the paired set of pre- and post-stress 

samples. 

Two separate studies were performed with the acquired data: (A) Mixture sample study: 

this featured cross-validation and blinded prediction on a series of ADC mixture samples 

with different aggregation levels; and (B) Thermal stressing study involving independent 

prediction of protein aggregation level on ADC samples pre- and post-isothermal 

incubation. For study (A), principal component analysis (PCA) and 2D correlation analysis 

(2DCOS) was first used to reveal the subtle, but consistent, spectral changes observed with 

increasing proportion of mAb like product aggregation. Without any prior knowledge of 

the amino acid sequence of the tested antibodies, we next developed a support vector 

machine (SVM)-based regression algorithm for estimation of a wide range of protein 

aggregation after training it with established aggregation mixture samples. For the thermal 

stressing study (B), the SVM-derived decision algorithm developed in the former study 
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was imported to predict the (differential) levels of aggregation in the pre- and post-

isothermal incubation ADC samples. The collective findings of our study pave the way for 

real-time, in-line mAb aggregation measurements with RS and, when viewed together with 

recent reports31-34, support the expanded use of vibrational spectroscopy as a process 

analytical tool in the development and manufacturing of protein drugs and biosimilars.  

 

2.3 Experimental section 

Sample Preparation. To achieve the goals outlined for studies (A) and (B), multiple 

mAb samples were derived from an antibody-drug conjugate (ADC) that was kindly 

provided by MedImmune, LLC (Gaithersburg, MD, USA). Since the aggregation 

mechanism (and the corresponding spectral changes) are highly mAb-specific (as 

demonstrated in earlier reports31), we have focused on developing an accurate classifier 

and deriving mechanistic insights for aggregation determination for this biologic sample 

set. The parent ADC sample was first tested by high-performance size exclusive 

chromatography (HP-SEC) to determine the protein aggregation level. To facilitate the 

thermal stressing study, 10 mL of the original sample was incubated at 40°C for one month. 

The 40°C/75% relative humidity 1-month treatment is a recognized accelerated stability 

condition from the ICH Q5C35. In contrast to some of the prior studies that involved Raman 

measurements of protein aggregation28-31, the temperature used in this investigation is 

significantly below the melting temperature (Tm) of typical mAbs and, hence, is not 

expected to produce any alteration of the secondary-tertiary structure of the protein 

molecules36. Using HP-SEC, protein monomers and high molecular weight species 

(HMWS) fractions were collected separately via peak fractionation. Various samples with 
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0%, 2%, 5%, 10%, 15%, 20%, 30%, 40% and 50% of HMWS were then generated by 

mixing purified monomer and HMWS samples. Samples were stored at 4°C until 

spectroscopic measurements. The sample solution was held in 100 μL fused quartz cuvettes 

and 10 mg/mL concentration was used for all samples. For the protein aggregation mixture 

samples, the dilution buffer was the HP-SEC mobile phase. On the other hand, the dilution 

buffer for the original unstressed and 40°C stressed sample was phosphate-buffered saline 

(PBS). Sample preparation and Raman spectral acquisition were repeated thrice to assess 

reproducibility of the measurements. 

Instrumentation. An Agilent 1260 Infinity HP-SEC was used to characterize the 

samples’ aggregation level. The column used for HP-SEC was TSKgel® G3000SWXL (L × 

I.D. 30 cm × 7.8 mm, 5 μm particle size) (King of Prussia, PA, USA) and each injection 

contained 250 µg protein sample with 1 mL/min mobile phase flow. Before each SEC 

experiment, PBS and gel filtration standard (GFS) were measured to verify system 

condition. 

Raman spectra were acquired by using a µ-ChiralRAMAN-2X Raman spectrometer 

(ChiralRAMAN, Jupiter, FL, USA). Sample excitation was achieved by using a 532 nm 

diode laser (MPC6000, Laser Quantum, Fremont, CA, USA). The laser beam passed 

through a polarizer, a degree of circularity converter and two synchronized counter-rotating 

half-wave plates. The backscattered Raman signals were transmitted through a notch filter 

to remove the Raleigh scattered photons, and the spectra were collected using a 

thermoelectrically cooled CCD camera (MityCCD E3011Bl-DVM, Critical Link, Syracuse, 

NY, USA). Laser intensity at the sample was kept constant at 50 mW for all the 



24 

 

measurement and the spectral resolution of the system was 7 cm-1. The exposure time for 

each spectral acquisition was 4 seconds. 

Data Analysis. The collected Raman spectra were imported into the MATLAB 2017a 

(Mathworks, Inc., Natick, MA, USA) environment for further analysis. The Raman 

wavenumber calibration was performed by using the neon lap spectra acquired by the same 

system. Spectra were processed to remove interference from cosmic rays. The spectra were 

subjected to a fifth order best-fit polynomial-based fluorescence removal.  

Support vector machines (SVM) were used to develop a regression algorithm for 

spectroscopically predicting the aggregation level of the proteins. SVM is a supervised 

learning model that is built on structural risk minimization concepts and can efficiently 

perform non-linear regression by implicitly mapping the inputs into high-dimensional 

feature spaces through a kernel. A radial basis function (RBF) with a Gaussian envelope 

was chosen as the kernel, and the kernel parameters were optimized based on an automated 

grid search algorithm37-39.  

To examine the predictive power of the SVM-derived regression algorithm, leave-

many-out cross-validation and blinded sample tests were performed on the mixture samples 

in study (A). For the cross-validation tests on the mixture samples, spectra were normalized 

to the intensity of the 983 cm-1 peak, that is characteristic of the HP-SEC mobile phase 

background. Subsequently, 50% of the spectra from each type of mixture sample were 

randomly chosen to build the training set. The rest of the spectra were used for cross-

validation of the regression model. The algorithm was iterated 100 times with various 

division of spectra into training and test set to avoid any potential bias. Moreover, for the 

blinded predictions, the validation set consisted of separate samples with aggregation levels 
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unknown to the developed regression model. In study (B), the mAb samples were subjected 

to thermal treatment. These samples did not contain the mobile phase component and, 

hence, the acquired spectra were normalized to 1643 cm-1 amide-I peak. Here, the 

algorithm developed in (A) was directly used for predicting the HMWS content in the pre- 

and post-thermal incubation samples without any alteration.  

To ensure transferability of algorithms between the two studies, the 1160-1800 cm-1 

fingerprint region, which is free from the HP-SEC mobile phase interference, was used for 

multivariate model development. The aggregation levels predicted from SVM-derived 

regression algorithms were validated against the results from HP-SEC measurements.  

Additionally, to better visualize potential correlations between the HMWS content and 

spectral changes, PCA was employed. PCA is a widely used dimensional reduction 

technique, which aims to capture the variance in the spectral dataset using only a few 

orthogonal components (known as principal components, PCs)40. Radviz and VizRank 

algorithms from Orange data mining software41 were used together with the PC scores to 

elucidate trends within the spectral data. 

Furthermore, in order to gain a better understanding of the relationship between HMWS 

proportion changes and spectral variations42,43, 2DCOS was employed. 2DCOS is an 

emerging analytical tool that is harnessed to uncover the specific spectral intensity 

fluctuations induced by the external perturbations (i.e. the aggregation of the mAb samples). 

2DCOS analysis was performed under the environment of MATLAB 2017a (Mathworks, 

Inc., Natick, MA, USA). The 2DCOS analysis provides synchronous and asynchronous 

contour maps. The details of 2DCOS interpretation are noted in the Appendix. 
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2.4 Results and Discussion 

Rapid and accurate determination of protein aggregation remains an unmet analytical 

need, addressing which is crucial to the development of more efficient and inexpensive 

manufacturing processes of protein-based biopharmaceuticals. While previous Raman 

spectroscopy studies have focused on single variants of well-characterized proteins28-30 or 

on understanding aggregation mechanisms of specific mAb molecules31, this technique is 

yet to be applied for quantifying aggregation levels, particularly in order to assess its 

feasibility for detecting low levels of aggregation in ADCs. The latter forms a particularly 

important, yet understudied, sample cohort. Additionally, in the second part of our 

investigation (study (B)), we seek to evaluate the robustness of Raman spectroscopy-based 

multivariate algorithms in determining changes induced by thermal incubation that mimic 

long-term storage conditions in real life.   

Study A: Quantitative determination of aggregation levels in ADC mixture 

samples. Based on the HP-SEC profile, peak fractionation was applied to separate major 

ADC product (monomer) and HMWS, and subsequently a series of mixture samples 

consisting of increasing amounts of HMWS was established. Figure 2.1A shows 

representative label-free Raman spectrum recorded from a clean ADC sample (i.e. without 

the presence of the HP-SEC mobile phase) after background fluorescence subtraction. The 

vibrational peaks in the range of 600-1800 cm-1 are identified in the spectrum 

corresponding to various amino acids and characteristic amide modes, such as those at 764 

cm-1 (tryptophan), 829 cm-1 (tyrosine), 931 and 1069 cm-1 (proline), 1007 and 1031 cm−1 

(phenylalanine), 1243 cm−1 (amide-III), 1342 cm-1 (CH deformation), 1381 cm-1 (CH3 

band), 1418 cm−1 (CH2 bending), 1471 cm-1 (C=N stretching), 1566 cm−1 (amide-II), and 
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1643 cm−1 (amide-I)44-46. In Figure 2.1B, representative Raman spectra acquired from 0% 

HMWS and 50% HMWS standard samples that were obtained following peak fractionation 

are shown. Due to collection of the fractionated species in the HP-SEC mobile phase 

solution, the aggregation standard spectra were normalized to the intensity of the 983 cm-1 

peak that is characteristic of the mobile phase background. Since the mobile phase does 

not exhibit any interference in the 1160-1800 cm-1 range (marked by the black dashed box 

in Figure 2.1B), we used this spectral subset for development of the multivariate regression 

models and the ensuing analysis. Several spectral differences have been found between the 

0% and 50% HMWS standard samples, notably in the amide-II, CH2 bending and CH 

deformation regions. The amide-II bond (purple dashed line), which is attributed to the 

secondary structure of the protein, represents C-N stretching vibrations in combination 

with N-H bending46,47. The CH2 bending and CH deformation features (yellow dashed lines) 

are attribute to the primary structure of proteins46. Crucially, other subtle, but reproducible, 

changes correlating to different protein aggregation levels may be revealed through the 

application of chemometric algorithms32. To this end, we developed a SVM-based 

regression model with the goal of quantifying protein aggregation level and subsequently 

employed PCA to tease out aggregation-specific differences in the spectral profiles. 
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Figure 2.1 Vibrational Raman spectra of the biologics. (A) Label-free Raman spectra 

recorded from a representative mAb sample. Prominent Raman peaks are indicated in the 

biologic spectrum. (B) Mean spectra obtained from standard mAb samples with 0% (blue 

curve) and 50% (red curve) HMWS proportion after peak fractionation. The solid lines 

depict the mean spectrum with associated shadings representing the ±1 standard deviations 

(SD). The spectra were normalized to the intensity of the 983 cm-1 peak – characteristic of 

the mobile phase. The 1160-1800 cm-1 (black dashed box) fingerprint region was used for 

further multivariate model development. Spectral features of CH deformation, CH2 

bending and amide-II modes (from left to right) are marked by yellow and purple dashed 

lines. 

SVM was chosen as the supervised regression technique as it is particularly well-suited 

to deal with data sets where the number of variables is large with undetermined linearity, 

two key characteristics of the recorded vibrational spectra48,49. Figure 2.2A shows the 

boxplot of the leave-many-out cross-validation results when the SVM-derived model is 

applied to the acquired spectral dataset. The root-mean-square error (RMSE) was 

computed to be 1.8% with 100 iterations of equal test and training spectral dataset division. 
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Figure 2.2B presents the boxplot of the blinded prediction results where separate samples 

with aggregation levels unknown to the developed regression model were used. The 

developed model maintains its accuracy for estimating HMWS content in the range of 0-

30% with RMSE of ca. 4.5%. What is most impressive is that RS can make accurate and 

precise predictions in near real-time, with minimal processing at low aggregation levels of 

the mAbs, which present singular quantification challenges for DLS.   

However, the prediction error in the blinded tests increased when dealing with samples 

containing higher relative amounts of HMWS (40% or 50%, Figure 2.2B red dashed 

boxes). In particular, test samples with 40% and 50% HMWS content were 

spectroscopically estimated to have, on average, only ca. 28% and 38% HMWS 

proportions, respectively. (In contrast, the cross-validation results do not show significant 

deviation at these high aggregation levels.) A possible reason for the deviation may be an 

outcome of the larger number of samples with low aggregation levels in the training data 

that may artificially skew the regression weights in favor of the latter. It is notable that the 

underestimation at these levels is likely not significant in the context of Raman-based 

quality control of the mAb products, as the overall assessment that these samples harbor 

large amounts of HMWS is correct and would offer the desired input to the analytical 

process. Nevertheless, to reveal the potential basis for these deviations at high levels of 

aggregation, we resorted to principal component analysis. 
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Figure 2.2 Aggregation level predictions with label-free Raman spectroscopy. The 

median values indicate the prediction results. (A) Graphical representation of prediction 

results obtained by application of the SVM-derived regression algorithm in leave-many-

out cross-validation routine. (B) The SVM-derived regression results of protein 

aggregation in blinded experiments. The red dashed box highlights the predictions for 40% 

and 50% aggregations. The root-mean-square error (RMSE) for cross-validation is 

computed to be 1.8%. The RMSE for the blinded tests (for 0-30% aggregation levels) is 

4.5%. (n.s.: not significant, *p < 0.05, **p < 0.01, ***p < 0.001). 

Figure 2.3A shows PC-scores based radial visualization plots for various aggregation 

standards. Points on the radial map represent sample spectral measurements from several 

different experimental batches, and the scores corresponding to the chosen loadings 

influence their position41. In comparison to the regular 2D/3D PC score plots, these radial 

visualization plots offer substantial advantages, notably their ability to utilize more than 

three PCs and to depict all of the clusters in a single plane. Evidently, distinct clustering 

patterns for the data points possessing similar content of HMWS species is observed. 
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Further inspection reveals a trending of the PC scores associated with increasing HMWS 

content from the left to the right of the unit circle. The only major intra-class variability is 

seen for the samples with sub-10% (but not 0%) HMWS content. We attribute this spread 

to the difficulty in monitoring low concentration of sub-visible particles that freely diffuse 

into/out of the laser’s focal volume.  

Figure 2.3B shows the corresponding loadings of PC 1 to PC 4. The major peak in these 

loadings is located at 1566 cm−1, which is the amide-II bond representing C-N stretching 

vibrations in combination with N-H bending46,47. Our observations are consistent with 

findings from previous studies where the vibrational information of the amide-II peak has 

been used to measure protein clustering50-53. Additionally, in the context of separating 

between the samples with 10-20% and 30% HMWS content, the CH deformation and CH2 

bending, as seen in the PC1 loading, may play an essential role.   

 

Figure 2.3 Radial visualization plot highlights changes correlating with increasing 

HMWS proportion. (A) Multidimensional radial visualization plot based on the PC scores 

shows the clustering behavior of six representative aggregation levels. (B) Corresponding 

PC 1 and 2 loadings. Black dashed lines indicate zero loading positions. Yellow and purple 

dashed boxes indicate (from left to right) the CH deformation, CH2 bending and amide-II 

modes. 
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In order to gain a better understanding of spectral intensity fluctuation induced by 

changing aggregation levels, synchronous (Figure 2.4A) and asynchronous (Figure 2.4B) 

2DCOS plots are presented here. In the synchronous plot shown in Figure 2.4A, the bands 

with the most obvious dynamic spectral variations reflecting aggregation changes are 

observed at 1342, 1381, 1418 and 1566 cm-1 (CH deformation, CH3 band, CH2 bending 

and amide-II, respectively). The positive cross peaks occurring between (1566, 1342) and 

(1566, 1418) accurately present that both amide-II and CH-related bands are changing 

intensity in the same direction as aggregation proportion increase. Besides positive cross 

peaks, a weak negative cross peak is noted around (1566, 1643) cm-1, which could be 

assigned to amide-II / amide-I cross peak, indicating their changes are in opposite 

directions. In the asynchronous plot (Figure 2.4B), there is a major positive cross peak 

located between the coordinates (1566, 1243) and (1566, 1500) cm-1 that correspond to 

amide-II, amide-III, C=N stretching and CH-related bands. However, due to the absence 

of obvious corresponding cross peaks around (1566, 1243) and (1566, 1471) cm-1 in the 

synchronous plot, the predominant order of amide-II and amide-III or C=N stretching 

bands intensity variance cannot be determined at this stage. Since the corresponding amide-

II and CH-related cross peaks share the same sign (positive) in both the synchronous and 

asynchronous plots, it is indicative of the aggregation-induced changes in amide-II 

intensity occurring predominantly ahead of such changes in the CH-related spectral 

features.   
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Figure 2.4 (A) Synchronous and (B) asynchronous 2DCOS plots generated from mAb 

aggregation-induced Raman spectral intensity variations. The shaded regions above the 

2DCOS plots highlight (from left to right) the CH deformation, CH3 band, CH2 bending 

and amide-II modes in the Raman spectrum. 

The inclusion of the CH and CH2 peaks in accounting for this differential separation 

indicates that the mechanism of aggregation is driven, in part, by the attraction between 

hydrophobic patches of the protein molecules, involving noncovalent interactions31. As 

mentioned previously, we have not denatured the protein under investigation in this study 

and, as such, the protein is predominantly in its native state, resulting in the presence of 

surface exposed hydrophobic amino acids, which likely act as nucleation sites for 

aggregation to occur via hydrophobic attraction between non-polar side chains54. Similar 

conclusion can also be drawn from Figure 2.1B, where the largest variance in our data is 

observed in the amide-II region with secondary variances distributed around CH 

deformation and CH2 bending modes. The amide-I region is widely studied to assess 

protein secondary structure55,56. However, due to the broad band of H-O-H bending 
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vibrations from water (as also reported by previous studies57), amide-I does not appear to 

be a major driver of our regression model for quantifying aggregation levels. 

Study B: Quantification of aggregation levels of mAbs subjected to thermal stress. 

Here, we sought to investigate the feasibility of the previously developed regression model 

in quantifying differential aggregation levels of the ADC sample, pre- and post-thermal 

treatment. This experiment is of significance in evaluating the suitability of RS in 

monitoring protein degradation over the long-term and, specifically, in understanding the 

robustness of our algorithm to non-analyte specific buffer variations. The SVM model, 

developed in the aforementioned cross-validation study, was used without alteration to 

predict aggregate content in the pre- and post-stress ADC samples, which (unlike the 

samples in study (A)) do not consist of the HP-SEC mobile phase. 

 

Figure 2.5 Size exclusion chromatography characterization of mAb specimen: (A) before 

isothermal incubation; and (B) after one-month isothermal incubation. The 

monomer/HMWS separation points are indicated by the red dashed lines. The included 
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tables present the HP-SEC peak assignments and area coverage of each component. (C) 

Aggregation level predictions on pre-/post- isothermal incubation samples with label-free 

Raman spectroscopy. Independent prediction results were obtained by applying the SVM-

based regression model from study A. The SVM-derived model estimated the HMWS 

component in the pre- and post- isothermal incubation samples to be 45.7% and 51.8%, 

respectively. The RMSE of prediction on unstressed/stressed protein aggregation is 1.4%. 

(n.s.: not significant, *p < 0.05, **p < 0.01, ***p < 0.001). 

Our unstressed ADC sample was an in-process intermediate from the purification process 

and was determined by HP-SEC to consist of 54% monomer and 45.9% HMWS, respectively 

(Figure 2.5A). After the one-month isothermal incubation period, the stressed sample displayed 

an increase in protein aggregation with 53% components now recognized as HMWS (Figure 

2.5B). The reduction of the peak of the major product and the corresponding gain in the HMWS 

peak underscores the expected conversion of monomer species into larger than monomer 

HMWS. Figure 2.5C presents the boxplot of the RS-based predictions of the HMWS 

content in the unstressed and stressed samples. The SVM-based regression model estimates 

the HMWS content in the unstressed and stressed samples to be 45.7% and 51.8%, 

respectively. The computed RMSE is ca. 1.4%, which is comparable to the prediction 

errors observed in study (A). This verifies that the mobile phase background signal does 

not affect the regression model performance, and that our SVM derived regression 

algorithms are capable of accurately predicting mAb aggregation levels, despite the 

potential sample-to-sample variations. Our ability to distinguish between samples with 

relatively similar HMWS content paves the way for further quantitative studies to 

interrogate varying aggregation behavior of specific mAbs as well as the differential impact 

of other crucial physiochemical conditions on generation of protein particles. 
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2.5 Conclusion 

Limitations in detecting and quantifying protein particles complicates manufacturing 

and quality control for monoclonal antibody-based therapeutics. Here, we have shown that 

Raman spectroscopy in conjunction with support vector machine regression enables 

quantitative prediction of protein clustering in mAbs with high degree of accuracy and 

robustness. Notably, each measurement took less than three minutes including spectra 

acquisition and data analysis, which is much faster than HP-SEC measurements (~20 min 

per samples) that is extensively used for monitoring protein aggregation in the 

biopharmaceutical industry. The results in this proof-of-concept study should not be 

considered as indicative of the best classification performance that is likely to be obtainable 

after further optimization of the spectroscopic hardware and regression algorithm. In 

addition, we have uncovered the regions of spectral variances induced by protein particle 

formation and correlated these with the aggregation mechanisms through PCA and 2DCOS. 

