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Abstract

Many randomized trials are designed to collect outcomes at fixed points in times after randomized. In

practice, study participants miss their assessments or are assessed off-schedule. If and when individuals are

assessed may be informative. In this thesis, we develop a sensitivity analysis methodology for analyzing

randomized trials with a potentially informative assessment process. We develop these methods in the

context of the Asthma Research for the Community (ARC) trial.
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Chapter 1

Introduction

In many randomized trials, patients are scheduled to take assessment at fixed points in time after ran-

domization. In practice, the number and timing of outcome assessments often vary from patient to patient.

Importantly, the timing of assessments may be informative in the sense that the distribution of outcomes

at the scheduled time for those who are assessed at that time can be different than for those who miss

completely or present off-schedule.

To illustrate, consider the Asthma Research for the Community (ARC) study. ARC was a PCORI-

funded pragmatic trial, which enrolled 301 low-income individuals with uncontrolled symptoms of asthma.

[1] [2] Each participant was randomized to a control (PT) or intervention (PT + HV) group. The PT group

involves usual care plus a web-based training program, which aims to improve the relationship between a

patient and their healthcare providers. The PT + HV group adds home visits by community workers. The

study was designed to collect asthma control outcomes at 3 months, 6 months, 9 months, and 12 months

after randomization. In the PT group, 92%, 72%, 61%, and 92% of the participants completed their 3, 6,

9, and 12 asthma control questionnaires. In the PT + HV group, the corresponding percentages are 92%,

70%, 54%, and 89%. These completion rates do not accurately reflect the variability in the assessment times

relative to the targeted assessment times. Figure (1.1) shows how the actual assessment times compared to

the planned times for the PT (top panel) and PT + HV (bottom panel) groups. For both groups, we notice

that there is a tendency of delayed response for all four assessments. While the distributions of assessment

times are similar across treatment groups, this does not imply that the treatment effects, estimated using

traditional methods, will be unbiased. This is due to the potentially informative nature of data collection

and the fact that the degree of informativeness can differ between groups.
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Figure 1.1: The Density of Assessment Times by Visit, Stratified by Treatment Group.

In the presence of irregular assessment times, researchers typically create assessment windows and then

apply missing data methods. This approach is unnatural and ad-hoc as the outcomes of patients assessed

only one day apart will be treated differently: one within the window (observed) and one outside the window

(missing). Rather than dichotomizing in this fashion, a more natural approach is to treat the assessments
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as a stochastic process that plays out over time. Towards this end, two broad classes of methods have been

proposed. The first class assumes that the assessment-time process is explainable by observable information,

i.e., the risk of being assessed at each time t is independent of the outcome at time t given the past history

of information collected prior to time t. [8][9][15][16] This assumption will be violated if participants are

more likely to be assessed at a given time based on their outcome at that time, even after accounting for

their past history. The second class posits a joint model for the outcome and assessment-time processes

using shared or dependent random effects. [4] [6] [7] [10] [17] [19] [20] [21] These methods depend on strong

distributional assumptions and induce very specific dependence structures between the two processes. Both

classes of methods depend on fundamentally untestable assumptions.

In Chapter 2, we introduce the data structure and notation. Chapter 3 discusses our modeling approach.

Chapter 4 presents a re-analysis of the ARC study. Chapter 5 is devoted to a discussion.
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Chapter 2

Data Structure and Notation

We introduce notation for a random individual. Until later, we ignore treatment assignment. For our

context, we define random variables that are indexed by time as well as their histories through time. Let Y (t)

be the outcome at time t, N(t) be the number of assessments that occur at or prior to time t and dN(t) be the

indicator of assessment at time t. Let Y obs(t) = {Y (s) : dN(s) = 1, 0 ≤ s ≤ t} and N(t) = {N(s) : 0 ≤ s ≤ t}

be the history of observed outcomes and observed assessment times through time t, respectively. We use the

t− notation below to exclude time t. We denote the history of the observed data for an individual through

time t as O(t) = (N(t), Y obs(t)). We assume that we observe n independent and identically distributed

copies of O(τ), where τ is a fixed time after the last scheduled assessment.

The goal is to use the observed data to draw inference about the mean of Y (t1), . . . , Y (tK), where

t1 < . . . , tK < τ are the protocolized assessment times.
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Chapter 3

Modeling Approach

3.1 Assessment Time Processes - Assumptions

Since not all participants are assessed at the protocolized assessment times, assumptions are required.