Our present findings encourage further development of this promising technique with the 

goal of eventual application as a rapid, in-line aggregation monitoring tool. This has 

extensive implications in the rapidly emerging biopharmaceutical space especially in 

facilities handling production and processing of biologics, and may also benefit regulatory 

authorities by helping develop improved guidance parameters for manufacturing of safe 

and effective protein therapeutics. 

 

2.6 Appendix 

2D correlation analysis (2DCOS) interpretation. The synchronous contour map is 

symmetric and consists of two types of contours – autopeaks and cross peaks, which are 
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positioned along the diagonal and off the diagonal, respectively. The autopeaks, which are 

always positive by definition42,4343, identify the Raman bands with dynamic intensity 

variations. On the other hand, the cross peaks, which could be positive or negative, 

represent the similarities between the variations of the independent Raman bands. Positive 

cross peak indicates the two independent bands’ intensities changing in the same direction. 

The negative cross peak depicts the two bands varying in opposite directions. 

The asynchronous plot interpretation is based on the signs of the corresponding 

synchronous and asynchronous cross peaks. The rules for discerning the asynchronous 

cross peaks for Raman spectral analysis state that if the asynchronous cross peak located 

at Raman shifts (ν1, ν2) with ν1 ≠ ν2 is of the same sign as the corresponding synchronous 

cross peak, spectral intensity variations at wavenumber ν1 are considered to be occurring 

predominantly ahead of such changes at wavenumber ν2 
42,4343. In contrast, if the 

asynchronous cross peak does not have the same sign as its corresponding synchronous 

cross peak, the reversed sequence of spectral intensity changes is occurring with intensity 

changes measured at ν2 happening ahead of intensity changes observed at ν1. If a cross peak 

is identified on the synchronous plot without the corresponding peak on the asynchronous 

plot, the intensity changes of both the Raman bands occur simultaneously. Finally, if an 

asynchronous cross peak is observed without the corresponding presence of a related 

synchronous cross peak, the order of band intensity variance cannot be determined. 

Support vector machines (SVM). SVM is a supervised learning model that has been 

widely applied in the pattern recognition and classification of the spectroscopic field58-60. 

The basic concept of SVM is risk minimization, which could be explained as following: 

looking for an optimal hyperplane classifier to separate different classes while the distance 
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(margin) between classes’ boundaries is maximized. The progress of margin maximization 

simultaneous minimizes the empirical classification error. When the data set cannot be 

separated by a linear classifier, the data point is projected into higher dimensional space 

that is decided by the selected kernel function. Then, a linear classifier will be searched to 

achieve the maximum margin between classes under this higher dimensional space. In 

order to maintain accuracy with the existence of inseparable points (outliers) even in a 

higher dimensional space, the insensitive zone is employed to reduce the SVM sensitivity 

on these points61,62. 

If the data set is linearly separable, the equation of a linear SVM can be expressed as63: 

𝑓(𝑥) = ∑ 𝛼𝑖𝑦𝑖 < 𝑥𝑖
𝑠𝑣 ∙

𝑛𝑠𝑣

𝑖=0

𝑥 > +𝑏 

where 𝑛𝑠𝑣  represents the number of support vectors, 𝛼𝑖 (Lagrange multipliers) is a non-

negative parameter from the data set, each 𝑥𝑖 is described by a Lagrange multiplier and b 

is bias. 

For the situation of non-linearly separable data, the equation could be modified as: 

𝑓(𝑥) = ∑ 𝛼𝑖𝑦𝑖𝑘(𝑥𝑖,

𝑛𝑠𝑣

𝑖=0

𝑥) + 𝑏 

𝑘(𝑥𝑖, 𝑥) is the kernel function. 
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Figure S2.1 Vibrational Raman spectra before and after background removal. (A) 

Label-free Raman spectra from standard mAb samples with 0% (blue curve) and 50% (red 

curve) HMWS proportion before fifth order polynomial background removal. (B) Mean 

spectra obtained from standard mAb samples with 0% (blue curve) and 50% (red curve) 

HMWS proportion after polynomial background removal. The solid lines depict the mean 

spectrum with associated shadings representing the ±1 standard deviations (SD). Prominent 

Raman peaks are indicated in the biologic spectrum. The spectra were normalized to the 

intensity of the 983 cm-1 peak – characteristic of the mobile phase background. The 1160-

1800 cm-1 (black dashed box) fingerprint region was used for further multivariate model 

development. Spectral features of CH deformation, CH2 bending and amide-II modes (from 

left to right) are marked by yellow and purple dashed lines. 
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Chapter 3. Composite-scattering plasmonic nanoprobes for label-free, 

quantitative biomolecular sensing 

 

3.1 Abstract 

Biosensing based on localized surface plasmon resonance (LSPR) relies on 

concentrating light to a nanometeric spot and leads to a highly enhanced electromagnetic 

field near a metal nanostructure. Here, we present a design of plasmonic nanostructures 

based on rationally structured metal-dielectric combinations, which we call composite 

scattering probes (CSP), to generate an integrated multi-modal biosensing platform 

featuring LSPR and surface-enhanced Raman scattering (SERS) measurements. 

Specifically, we propose CSP configurations that have several prominent resonance peaks 

enabling higher tunability and sensitivity for self-referenced multiplexed analyte sensing. 

Using electron-beam evaporation and thermal de-wetting, we have fabricated large area, 

uniform, and tunable CSP, which are suitable for label-free LSPR and SERS measurements. 

The CSP prototypes were used to demonstrate refractive index sensing and molecular 

analysis using albumin as a model analyte. By using partial least squares on recorded 

absorption profiles, differentiation of subtle changes in refractive index (as low as 0.001) 

in the CSP milieu was demonstrated. Additionally, CSP facilitates complementary 

untargeted plasmon-enhanced Raman measurements from the sample’s compositional 

contributors. With further refinement, we envision that our method may lead to a sensitive, 

This chapter has been published in the peer-reviewed jorunal (Zhang, C., Paria, D., Semancik, S. and 

Barman, I., 2019. Composite-scattering plasmonic nanoprobes for label-free, quantitative biomolecular 
sensing. Small, p.1901165.) 
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versatile and tunable platform for quantitative concentration determination and molecular 

fingerprinting, particularly where limited a priori information of the sample is available.   

 

3.2 Introduction 

Biosensors offering fast and accurate detection of biomarkers can serve as important 

tools for point-of-care medical diagnostics1,2. Tagging the biomarkers with fluorescent 

species and detecting them using fluorescence microscopy or assay-based techniques are 

common approaches3-5. However, addition of exogenous contrast agents may perturb the 

native environment in cellular or biomarker sensing and intrinsic contrast imaging remains 

a highly desired commodity. In this milieu, nanoplasmonic sensors provide a highly 

sensitive and label-free method for detection of target molecules6-9. For instance, ligand-

receptor binding events are regularly monitored by detecting variations in surface plasmon 

resonance (SPR)10,11, which involves the collective oscillation of conduction electrons that 

propagates along a metal-dielectric interface. The excitation of such waves is highly 

sensitive to the variation of refractive index (RI) at the metal surface due to the generation 

of strong evanescent waves10. The decay length of these evanescent waves is typically 

hundreds of nanometers, and biomolecular binding events in this range can be detected in 

real time by tracking the variation in SPR signal12. Sensors based on SPR are therefore 

suitable for tracking bulk RI change. Localized surface plasmon resonance (LSPR), on the 

other hand, confines the plasmon resonance within metallic nanostructures as the near field 

decays rapidly near the nanostructures10. Thus, this technique operates with low sensing 

volume and is sensitive to local RI change, making it suitable for integration with lab-on-

a-chip devices13-15. 
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There have been a range of LSPR-based RI sensors reported in the past6. Various 

plasmonic nanostructures have been fabricated by both chemical16 and physical16,17 

methods for LSPR-based sensing. For example, a gold mushroom array was fabricated by 

interference lithography for detection of cytochrome c and alpha-fetoprotein16-18, gold 

nanoholes and discs were fabricated by nanosphere lithography16-19, and gold-coated silica 

nanospheres were realized by a chemical method16-20. There are also reports in the literature 

of various shapes of nanoparticles like gold21 and silver21-23 nanospeheres, gold stars24,25, 

silver cubes26, gold pyramids27, gold rods27,28 and gold nanorice29, which have been used 

for LSPR sensing with varying degrees of success. Theoretical predictions of dielectric 

sensing based on asymmetric resonances (i.e., Fano resonance8 and quadrupolar 

resonance30) also indicated the capability for ultrasensitive transduction of biomolecular 

species. 

Classically, most of the reported LSPR sensors have used gold 

nanoparticles/nanostructures with a single resonance peak around 500 nm for tracking the 

change in surrounding RI. Here, we report an alternate nanostructure design for generating 

plasmonic hotspots by using a combination of gold, silver and a suitable dielectric for 

sensing the RI of bioanalytes. In particular, the thin dielectric layer is used for separating 

the two metallic layers, which helps to prevent any kind of charge transfer between the 

latter and, crucially, gives rise to two distinct resonance peaks. This allows for more robust 

detection of RI changes in the media by concomitant computation of the shift in the two 

resonance peaks that facilitates ratiometric determination. Such a sensing technique 

enables a self-referenced platform31,32 for robust detection of analytes, effectively dealing 

with a situation for which changes in a single peak may be influenced by non-analyte-
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specific variations33. Moreover, our design has the added advantage of not being subject to 

fouling, as the reference feature (stemming from the gold nanosphere) is isolated from the 

environmentally-sensitive feature (that arises from the silver nanoparticles) by the physical 

presence of the dielectric layer. Additionally, as reported earlier34-36, the advantage of 

having two distinct peaks is that it increases the dynamic range for sensing, since the 

sensitivities to the surrounding environment demonstrated by the two peaks are distinct in 

the two RI ranges. Moreover, the sensitivity and the dynamic range can be tailored by 

changing the metal or dielectric thicknesses as well as by simply heating the substrate.  

Despite its sensitivity to the analyte-induced changes in RI, label-free LSPR sensing 

does not provide any information on the molecular composition. Raman spectroscopy, 

however, provides a unique molecular fingerprint by interrogating the vibrational 

transitions, offering multiplexed detection of biomolecules without necessitating the 

addition of any contrast agents37,38. The presence of plasmonic nanostructures near the 

analyte provides an electromagnetic enhancement of the Raman signal, thus, enabling 

detection at low concentrations – a technique commonly known as surface-enhanced 

Raman spectroscopy (SERS)38. Indeed, plasmon-enhanced assays have, in recent years, 

surpassed the detection limits of conventional fluorescence-based techniques39,40. 

We reason that a combination of LSPR and SERS measurements, which has only been 

recently explored in the literature41-43 for molecular diagnostics, can be readily obtained by 

leveraging the unique properties of our gold-silver-dielectric nanostructures. The ability to 

use the same platform with no modifications for acquiring complementary pieces of 

information is particularly attractive. SERS and LSPR measurements offer distinct insights 

into the biomolecular environment. SERS, which relies on inelastic scattering of light, 
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provides molecular fingerprinting capabilities, owing to the wealth of information encoded 

in the vibrational modes of the Raman spectra. On the other hand, LSPR measurements 

inform on the elastic scattering and absorption events that is manifested in the refractive 

index of the surrounding. Coupled with its label-free nature, we envision that the molecular 

specificity and multiplexing capability of this dual-modal sensing construct, which we term 

as composite scattering probes (CSP), will facilitate the screening of biomarkers in body 

fluids for diagnosis and monitoring of therapy response. In this report, we demonstrate both 

detection capabilities by using bovine serum albumin (BSA) as a model analyte for 

understanding the performance metrics of our nanostructured platform. BSA is a widely 

used analogue of human albumin, an important circulating protein in the blood of 

vertebrates, whose detection represents an diagnostic challenge in itself44. 

 

3.3 Experimental section 

Absorption spectra measurement and refractive index sensing: A Lambda 950 

UV/VIS/NIR spectrometer (PerkinElmer, Waltham, MA, USA) was used to measure 

absorption spectra from substrates. The measured wavelengths range from 320 nm to 800 

nm, covering the entire visible range. The data is collected at an interval of 2 nm for the 

optical characterization and 1 nm for the RI sensing experiments. The absorption spectra 

are measured by considering a glass coverslip as the reference. For the RI sensing 

experiments, the fabricated substrates, BSA solution and reference coverslip were put into 

quartz cuvettes that were placed in the measurement and reference light paths. 

SERS measurement: Raman spectra were acquired by using an XploRA PLUS Raman 

microscope (HORIBA Instruments Inc., Edison, NJ, USA). Sample excitation was 
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achieved by using a 532 nm diode laser. The laser beam was focused on the sample through 

a 10X objective (MPlan N, Olympus, Center Valley, PA, USA). The backscattered Raman 

signals were collected by the same objective and through a notch filter to remove Raleigh 

elastically scattered light, and the scattered spectra were collected using a 

thermoelectrically cooled CCD camera (1024X256-OE Syncerity, HORIBA Instruments 

Inc., Edison, NJ, USA). Laser intensity at the sample was kept constant at 35 mW for all 

the measurements. The exposure time for each measurement was 2 seconds with 5 times 

accumulation. The average SERS spectra, along with the standard deviations, are plotted. 

Data analysis: The collected absorption and Raman spectra were imported into a 

MATLAB 2018a (Mathworks, Inc., Natick, MA, USA) environment for further analysis. 

For RI sensing, in order to illustrate the capability to provide quantitative measurements of 

our substrates, hierarchical cluster analysis (HCA) and partial least squares (PLS) 

regression were employed. HCA is an algorithm which could group similar patterns into 

clusters based on Euclidean distance and average linkage method45. Couple dendrograms 

were displayed to reveal the hierarchy of clustering among samples with various RI. PLS 

is a widely used multiple linear regression model in quantitative spectral analyses46. PLS 

was used to establish the fundamental relations between absorption spectra and 

surrounding RI. For Raman measurements, spectra were processed to remove interference 

from cosmic rays. The spectra were restricted to the 200 cm-1 to 1800 cm−1 region and 

subjected to a fifth order best-fit polynomial-based baseline removal. All spectra were 

smoothed by using the 7 orders and 15 points Savitzky-Golay function46,47 and normalized 

at the silicon background peak at 520 cm-1. Limit of detection (LOD) of LSPR is calculated, 
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based on the IUPAC definition48 from the best fit-line obtained between predicted 

concentrations and reference concentrations. The corresponding equation is: 

𝐿𝑂𝐷 (𝑚𝑀) = 3
𝑆𝑦/𝑥

𝑠𝑙𝑜𝑝𝑒
  𝑤ℎ𝑒𝑟𝑒 𝑆𝑦/𝑥 = [

∑(𝑐𝑖̂ − 𝑐𝑖)2

𝑁 − 2
]1/2 

Where 𝑆𝑦/𝑥 is the standard deviation of the residuals and is a measure of the average 

deviation of the predicted values from the regression line. The LOD of SERS sensing was 

defined as the detectable signals from the lowest analyte concentration with a signal-to-

noise ratio greater than 3 49. 

Simulation: A commercial finite element-based tool (COMSOL Inc., Burlington, MA, 

USA) was used for the numerical modeling. The nanostructures were in a square lattice 

and periodic boundary condition was applied in the X and Y directions of the simulation 

model. Through an input port in the Z direction, the nanostructures were excited. Perfectly 

matched layer (PML) boundary condition was applied at the input and the output port to 

simulate an infinite space and prevent reflection at the boundary. A dynamic tetrahedral 

meshing of maximum element size of 10 nm for the nanostructure and λ/6 for the rest of 

the space were chosen with a minimum element size of 0.1 nm. The fault tolerance was 

varied to check the convergence of the code. Frequency-dependent gold and silver 

dielectric constants from Palik50 were employed for the simulation. The relative 

permittivity of silica was considered to be constant at 3.9 over the entire visible wavelength. 

 

3.4 Results and Discussion 

Fabrication of composite scattering probes (CSP). To fabricate the large-area tailored 

nanostructures (Figure 3.1), we combined physical vapor deposition with thermal 

annealing. Specifically, we designed and fabricated different configurations of metal-
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dielectric combinations to generate a sensitive and robust composite scattering probe; two 

such designs are shown and analyzed here to assess their relative merits for sensing. The 

details of the fabrication steps and their corresponding SEM images are shown in Figure 

3.1. 

As a first step, a thin film of gold (5.5 nm) was deposited on a clean glass coverslip and 

a silicon wafer by electron-beam evaporation. The thin film was annealed in a muffle 

furnace for 6 hours at a temperature of 5500C. Thermal de-wetting of the gold film led to 

the formation of near-spherical nanoparticles of size 40 nm (±10 nm). This provided a 

quick and simple method of achieving near-spherical nanoparticles over a large area. 

Figure 3.1B shows the scanning electron micrograph (SEM) of gold nanoparticles formed 

on silicon over a large area using the thermal de-wetting process. By changing the thickness 

of the deposited film as well as varying the annealing temperature and time, the particle 

size can be altered allowing the plasmon resonance of the gold spheres to be tuned in the 

visible range51. 

In order to decorate the gold nanoparticles with silver nanoparticles, we adopted two 

different techniques. In the first case, we deposited a silica layer of 10 nm on the gold 

nanoparticle-followed by a thin film of silver (4 nm) in a vacuum chamber with an electron-

beam evaporator. The substrates were, then, annealed on a hot plate at 2500C for 20 minutes 

to modify the silver islands into near-spherical shape. Figure 3.1C and D show the SEM 

of silver nanoparticles decorated gold nanoparticles (SNPG) before and after annealing on 

the hotplate, respectively. Due to low thickness, the silver film was discontinuous before 

annealing as seen in the SEM image in Figure 3.1C. Annealing allows these irregular silver 

islands to transform into more regular near-spherical shapes.   
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In the second case, we mounted the substrate with the gold nanoparticles at an oblique 

angle with respect to the evaporant flux (870 to the horizontal) in an electron-beam 

evaporator for subsequent deposition of 10 nm of silica and 10 nm of silver. Deposition at 

an extreme angle, known as oblique angle deposition (OAD)52, ensured that the evaporant 

was deposited preferentially on the gold nanoparticles, and no deposition took place in the 

geometric shadow region of the nanoparticles. While rarely used in this context of 

generating biosensors53, this technique has been shown to be suitable for fabricating 

various 3D porous hybrid nanostructures with options for easy tunability of the plasmon 

resonance by variation of shape, size, material etc. of the nanostructures54-56. The SEM 

image of silica and silver thin film-decorated gold nanoparticles (STG) is shown in Figure 

3.1E. The zoomed-in versions (Figure 3.1D and 3.1E insets) serves to highlight the 

structural differences between SNPG and STG. In case of SNPG, the blue dots (false color) 

highlight the several silver nanoparticles on top of the gold nanoparticle (represented by 

the yellow false color). Some of the silver nanoparticles get deposited directly on the 

glass/silicon substrate as well. In contrast, the STG has a blob of silver (and silica - not 

visible here) on the gold nanoparticle and almost no depositions on the glass/silicon 

substrate, indicating a perfect shadowing during deposition. The scattering-type scanning 

near-field optical microscopy (s-SNOM) image of one of the nanostructures on silicon 

wafer (SNPG) with high spatial resolution is shown in Figure 3.1F. A 5 µm laser 

wavelength, which is far from the plasmon resonance, was used for the scan to record the 

relative reflected image of the nanostructures. 
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Figure 3.1 Fabrication steps: (A) Scheme of fabrication, process flow from left to right. 

Deposition of a gold thin film (yellow) on a glass coverslip/Si wafer using electron-beam 

evaporation. Thermal annealing led to de-wetting of Au film and rendered the Au islands 

to a near-spherical shape. For SNPG configuration, 10 nm of silica (green) and 4 nm of Ag 

(gray) were subsequently deposited. This was followed by annealing on a hotplate to 

convert the Ag islands into Ag nanoparticles. For the STG samples, OAD of 10 nm of silica 

and 10 nm of Ag on the Au nanoparticles by placing the substrates at an oblique angle 

relative to the evaporant flux (870 to the horizontal). (B) Scanning Electron Micrograph 

(SEM) image of the Au spheres after deposition and thermal annealing. (C) SEM image of 

the SNPG sample with 10 nm silica and 4 nm Ag. Since the thickness of Ag film is less, 

the thin film is not continuous. (D) SEM image of the SNPG sample after 20 min of 

annealing on a hotplate. The inset shows the zoomed-in version marked by the blue dashed 

box. The gold (yellow) and the silver (blue) regions of the SNPG structure are highlighted 

in false color. (E) SEM image of the STG sample. The inset shows the zoomed-in version 

marked by the red dashed box. The gold (yellow) and the silver (blue) regions of the STG 

structure are indicated by the false color representation. The scale bars for all the SEM 

images marked in white are 200 nm. (F) s-SNOM image of the annealed SNPG sample; 

although the silver nanoparticles cannot be resolved, the gold nanoparticles are readily 

identified (s-SNOM image courtesy: Bruker Nano Surfaces Division). 

Optical characterization of CSP. We simulated optical characteristics of the silver-

decorated gold nanoparticles using a finite element method (FEM) to predict the resonance 
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wavelengths for the different configurations (simulation details are provided in the 

Materials & Methods section). Briefly, the FEM calculation was done using commercial 

software (COMSOL, Inc., Burlington, MA). A periodic boundary condition was 

considered with infinite periodicity in the X and Y direction. The perfectly matched layer 

(PML) boundary condition was considered in the Z direction to simulate an infinite space. 

A schematic diagram of the numerical model is shown in Figure 3.2A with the direction 

of propagation and polarization marked in the figure. The nanostructures were arranged in 

a square lattice with an edge-to-edge spacing of 50 nm. The various structures used in the 

numerical model are shown in Figure 3.2B. A gold sphere of 40 nm diameter was 

considered to be coated with a 10 nm silica layer. Three different sizes of silver 

nanoparticles of diameter 10 nm, 20 nm and 30 nm were considered to simulate different 

conditions of experimentally deposited silver, as can be noted in the SEM images (Figure 

3.1C, D). The STG was simulated by considering a silica and silver thin film covering half 

the gold sphere mimicking the actual structures produced. 

The simulated absorption spectra for the different configurations are plotted in Figure 

3.2C. In the case of SNPG, for the silver nanoparticle of size 10 nm, the absorption cross 

section peak in the lower wavelength region is barely distinguishable in the spectra. For 

the bigger sizes of silver nanoparticles, there are two distinct peaks visible. The silica layer 

aids in separating the two metals to prevent hot-electron/charge transfer57,58 between the 

two metals, and two distinct resonance peaks are therefore available for sensing. Due to 

the presence of silica and silver, the absorption peak around 560 nm is red shifted from the 

resonance of the gold spheres at 510 nm. The peak due to silver nanoparticles occurs around 

380 nm. In the case of the STG configuration, the overall absorption cross section increased 
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due to the presence of the Ag thin film - with no distinct peak appearing for the silver thin 

film in the visible region of the electromagnetic spectrum. 

For experimental optical characterization of the fabricated nanostructures, the optical 

absorption spectra for the different nanostructure configurations was measured using a UV-

Visible spectrometer and results are plotted in Figure 3.2D. For the SNPG substrate with 

4 nm silver coating, two distinct resonance peaks are visible, one around 580 nm, which 

corresponds to the plasmon resonance of the gold nanoparticle modified with silica and 

silver nanoparticles/islands, and the other one around 440 nm corresponding to the 

resonance of silver nanoparticles. Once annealed at a temperature of 2500C, which is below 

the melting temperature of gold, the silver film/islands get modified into silver 

nanoparticles. The modification in their shape is reflected in the optical absorption spectra 

in Figure 3.2D, where the LSPR peak corresponding to silver around 440 nm diminishes 

for 4 nm SNPG samples. This is because on heating, the smaller silver islands become 

larger particles, leading to broadening and red shift of the plasmon peak59. Thus, the peak 

merges (by red-shifting) with the resonance peak of the gold and appears as a smaller 

shoulder near the 580 nm feature in the optical absorption spectra. The deviation from our 

numerical results indicates that the thermal annealing of silver in our structures is not 

dominated by change in size alone but can be attributed to a combination of other processes 

including but not limited to film oxidation and increased interparticle distance. The 

broadening of this silver peak due to such factors has been demonstrated previously60, 

though the precise mechanism of such deviation in our case needs further investigation. 

Moreover, due to heating, the peak around 580 nm for the 4 nm-SNPG sample gets red 

shifted by about 8 nm, which is related to the further change in the dielectric environment 
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of the silica-coated gold spheres due to modification of the silver nanoparticles. 

Furthermore, the SNPG substrate shows excellent tunability. Both the resonance peaks of 

the SNPG sample can be easily tuned (to match the excitation for maximum enhancement) 

by changing the thickness of the silica layer/silver thin film or by varying the annealing 

time. The shift in resonance peak due to change in thickness of silver layer and annealing 

time is available in the Supplementary Information (Figure S3.1 & S3.2). 

 

Figure 3.2 Optical characterization of the fabricated structures, numerical and 

experimental. (A) FEM 3D model with periodic boundary in the X and Y direction 

implying the nanostructure (represented by the orange sphere) repeats periodically in the 

X and Y direction infinitely. The electromagnetic field propagates along the Z direction 

and is linearly polarized along the X direction represented by the black and the green arrow, 

respectively. (B) Schematic showing various nanostructure configurations along with their 

respective labels (which have been used throughout this report). The yellow sphere 

represents the gold sphere, which is coated with silica (represented by semi-transparent 

green). The silver nanostructures are in gray color. (C) Simulated absorption spectra for 

different numerical configurations are plotted along with absorption spectra of a gold 

sphere. (D) Experimental absorption spectra of various fabricated samples – 4nm SNPG, 

4 nm SNPG after annealing, STG and gold islands. δ signifies the shift in peak position of 

the SNPG sample due to annealing. 
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The STG sample, however, has a single resonance peak in its absorption spectra at 564 

nm. This may be attributed to the dimension of the silver film being too thin to sustain a 

localized plasmon resonance. Moreover, in the case of the STG sample, the silver does not 

coat the gold nanoparticle entirely and forms an island on the gold nanoparticle. As 

expected, the simulated SNPG models are consistent with the pre-annealed 4 nm-SNPG 

samples, in part, because the size ranges considered in the simulation are similar to the pre-

annealed silver islands on the gold nanostructures. The slight discrepancy in the peak 

position may result from the variability of particle size because the fabrication process 

involves physical vapor deposition. 

CSP-based refractive index sensing. As is well-known, LSPR peaks are sensitive to 

the dielectric constant of the surrounding medium61. For checking the sensitivity of our 

substrates to the local environment, we measured the LSPR peaks of the substrates in the 

presence of 0.1 mmol/L, 1 mmol/L and 2 mmol/L of BSA in aqueous media. The RI of 0.1 

mmol/L BSA was measured to be 1.336 as compared to 1.335 for water (measured at a 

temperature of 40C; measurement details are discussed in the Supplementary Information 

and plot of BSA concentration vs. RI is provided in Figure S3.3A). Using a UV-Visible 

spectrometer, we first measured the absorption spectra in air by placing the glass substrates 

in quartz cuvettes. Next, absorption spectra were measured by filling the cuvette serially 

with, water, 0.1 mmol/L, 1 mmol/L and 2 mmol/L BSA. Figure 3.3A plots the absorption 

spectra of the annealed SNPG sample and the STG sample for air and 0.1 mmol/L BSA. 

In the case of the SNPG sample, it is notable that, with 0.1 mmol/L BSA, a distinct peak 

appears near 450 nm. The latter is the approximate position of the pre-annealed feature in 

ambient media, which had diminished when the substrate was annealed. The peak around 
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580 nm shifts by 10 nm for the SNPG sample with higher RI. For the STG sample, the shift 

in the resonance peak due to the higher RI is 23 nm. Thus, the dominant LSPR peak is 

more sensitive to the surrounding media in the case of the STG sample. Nevertheless, the 

SNPG sample gives rise to a new spectral feature, which may be more effective in 

monitoring the change in RI. 

To gain a better understanding of the change in absorption spectra with RI, we employed 

a FEM similar to the one used for the SNPG sample. A 40 nm gold sphere coated with 10 

nm silica is decorated with silver nanoparticles of size 10 nm. The surrounding RI is 

changed from 1 to 1.3 and 1.5. Figure 3.3B plots the absorption spectra for these different 

cases. Similar to our experimental observation, at higher RI a peak appears at ca. 450 nm 

and becomes more distinct with further increase in RI. Apart from the redshift of the 

resonance peak, the larger size of the nanoparticle relative to the effective wavelength in 

presence of a higher RI media results in an increase in absorption cross-section of the silver 

nanoparticles. 

It is worth noting that our observations for the peak corresponding to the silver 

nanoparticle deviate from the simulation results. While our simulations predict a red-shift 

in this feature with increasing bulk RI, repeated measurements establish a contrasting 

behavior. While it is challenging to home in on a specific mechanism for this discrepancy 

between experimental and numerical findings, literature reports hint at two possible 

explanations that focus on the effect of molecular adsorption on the nanoparticle surfaces, 

and alteration of the surface electronic structure of the plasmonic nanoprobes induced by 

the media, respectively. van Duyne and co-workers’ studies detail differential blue-/red-

shifting of LSPR peaks based on how analytes adsorb on nanoparticle surfaces62, while 
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Muri et al. have postulated that the latter could explain the non-linear blue-shifting with 

increasing bulk RI, as they observed for gold nanorods in glycerol and sucrose solutions63. 

As these mechanisms have not been accounted for in our simulation model, uncovering the 

basis of this unexpected observation will be a major focus of our ongoing investigations 

 

Figure 3.3 Effect of dielectric medium on the resonance position (experiment and 

simulation). (A) Experimental absorption spectra of the annealed 4 nm SNPG and the STG 

samples in the presence of air and 0.1 mmol/L BSA. Green arrow indicates the new peak 

that appears when the SNPG sample was placed in a higher RI. δ and β indicate the shift 

in dominant peak positions for the STG and SNPG samples, respectively, when placed in 

a higher RI media. (B) (Simulated) Effect of change in dielectric medium on the absorption 

spectra for the model SNPG (10 nm) showing the appearance of a second peak with higher 

RI. 

In order to establish the sensitivity of capturing small variations in RI with our CSP 

sensor, we leveraged chemometric analysis of the recorded spectral profiles. Elucidating 

subtle RI-induced changes in these profiles (as shown in Figure S3.4, S3.5) is challenging 

by gross visual inspection alone but can be realized through application of multivariate 

analytics algorithms that harness the full spectral information64,65. 

Figure 3.4A and 3.4B shows the results of hierarchical cluster analysis (HCA)45,66,67 for 

the shorter and the longer wavelength resonance peaks of SNPG, respectively. The 

dendrograms demonstrate that the shorter wavelength peak for SNPG around 440 nm is 
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extremely sensitive to the surrounding conditions and can be used to clearly distinguish 

between various dielectric media, notably water and 0.1 mmol/L BSA, which vary only by 

0.001 in their RI. On the other hand, the peak around 580 nm is markedly less sensitive to 

the surrounding dielectric media and has difficulty in distinguishing between any of the 

aqueous solutions considered in our study. We attribute this to the differential near-field 

intensities experienced by the surrounding dielectric. Specifically, the surrounding media 

perceives a more pronounced near-field intensity for the silver nanoparticles, which is 

directly exposed to the media itself, as opposed to the gold nanoparticles that are covered 

by a 10 nm silica layer. A direct consequence of the differential sensitivities of the two 

peaks is that it enables the SNPG sample to be suitable for self-referenced measurements. 

The experimental finding is consistent with the results of our simulation study (further 

details are provided in the Supplementary Information, Figure S3.6 & S3.7). Figure 3.4C 

plots the dendrograms showing the performance of STG samples in classifying the various 

concentrations. The STG sample, which has a single dominant resonant peak around 564 

nm, is able to differentiate between the various concentrations although the accuracy is less 

than the SNPG sample. Thus, the SNPG sample is better suited for sensitive and self-

referenced measurement of RI. 
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Figure 3.4 (A) Hierarchical cluster analysis of absorption spectra between 320-500 nm 

(surrounding the shorter wavelength resonance peak of SNPG) at various concentrations 

of BSA, air and water. The dendrogram indicates that the different solutions can be 

accurately identified. (B) Hierarchical cluster analysis of absorption spectra of longer 

wavelength resonance peak (500-800 nm) of SNPG at various concentrations of BSA, air 

and water. None of the solutions could be suitably classified. (C) Hierarchical cluster 

analysis of absorption spectra of resonance peak of STG at various concentrations of BSA, 

air and water. Different solutions could be identified although the accuracy is less 

compared to that obtained with the SNPG sample. (D) PLS prediction results of BSA 

solutions, water and air in the wavelength range of 320-500 nm (around the 440 nm peak 

region) in case of the SNPG-annealed substrate. The solid line denotes y = x and the red 

dashed box is an enlarged version of a part of the graph as shown in the subfigure. (E) PLS 

prediction residuals for absorption spectra of SNPG-annealed sample (around the 440 nm 

peak) belonging to the different RI. 

Figure 3.4D shows the results of partial least squares (PLS) leave-one-out prediction 

for the absorption spectra based on analysis of the SNPG-annealed 440 nm peak region. 

The reference and PLS-predicted RI are given along the X and Y-axis, respectively. The 

dashed line is plotted to illustrate y = x to explicitly understand the linearity of the response 

(or the lack thereof). From the figure, it is evident that the predicted values show excellent 



66 

 

agreement with the reference concentrations and the corresponding root-mean-square error 

(RMSE) is calculated to be 0.0007. Figure 3.4E shows the prediction residual for spectra 

from various samples. It indicates that the SNPG substrate was able to accurately determine 

the RI down to the third decimal level, thereby underscoring its utility in monitoring subtle 

changes in analyte concentration in the surrounding milieu. To evaluate the linearity range 

of our measurement, we calculate the R-square value (coefficient of determination) 

between the predicted concentration and actual concentration, which is ca. 0.99. From 

Figure S3.3 in the Supplementary Information, it can be concluded that within the range 

of our measurement, i.e. 0-2 mmol/L, the predicted BSA concentration shows a linear 

relationship with the refractive index. Using the calibration plot method discussed in the 

Materials & Methods, the LOD for BSA was computed to be 0.013 mmol/L. 

CSP-based biomolecular detection with surface-enhanced Raman spectroscopy. 

The ability to design and fabricate nanostructures with a high degree of precision has 

transformed SERS from an esoteric method to a potent analytical tool over the last decade38. 

The surface properties directly impact the electromagnetic (and chemical) enhancement 

experienced by the molecules adsorbed on or in the vicinity of the nanostructured surface. 

Here, through proof-of-concept measurements in BSA solutions, we explored the utility of 

the CSP structures in recording SERS spectra of biomolecules. 

We chose water as a representative solvent to mimic a normal biofluid measurement 

situation. In our investigation, we pipetted 10 µl of 10 µmol/L BSA solution on the 

nanostructures fabricated on silicon wafers and allowed it to dry under normal ambient 

condition. These silicon substrates have the same nanostructure arrangement as the glass 

substrates used in our RI sensing experiments but contribute lower fluorescence 
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backgrounds to the recorded SERS spectra. SERS signals were collected from the dried 

spot by focusing on the substrate surface. As a control experiment, Raman spectra were 

collected with the same concentration on a silicon wafer without any nanostructure. Figure 

3.5A shows the spectra recorded from various kinds of substrates after baseline removal. 

The Raman spectra were normalized with the silicon background peak at 520 cm-1 68. 

Several vibrational peaks in the range of 900-1800 cm-1 are identified in the spectrum, 1001 

cm-1 (phenylalanine), 1321 cm-1 (amide III), 1335 cm-1 (CH3CH2 wagging), 1446 cm-1 

(CH2 deformation), 1583 cm-1 (C=C bending mode of phenylalanine) and 1652 cm-1 (amide 

I)68. The experimental enhancement factor, as defined elsewhere in the literature69 at 1335 

cm-1 (CH3CH2 wagging) for the SNPG-annealed sample is about 22 whereas for STG is 

about 14. Thus, both the CSPs provide enhancement to the weak Raman signal of BSA, 

with the SNPG sample expectedly giving better enhancement. The enhancement factor 

obtained here is competitive with those obtained in the literature for similar measurement 

protocols70 and, while substantially lower than those recorded from unstructured colloids, 

is more reproducible and has a well-defined spatial distribution. The latter is a key driver 

for future translation of such SERS platforms to the clinic or field setting. Furthermore, by 

comparing the intensities between signals from BSA solution on SNPG-annealed substrate 

and on (blank) silicon substrate, we determined the LOD value for our SERS measurements 

to be 0.096 µM. The linearity range of SERS study extends up to 0.5 mmol/L, i.e. the 

highest measured concentration in our pilot study. Our experimental range of 

measurements could be readily expanded; however, because our aim was to screen 

biomarkers in body fluids for diagnosis, higher concentrations are not deemed as 

biologically significant. To evaluate the reproducibility of the SERS measurements, the 



68 

 

coefficient of variation/relative standard deviation (RSD) was calculated at few of the 

major peaks in the Raman spectra (table provided in the Supplementary Information) and 

ranged between 11 to 19%. 

 

Figure 3.5 SERS measurements of BSA solution and numerical calculation of field 

enhancement: (A) SERS spectra of 10 µmol/L BSA on different substrates measured with 

a 2 second integration with a 530 nm laser in a micro-Raman system. Prominent Raman 

peaks are marked in the figure. The solid lines depict the average spectrum, and the shaded 

region represents the ± standard deviations (SD). (B) Distribution of |E/E0|
4 in the XZ plane 

at 530 nm excitation. All the panels are plotted with the same range of color scale for 

comparison. The scale bar is 20 nm. The STG configuration shows significant 

enhancement at the sharp corners, which is due to the lightning rod effect but is absent in 

our experimental prototype. 

In order to determine the origin of the SERS enhancement, using our previous model as 

in Figure 3.2A, we calculated the distribution of near field enhancement (|E/E0|
4) in the 

XZ plane considering the analyte molecule to be most exposed to the enhanced field in this 

plane. A fourth power of electric field was chosen since SERS signal was proportional to 

the square of the intensity. Figure 3.5B plots the spatial variation of |E/E0|
4 in the XZ plane 

for a wavelength of 530 nm, which is closer to the Raman excitation wavelength used in 

our experiments (532 nm). It can be clearly seen that the field enhancement covers a greater 

area for the SNPG (30 nm) arrangement, which allows for substantial interaction of analyte 

with the electromagnetic field leading to stronger SERS signals. The STG configuration 
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shows some enhancement at the corner of silver thin film due to the well-known lightning 

rod effect11,69. But, such sharp corners are absent in our experimental substrate; thus, 

enhancement in our experimental STG sample is lower than predicted. With near-IR laser 

excitation, it is expected that the gold nanoparticle will have more contribution relative to 

its silver counterpart in enhancing the SERS signal.  

 

3.5 Conclusion 

Localized surface plasmon resonance (LSPR) and surface-enhanced Raman 

spectroscopy (SERS) measurements offer important methods for label-free fingerprinting 

and quantitative biomolecular determination. The current study reports a large-area, 

versatile and self-referenced sensing platform, using a combination of metal and dielectric 

nanostructures, to perform composite scattering (i.e., elastic and inelastic scattering) 

measurements. Our design of CSP does not necessitate the use of lithography and is 

suitable for wafer scale fabrication. Using the CSP nanostructures, we show that LSPR 

sensing when combined with SERS offers dual-modality sensing that adds redundancy and 

encoding features, thus increasing measurement robustness and predictability. As a proof 

of concept, the SNPG design shows the potential as a means to self-reference. Notably, the 

inclusion of both the reference and sensing regions within the same physical space allows 

for a more compact design, and permits the use of a single detector rather than multiple 

detectors32. Crucially, the CSP does not require any physical or chemical alteration for its 

use as both a SERS probe and a LSPR sensor thereby underscoring its generalizability. In 

particular, our findings showcase the promise of the CSP as a sensing tool based on its 

demonstrated detection limit and the fact that Raman spectroscopy yields molecular-
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specific information in the native state not readily obtainable from many other detection 

methods. While the preliminary results are promising, we expect additional improvement 

in detection limit and photonic throughput with further optimization of the probe design 

and corresponding sample fabrication procedures. Ultimately, we envision that the 

molecular specificity and multiplexing capability of the CSP will be leveraged for 

translating molecular markers into serum assays for accurate disease screening. 
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3.6 Appendix 

1. Tunability of plasmon resonance peak (SNPG) 

 

Figure S3.1 Experimental absorption spectra of SNPG sample with different thickness of 

silver layer (before annealing). Both the resonance peaks shift with change in thickness. 

 

Figure S3.2 Experimental absorption spectra of 4 nm-SNPG sample with different 

annealing time. The longer wavelength resonance peak red shifts with increase in annealing 

time. 
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2. Refractive index measurement 

Refractive index of water, 0.1 mM, 1 mM and 2 mM aqueous solution of BSA at 40C is 

measured using a scientific grade portable refractometer (Model: VEE GEE) under white 

light illumination. The refractometer has accuracy of ±0.0005.  

 

Figure S3.3 (A) Measured refractive index vs concentration of BSA. (B) PLS predicted 

concentration results of water and BSA solutions in the wavelength range of 320-500 nm 

(around the 440 nm peak region) in case of the SNPG-annealed substrate. The solid line 

denotes y = x. We have also provided an inset that zooms in on measurements at 1.0 mM 

BSA solution to clearly bring out the reproducibility, i.e. differences (or lack thereof) 

between repeated measurements. 

3. Absorption spectra with different concentrations of BSA 
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Figure S3.4 Absorption spectra of STG sample at different BSA concentrations.  

 

Figure S3.5 Absorption spectra of SNPG sample at different BSA concentrations. 

4.  Simulations 

 

Figure S3.6 FEM simulation model with a non-metallic particle of dielectric constant 4 

(represented in blue) considered in the vicinity of the silver nanoparticle.  
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Figure S3.7 Absorption spectra demonstrating a shift in the silver nanoparticle resonance 

peak due to the presence of a dielectric particle whereas the peak due to gold nanoparticle 

remains unaffected. Substrate with multi plasmon resonance peaks such as this can be used 

for self-referenced measurement techniques.  