Like the missing data literature, three assumptions have been proposed: assessment completely at random

(ACAR), assessment at random (AAR), and assessment not at random (ANAR). [7] Note that the literature

uses the “visiting” prefix, but we prefer the “assessment” prefix due to its greater generality. ACAR states

that the assessment-time process is completely unrelated to the outcome process. This implies that the

distribution of the outcome at time t is the same for those who are at assessed at t and those who are not

assessed at t, i.e.

dF (Y (t)|dN(t) = 0) = dF (Y (t)|dN(t) = 1) (3.1)

where dF (·|·) represents the conditional distribution function. AAR states that assessment at time t is

unrelated to the outcome at time t, conditional on the past history observed prior to time t. Alternatively,

AAR states that, conditional on the past history observed prior to time t, the distribution of the outcome

at time t is the same for those who are not assessed at t and those who are assessed at t. Mathematically,

we can write this assumption as:

dF (Y (t)|dN(t) = 0, O(t−)) = dF (Y (t)|dN(t) = 1, O(t−)) (3.2)

ANAR states that the outcome at time t is related to assessment at time t even after accounting for the
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past history observed prior to time t. That is, the equalities in Equations (3.1) and (3.2) above do not hold.

There is an infinite number of ANAR assumptions, making it no way to enumerate.

The AAR and ANAR assumptions are not testable from the observed data. This can be seen by inspecting

Equation (3.2). Although the distribution on the right side of the equation is, with large enough samples and

sufficient smoothness conditions, estimable from the observed data, the distribution on the left side is not.

This is because the outcome at time t is not observed for those who do not show up at that time t. Thus,

AAR is an assumption that is equating a fundamentally unknowable distribution to one that is knowable.

As a result, there is no way to test AAR. By the same logic, there is no way to test ANAR. In such settings,

sensitivity analysis is critical to assess the robustness of study conclusions to unverifiable assumptions.

3.2 Sensitivity Analysis Model

Towards this end, we propose a class of assumptions, indexed by sensitivity analysis parameters, that

include AAR and wide collection of ANAR assumptions. We build a class of assumptions using a device

called exponential tilting. [3] Specifically, we assume that

dF (Y (t)|dN(t) = 0, O(t−))

=
dF (Y (t)|dN(t) = 1, O(t−)) exp{−q(t, O(t−), Y (t);α)}

E(exp{−q(t, O(t−), Y (t);α)}|O(t−))
(3.3)

where q(t, O(t−), Y (t);α) is a specified function of its arguments that does not depend on Y (t) only when

α = 0. It is important to notice that when α = 0, Equation (3.3) reduces to Equation (3.2), i.e., AAR, and

when α 6= 0, Equation (3.3) encodes a specific ANAR assumption. When the time scale is discrete, it can

be shown that (3.3) can be re-expressed as follows:

logit{P (dN(t) = 1|O(t−), Y (t))} = h(O(t−);α) + q(t, O(t−), Y (t);α), (3.4)

where

h(O(t−);α) = logit{P (dN(t) = 1|O(t−))}+

log{E(exp{−q(t, O(t−), Y (t);α)}|O(t−))}
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In our analysis in Chapter 4, we will set

q(t, O(t−), Y (t);α) = αY (t) (3.5)

Using this sensitivity analysis function, exp(α) is interpreted as the conditional (on past history) odds

ratio of being assessed at time t for individuals who differ by one unit in Y (t). When α > 0 (< 0), individuals

with higher (lower) levels of Y (t) are more likely to be assessed at time t.

3.2.1 Identification

Under (3.3), E[Y (t)] is identified using the following formula:

E[Y (t)]

=

∫
o(t−)

∫
y(t)

y(t)dF (y(t)|dN(t) = 1, O(t−) = o(t−)) ×

{
P (dN(t) = 1|O(t−) = o(t−)) +

exp{−q(t, o(t−), y(t);α)}P (dN(t) = 0|O(t−) = o(t−)

E(exp{−q(t, O(t−), Y (t);α)}|O(t−) = o(t−))

}
dF (o(t−)) (3.6)

This identification formula suggests that in order to estimate E[Y (t)], we need to estimate the following

quantities:

• dF (y(t)|dN(t) = 1, O(t−)) - observed outcome regression

• P (dN(t) = 1|O(t−)) - assessment process regression

• dF (o(t−))

Since dF (o(t−)) is a marginal distribution, it is natural to estimate to it empirically. We will estimate the

observed outcome and assessment process regressions using fully parametric models.