5. SERS measurement 

 

Figure S3.8 Raman spectra for different concentrations of BSA on SNPG sample. Strong 

Raman signal could be achieved for a very dilute concentration of BSA.  
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Figure S3.9 Raman spectra of 0.01 mmol/L BSA on different substrates with the Si peak 

at 520 cm-1 used for normalization. 

6. SERS reproducibility 

The spectra were collected from multiple positions across the area of the whole substrate 

to determine the reproducibility of our SERS measurements. The coefficient of variation 

at several prominent vibrational peaks of SNPG-annealed and STG probes are presented 

in the table below. 

 Phe (1001 cm-1) Amide III (1321 cm-1) CH3CH2 wagging (1335 cm-1) 

SNPG-

annealed 

0.11 0.18 0.19 

STG 0.15 0.15 0.12 
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Chapter 4. Label-free Raman spectroscopy provides early determination 

and precise localization of breast cancer-colonized bone alterations 

 

4.1 Abstract 

Breast neoplasms frequently colonize bone and induce development of osteolytic bone 

lesions by disrupting the homeostasis of the bone microenvironment. This degenerative 

process can lead to bone pain and pathological bone fracture, a major cause of cancer 

morbidity and diminished quality of life, which is exacerbated by our limited ability to 

monitor early metastatic disease in bone and assess fracture risk. Spurred by its label-free, 

real-time nature and its exquisite molecular specificity, we employed spontaneous Raman 

spectroscopy to assess and quantify early metastasis driven biochemical alterations to bone 

composition. As early as two weeks after intracardiac inoculations of MDA-MB-435 breast 

cancer cells in NOD-SCID mice, Raman spectroscopic measurements in the femur and 

spine revealed consistent changes in carbonate substitution, overall mineralization as well 

as crystallinity increase in tumor-bearing bones when compared with their normal 

counterparts. Our observations reveal the possibility of early stage detection of biochemical 

changes in the tumor-bearing bones – significantly before morphological variations are 

captured through radiographic diagnosis. This study paves the way for a better molecular 

understanding of altered bone remodeling in such metastatic niches, and for further clinical 

studies with the goal of establishing a non-invasive tool for early metastasis detection and 

prediction of pathological fracture risk in breast cancer. 

This chapter has been published in the peer-reviewed journal (Zhang, C., Winnard Jr, P.T., Dasari, 

S., Kominsky, S.L., Doucet, M., Jayaraman, S., Raman, V. and Barman, I., 2018. Label-free Raman 

spectroscopy provides early determination and precise localization of breast cancer-colonized bone 

alterations. Chemical science, 9(3), pp.743-753.)  
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4.2 Introduction 

In the United States, breast cancer remains the most common malignant neoplasm of 

women and it is estimated that ~250,000 cases of female breast carcinoma in situ will be 

diagnosed along with an estimated 40,000 deaths in 20171. While local breast tumors 

respond very well to therapy, distant metastases are a frequent complication with a very 

poor response to therapy2. The highest incidence of metastatic progression is to bone with 

the latter representing the first metastatic site in 30-40% of breast cancer patients3,4, and 

bone metastases being reported in up to nearly 70% of patients during disease 

progression4,5. There are three types of bone metastases: osteolytic, marked by heightened 

resorption that results in loss of bone mineral and matrix; osteoblastic that causes an 

increase in abnormal weakened bone formation; and mixed osteolytic/osteoblastic lesions6. 

While osteolytic disease predominates7, all three forms occur in the context of breast 

cancer8. Bone colonization and dysregulation of the normal bone remodeling processes 

results in a range of skeletal related events (SREs), such as severe bone pain, hypercalcemia, 

ablation of bone marrow resulting in pancytopenia, spinal cord compression as well as 

pathological fractures5,6,8,9. Such SREs often occur in load-bearing bones, for instance the 

neck of the femur or in the pelvis, which can present particular treatment challenges.  

Given these circumstances, early accurate identification of patients at risk for bone 

metastasis is a critical need for the correct staging of patients and selection of appropriate 

therapeutic regimens6,10. Current imaging technologies used to screen for bone metastatic 

lesions include 99mTc based bone scintigraphy (BS), single photon emission computed 

tomography (SPECT), alone or combined with computed tomography (CT), CT combined 

with positron emission tomography (PET), and whole body magnetic resonance imaging 
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(wbMRI)10. Advances in PET/CT have provided spatial resolutions in the 5 to 8 mm (full-

width at half-maximum (FWHM)) range11, which makes detection of small early lesions 

more likely. Nevertheless, such detection does not provide information about the bone’s 

microstructural composition and whether it has been compromised. 

To provide comprehensive management of bone metastases requires not only a 

determination of metastatic lesions but also an accurate assessment of fracture risk6. 

Fracture risk needs to be assessed at the time of discovery as well as monitored during 

follow up of response to treatment, as a decrease in tumor burden alone does not ensure 

that a corresponding increase in bone integrity and strength has occurred12. Risk prediction 

based on bone mineral density (BMD) using dual energy X-ray absorptiometry (DXA) has 

been a standard of practice. However, this methodology does not provide an accurate 

estimate of bone mineral content13. Computed tomography (CT) is superior to 2D X-ray 

technologies for evaluating BMD and a recently developed CT-based structural rigidity 

analysis technology has demonstrated improved fracture risk prediction with two clinical 

trials showing 100% sensitivity but only fair, 60-70%, specificity12,14. Numerous recent 

reports have discussed why an evaluation of BMD alone falls short of accurately gauging 

bone fragility by pointing out that the organic component of bone, in conjunction with bio-

hydroxyapatite, contributes greatly to bone toughness15-18. An accurate fracture risk 

assessment demands knowledge of the underlying biochemical matrix integrity along with 

the crystalline mineral composition of the bone. Hence, development of non-invasive 

technologies that can detect changes in bone matrix and mineral composition at early stages 

of colonization would meet a significant clinical need. 
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Label-free vibrational spectroscopy’s unique attributes can address these unmet needs 

as it provides objective biomarkers of bone composition for diagnoses16,18 and may provide 

patient stratifications for more effective therapy17. The exquisite molecular specificity of 

this approach enables multiplexed biomolecular analyses without necessitating exposure 

to radiation or addition of exogenous contrast agents19,20. Furthermore, in comparison to 

IR spectroscopy, the higher spatial resolution and the ability to analyze fresh tissue 

specimen opens up tremendous opportunities for Raman scattering measurements. A recent 

review indicates the wide-ranging potential of Raman spectroscopy to assess the 

biochemical attributes of bone, which when combined with mechanical loading regimes, 

correlate with bone failure responses at the ultrastructural level21. In addition, recent studies 

have expanded on this and demonstrated Raman spectroscopy’s ability to detect specific 

pathological changes in bone matrix components, including alterations in phosphate, 

carbonate, the amide backbone of collagen, as well as collagen cross-link maturity, and use 

them in predictive models for fracture risk22-24. Important insights can also be gained from 

the emerging evidence on Raman spectral changes in metastatic bone primed by prostate 

and breast cancer16,25,26.  

Here, we present results from a pilot study designed to determine whether Raman 

spectroscopy can detect changes in mineral and biomolecular components of bone early in 

metastatic progression. The above-cited studies on the use of Raman spectroscopy to 

evaluate bone matrix changes in metastatic model systems performed the assessments at 

mid-to-late stage disease, and a time-related assessment of bone quality alteration, 

particularly at early colonization, remains unexplored. We used a well-established bone 

metastatic model system where intracardiac injections of MDA-MB-435 breast cancer cells 
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results in bone metastases27-29. During this study, bone metastasis progression was tracked 

weekly for five weeks. Raman spectral evaluations were performed on ex vivo specimens 

of femurs and spines (Figure 4.1). Relative to normal bone, Raman spectroscopy was able 

to detect changes in the biochemical characteristics of bones with metastatic lesions as 

early as two weeks after tumor cell inoculations while X-ray images showed no sign of 

disease even after 5 weeks of metastatic progression. Our findings demonstrate the 

feasibility of using Raman spectroscopy for early detection and localization of metastatic 

disease in bone by quantifying surrogate markers, notably changes in bone matrix 

composition, at the site of the disease. These early alterations in the intrinsic biochemical 

characteristics of bone suggest compromised integrity and a weakening of the bone. These 

findings pave the way for further investigations into pathological fracture risk estimation 

through noninvasive, spatially offset Raman spectroscopy measurements30) of bone in real 

time. 
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Figure 4.1 Schematic representation of experimental model of breast cancer bone 

metastasis and depiction of subsequent Raman spectroscopy measurements. (A) 

Intracardiac injected of breast cancer 435-tdT cells (top: left-hand panel) and ensuing 

metastases in the femur and spine as demarcated in red (top: central and right-hand panels). 

Raman microspectroscopy (bottom panels) was used to record spectra from these affected 

femurs and spines. (B) Raman spectra were collected at 2 mm intervals along the length of 

the femurs as indicated by numbered spots. Raman spectra of the spines were collected 

from central regions of lumbar (L1-L6), sacral (S1-S4), and caudal (C1-C2) vertebrae. 
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4.3 Experimental section 

Cell culture. The human breast cancer cell line, MDA-MB-435, was obtained from 

ATCC. The MDA-MB-435 cell line was established in 1976 from a pleural effusion from 

an untreated 31-year-old female diagnosed with adenocarcinoma of the breast31. MDA-

MB-435 cells were authenticated at the Johns Hopkins Genetic Resource Core Facility with 

the short tandem repeat marker results cross checked against cell lines at the ATCC bank. 

Generation and characterization of MDA-MB-435 engineered to constitutively express a 

bright red fluorescent protein: tdTomato (designated in the further discussion as 435-tdT 

cells), to facilitate in vivo and ex vivo tracking of metastatic progression, has been 

previously described32. Cells were cultured in RPMI-10% FBS medium in a standard 

humidified incubator at 37o C and 5% CO2. 

Intracardiac experimental bone metastasis model. All animal handling procedures 

were performed in accordance with protocols approved by the Johns Hopkins University 

Institutional Animal Care and Use Committee and conformed to the Guide for the Care 

and Use of Laboratory Animals published by the NIH. Non-diabetic severe combined 

immunodefcient (NOD-SCID) female mice were used. Four six-to-eight week old mice 

were anesthetized by intraperitoneal injections of a mixture of xylazine (11 mg/kg) and 

ketamine (72 mg/kg). Mice were successfully injected with 435-tdT cells (1x105) in 0.1 ml 

of sterile RPMI-10% FBS through the intercostal space into the left ventricle of the heart 

using 26-gauge needle on a tuberculin syringe. Mice were sacrificed at different time points: 

on the day of tumor cell injection and at two, four and five weeks post tumor cell injection, 

by administering an overdose of anesthetic [saline:ketamine:acepromazine (2:1:1)] 

followed by cervical dislocation. Intact skeletons were then immediately dissected away 
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from soft tissue, wrapped in phosphate buffered saline soaked gauze and then in aluminium 

foil and stored at -20o C. 

Live animal optical and X-ray imaging and ex vivo fluorescence microscopy. Live 

animal optical imaging was done in a Xenogen IVIS® Spectrum (PerkinElmer) optical 

scanner under 2% isoflurane/O2 gas anesthesia, as previously described32. The spectral 

unmixing tool in the Living Image® 4.2 software package was used to remove background 

autofluorescence. The unmixing tool also provided a means to focus on fluorescence from 

bone by masking the fluorescence from brain metastases that were also generated with this 

mouse model. X-ray images were captured using a Faxitron® MX-20 X-ray scanner 

(Faxitron X-ray Corp., Lincolnshire, IL). 

Fluorescence microscopy was on an inverted Nikon ECLIPSE TS 100 microscope 

(Nikon Instruments, Inc., Melliville, NY) equipped with a Texas Red filter cube. The 

fluorescence light source was an X-Cite 120 Fluorescence Illumination System (Photonic 

Solutions, Inc., Edinburgh, UK). A 2x objective and 2s exposure time were used. Anterior 

and posterior photomicrographs of each end of the femurs were obtained using a 

Photometrics CoolSnap™ ES (Roper Scientific, Trenton, NJ) camera interfaced with NIS-

Elements F3.2 software. Fluorescence intensities of approximately equal sized ROIs of the 

anterior and posterior metaphysis regions, which excluded the non-fluorescing diaphysis, 

were quantitated with ImageJ. Images of proximal and distal metaphysis, which contained 

overlapping portions of each diaphysis, were stitched together during reconstruction. 

Raman spectroscopy. Intact femurs and spines harvested from control mice without 

tumors and 435-tdT tumor-bearing mice were placed on a flat aluminum substrate. Baseline 

Raman spectra of intact vertebrae and femurs from control mice were obtained prior to 
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analyses of tumor burdened bones. Bones were stripped of the periosteum by lightly 

scraping with a scalpel and were wetted with Dulbecco's phosphate buffered saline. For the 

femurs, measurements from the distal metaphysis through the diaphysis to the proximal 

metaphysis were made at 2 mm intervals along the bone (Figure 4.1A & 4.1B) resulting 

in 35 spectra per femur. For the spines, measurements were taken at approximately the 

center of lumbar (L1-L6), sacral (S1-S4), and caudal (C1-C2) vertebrae (Figure 4.1A & 

4.1B) resulting in 60 spectra per vertebral column. A home-built fiber-probe based Raman 

spectroscopy system was used to record the spectral profiles with 300s exposure time33. 

Briefly, an 830 nm diode laser (Process Instruments, Salt Lake City, UT) was used as the 

excitation source. A lensed fiber-optic Raman bundled contact probe (EmVision LLC, FL) 

was used to deliver the excitation beam through its central fiber (200 μm core) and acquire 

the back-scattered light through an annular ring of optical fibers (300 μm core). The 

scattered light was transmitted by the fiber-probe to a f/1.8i spectrograph (Holospec, Kaiser 

Optical Systems, MI) while a thermoelectrically cooled deep-depletion CCD camera 

(PIXIS 400BR, Princeton Instruments, NJ) was used for spectral recording. The laser 

power delivered to the sample surface was maintained at approximately 15 mW. 

Measurements over the length of the bone were enabled by scanning the fiber-probe using 

motorized translation stages (T-LS13M, Zaber Technologies, Inc., Vancouver, Canada). 

Zaber console (open-source software) was employed to control the raster scan as well as 

maintain a constant distance above the bone surface. Five spectra were collected from each 

measurement site. 

Data analysis. The acquired spectra were imported into the MATLAB 2013a 

(Mathworks, Inc., Natick, MA) environment for further analysis. Spectra were processed 
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to remove interference from cosmic rays. A background spectrum, obtained from 

measurements on the aluminum substrate, was subtracted from the acquired spectra to 

correct for extraneous optical fiber-probe background signal. The resultant spectra were 

divided by the white light response signal (obtained from a BaSO4 sample under tungsten 

halogen lamp illumination) to compensate for any spectral non-uniformity in the detection. 

Next, the fluorescence background was removed using an automated method outlined by 

the Berger laboratory34. The resultant spectra were normalized to the intensity of the PO4
3− 

1 peak (ca. 958 cm-1). 

In addition to peak height and full width at half maximum (FWHM) analyses, the 

Raman spectra were subjected to principal component analyses (PCA). Operating without 

any a priori knowledge of the samples, PCA seeks to project the spectral data onto a set of 

linearly uncorrelated (orthogonal) directions, i.e., principal components (PC), such that the 

variance in the original data can be captured using only a few PCs35. Furthermore, support 

vector machines (SVM) were used on the PC score inputs to develop a decision algorithm 

for spectroscopically predicting the progression of tumor-induced changes in the bone. 

SVM is a supervised learning model that is built on structural risk minimization concepts 

and can efficiently perform non-linear classification by implicitly mapping the inputs into 

high-dimensional feature spaces through a kernel. A radial basis function (RBF) with a 

Gaussian envelope was chosen as the kernel, and the kernel parameters were optimized 

based on an automated grid search algorithm36-38. The output of the SVM-derived decision 

algorithm was validated against the known class labels, i.e., the time point of the harvested 

bone sample. The performance of the algorithms was evaluated by determining the 

classification accuracy in a leave-one-spectrum-out cross-validation protocol. 
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4.4 Results and Discussion 

In order to track metastatic progression, we employed a variant of MDA-MB-435 breast 

cancer cells that have been engineered to constitutively express a bright red fluorescent 

protein32. As shown in Figure 4.2A, fluorescence signals from bone, e.g., spine and 

scapulae, were recorded at weeks 4 and 5 and, at the latter time, fluorescence from the left 

pelvis/proximal femur region was also seen. No fluorescence signals were seen at week 2 

(Figure 4.2A). Thus, optical imaging could not detect (as shown below and by a previous 

group28) the nascent metastatic disease already presents at week 2. In addition, as shown 

in Figure 4.2B, no metastatic lesions were revealed by X-ray imaging of the femurs at any 

time point (or in the spine specimen, data not shown). This is consistent with the low 

sensitivity of X-ray imaging in the clinic where bone metastases are reported to be only 

detected in those cases where 30-75% of skeletal destruction has already occurred14. 

This qualitative imaging data provided a means to establish the time course of metastatic 

progression and a confirmation that, similar to the clinical situation, X-ray imaging offers 

inadequate assessment of bone metastases, even when optical imaging indicated substantial 

tumor burden in bone (Figure 4.2A, week 4 & 5). As such, we hypothesized that this model 

system would provide a suitable sample set to test whether Raman spectroscopy can detect 

early alterations of bone matrix integrity, which may be considered as a surrogate 

assessment of the underlying metastatic involvement. 



95 

 

 

Figure 4.2 Live animal optical and x-ray imaging. (A) Fluorescence imaging of 

tdTomato signals from tumor-bearing mouse at week 2 (left panel) and tumor-bearing mice 

at 4 and 5 weeks post 435-tdT inoculations. In the week 5 image, fluorescent metastatic 

lesions in the scapulae (small arrows), lower thoracic-upper lumbar region of the spine 

(large arrow) and left proximal femur/pelvis region (arrowhead) were evident. Note, to 

better ascertain bone fluorescence signals, intense brain fluorescence was masked in the 

middle and right panel images. (B) X-ray images from a Faxitron x-ray scanner displaying 

the femur of the same mice shown in the corresponding panels in (A). No metastatic bone 

lesions were revealed in any of the x-ray images.  

We focused our Raman spectroscopic analyses on femurs and vertebrae as the former 

is the most affected long bone and spine represents one-third of the total skeletal metastases 

observed in breast cancer patients8,9. Consequently, metastatic involvement at either or 

both sites accounts for a high proportion of SREs, and an early evaluation of metastases at 

these sites remains an unmet need. Assessing bone integrity using Raman spectroscopy 

provides specific quantitative evaluations of the bio-hydroxyapatite (mineral) component 

simultaneously with the associated collagen component (matrix)21,23,25,26. The mineral 

component is often calcium-deficient, and possesses carbonate substitutions with respect 
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to stoichiometric hydroxyapatite. Recent investigations have extended the assessments of 

bone fragility and metastatic lesions using Raman spectroscopy to include in-depth 

evaluations of collagen integrity16,18,24 along with the contributions of proteoglycans, tissue 

water, and lipids17 as well as oxidative damage39. 

During this pilot study, we focused on peak signals associated with bio-hydroxyapatite 

to collagen matrix content, mineral crystallinity, and carbonation to derive specific 

quantitative distinctions between control and tumor-bearing bones. Figure 4.3 shows 

representative Raman spectra from femurs and spines from a non-tumor bearing normal 

control mouse (blue tracings) and a tumor-bearing mouse (red tracings) sacrificed 5 weeks 

after tumor cell inoculations. The distinctive Raman peaks at ca. 958, 1004, 1070, 1250 

and 1450 cm-1 correspond to the vibrational modes of phosphate 1, phenylalanine with 

potential contributions from mono-hydrogen phosphate, carbonate, amide-III and CH2 wag, 

respectively. We also observe the amide-I feature in the 1630-1656 cm-1 region. We 

calculated the mineral-to-matrix content as the phosphate 1/amide I ratio, and phosphate-

to-carbonate level (i.e. a marker of carbonate substitution) by the phosphate 1/carbonate 

ratio. The degree of bone remodeling was estimated as the carbonate 1/amide I ratio (since 

the carbonate-to-matrix ratio has been associated with increased risk of fracture), and 

mineral crystallinity as the reciprocal of full-width at half maximum (FWHM) of phosphate 

1 peak16,21,23,26. 
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Figure 4.3 Representative Raman spectra acquired from metastatic breast cancer 

affected femurs and spines. Spectra (normalized to PO4
3- ν1 peak) were acquired from 

week 0 control group (blue tracings) and 5 weeks after tumor cell inoculations (red 

tracings). The solid lines depict the mean spectrum of each sample group with associated 

shadings representing the ±1 standard deviations (SD). Spectra are vertically offset for 

visualization purposes. 

Figure 4.4A and 4.4B show the (length-averaged) changes that occurred in these ratios 

in femurs and spines, respectively, during disease progression over the 5-week time course 

of the study. Relative to week 0, there was a progressive increase in the phosphate 1/amide 

I ratio (Figure 4.4A & 4.4B), as the tumor burden increased over time. This can be 

interpreted as being indicative of an increase in mineral density, which has previously been 

shown to be strongly negatively correlated to bone toughness23. Alternatively, within the 

context of this osteolytic metastatic model, we need to also consider the possibility that 



98 

 

both PO4
3- and type I collagen are decreasing with the degradation of collagen, especially 

by week 4 & 5, surpassing the loss of PO4
3- mineral content. Such a scenario reflects the 

fact that the colonizing tumor cells stimulate maturation of osteoclasts and hence bone 

resorption. This occurs by osteoclast-modulated acidification (~pH 4.5) of the resorption 

area that dissolves mineral and simultaneously releases of cathepsin K thereby degrading 

the organic bone matrix40. Stromal acidification would have also been enhanced by the 

proximal metabolic activities of the proliferating cancer cells, which generate low 

extracellular pH40. It has been shown that metabolic acidification causes large releases of 

bio-hydroxyapatite mineral from bone41, and such acidification may contribute to and 

increase the loss in PO4
3-. At the same time, stromal cell and tumor cell production of 

matrix metalloproteinases could be expected to extend matrix degradation beyond 

resorption sites7,42,43. This degradation of collagen has been recorded as blood borne type 

I collagen fragments, which are biomarkers of bone metastases44. In addition, over the time 

course of the study, one expects an increasing loss of collagen regeneration by osteoblasts 

because expression of their matrix generating genes are known to be inhibited by 

acidification. Moreover, osteoblasts undergo apoptosis during cancer colonization28,29,41, 

which would curtail bone formation. Similar to the consideration that an increase in mineral 

density weakens bone, loss of both mineral and matrix components during increasing losses 

of collagen would be expected to compromise the mechanical properties of the bone45. 

Relative to week 0, changes in the carbonate substitution (PO4
3- 1/CO3

2- ratio) do not 

exhibit a consistent trend. The ratio proceeds through an increase in CO3
2- substitution at 

week 2, which is more pronounced in the femurs relative to the spine (compare Figure 

4.4A to 4.4B), and then to decreases at weeks 4 & 5 (Figure 4.4A & 4.4B). The increase 
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at week 2 is consistent with previously reported results at a week 3 time point16. This type 

of substitution has been shown to decrease crystallinity size, which generates defects in the 

apatite matrix and weakens the bone23. The relatively high decrease in CO3
2- substitutions 

by week 5 of metastatic progression likely reflects high levels of osteolytic activity, i.e., 

mineral dissolution, and concomitant utilization of released HCO3
- by the rapidly growing 

tumor mass as a means to neutralize intracellular pH46. 

Throughout the course of metastatic progression in femurs as well as in spine, increased 

CO3
2-/amide I ratios relative to week 0 were recorded (Figure 4.4A & 4.4B). Similar to 

our discussion for the phosphate-to-matrix ratio, the progressive increase in the CO3
2-

/amide I ratios in femurs possibly reflects unchecked degradation/loss of collagen that 

exceeded the rate of loss of CO3
2-. Such increases in CO3

2-/amide I ratios has been shown 

to be associated with increased fracture risk in the literature47. 
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Figure 4.4 Raman spectra-derived metrics of bone compositional changes at each 

week of the study and corresponding radial visualization plots. Characteristics 

analyzed were: collagen mineralization as the PO4
3-/amide I (phosphate 1/amide I) ratio, 

phosphate-to-carbonate ratio: PO4
3-/CO3

2- (phosphate 1/carbonate) ratio, remodelling as 

the CO3
2-/amide I ratio, and mineral crystallinity from 1/FWHM PO4

3- (1/FWHM 

phosphate 1 peak) calculations. Relative to week 0, average compositional changes of (A) 

femurs and (B) spines at 2, 4, and 5 weeks post tumor cell inoculations were quantified. 

Error bars = ±1 SD. (n,s, denotes not significant, *p<0.05, **p<0.005) (C) Distinct 

clustering of the spectral data corresponding to each week was revealed in the case of the 

femur analyses while two clusters emerged in the analysis of the spine data, namely, an 

early stage cluster: week 0 + week 2 and a late stage cluster: week 4 + week 5. Blue circles 

= week 0, red squares = week 2, green triangles = week 4, and orange diamond = week 5. 
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Relative to week 0, the bio-hydroxyapatite crystallinity (1/FWHM of PO4
3- 1) 

decreased in femurs and was unchanged in spine at week 2 but thereafter increased in all 

bone samples (Figure 4.4A & 4.4B). The decrease at week 2 is consistent with reported 

results at a week 3 time point (16) and, as is generally the case, mirrors the increases in 

CO3
2- substitution (i.e., decreases in PO4

3- 1/CO3
2- ratio) at this time point48. Replacement 

of phosphate with carbonate at week 2 increases the number of defects in the bio-

hydroxyapatite lattice and reduces the crystallinity25. Likewise, increases of crystallinity at 

the later time points parallels the decreases in carbonate content and may reflect an 

anticipated accelerated bone turnover during osteolytic metastatic progression48. In 

addition, increases in crystallinity is likely an indication of retarded bone formation with a 

generation of larger thinner out-of-alignment crystallites rather than production of smaller 

younger crystals resulting in increased fragility17,48. Increases of crystallinity have also 

been previously reported at a week 4 time point for MDA-MB-435 breast cancer cell 

metastases. While earlier time points were not evaluated, the authors suggested, given that 

a metastatic bone prostate model revealed decreases in crystallinity49, that this spectral 

marker may differ with different primary tumors26. However, our data indicate that, at early 

time points, decreased crystallinity can be associated with bone metastasis from breast 

cancer, suggesting that both the progression of metastasis and primary tumor type may 

impact changes in bone crystallinity. 

We also performed radial visualization of the metrics generated from the femur and 

spine to assess the degree of inter- vs intra-time point variability across the tested mice 

specimen. Figure 4.4C shows distinct clustering patterns for the data points corresponding 

to the femurs from each week of evaluation. Evidently, crystallinity and the PO4
3-/amide I 
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ratios account for majority of the differential clustering of the femur data. For the spine 

measurements, we observed overlap between the week 0 and week 2 (early stage) as well 

as week 4 and week 5 (late stage) data points. Nevertheless, a clear distinction between the 

early and late stages of disease progression was revealed for both the femur and spine 

samples. 

However, as metastasis to long bones is known to vary along their lengths50, we 

reasoned that alterations in specific regions of the femurs may have been masked within 

the averaged values. Figure 4.5A indicates that changes in the computed metrics were 

more pronounced in the metaphysis of femurs and minimal changes in the spectral 

signatures/biochemical composition of diaphysis were registered. This is consistent with 

the known propensity of metastasizing tumor cells to colonize the highly vascularized 

remodeling niche of the metaphysis9,26,28. In contrast to the femur, Figure 4.5B indicates 

changes in bone compositional markers occur more uniformly throughout the length of 

vertebrae assessed. Yet, changes in bone composition were higher in vertebrae of the L5-

S2 lumbar-sacral region, which is consistent with previous assessment of high tumor 

burden in these locations in this model system27. Therefore, including measurements of 

vertebrae below the pelvic region may skew the average values. Notably, the portion of 

spine analyzed in this model system broadly parallels clinical disease as the lumbar-sacral 

region is the second most frequent site of spinal compression due to metastatic disease in 

patients51. 
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Figure 4.5 Raman spectral-derived metrics of bone compositional changes as a 

function of the position of the measurements on the bone. (A) Relative to week 0, 

average compositional changes (see Figure 4.4) at the distal metaphysis, diaphysis, and 

proximal metaphysis of femurs. (B) Relative to week 0, compositional changes at lumbar 

vertebrae (L1 – L4), lumbar – sacral vertebrae (L5 – S2), and sacral – caudal vertebrae (S3 

– C2) of spines. Orange bar = week 0 and blue bar = week 4. Error bars = ± 1 SD. (* p<0.05, 

** p<0.01, *** p<0.001). 
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To further assess the utility of the spectral information in recognizing progressive stages 

of metastatic bone alterations, SVM-derived decision algorithm was developed on the 

principal component (PC) scores. Table 4.1A shows classification accuracies of metastatic 

involvement at different regions of the femurs across the five weeks of study. The overall 

classification accuracy obtained for the SVM-derived decision algorithm was found to be 

93.6% with the classification accuracy for any combination of site and time point being 

≥83%. Expectedly, the classification of diaphysis exhibited the lowest accuracy when 

compared to that of the metaphyseal regions. 

To ensure the robustness of this decision algorithm, we also conducted a negative 

control study where the spectra were randomly assigned to sites and time points, 

irrespective of their true identity52. In this control study, a maximum average accuracy of 

ca. 26% was achieved over 20 iterations underscoring the reliability of the actual SVM-

derived decision model in discerning subtle, but consistent, metastasis driven changes 

during the 5-week course the study. 

Table 4.1A Classification results for the SVM-derived decision algorithm as a 

function of time point and location in the femur. 

Site Week 0 Week 2 Week 4 Week 5 Average 

Distal Metaphysis 100% 95% 95% 85% 93.8% 

Diaphysis 100% 87% 83% 93% 90.8% 

Proximal Metaphysis 100% 100% 95% 90% 96.3% 

Table 4.1B Classification results for the SVM-derived decision algorithm using only 

the selected spectral features as a function of time point and location in the femur. 

Site Week 0 Week 2 Week 4 Week 5 Average 

Distal Metaphysis 100% 100% 90% 90% 93.8% 

Diaphysis 100% 83% 67% 76% 79.8% 

Proximal Metaphysis 100% 100% 90% 70% 90.0% 

 



105 

 

Additionally, by restricting the analyses to only the prominent biomarkers noted above, 

we developed another decision algorithm to classify the femur sites at different time points 

(Table 4.1B). High classification accuracies were obtained for the analyses using selected 

Raman features, despite utilization of only 27% of the entire spectral information. In 

particular, the distal and proximal metaphysis largely maintained the same accuracy levels 

as the full spectrum decision model (Table 4.1A), while the misclassification rates were 

significantly higher for diaphysis. Also, as a maximum rate of osteolysis was approached 

(week 4-5), a slightly higher misclassification between week 4 and week 5 groups was 

obtained, especially for the proximal metaphysis. Corresponding classification results of 

spine are shown in supplementary information (Table 4.2). One notable feature in the 

classification analyses for the spine is the inability of the SVM decision model to accurately 

distinguish between week 0 and week 2 cases (that shows up as a reduction in classification 

accuracy at week 0, particularly for the caudal vertebras) indicating that metastasis-induced 

compositional changes may not occur as early as in the femurs. 

Table 4.2A Classification results for the SVM-derived decision algorithm as a 

function of time point and location in the spine. 

Site Week 0 Week 2 Week 4 Week 5 Average 

Lumbar vertebras 95% 100% 100% 100% 98.8% 

Sacral vertebras 90% 100% 100% 90% 95.0% 

Caudal vertebras 65% 100% 100% 100% 91.3% 

Table 4.2B Classification results for the SVM-derived decision algorithm using only 

the selected spectral features as a function of time point and location in the spine. 

Site Week 0 Week 2 Week 4 Week 5 Average 

Lumbar vertebras 85% 100% 95% 100% 95.0% 

Sacral vertebras 90% 100% 100% 100% 97.5% 

Caudal vertebras 65% 100% 100% 100% 91.3% 
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Once the Raman spectroscopic analyses were completed on femurs, validation of the 

findings was sought from fluorescence imaging within different regions of the femurs. As 

seen in Figure 4.6A, bright fluorescence from the tdTomato expressing tumor cells was 

readily recorded from metaphyseal regions of the femurs, especially at week 4 and 5, while 

diaphyseal regions showed no fluorescence signals. This is consistent with the results in 

Figure 4.5A as well as the previously reported preferential location of metastasis to the 

metaphyseal regions of femurs28. Figure 4.6B shows the assessment of the images in 

Figure 4.6A in terms of fold increases in fluorescence intensities across metaphysis as a 

function of metastatic progression. We observe that as early as week 2 fluorescence 

intensities from within the metaphyseal regions was about 2.5-fold higher than the 

autofluorescent signals captured at week 0, i.e., in femurs without tumor involvement. By 

week 4 the fluorescence intensity from the distal metaphysis was about ca. 3-4-fold higher 

than autofluorescence (week 0) while at the proximal metaphysis it was about 13-fold 

higher. A reverse trend was seen in the week 5 case where the fluorescence intensity was 

about 13-fold higher than background in the distal metaphysis while the proximal 

metaphysis harbored low amounts of tumor cells as reflected in a fluorescence intensity 

that was only about 1.5-2-fold higher than the autofluorescence of week 0. Except for 

comparisons between week 2 and week 4 distal metaphysis and week 2 and week 5 

proximal metaphysis, fold increases in fluorescence intensities of each week of metastatic 

progression were all significant relative to week 0 as well as between weeks (two-tailed 

Student t-test, asterisk: p < 0.05). Overall, fluorescence imaging observations were 

consistent with the quantitative Raman spectroscopic analyses, and provided an 

understanding of the differential degree of bone deterioration as a function of increasing 



107 

 

metastatic tumor involvement over time. This imaging also reflects the heterogeneity and 

stochastic nature of metastatic progression, where, in this model system, metastasis to 

femur regions in different subjects can exhibit regional tumor burden differences; e.g., 

week 4 or 5 femurs with dissimilar metastatic burdens at different ends of the femurs. 

 

Figure 4.6 Fluorescent imaging-based assessment of the metastatic lesions in femurs. 

(A) Fluorescence images of anterior and posterior views of right (top panels) and left 

(bottom panels) femurs from each week (0, 2, 4, 5) of the study. Autofluorescence was low 

(week 0 images), metastasis specific fluorescent signals from tdT-435 cells within the 

metaphysis regions was relatively weak at week 2 and much more intense at week 4 and 5. 

(B) Fold increases in fluorescent intensities from the metaphysis regions of femurs in (A) 

relative to week 0 autofluorescence as well as between weeks as determined by the semi-

quantitative measurements. Error bars = ±1 SD. Two-tailed Students t-test was employed 

for evaluating statistical significance (asterisk depicts p<0.05). 

 

4.5 Conclusion 

In this pilot study, we demonstrated that Raman spectroscopy has the capability to detect 

biochemical changes to the structure of bones associated with cancer metastasis without a 
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priori imaging or pathological knowledge of lesion location. Raman spectroscopy was able 

to identify sites of early tumor involvement, which points towards a potential diagnostic 

for early intervention not only to treat the advancing tumor but also to further assess these 

sites to circumvent pathological fractures. Hence, it may be possible to build an accurate 

risk assessment tool using Raman spectroscopy in conjunction with microCT or MRI. 

Along these lines, we showed that spectral changes emanating from the variations of 

specific spectral features can be utilized to construct decision algorithms with high 

diagnostic power.  

 Ultimately, we envision longitudinal studies will contribute to our understanding 

of molecular changes that indicate metastatic involvement at early stages. Movement 

towards bringing real time, fully noninvasive Raman spectroscopic assessments of bone to 

the clinic has been in progress in other laboratories, and impressive advances in 

instrumentation53 and data processing15 have been demonstrated. Together, such 

developments set the stage for future in vivo application of Raman spectroscopy for 

assessment of metastatic progression in bone and of fracture risk. 
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Chapter 5. Organ-specific isogenic metastatic breast cancer cell lines 

exhibit distinct Raman spectral signatures and metabolomes 

 

5.1 Abstract 

Molecular characterization of organ-specific metastatic lesions, which distinguish them 

from the primary tumor, will provide a better understanding of tissue specific adaptations 

that regulate metastatic progression. Using an orthotopic xenograft model, we have isolated 

isogenic metastatic human breast cancer (IMBC) cell lines directly from organ explants 

that are phenotypically distinct from the primary tumor cell line. Label-free Raman 

spectroscopy was used, and informative spectral bands were ascertained as differentiators 

of organ-specific metastases as opposed to the presence of a single universal marker. 

Decision algorithms derived from the Raman spectra unambiguously identified these 

isogenic cell lines as unique biological entities – a finding reinforced through metabolomic 

analyses that indicated tissue of origin metabolite distinctions between the cell lines. 

Notably, complementarity of the metabolomics and Raman datasets was found. Our 

findings provide evidence that metastatic spread generates tissue-specific adaptations at 

the molecular level within cancer cells, which can be differentiated with Raman 

spectroscopy. 

 

This chapter has been published in the peer-reviewed journal (Winnard Jr, P.T., Zhang, C., Vesuna, 

F., Kang, J.W., Garry, J., Dasari, R.R., Barman, I. and Raman, V., 2017. Organ-specific isogenic 

metastatic breast cancer cell lines exhibit distinct Raman spectral signatures and 
metabolomes. Oncotarget, 8(12), pp.20266.) 
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5.2 Introduction 

Breast cancer is the most common malignant neoplasm and is the second leading cause 

of cancer-related death among women in the United States, exceeded only by lung cancer1. 

The American Cancer Society recently reporting a 5-year survival rate near 99% for local 

breast cancer1,2. However, the 5-year survival for metastatic breast cancer that involves 

distant organs drops to a dismal 24%1,2. This situation persists because understanding the 

metastatic progression of breast cancer remains challenging. This is due to several factors 

including a limited predictability as to which primary tumor is prone to metastatic 

progression, an inability to monitor the onset of successful metastatic growth, and 

incomplete knowledge of metabolic, physiologic, and molecular adaptations that allow for 

the cancer to survive and thrive within the different tissue types3. As such, procuring safe 

and efficacious chemotherapeutic regimen strategies that ablate metastatic lesions is an 

unmet clinical need4. In addition, the current practice of systemic administration of 

cytotoxic chemotherapy is limited with respect to targeting and drug resistance, which 

results in numerous adverse side-effects and no cures5.  

When considering potential solutions to this problem an important factor is the 

divergence of the metastatic cancer cells growing in visceral organs from the primary breast 

tumor cells6-18. Thus, there is a growing consensus from retrospective as well as prospective 

clinical trials that matched primary breast tumor and metastatic lesion biopsy samples often 

exhibit divergent expression of established biomarkers, for example, ER and HER27,9-11,17. 

Therefore, metastatic lesions should not be considered simply as primary tumor implants 

at new sites but instead as significantly divergent tissue-specific lesions, which reflect 

adaptations to organ-specific environments18. Importantly, it is very difficult to discern if 
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various organ-specific metastatic lesions will have similar sensitivity to prescribed 

therapeutic regimens. Accordingly, the organ-specificity of the metastatic spread needs 

critical reconsideration, as, at present, databases of molecular profiles of matched primary 

and metastatic breast tumors have not been compiled to address global distinctions between 

metastatic sites and thus, cannot facilitate generalized metastatic site-specific nor patient 

specific smart therapeutic alternatives. Consequently, present clinical treatment decision 

options for distant metastatic breast cancer that rely on an evaluation of a few select 

biomarkers found during assessment of the primary tumor, although beneficial to 

subpopulations of patients19, is also a likely contributing factor to the overall diminished 

response rates for survival from metastatic disease9-11,13. Such a conclusion is in line with 

the reported presence of altered and distinct biomarker signatures of the metastatic lesions 

with respect to those found at the corresponding primary tumor7,9-11,17,18, which, when 

evaluated, may indicate that a change in an ongoing treatment strategy should be 

considered. 

Dissecting metastatic cancers based on objective molecular markers remains an 

important challenge. Here, we propose a fundamentally different approach towards 

identification of defining metastatic cancer cell signatures from those of primary tumor 

cells. Harnessing the exquisite specificity of Raman spectroscopy in detecting molecular 

phenotypes in cells and tissue, we aimed to obtain rapid and label-free profiling of newly 

generated isogenic metastatic human breast cancer (IMBC) cell lines, which were produced 

from a xenograft mouse model. Given its lack of sample preparation requirements and 

ability to provide quantitative biochemical analyses in near real-time conditions, Raman 

spectroscopy provides a powerful tool for live cell analysis20. While this spectroscopic 
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technique has been recently used to distinguish between, normal, benign, and malignant 

breast tissues, by us and others21-24, the potential for using these spectral markers as new 

routes to recognition of metastatic cell types that are isogenic to the primary tumor, as is 

the clinical case, has been understudied. 

Starting from an orthotopic xenograft-based mouse model system, the studied human 

cell lines were obtained from cultured organ-of-origin explants of brain, liver, lung, and 

spine, as well as from the primary, i.e., mammary fat pad (MFP), site. These metastatic 

sites are representative of the common clinically observed breast cancer metastatic 

destinations25,26 with spine representative of bone. Despite being isogenic, these cell lines 

exhibit important morphological and growth distinctions that support our hypothesis that 

each metastatic site imbues metastatic tumors with unique molecular attributes. Our Raman 

spectroscopic measurements reveal the presence of consistent spectral differences of the 

cell lines. Using multivariate chemometric methods, we show that these spectral changes 

can be utilized to develop decision algorithms with high diagnostic power. Furthermore, 

we identify the presence of spectrally informative features that bring to light each cell line’s 

unique spectral characteristics, which reflect the inherent biochemical distinctions. We 

reason that these differences are a result of intricate reciprocal interactions between the 

cancer cells, parenchyma, and stroma at the target organ during metastatic growth. 

Combined with the ability to assay the stromal features, our findings underscore the 

relevance of Raman spectral information in characterizing isogenic metastatic lesions at 

different sites in terms of inherent biochemical determinants without staining or requiring 

a priori knowledge of the molecular transformations. In addition, preliminary metabolomic 

analyses provide supporting data indicating that cancer cells from different metastatic sites 
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acquire metabolic changes, which may define a cell line’s metastatic organ of origin. 

Notably, a complementary overlap between the metabolite distinction data set and Raman 

spectroscopic signatures was also found. 

 

5.3 Experimental section 

Mice. All animal handling procedures were performed in accordance with protocols 

approved by the Johns Hopkins University Institutional Animal Care and Use Committee 

and conformed to the Guide for the Care and Use of Laboratory Animals published by the 

NIH. Non- Diabetic severe combined immunodefcient (NOD-SCID) female mice, ages 6 

to 8 weeks and initial weights of about 19–20 g, were used throughout these studies. At the 

end of the experiments, mice were sacrificed by administering an overdose of anesthetic 

[saline : ketamine : acepromazine (2:1:1)] followed by cervical dislocation. 

Cell culture and treatments. The human breast cancer cell line, MDA-MB-435, was 

obtained from ATCC. The MDA-MB-435 cell line was established in 1976 from a pleural 

effusion from an untreated 31-year-old female diagnosed with adenocarcinoma of the 

breast27,28. MDA-MB-435 cells were authenticated at the Johns Hopkins Genetic Resource 

Core Facility with the short tandem repeat marker results cross checked against cell lines 

at the ATCC bank. Generation and characterization of the parental MDA-MB-435-

tdTomato (435-tdT) cell line has been previously described29. All culturing was done in 

standard humidified incubators at 37 oC and 5% CO2. Primary tumors were initiated by 

injection of 2 × 106 435-tdT cells into the second thoracic mammary fat pad of 5 female 

NOD-SCID mice. After 13 - 15 weeks of primary tumor growth the mice were sacrificed 

and primary tumor, brain, liver, lungs, and, spine, were immediately excised from 

individual animals, dissected away from fat and muscle, and placed into sterile PBS on ice. 



122 

 

Pieces of primary tumor, and heavily diseased lungs, and a small portion of liver with a 

macroscopic metastatic lesion were then immediately minced in 100 mm cell culture dishes 

containing 10 ml of medium within a sterile hood. All other organs/bones were inspected 

using fluorescence microscopy for any signs of metastatic burden, which was easily 

discerned as bright tdT red fluorescence. Areas of fluorescence along with adjacent tissue 

were cut away and placed into cell culture plates in sterile medium. In all cases, tissues 

from individual animals were cultured separately and there was no pooling of tissue 

samples. 

All organ/bone tissue explants were initially cultured in RPMI-10% FBS supplemented 

with antibiotics (100 I.U./ml penicillin, 100 mg/ml streptomycin, 100 mg/ml ampicillin, 

and 100 mg/ml kanamycin) and, as necessary, Fungizone. The latter was often used during 

culturing cells out of spine as these pieces of bone, tended to float, i.e, became collagen 

rafts, and thus somewhat exposed at the medium to air surface, which promoted fungal 

growth. Medium was refreshed every 2-3 days and after two weeks of culture the medium 

was changed to RPMI-10% FBS supplemented with pen/strep. Over the course of 1-3 

months pure red fluorescent cell cultures were obtained and the use of pen/strep in the 

medium was eliminated. During routine passages the medium/floating cells was first 

collected and the adherent colonies were then lifted off the plates by room temperature 

incubations in HANKS-5 mM EDTA solution for ~5-10 min with shaking and tapping by 

hand. Lifted cells were pooled with the collected medium/cells, centrifuged 200 xg at 21 

oC for 10 mins, and the supernatant (medium-EDTA) discarded. Cell pellets were then 

suspended in fresh medium and plated at the desired densities. It took at least 12 hr to 24 
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hr and at times 48 hr (generally during recovery from -80 oC storage) for the larger 

percentage of adherent cells to settle and start to grow. 

Average specific growth rate and average length of cell cycle division. Growth rate 

analyses were initiated by seeding 24 well plates with 105 cells per well and harvesting 

quadruplicates of these wells every 24 hr through to the 144 hr end-point. Growth curves 

were generated from live cell counts obtained with a TC10 Automatic Cell Counter (Bio-

Rad) in the presence of Trypan Blue. Average specific growth rates30: μ, were obtained 

from the slopes of plots of ln(Nt/No) versus time, i.e., ln(Nt/No) = μt, where Nt is the number 

of cells at time ‘t’, No is the initial number of cells, and t is time. Consequently, the average 

length of the cell cycle was obtained from the equation: tc = ln2/μ30. The rationale for the 

time intervals given in Table 5.1 is: The initial number of cells: No, can only be obtained 

after the cells have had time to settle, adhere, and begin to grow, i.e., 1 day after seeding 

the cells.  

Table 5.1 Average specific growth rates and length of cell cycle divisions for the indicated 

growth periods. 

  μᵼ (Day-1) μ (hr-1) tc
ǂ (Days) tc (hr) 

Brain 24-72 hr 0.149 0.0062 4.65 111.8 

 72-144 hr 0.495 0.0206 1.40 33.6 

Parental 24-144 hr 0.383 0.0160 1.81 43.4 

Liver 24-120 hr 0.430 0.0179 1.61 38.2 

 96-144 hr 0.076 0.0032 9.08 218.0 

Lung 24-72 hr 0.555 0.0231 1.25 30.0 

 72-144 hr 0.354 0.0148 1.96 47.0 

Spine 24-120 hr 0.464 0.0193 1.49 35.8 

 96-144 hr 0.062 0.0026 11.18 268.3 

1o Tumor 24-72 hr 0.613 0.0255 1.13 27.2 

 72-144 hr 0.142 0.0059 4.89 117.3 
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ᵼ Denotes average specific growth rate from equation: ln(Nt/No) = μt, where Nt is the 

number of cells at time ‘t’, No is the initial number of cells, and t is time.  

ǂ Denotes the average length of the cell cycle division and is derived from: tc = ln2/μ. 

1o Tumor denotes primary tumor. 

Motility assay. Standard motility assays were done in 24 well Transwell® plates (Costar) 

with 8.0 µm membrane inserts. Cells were seeded into duplicate upper chambers at a 

density of 10,000 cells/well in 200 ml of RPMI-0.1% FBS medium while lower chambers 

contained 500 ml of RPMI-5% FBS medium. Cells at the bottom surface of membranes 

were counted daily using a 10× objective on an inverted fluorescence microscope (Nikon 

Eclipse TS100) with the inherent red fluorescence of tdT as a visual marker. Two separate 

experiments were done and for each experiment two fields of view were counted from each 

well. Results indicate means ± 1 standard deviation. 

Optical microscopy. Phase contrast and fluorescence microscopy was done on a Nikon 

ECLIPSE TS 100 microscope (Nikon Instruments, Inc.) equipped with a Photometrics 

CoolSnap ES digital camera (Roper Scientific), and FITC and Texas Red filter cubes. The 

fluorescence light source was an X-Cite 120 Fluorescence Illumination System (Photonic 

Solutions, Inc.). Images were collected with NIS-Elements F3.2 software and processed 

with ImageJ. 

Metabolomics: principle component analysis and heat map generation. Metabolite 

data from all samples were acquired using Agilent 6540 Quadrupole–Time-of-Flight (Q-

TOF) mass spectrometer with Agilent 1290 HPLC at the Metabolomics Facility at Johns 

Hopkins Medical Institutions. Data was analyzed using Agilent Mass Hunter and Agilent 

Mass Profiler Professional (MPP) version 13.1.1 and Agilent Qualitative and Quantitative 

Analysis Software packages (version 6.00) to determine the metabolic profile of each 

sample. 
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Principal component analysis (PCA) was performed to study similarities and differences 

among the different samples. It is a linear transformation used to describe high dimensional 

data31,32. Expression values of metabolites and lipids were analyzed on Partek Genomics 

Studio 6.6 (Partek, Inc.) and used to create PCA plots. Each sphere represents a sample and 

each axis represents the principal components with the largest contributors being displayed. 

The distance between samples is inversely related to the similarity of their expression 

profiles, thus closely clustered samples are closely correlated. Hierarchical clustering was 

used to group similar expression patterns into clusters, which produced dendrograms that 

display the hierarchy of clustering. We clustered rows (expression values) and columns 

(samples) based on Euclidean distance and used average linkage method. 

Raman spectroscopy. The custom-built Raman microscope (Appendix Figure S5.1) 

used in this work was previously reported21. A 785 nm Ti: Sapphire laser (3900S, Spectra-

Physics), pumped by a frequency-doubled solid-state laser (Millennia 5sJ, Spectra-

Physics), was used as the excitation source for the inverted microscope. The laser was 

focused onto the specimen using a 1.2 NA water immersion objective lens 

(UPLSAPO60XWIR 60X, Olympus) that also functioned to collect the backscattered 

signal. The collected signal was then recorded using a TE-cooled, deep depletion CCD 

(1340/400-EB, Princeton Instruments) following dispersion through an imaging 

spectrograph (HoloSpec f/1.8i, Kaiser Optical Systems). Additionally, bright field and 

phase contrast microscopy was performed for visualization and registration with the Raman 

measurements. Instead of interrogating single cells at the subcellular level, the ultimate 

goal of the current study is to characterize biochemical variances at the ensemble cellular 

level, and thus a collection of cells in pellets were investigated using point spectroscopic 
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measurements. After replacing culture medium with PBS, cell pellets were formed by 

centrifugation and placed on top of the quartz coverslip for Raman measurement. Spectra 

(100: 10 × 10) were collected from 90 μm × 90 μm areas in each pellet with axial resolution 

of 25 μm. Raman spectra were recorded by vertical binning before averaging of 10 

successive frames, each with an acquisition time of 0.3 sec, for a total collection time of 3 

sec. Wavelength calibration was performed prior to spectral acquisition by acquiring 

spectra from 4-acetamidophenol, a Raman scatterer with well-characterized peak positions. 

The 600–1800 cm-1 fingerprint region was used for the ensuing analysis (spectral resolution 

of 8 cm-1). Cosmic ray removal was also implemented before the spectra were subjected to 

multivariate statistical analysis in MATLAB (Mathworks Inc.). 

Multivariate statistical analysis. While Raman spectroscopy provides a promising tool, 

in principle, to non-invasively probe biological specimen with high specificity, its intrinsic 

weak signals (especially in relation to conventional fluorescence imaging) and spectral 

complexity provides a substantive challenge in univariate or ratiometric quantitation of the 

sample constituents. Hence, to arrive at biochemical variances in isogenic cellular sublines, 

multivariate statistical analysis was performed on the acquired Raman spectra. By 

exploiting the full spectral information, as opposed to focusing on a single peak, 

multivariate techniques provide a robust route in extracting information both amenable and 

hidden from human examination. 

In this study, the Raman spectra were background corrected, normalized for intensity 

variations, and subsequently subjected to principal component analysis (PCA). PCA is a 

widely used exploratory data analysis technique and employs dimension reduction to 

amplify the subtle differences in the recorded spectral profiles33. Operating without any a 
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priori knowledge of the samples, PCA seeks to determine an alternate set of linearly 

uncorrelated coordinates, i.e., principal components (PC), such that the maximum variance 

in the spectral data can be explained by using only a few PCs. In particular, we employed 

PC scores to reveal the clustering behavior - or the lack thereof - between the metastatic 

breast cancer cell sublines, and the coefficient loadings to uncover the critical diagnostic 

variables/regions in the spectra associated with the underlying differences in the spectral 

data. 

Additionally, to develop decision algorithms for predicting the cell type (class 

membership) of the spectra, partial least squares-discriminant analysis (PLS-DA) and 

support vector machines (SVM) were used. The former employs PLS analysis for noise 

reduction and variable selection and determines the maximal separation between each class 

by fitting a unique global model to the entire dataset. The number of loading vectors 

incorporated in the decision algorithm is determined by the leave-one-out cross validation 

procedure (LOOCV)34. 

The number of loading vectors (LV) used in the PLS-DA model was determined based 

on the minimal misclassification rate in a LOOCV protocol while ensuring that the spectra 

to LV ratio was greater than 5 to avoid problems of data sparseness. Subsequently, the 

dataset was split into training (70% of the spectra) and test (30%) sets to estimate the 

classification accuracy. This entire operation: re-splitting, training of the decision 

algorithm, and prediction, was performed 1000 times to obtain outcomes with well-defined 

statistical confidence. 

Similar to PLS-DA in its supervised nature, SVM is rooted in statistical learning theory 

and structural risk minimization concepts and designs separating boundaries between 
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classes by solving a constrained quadratic optimization problem. We used a radial basis 

function (RBF) with a Gaussian envelope to enable the separation of classes in a higher 

dimensional space and the optimization and kernel parameters were determined based on 

an automated grid search algorithm. Two different classification methods were used to 

confirm the validity of the results and to minimize the possibility of spurious correlations 

that may plague an “overfitted” decision algorithm. The output of the PLS-DA and SVM-

derived decision algorithms was validated against the known class labels, i.e., the specific 

line of the metastatic breast cancer cellular model system. The performance of the 

algorithms was evaluated by determining the sensitivity and specificity using a LOOCV 

protocol. Similar approaches to classification of Raman spectroscopic data have been 

described elsewhere in the literature22,35. 

 

5.4 Results 

Isogenic metastatic breast cancer cell lines from specific organs. In order to facilitate 

the tracking of metastatic progression in live mice29, we engineered triple negative MDA-

MB-435 human breast cancer cells36-42 to stably express a red fluorescence protein 

(tdTomato) and here designates this cell line: 435-tdT. Using 435-tdT cells, we initiated 

the culturing of new organ specific metastatic breast cancer cells (Figure 5.1) with the 

inoculation of 435-tdT cells into the second thoracic mammary fat pads of female NOD-

SCID mice. Phase-contrast images of fresh organ explants showed unresolved amorphous 

material without evidence of metastatic lesions while the bright tdT-fluorescence revealed 

the presence of the cancer (Figure 5.1A). Identified metastatic lesions were placed into 

cell culture and metastatic cancer cells grew out of native tissue environments until pure 

populations of red fluorescent cancer cells were obtained. 
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Figure 5.1 Use of fluorescent microscopy to assess the locations of metastatic lesions 

in ex vivo organ samples and the growth patterns of the subsequent pure metastatic 

cell lines. (A) Fluorescence and corresponding phase-contrast images of brain, lung, liver, 

and spine tissue explants immediately after dissection. (B) Phase contrast images of the 

different colony growth patterns of pure brain, liver, lung, and spine metastatic sublines as 

well as the primary tumor cell line, compared to the monolayer growth pattern of parental 

435-tdT cells. Scale bars in all images depict 100 μm. 

Once adapted to plastic, all metastatic cell lines as well as the primary tumor cells grew 

as loosely adherent 3D spherical colonies made up of tightly packed spherical cells with 

various degrees of monolayer growth (Figure 5.1B), which is starkly different from the 

overall monolayer growth of the parental 435-tdT cell line (Figure 5.1B and Figure 5.2A 

and 5.2B). 
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Figure 5.2 Representative images of the brain cell line growth patterns on adherent 

plastic compared to monolayer growth of the parental cell line. (A–B) Two fields-of-

view of characteristic monolayer growth of the parental cell line. (C) Distinct separate 

colony growth was apparent at 48 hr post inoculation of the plate with distinct small 

spherical cells making up each colony (arrow heads) and thin cellular extensions/filopodia 

(micro- or nanotubes; arrows). (D) After 120 hr the interconnected colony pattern remained. 

(E–F) Two examples of the characteristic growth pattern at “confluency” of the brain cell 

line with colonies elaborately linked together by nanotubes. These interconnections 

between cells/colonies have consistently been recorded at > 100 μm in length. (G) Higher 

magnification of the central portion of image (E). (H) Expanded image of the lower left-

hand corner of image (G). These magnified images allow for a very clear visualization of 

the complex and intricate web of interconnections between colonies that were in place. 

Scale bars in all images depict 100 μm. 
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Representative images exemplified by brain cell line growth patterns show the brain cell 

line had a colony growth pattern as contrasted to the monolayer growth of the parental cell 

line (Figure 5.2 and 5.3). Colonies were apparent as early as 24-48 hr post seeding of 

(Figure 5.2C–D and Figure 5.3A-top and middle images). Distinct small spherical cells 

making up each colony are readily seen (Figure 5.2C) and this growth pattern remains 

throughout culturing as exemplified at 120 hr of growth (Figure 5.3A-bottom images). In 

addition, thin cellular extensions, micro- or nanotubes, (Figure 5.2C-D and Figure 5.3A) 

were visible, which at relatively low cell numbers, i.e., at 24–48 hr, appeared to be attached 

to the substratum and also as connections between adjacent colonies. These connections 

become more numerous as the cultures grew (Figure 5.2D and Figure 5.3A). A 

characteristic pattern at “confluency” (Figure 5.2E-F) with colonies elaborately linked 

together by nanotubes is contrasted to monolayer growth patterns of the parental cell line 

(Figure 5.2A-B). Interconnections between cells/colonies have consistently been recorded 

at > 100 µm in length (Figure 5.2C-H and Figure 5.3A) when connecting distant 

cells/colonies. At high cell/colony numbers, depicted in two fields-of-view (Figure 5.2E-

F) and in magnified and expanded images (Figure 5.2G-H), show that a complex and 

intricate web of interconnections between colonies often occurred. In addition, free floating 

small and large mammospheres (Figure 5.3B) and small floating colonies along with free 

floating single cells (most abundant in brain and spine cell cultures) were a consistent 

feature of these cultures, which was unexpected under the adherent plate conditions used 

throughout the culturing process. 
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Figure 5.3 Representative images of the brain cell line colony and mammosphere 

growth patterns. (A) Images highlighting (arrows) the very long (> 100 μm) nanotube 

interconnections (or filopodia; e.g., middle right-hand image) that consistently form during: 

24 hr (top row), 48 hr (middle row), and 120 hr (bottom row) of growth. (B) Examples, 

under adherent culture conditions, of the large free-floating mammospheres (arrows) that 

consistently formed during subculturing of smaller floating mammospheres retrieved from 

confluent brain cell line culture medium. Scale bars in all images depict 100 μm. 

Overall, it was apparent that important distinctions between phenotypes and growth 

patterns (Figure 5.3) were present between cell lines. This and the very distinct non-
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monolayer growth, ultimately reflect genetic diversity following metastasis and adaptation 

to the surrounding unique tissue environments. 

Isogenic metastatic breast cancer cell lines: average specific growth rates. Average 

specific growth rates along with average cell cycle times (Table 5.1) were estimated by 

linear transformation30 of the data used to generate the viable cell numbers versus days of 

growth curves presented in Figure 5.4A. Qualitative differences between the growth 

characteristics of the different cell lines can be ascertained from Figure 5.4A. Thus, it was 

apparent that primary tumor, liver, and spine cell lines appeared to have little or no lag-

phase to their growth, followed by a relative steady rapid growth that ended with a plateau 

phase of slowed growth and the latter, for the liver cell line, occurred at a relatively low 

cell density. On the other hand, the brain cell line exhibited a protracted lag-phase that was 

followed by a rapid growth phase that did not reach a slowing of growth during the time 

period of this experiment. The lung cell line grew without a lag-phase, passed through a 

slowing of growth and then rapidly grew until the end of the experiment. The parental cell 

line had a relatively steady growth rate for most of the time that may have increased 

somewhat prior to the end of the experiment. The analysis of the plots shown in Figure 

5.4B shed light on these qualitative evaluations. Thus, except for the parental cell line, all 

cell lines can be evaluated as having two distinct average specific growth rate periods 

shown as red tread lines in Figure 5.4B. The slopes of these lines provide estimates of 

average specific growth rates (μ) for each time period, which then allows for the calculation 

of the average length of the cell cycle (tc) for each period (Table 5.1). As such, it was found 

that the parental cell line had an average specific growth rate of about 38% per day and a 

corresponding average cell cycle length of 1.8 days throughout the six days of growth. For 
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the brain, lung, and primary tumor cell lines the two periods of growth were from 24-72 hr 

and 72-144 hr (Figure 5.4B). While lung and primary tumor cell lines grew rapidly during 

the first time period, i.e., at average specific growth rates of 55% and 61% per day 

respectively, with corresponding short average cell cycle times of about 1.25 and 1.13 days 

respectively, the brain cell line exhibited a prolonged initial (24–72 hr) slow average 

specific growth rate of only about 15% per day that corresponded to an average cell cycle 

time of 4.65 days (Table 5.1). However, between 72 and 144 hr the brain cell line’s average 

specific growth rate increased greater-than 3-fold to about 50% per day with an average 

cell cycle time of 1.4 days (Table 5.1). For the liver and spine cell lines the two periods of 

growth were from 24-72 hr and 96-144 hr (Figure 5.4B). These cell lines had similar 

growth characteristics with average specific growth rates of 43% and 46% per day 

respectively and corresponding average cell cycle lengths of 1.6 and 1.5 days respectively 

during the first time period (Table 5.1). Similarly, both liver and spine cell lines reached a 

stationary growth phase (96-144 hr) (Figure 5.3B) where average specific growth rates of 

only 7.6% and 6.2% per day and corresponding average cell cycle times that increased by 

nearly 10-fold to about 9 and 11 days respectively (Table 5.1). 
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Figure 5.4 Growth curves and estimation of average specific growth rates (μ) off of 

plots of ln(Nt/No) versus time. (A) Growth curves of viable cell numbers vs. days of 

growth depicting distinctions in growth characteristics between cell lines. Each data point 

of the growth curves represents a mean (n = 3 to 4 wells of cells) ± 1 standard deviation 

except for the last point of the brain and the last two points of the liver where these are 

averages of two wells of cells. (B) The same data sets use in (A) plotted as ln(Nt/No) vs. 

growth interval in hr where Nt is the number of cells at time ‘t’, No is the initial number of 

cells, i.e., viable cell counts on day 1 (24 hr after seeding the plates), and t is time. As, ln 

(Nt/No) = μt, it can be seen that the slope (μ) of each treadline (shown in red) provides an 

estimate of the average specific growth rates over the course of each growth interval (red 

lines) shown. 
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Overall, under these in vitro conditions, these results indicate that each of these isogenic 

cell lines modulates its cell cycle rate along with cell loss or senescence rate and hence its 

growth rate differently throughout the six-day culture period. 

Isogenic metastatic breast cancer cell lines: motility. Two independent motility 

assays were carried out in standard 24 well Transwell® plates with 8 µm membrane inserts. 

During day two (white bars) and three (gray bars), the parental cell line’s motility was 

relatively high as compared to the isolated isogenic cell lines (Appendix Figure S5.2). On 

day two, the motility of the parental cell line was significantly higher than the primary 

tumor and all metastatic cell lines (P < 0.05, two tailed t-test), and this remained the case 

on day three for all cell lines except the liver cell line. By day three the liver cell line’s 

motility was significantly higher than the primary tumor and metastatic cell lines (P < 0.005) 

but not the parental cell line. In addition, it was noted that, except for the parental cell line, 

the numbers of cells migrating were very low being on average only 1.5% of the total cell 

numbers in the wells. The result is consistent with the fact that these metastatic cell lines 

do not exhibit extensive lateral monolayer growth patterns (Figure 5.1-5.3), which favors 

migration to and through a pore or into a “wound” but instead propagate vertically in 

stationary colonies. 

Isogenic metastatic breast cancer cell lines: metabolomics. To gain a better 

understanding of the underlying molecular changes that are contributing to or are the result 

of adaption to different tissue microenvironments metabolomic analyses of our isogenic 

metastatic breast cancer cell lines were carried out. Our global metabolomics analyses 

provided strong evidence that our isogenic metastatic cell lines have distinct metabolomes 

(Figure 5.5 and Table 5.2). Principal components analyses (PCA) of aqueous phase as 
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well as lipid phase (predominately lipids) metabolites (Figure 5.5A-B) revealed that all the 

isogenic cell lines unambiguously clustered into discrete classes (depicted as spheres) in 

both cases, which reflects each cell line’s inherently distinct metabolome and lipid 

characteristics. PCA mapping of aqueous phase metabolites (Figure 5.5A) shows that PC 

1 contributes to 49.9% and PC 2 contributes to 21.9% of the variation observed in the 

various samples. PCA demonstrates that there is a large difference, primarily indicated by 

PC 1, in metabolites of the metastatic cell lines relative to the primary tumor cell line 

(Figure 5.5A). Similarly, metastases are mainly differentiated by PC 2 indicating that they 

are more similar to one another. Hierarchical clustering confirmed that the primary tumor 

cell line was clustered separately from the metastases (Figure 5.5A - bottom panel). The 

dendrogram also confirmed that brain and liver metastases were more related to each other 

with respect to aqueous metabolite components. PCA mapping of lipid phase metabolites 

(Figure 5.5B) shows that PC 1 contributed to 45.3% and PC 2 contributed to 33.1% of the 

total variation. PCA showed that primary tumor lipids phase metabolites were closely 

related to brain lipid phase metabolites. Hierarchical clustering confirmed PCA analysis 

showing that lipid phase metabolites in primary tumor were closely related to brain (Figure 

5.5B - bottom panel). The largest variation in lipid phase metabolites expression was 

observed in spine metastases.  
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Table 5.2 Fold increases of top metabolites from the 1o Tumor1 and metastatic sites. 

 1o Tumor vs: 

Metabolite Brain Liver Lung Spine 

Biotripyrrin 4.2 14.0 7.5 34.6 

2-Amino-3-Carboxymuconic Acid 

Semialdehyde 
17.3 14.7 2.9 12.0 

L-Thyroxine ----2 18.0 2.5 7.9 

Phosphatidylinositol Trisphosphate (PIP3) 

(18:0/16:1) 
3.5 4.6 6.7 3.9 

Lysophosphatidylethanolamine (LysoPE) 

(15:0/0:0) 
5.4 3.7 2.3 3.7 

L-Dihydroorotic Acid 4.0 3.8 2.0 3.6 

Cholesterol Ester (14:1) 2.7 3.3 4.8 3.7 

Cholesterol Ester (20:4) 2.0 2.2 2.7 3.4 

 Brain vs: 

 1o Tumor Liver Lung Spine 

Neurotensin 1-10 85 3.8 100 9.9 

Tryptophyl-Tryptophan 60 24 ---- 36 

Phosphotidylethanolamine (PE) (18:3/14:1) 23 2.2 ---- 9.6 

Phosphotidylglycerolphosphate (PGP) 

(16:1/16:1) 
8.0 4.5 ---- ---- 

 Liver vs: 

 1o Tumor Brain Lung Spine 

N1, N8 Diacetylspermidine 42 2.8 ---- 2.0 

1-Phenylethylamine 2.5 2.1 19.7 5.2 

Pantetheine ---- ---- 7.3 ---- 

 Lung vs: 

 1o Tumor Brain Liver Spine 

CL3 ---- ---- ---- ---- 

Arginyl-Proline 4.6 5.3 22 3.4 

DG4 (14:0/24:1/0:0), (16:1/22:0/0:0), 

(18:1/20:0/0:0) 
2.9 4.7 9.7 2.5 

Putreanine 3.5 3.3 7.9 3.1 

 Spine vs: 

 1o Tumor Brain Liver Lung 

Methionyl-Proline 71 20.8 3.1 44 

Asparaginyl-Glutamate ---- 26.6 16.6 ---- 
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Gentisate Aldehyde ---- 26.6 16.6 ---- 

Dityrosine 22.4 12.6 2.5 4.8 

PIP2 (16:0/20:1), (16:0/22:4) & (18:0/18:1) 21.8 15.3 2.3 20.5 

4-Guanidinobutanoic Acid ---- 20.9 ---- 2.3 

5-Methyldeoxycytidine ---- 16.6 4.5 ---- 

Ferrocytochrome 6.4 14.8 8.9 6.9 

Pentacaboxylporphrinyl ---- 10.2 5.2 5.5 

SCICAR5 ---- 7.9 4.3 8.0 

4-Aminobutyraldehyde 6.1 6.1 5.3 2.5 

N2, N2-Dimethylguanosine ---- 6.6 6.9 3.3 

D-Lactaldehyde 6.2 6.6 6.1 2.5 

7,8-Dihyderoneopterin 3.1 3.9 2.9 2.0 

11o Tumor denotes primary tumor.  
2A dash indicates that the metabolite was below the detection limit in that organ. 
3CL denotes cardiolipins: (16:0/16:0/18:1(9Z)/18:1(9Z)), (16:0/16:0/18:1(11Z)/18:1(11Z)), 

(16:0/16:0/18:1(9Z)/18:1(11Z)), & (16:1 (9Z)/18:0/16:1(9Z)/18:0).  
4DG denotes diacylglycerol.  
5SCIAR denotes: (S)-2-[5-Amino-1-(5-phospho-D-ribosyl) imidazole-4-

carboxamido]succinate. 
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Figure 5.5 Principal component analysis (PCA) maps along with hierarchical 

clustering’s of metabolites and lipids. (A) 3D PCA mapping of aqueous metabolites (top 

panel) displaying sample classes as spheres. Bottom panel displays hierarchical clustering 

of the samples along with the associated heat map of aqueous metabolite distributions. (B) 

3D PCA mapping of lipid soluble metabolites (top panel) with spheres representing the 

sample classes. Panel at the bottom displays a heat map of lipid soluble metabolite 

distributions along with the associated dendrogram. Expression values for the heat maps 

are indicated by a key at the bottom of the maps. 
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Raman spectroscopic differentiation of organ-specific metastatic isogenic breast 

cancer cell lines. Mean Raman spectra (±1 standard deviation) of the IMBC cell lines and 

the primary tumor cell line are shown in Figure 5.6A, where the spectra have been 

normalized and offset for visualization purposes but displayed without background 

correction. The Raman spectra are an aggregate expression of cellular biochemistry and 

structure, since the vibrational signatures inform not only on the composition of the 

complex biological material but also on structural states of the molecules in the specimen. 

The observed spectral features encode a vast amount of information of the principal 

constituents43, namely lipids, proteins, nucleic acids, carbohydrates and small molecules. 

Table 5.3 lists the assigned vibrational modes for a selection of these spectral features. 

Though the spectra grossly appear to have similar profiles, detailed inspection reveals 

subtle but discernible and reproducible shape differences, especially on removal of the 

broad fluorescence background44. Based on our previous experience in differentiation of 

breast tissue lesions21, we reasoned that while the subtle distinctions between the spectra 

of each cell line impede the possibility of differentiation using a single feature, multivariate 

classification methods could enable recognition and segmentation of the cell pathology - 

as long as the between-class distinctions are reproducible and surpass within-class 

distinctions.  
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Table 5.3 Assignment of specific Raman spectral components to subcellular constituents. 

Raman Shift 

(cm-1) 
DNA/RNA Proteins Lipids 

620  C-C Twist Aromatic Ring  

643  C-C Twisting of Tyrosine  

702   Cholesterol 

715 Adenine  

C-N (Membrane 

Phospholipid 

Head Group), 
CN-(CH3)3 

781 
Cytosine, Uracil 

Ring Breathing 
  

810   Phosphodiester 

828 
O-P-O 

Stretching 
Tyrosine Phosphodiester 

853  
Ring Breathing of Tyrosine, 

C-C Stretch of Proline Ring 
 

878   
C-C-N+ Symmetric 

Stretching 

938  

Hydroxyproline, Proline, 

ν(C-C) Vibration of Collagen 

Backbone 

 

1005  Phenylalanine  

1035  Collagen  

1066  Proline Fatty Acid 

1086   
ν1CO3

2-, ν3PO4
3-, 

ν(C-C) 

1128  C-N Stretching  

1156  C-C, C-N Stretching  

1176  C-H Bending Tyrosine  

1209  Tryptophan, Phenylalanine  

1241   
Asymmetric 

Phosphate Stretching 

1254  C-N in Plane Stretching  

1266  
Amide III (α-Helix), 

Tryptophan, Collagen 
 

1302  

CH3/δ(CH2) Twisting, 

Wagging, Collagen, 

Amide III & Methylene 

bending mode 

CH3/δ(CH2) 

Twisting, Wagging, 

Phospholipids & 

Methylene bending 

mode 

1334 Nucleic Acid CH3CH2 Wagging, Collagen  
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1342  CH Deformation  

1367   
v(CH3), 

Phospholipids 

1391  
C-N Stretching in Quinoid, 

Ring-Benzenoid 
 

1437   CH2 Deformation 

1451  
CH2 Bending, CH3 Bending, 

C-H Deformations 
C-H Deformation 

1556  

Tryptophan ν(CN), Amide II 

ν(C=C) Porphyrin & 

Tyrosine 

 

1605 Cytosine Phenylalanine & Tyrosine  

1657  

ν(C=O) Amide I (α-Helix) 

C=O Stretching of Collagen 

& Elastin 

C=C Stretch, 

Fatty Acids 

ν, stretching mode; δ, bending mode.   
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Figure 5.6 Raman spectroscopic analyses of organ-specific metastatic breast cancer 

cell lines reveals distinct spectral characteristics for each cell line. (A) Representative 

Raman spectra acquired from brain, primary tumor (1o Tumor), liver, lung, and spine cell 

lines. The solid profile depicts the mean spectrum of each sample group and the shadow 

represents ±1 standard deviation. Spectra were normalized and offset for visualization. 

Dashed vertical lines delineate Raman shifts (cm-1) detailed in Table 5.3. (B) Principal 

component (PC) loadings for PC 1, 2, 3 and 5, for the Raman measurements are shown. 

Dashed vertical lines delineate prominent Raman shifts (cm-1) detailed in Table 5.3. (C) 

Radial visualization principal component scores plot, corresponding to the most 

discriminative PCs (PC 1, 2, 3 and 5), shows the clustering of the spectral data 

corresponding to each organ-specific cell line, red: primary tumor, blue: brain, green: liver, 

orange: lung, and purple: spine. (D) Dendrogram of organ-specific breast cancer cell lines 

cluster analysis. Each color bar represents one organ-specific cell line. (E) Identification of 

informative spectral regions via PCA data exploration as exemplified by the PC loadings 
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corresponding to the spectral dataset acquired from: primary tumor and liver (left panel) 

and primary tumor and spine (right panel) cell lines. The top to bottom profiles in each 

panel show difference spectra: (DS) between liver/primary or spine/primary spectra along 

with their PC 1 and PC 2 loadings, respectively. The highlighted yellow bars (1–4), 

represent the wavelength regions elucidated from the difference spectra (DS) as those with 

the most significant variability amongst the considered cell lines. 

Hence, we employed principal component analysis (PCA) to transform the dimensions 

of the acquired spectra into a set of linearly uncorrelated variables, i.e., principal 

components, along which the variation in the data is maximal (Figure 5.6B). This 

dimensional reduction step is critical to enabling sample exploration via visual assessment 

of similarities and differences between samples and, ultimately, in identifying the smallest 

possible subset of discriminatory features necessary to build a robust decision algorithm. 

PC 1 and PC 2 accounts for approximately 67% and 12% of the total variance in the dataset. 

In addition to homing in on the spectral features responsible for the variance between the 

cell lines (indicated by the dashed lines in Figure 5.6B), we employed the PC scores to 

assess the feasibility of recognizing individual cell lines based on the Raman data. 

Specifically, the PC scores were used to create a radial visualization plot (Figure 5.6C). 

The plot reveals the degree of clustering of the spectra recorded from the same cell line 

and, critically, the inter-cell line spectral variations. Together, these qualitatively suggest 

the presence of differential molecular constituents in the isogenic cell lines that are driven 

by site-specific adaptations. The Raman spectra-derived dendrogram (Figure 5.6D), 

reinforces these feasibility results but also hints at the relative difficulty in separating the 

liver and brain cell lines based solely on the vibrational signatures. Notably, the overlap 

between the brain and liver Raman signatures is consistent with the metabolomics findings 

(Figure 5.5) underscoring the correspondence between the two complementary data sets. 
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To quantify the classification capability of Raman spectroscopy, we developed decision 

algorithms based on partial least squares discriminant analysis (PLS-DA) and support 

vector machines (SVM). The overall classification accuracy obtained for the PLS-DA-

derived decision algorithm was found to be 96.8% with the classification accuracy for each 

cell line being in excess of 93% (Table 5.4). The SVM-derived decision algorithm also 

provides similar levels of classification performance affirming that the richness of the 

spectral data is the principal driver for the prediction performance. Next, we performed 

difference analyses across the normalized spectra obtained from pairwise comparison of 

cell lines to delineate the informative regions with the goal of identifying biomarkers, 

which would be either universal or characteristic to a specific pair of cell lines. Figure 

5.6E exhibits two representative cases of these comparisons, namely between primary 

tumor and liver cell lines and between primary tumor and spine cell lines. The 

accompanying PC loadings were obtained from analysis of the spectral dataset constituted 

by the primary tumor and liver, and primary tumor and spine cell lines, respectively. By 

merging the difference analyses and spectroscopic basis of the PC loadings, the following 

informative regions were identified: 1000–1006 cm-1, 1136–1211 cm-1, 1298–1330 cm-1 

and 1435–1470 cm-1.   
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Table 5.4 Raman spectroscopy-based classification of IMBC cell lines. 

 
PLSDA1 

algorithm 

SVM2 

algorithm 

PLSDA1 feature-specific 

algorithm 

Reference 

Identification 

Correct 

Classification (%) 

Correct 

Classification (%) 

Correct 

Classification (%) 

1o Tumor3 99.3 (0.7)4 98.9 (1.1) 97.2 (2.8) 

Brain 98.0 (2.0) 99.6 (0.4) 91.7 (8.3) 

Liver 97.4 (2.6) 94.3 (5.7) 91.1 (8.9) 

Lung 93.3 (6.7) 97.3 (2.7) 85.8 (14.2) 

Spine 96.1 (3.9) 98.2 (1.9) 90.6 (9.4) 

1Denotes Partial Least Squares Discriminant Analysis.  
2Denotes Support Vector Machines.  
3Denotes Primary Tumor cell line.  
4Values in parenthesis = percentage misclassifications. 

Using only the selected regions (highlighted by the yellow bars of Figure 5.6E), we 

developed a PLSDA-derived decision algorithm to reclassify all the cell lines that provided 

equally impressive prediction performance (Table 5.4) as that obtained using the full 

spectral analysis. Only 9.6% of the spectral information was used in this case thereby 

underlining the presence of specific spectral markers in the dataset.  

Additionally, to ensure the robustness of these findings, we implemented a negative 

control study. In this case, the labels (primary tumor, brain, liver, lung and spine) were 

assigned in a randomized order, regardless of their actual identity. Using the acquired 

spectra in conjunction with these control labels, we re-derived the PLS-DA and SVM 

decision algorithms and used them in the same analysis protocol as detailed previously. In 

this situation, a low correct classification rate for each cell line was obtained with the 

average rate of correct classification below 20%. This underscores the robustness of the 

spectroscopic measurements to confounding variables and chance correlations. 

Collectively, these results demonstrate that Raman spectroscopy offers a reliable tool for 
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discriminating these IMBC cell lines on the basis of distinct organ-of-origin driven 

biochemical adaptations. 

We also compared Raman signatures of specific cell line pairs and tallied the spectral 

markers against the known Raman features of the cell line specific expressed metabolites. 

As show in in Figure 5.7 - top panel, a comparison of metabolite profiles in the spine and 

the primary cell line reveals the overexpression of Raman-active analytes in spine, namely 

gentisate aldehyde and dityrosine. Similarly, complementarity of the metabolomics and 

Raman datasets was reinforced through detection (using liver as a control) of the 

overexpressed Raman-active analytes in the primary tumor: L-thyroxine and L-

dihydroorotic acid (Figure 5.7 - middle panel) and Raman-active 1-phenylethylamine in 

the liver (using primary tumor as a control; (Figure 5.7 - bottom panel). Analyses of the 

difference spectra between cell line pairs and their corresponding PC loadings reveals the 

presence of subtle features at wavenumbers (scattering frequencies) where these 

metabolites show Raman activity (Figure 5.7 and Table 5.5). 
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Figure 5.7 Raman spectroscopic analysis to probe the presence of cell line specific 

expression of molecules identified through metabolomics analysis. The top panel 

highlights the differential expression of spectral markers in the spine cell line. The primary 

cell line spectrum was used as the control to calculate the difference profiles. Additionally, 

principal components (PC) 1 and 2, calculated from the spine and primary cell line data, 

are provided to capture the variance. The presence of spectral features, corresponding to 

the peaks of dityrosine and gentisate aldehyde, are highlighted by the dashed lines and 

detailed vibrational mode assignment is presented in Table 5.5. Similarly, the middle panel 

compares the Raman spectra of the primary cell line with a control group, i.e., Raman 

spectra acquired from the liver cell line, to illustrate the presence of features of 

overexpressed metabolites L-dihydroorotic acid and L-thyroxine. The bottom panel 

compares the Raman profiles of the liver cell line with the control group (primary) to 

delineate the overlap with features of 1-phenylethylamine. Profiles in blue represent the 

difference spectra: (DS) whereas the red and green profiles show the PC 1 and PC 2 

loadings respectively for each chosen pair of cell lines. 
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Table 5.5 Raman shifts and associated band assignments of cell line specific metabolites. 

Tissue Metabolite 
Raman 

Shift (cm-1) 
Band Assignment 

Spine Dityrosine 818 
Tyrosine, Proline, Hydroxyproline, 

ν2PO2- stretch of nucleic acids 

  1168 Tyrosine: C-H in-plane bending 

  1207 
Tyrosine & Phenylalanine: C-C6H5 

stretching, Hydroxyproline 

  1605 
Tyrosine & Phenylalanine: C=C in-

plane bending 

  1616 
Tyrosine & Tryptophan: C=C 

stretching mode 

 
Gentisate 

Aldehyde 
804 νC-C, νC-O 

  1133 bC-H, νC-C 

  1612 νC-C, bC-H 

1o Tumor 
L-Dihydroorotic 

Acid 
607 βC=O 

  652 γNH, γOH 

  734 βC=O, νC=O 

  1131 νNC, βCH 

  1414 νNC, βNH 

 L-Thyroxine 1177 Out-of-phase νC=O 

  1239 In-phase νC=O 

  1381 Stretching aromatic ring 

  1537 In-phase aromatic ring 

  1579 Stretching aromatic ring 

Liver 
1-

Phenylethylamine 
1031 

C-H in-plane bending mode, C-N 

stretching 

  1327 CH3 wagging mode 

  1440 CH3, CH deformation vibrations 

1o Tumor denotes Primary Tumor. 

b, bending; ν, stretching; β, in-plane deformation; γ, out of plane. 
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5.5 Discussion 

An inherent challenge within cancer research is the cataloguing of fundamental 

information on what is generally fatal metastatic disease within vital organs. Monitoring 

and treating metastatic progression remains a formidable task due to many gaps in our 

knowledge including: an inability to monitor the onset of successful metastatic growth 

along with specific differential molecular adaptations that allow for the cancer to survive 

and thrive within different tissue types18,45,46. Consequently, we have taken up the 

important consideration that metastatic cancer cells growing in visceral organs ought not 

to be considered simply as primary tumor implants. Rather metastatic lesions need to be 

understood as significantly influenced and altered by tissue-specific microenvironments 

that the cancer cells must adapt to18,45,46. To address this problem, we choose to characterize 

IMBC cell lines that spontaneously arose from dissemination from the primary mammary 

fat pad site of our mouse model. 

The establishment of metastatic lesions integrated into vital visceral organs is a 

multistep process that includes: i) the cancer cells ability to survive as independent entities 

that thrive outside the normal cell-cell interactions of healthy epithelial tissues, ii) surviving 

harsh circulation conditions, and iii) embed and adapt to growth within microenvironments 

that are distinct, from a developmental as well as functional basis, from the primary tumor 

site. In order to mimic this process, we have generated isogenic cell lines directly from 

organ-specific metastatic lesions of the brain, liver, lung, and spine (bone), which are the 

organs most commonly affected, i.e., bone (60%), lung (34%), liver (20%), and brain (10-

15%), during human metastatic breast cancer progression25,26. We initially cultured these 

as organ explants along with a cell line from the primary tumor site, i.e., mammary fat pad, 
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in an attempt to preserve tissue adaptation attributes acquired during adaptation to each in 

vivo microenvironment47,48. In addition, these culturing conditions minimized damage as 

well as stresses imposed during harsher multistep single cell isolation protocols, which 

likely also bias cancer cell selection to subpopulations that survive the isolation procedures. 

This overall model is analogous to the natural course of metastatic progression found in 

the clinic where metastatic lesions are composed of cells that are isogenic to the primary 

breast cancer but also distinct at the molecular and cellular level6-18,45,46. 

Once adapted to plastic these new isogenic cell lines exhibited distinct 

phenotypic/morphological differences in growth patterns along with similarities that went 

across cell lines including those established from the primary tumor site. The most evident 

of the latter was a tendency for all cell lines to grow as complex arrays of interconnected 

3D colonies with various degrees of loosely held together monolayers (Figure 5.1-5.3). 

The distinctions in average specific growth rates and average cell cycle rates (Figure 5.4 

and Table 5.1) support the concept that the different growth patterns reflect metabolic, cell 

cycle, and hence, likely genetic/epigenetic differences between cell lines. Given that, in 

general, cytotoxic chemotherapies are more efficient in killing cycling cells, understanding 

differences in growth and cell cycle rates of cells in metastatic lesion will provide us with 

an optimum treatment strategy49. 

Attempts to distinguish between cell lines using motility assays proved inconclusive 

(Appendix Figure S5.2) possibly due in part to the relative lack of monolayer growth 

exhibited to different degrees across cell lines (Figure 5.1-5.3), which is the type of lateral 

growth pattern that generally propagates a migration to and through a pore or into a 

“wound”. It is also possible that the low motility reflects a loss of this metastatic trait that 
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is generally associated with movement out of the primary tumor, into the blood/lymph 

systems, and subsequent local/systemic dissemination, which may be suppressed once 

growth is established in a distal organ. Nevertheless, the little or no motility seen across all 

cell lines in the Transwell motility assay (Appendix Figure S5.2) revealed that these cell 

lines were able to survive and grow in the low nutrient (0.1% FBS) serum conditions of 

the top chamber, which may reflect an adaptation to survival in a hostile microenvironment 

within portions of the primary tumor prior to dissemination or at the new site of growth. 

From a different perspective, these cell lines are ‘motile’ in up-ward growth in the form of 

3D spheres and all exhibit a tendency to shed viable free-floating cells into the medium 

that either remained as single cells or grew as free-floating colonies that resemble 

mammospheres (Figure 5.3B). The latter trait is unusual as mammosphere growth patterns 

have consistently been shown to be limited to growth on non-adherent plates50 unlike the 

adherent conditions used here. This trait may reflect an in vivo attribute of the metastatic 

process or adaptation to plastic. The latter seems unlikely as most available cancer cell 

lines adapted to growth on adherent plastic do so as monolayers with little or no “sphere” 

formations. 

Interestingly, the colonies of brain and spine (and to a lesser extent the other cell lines 

as well) are interconnected and therefore, in apparent communication51-53, by nano- or 

microtubes, which were observed at well over 100 μm in length (Figure 5.2 and 5.3) and 

at high colony densities formed complicated intricate networks between colonies (Figure 

5.2E-H). It appears that under these conditions the cell lines have a propensity to grow as 

semi-separate entities/colony arrays that require an interacting exchange of materials via 

these conduits51-53. This may be a reason for the lag-phase growth period exhibited by the 
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metastatic brain cell line as these cells may require a relatively extensive interconnected 

network to support higher growth rates and shortened cell cycle times. To the best of our 

knowledge, at the abundance seen in our cultures, the interconnected nanotube network is 

a very unique characteristic along with the mammosphere formation on adherent plates. 

Importantly, the metabolomics data indicates that the isogenic metastatic cell lines have 

diverged from the primary tumor as well as from each other (Figure 5.5). Table 5.2 shows 

fold increases of top metabolites, i.e., those at least 2-fold greater in each tissue-specific 

cell line vs all other cell lines. Although further work is needed to definitively prove 

whether an increase in a metabolite in a specific metastatic cell line has arisen from organ-

of-origin influences, select metabolites in Table 5.2 can be associated with specific organs. 

For example, as reflected in Table 5.2, Neurotensin 1-10, a neurotransmitter, was found to 

be increased in the brain cell line and has been reported to be principally of brain origin54 

while pantetheine (vitamin B5) an intermediate in the enzyme-CoA formation pathway, 

which is increased in the liver cell line, is generally most abundant in liver55. Some classes 

of the tetra-acylated anionic phospholipids: cardiolipins, are only found in relatively high 

abundance in the lung cell line (Table 5.2) and cardolipins have been reported to be 

increased in human lung cancer56. Interestingly, N1, N8 diacetylspermidine has been found 

to be a marker of breast cancer and from our results (Table 5.2) it appears that it can 

potentially reflect metastatic progression to the liver57. Future studies are required to 

provide experimental evidence that cell line specific metabolomes contain metabolites that 

reflect a cell line’s tissue of origin. Such work would also strive to obtain information on 

metabolic pathways associated with such metabolites and their potential relationships to 

metastatic adaptations at each site. 
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We also had the aim of obtaining rapid, non-destructive, and label-free profiling of these 

IMBC cell lines and to this end have undertaken a Raman spectroscopy characterization 

approach (Figure 5.6). Raman spectroscopy was considered as a complementary 

alternative to a purely “omics” approach as the latter has some well-characterized 

limitations33. Our Raman spectroscopy-based decision algorithms showed the ability to 

differentiate between our isogenic cell lines with high accuracy (Table 5.4). These 

algorithms exploit subtle differences in the vibrational signatures of the molecular markers 

that are reflective of the multiple and complex interactions between metastatic cells and 

host homeostatic mechanisms. The complementary nature of these distinct analytical tools 

(metabolomics and Raman spectroscopy) was observed; e.g., with the general overlap that 

was found between the dendrograms obtained from the two methods, which in both cases 

indicated that brain and liver cell lines are closely related. 

Notably, we sought more evidence of a complementarity between the two methods and 

found examples of Raman-active analytes, i.e., discriminating spectral markers were 

ascertained for cell line specific metabolites (Figure 5.7). As discussed earlier, the 

principal variations in the Raman spectra of the cell lines are largely attributable to proteins, 

lipids and nucleic acids however, signatures of metabolites and other small molecules are 

also embedded in the Raman spectra. Hence, even though fingerprinting specific 

metabolites through the vibrational features alone is challenging, one can infer the 

contributions of these metabolites towards the composite cellular biochemical status 

represented in the Raman data. Further probing of the high wavenumber region may 

provide complementary molecular insights, particularly of the lipid phenotype along with 

other important biochemical features58-62. 
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Overall, important differences between organ-specific metastatic cell lines reflect the 

fact that organs differ vastly with unique attributes of metabolism, developmental programs, 

microenvironments, and function, all of which results in defined identities with specific 

growth challenges for invading cancer cells. For example, normal oxygen tension varies 

greatly between tissues63. Therefore, if one considers only this single vital nutrient change 

between organ types, it ought not to be surprising that a metastatic growth embedded in 

lung tissue with high oxygen tension would acquire different characteristics as compared 

to metastatic cells thriving in brain or bone at a much lower oxygen levels63,64. 

 

5.6 Appendix 

 

Figure S5.1 Schematic illustration of Raman microspectroscopy system. The system 

incorporates confocal Raman, confocal reflectance (not shown here) and bright field 

imaging modalities for visualization and characterization of unstained live cells. LPF: Long 

Pass Filter; DM: Dichroic Mirror. 
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Figure S5.2 Evaluation of motility through porous (8 µm) membrane inserts in 

standard 24 well Transwell® plates. During day two (green bars) and three (red bars), the 

parental cell line’s motility was relatively high as compared to the isolated isogenic cell 

lines. On day two, the motility of the parental cell line was significantly higher than the 

primary tumor and all metastatic cell lines (P < 0.05, two tailed t-test) and this remained 

the case on day three for all cell lines except the liver cell line. By day three the liver cell 

line’s motility was significantly higher than the primary tumor and metastatic cell lines (P 

< 0.005) but not the parental cell line. Error bars depict ± 1 SD. 
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Chapter 6. Summary and future work  

 

6.1 Summary 

This thesis reports multiple applications of spontaneous Raman spectroscopy from 

protein aggregation analysis to detection of early-stage metastatic cancer in the bone. We 

have also employed SERS by harnessing specialized nano-structured substrates to achieve 

ultrasensitive bioanalyte detection. In our investigations, machine learning and 

multivariate analysis has been extensively utilized to gain mechanistic insights into protein 

aggregation and cancer metastasis. Besides, fluorescence microscopy, UV-Vis absorption 

spectroscopy and finite-difference time-domain simulation are also included in the 

dissertation to support our findings from Raman spectroscopic studies. 

In our first spectroscopic study, we developed a support vector machine-based decision 

model that offers fast, accurate prediction for a wide range of protein aggregation, 

particularly at the low aggregation levels, based on the subtle, but consistent, differences 

in their spectra, which are otherwise invisible to gross visual inspection. Furthermore, in 

blinded experiments, the model shows the ability to precisely differentiate between 

aggregation levels in mAb samples pre- and post-isothermal incubation, where the latter is 

representative of protein degradation achieved under long-term storage conditions. The 

high degree of accuracy achieved in prediction in these stressed/unstressed samples that 

exhibit only small differences in aggregation levels is particularly encouraging. This newly 

developed method takes less than three minutes to finish each measurement – much faster 

than standard HP-SEC measurements. This study presents the power of Raman 

spectroscopy to rapidly recognize protein particle formation during dynamic 
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biomanufacturing. In addition to offering a new tool in support of development and 

manufacturing of protein drugs and biosimilars, this method may also benefit regulatory 

authorities by helping develop improved guidance parameters for manufacturing of safe 

and effective protein therapeutics. 

Although spontaneous Raman spectroscopy could offer wealth of molecular 

information of the sample, the low probability of Raman scattering events hinders the 

acquisition of high signal-to-noise ratio signals. Hence, we use SERS to enhance the 

Raman signal. In the second study, we show a novel dual-modality nanostructure design 

that combines LSPR and SERS to detect the variation of RI and obtain unique molecular 

fingerprints. By profiling two distinct resonance peaks, we achieve sensitive and robust 

detection of RI charges due to molecular concentration variations. Also, clear SERS 

spectral signal is obtained from solutions with low analyte concentration, where no 

spontaneous Raman signal could be observed. Through further optimization of the 

structure design and corresponding fabrication procedures, we envision this dual-modality 

nanostructure could be leveraged for translating molecular markers into serum assays for 

accurate disease screening. 

By virtue of its exquisite biochemical specificity, Raman spectroscopy also allows the 

visualization of complex molecular heterogeneity directly from cells and tissues and has 

been extensively used in biomedical studies to quantify the unique vibrational modes of 

molecules within its native context. In our third endeavor, we demonstrate that Raman 

spectroscopy is able to detect biomolecular changes in bones associated with early cancer 

metastasis - much earlier than X-ray imaging and without a priori imaging or pathological 

knowledge of lesion location. This research paves the way for continuous monitoring of 
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such sites to circumvent pathological fractures. This approach could transform the exciting 

and emerging area of research that strives to elucidate the interplay between biochemical 

signals and morphologic features in the bone microenvironment, and precisely pinpoint 

alterations as a function of metastasis onset and progression. 

Finally, in chapter 5, we uncover a few fundamentally new distinctions between 

isogenic metastatic cancer cells and primary tumor cells by analyzing their vibrational 

spectra. Our results, in particular, suggest that alterations in lipogenesis processes along 

with the types of lipids made and utilized could be part of the determinant adaptations that 

define the specific metastatic growth in an organ. The importance of the collective findings 

is that we can extend the use of Raman micro-spectroscopy as a non-invasive method to 

differentially characterize organ-specific metastatic lesions and thus, aid in pathological 

assessments of efficacious personalized therapies for organ-site-specific treatment of 

metastatic breast cancer. Equally importantly, our work reveals the important 

morphological, growth distinctions and complementary overlap between the metabolite 

data set and Raman spectroscopic signatures which support our hypothesis that each 

metastatic site’s unique environment confers singular molecular attributes to the tumor 

cells despite their isogenic profile.  

 

6.2 Future work 

While several important advances have been made during the course of this dissertation, 

further investigations are needed to translate these research findings to the clinic as well as 

an in-line analytical tool for biopharmaceutical development.  
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For the latter, we observed that most mAb samples exhibit different aggregation 

mechanisms and, hence, the particle formation process renders different spectral signatures. 

In the presented study, we focused on a specific kind of ADC sample due to product-

specific processes on individual manufacturing pipelines in the pharmaceutical industry. 

The established regression model is also specifically optimized for the investigated samples. 

Hence, to further establish the generalizability of the method, more types of mAb products 

should be included in future spectral measurements while sample-specific protein 

aggregation prediction models could be set up for individual production pipelines. 

Additionally, our study of breast cancer-colonized bone alterations clarifies the power 

of spontaneous Raman spectroscopy to detect early, subtle biochemical changes. In order 

to make our results benefit patients, it is necessary to link the bone strength with tumor 

progression and Raman spectra quantitively. Therefore, a series of mechanical 

measurements will need to be performed and corresponding prediction models trained to 

figure out the intrinsic relationship between these stages of tumor progression. 

Finally, the diverse Raman spectroscopic signatures and metabolic features in different 

organ-specific IMBC cell lines provide solid rationale for establishment of smart, site-

specific therapeutics. This is an important consideration as routine clinical treatment 

decision options for distant metastatic breast cancer have historically relied in part on an 

evaluation of a select few biomarkers found during assessment of the primary tumor. In 

the future, our observations on this unique set of organ-specific metastatic breast cancer 

cell lines will be directly validated using patient samples for clinical relevance. The data 

that will be generated will be immensely useful to the tailor ongoing clinical trials, whereby 

targeted smart therapeutic strategy can be employed. We may also be able identify new 
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therapeutic options to treat specific breast cancer metastatic lesions using a defined set of 

FDA approved oncological drugs. The rationale of which FDA drugs to select for testing 

will then be firmly based on those drugs mechanistically known to be effective against the 

pathways uncovered. 

 

  



173 

 

Curriculum Vita 

 

Date of Birth: October 28, 1990 

Place of Birth: Beijing, China 

 

Education 

• Ph.D., Johns Hopkins University, Baltimore, Maryland  09/2015-08/2019 

• M.Eng., Johns Hopkins University, Baltimore, Maryland 09/2013-05/2015 

• B.S., Beihang University, Beijing, China    09/2009-07/2013  

 

Publications 

1. Zhang, C., Springall, J., Wang, X, Barman, I. Rapid, quantitative determination of 

aggregation and particle formation for antibody drug conjugate therapeutics with label-

free Raman spectroscopy. Analytica Chimica Acta 2019, 1081, 138-145. 

2. Zhang, C.,# Paria, D.,# Semancik, S., Barman, I. Composite-scattering plasmonic 

nanoprobes for label-free, quantitative biomolecular sensing. Small 2019, 1901165. 

3. Zhang, C., Siddhanta, S., Li, Y, Zheng, C., Barman, I. Label-free nanoscopic 

plasmonic sensing of membrane specific prostate cancer biomarkers. (In preparation) 

4. Junjuri, R., Zhang, C., Barman, I., Kumar, G.M. Identification of post-consumer 

plastics using laser-induced breakdown spectroscopy. Polymer Testing 2019, 76, 101-

108. 

5. Karandikar, S., Zhang, C., Meiyappan, A., Barman, I., Finck, C., Srivastava, P.K. and 

Pandey, R., Reagent-free and rapid assessment of T cell activation state using 



174 

 

diffraction phase microscopy and deep learning. Analytical Chemistry 2019, 91(5), 

3405-3411. 

6. Sperati, C.J., Zhang, C., Delsante, M., Gupta, R., Bagnasco, S. and Barman, I. Raman 

Spectroscopy for the Diagnosis of Intratubular Triamterene Crystallization. Kidney 

International Reports 2018, 3(4), 997-1003. 

7. Zhang, C., # Winnard Jr, P.T., # Dasari, S., Kominsky, S.L., Doucet, M., Jayaraman, S., 

Raman, V. and Barman, I. Label-free Raman spectroscopy provides early 

determination and precise localization of breast cancer-colonized bone alterations. 

Chemical Science 2018, 9(3), 743-753. 

8. Pandey, R., # Zhang, C., # Kang, J.W., Desai, P.M., Dasari, R.R., Barman, I. and Valdez, 

T.A. Differential diagnosis of otitis media with effusion using label‐free Raman 

spectroscopy: A pilot study. Journal of biophotonics 2018, 11(6), e201700259. 

9. Pandey, R., Singh, S.P., Zhang, C., Horowitz, G.L., Lue, N., Galindo, L., Dasari, R.R. 

and Barman, I. Label‐free spectrochemical probe for determination of hemoglobin 

glycation in clinical blood samples. Journal of biophotonics 2018, e201700397. 

10. Winnard Jr, P.T., Zhang, C., Vesuna, F., Kang, J.W., Garry, J., Dasari, R.R., Barman, 

I. and Raman, V. Organ-specific isogenic metastatic breast cancer cell lines exhibit 

distinct Raman spectral signatures and metabolomes. Oncotarget 2017, 8(12), 20266–

20287. 

11. Pandey, R., Paidi, S.K., Valdez, T.A., Zhang, C., Spegazzini, N., Dasari, R.R. and 

Barman, I. Noninvasive Monitoring of Blood Glucose with Raman Spectroscopy. Acc. 

Chem. Res. 2017, 50(2), 264-272. 



175 

 

12. Huang, Z., Siddhanta, S., Zhang, C., Kickler, T., Zheng, G. and Barman, I. Painting 

and heating: A nonconventional, scalable route to sensitive biomolecular analysis with 

plasmon‐enhanced spectroscopy. Journal of Raman Spectroscopy 2017, 48(10), 1365-

1374. 

13. Haka, A.S., Sue, E., Zhang, C., Bhardwaj, P., Sterling, J., Carpenter, C., Leonard, M., 

Manzoor, M., Walker, J., Aleman, J.O. and Gareau, D. Noninvasive detection of 

inflammatory changes in white adipose tissue by label-free Raman spectroscopy. 

Analytical chemistry 2016, 88(4), 2140-2148. 

14. Myakalwar, A.K., Spegazzini, N., Zhang, C., Anubham, S.K., Dasari, R.R., Barman, 

I. and Gundawar, M.K. Less is more: Avoiding the LIBS dimensionality curse through 

judicious feature selection for explosive detection. Scientific reports 2015, 5, 13169. 

 

Presentation & Posters 

1. Zhang, C., Barman, I. Raman spectroscopy of isogenic breast cancer cells derived 

from organ-specific metastases reveals distinct biochemical signatures. SLAS. 

January, 2018, San Diego. 

2. Zhang, C., Barman, I. Early determination of molecular alterations in breast cancer-

colonized bone with Raman spectroscopy. SPIE BiOS. January, 2018, San Francisco. 

3. Zhang, C., Siddhanta, S., Zheng, C., Barman, I. Probing nanoscopic cell surface areas 

for rapid and label-free plasmon enhanced Raman detection. Biomedical Optics. April, 

2016, Fort Lauderdale. 

4. Zhang, C., Winnard Jr., P.T., Raman, V., Barman, I. Label-free identification of unique 

metastatic organ-specific human breast cancer signatures featuring Raman 



176 

 

spectroscopy. 2nd International Conference on Label-Free Technologies. March, 2015, 

Boston. 