3.2.2 Observed Outcome Regression Model

In the ARC study, the primary outcome was asthma control, reflecting symptoms over the week prior

to assessment. The outcome is a count variable, taking values {0, 1, . . . , 36}. A lower value of the outcome

represents better control, with 0 indicating total control and 36 indicating extremely uncontrolled. Figure 2

displays histograms of observed asthma control scores for the PT and PT + HV groups, stratified by planned
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assessment time. It is important to note that in each figure there is a spike near zero. This suggests a model

that accommodates so-called zero-inflation.

Figure 3.1: Histogram of Observed Asthma Control Scores, Stratified by Planned Assessment Time and
Treatment Group.

There are two popular models for handling zero-inflated count data: zero-inflated Poisson (ZIP) and

zero-inflated Negative Binomial (ZINB). These models assume that the conditional distribution of Y (t)
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given dN(t) = 1 and O(t−) is of the form:

dF (y(t)|dN(t) = 1, O(t−))

=

 p(t, O(t−);β) + (1− p(t, O(t−);β))h(y(t), t, O(t−); η) y(t) = 0

(1− p(t, O(t−);β))h(y(t), t, O(t−); η) y(t) = 1, 2 . . . .
(3.7)

Both the ZIP and ZINB models assume

logit{p(t, O(t−);β)} = g(t, O(t−);β) (3.8)

where g(t, O(t−);β) is a specified function of its arguments and β is an unknown vector of coefficients.

The ZIP model assumes

h(y(t), t, O(t−); η) =
µ(t, O(t−); η)y(t) exp{−µ(t, O(t−); η)}

y(t)!
(3.9)

where µ(t, O(t−); η) is a specified non-negative function of its arguments and η is an unknown vector of

coefficients. Notice that (3.9) is the Poisson distribution with mean µ(t, O(t−); η).

In contrast, the ZINB model assumes

h(y(t), t, O(t−); η) =
Γ(y(t) + θ(t, O(t−); η1))

Γ(θ(t, O(t−); η1))Γ(y(t) + 1)
×

(
θ(t, O(t−); η1)

θ(t, O(t−); η1) + µ(t, O(t−); η2)

)θ(t,O(t−);η1)

×(
µ(t, O(t−); η2)

θ(t, O(t−); η1) + µ(t, O(t−); η2)

)y(t)
(3.10)

where Γ(·) is the gamma function, θ(t, O(t−); η1) and µ(t, O(t−); η2) are specified non-negative functions of

their arguments and η = (η1, η2) is an unknown vector of coefficients.

Notice that (3.10) follows a Negative Binomial distribution with mean

µ(t, O(t−); η2) (3.11)
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and variance

µ(t, O(t−); η2){1 + µ(t, O(t−); η2)/θ(t, O(t−); η1)} (3.12)

The parameters of the ZIP and ZINB models are typically estimated using maximum likelihood via the

EM algorithm. [13]

Figures (3.2) presents Q-Q plots for the Poisson, ZIP and ZINB models for the observed outcomes,

stratified by treatment group. The figure shows that the ZINB model provides a superior fit.

3.2.3 Assessment Process Regression Model

To model P (dN(t) = 1|O(t−)), we will use a model of the form:

logit{P (dN(t) = 1|O(t−))} = l(t, O(t−);φ) (3.13)

where l(t, O(t−);φ) is a specified function of its arguments and φ is an unknown parameter vector.

Estimation of φ using maximum likelihood can be biased, and such bias can be amplified in the presence

of rare events. [11] [12] In particular, predicted probabilities can be overestimated. In the ARC study,

the number of individuals assessed on any given day tends to be small. Figure 3 shows the daily count of

assessments for the PT (top panel) and PT + HV (bottom panel) groups. From the figure, we notice that

the maximal number of daily assessments are 17 and 20 in PT and PT + HV groups, respectively. Most of

the days have less than five assessments.

One way to correct this bias is to estimate φ using Firth’s method. [5] Firth’s method uses Jeffreys

invariant prior to penalizing the logistic regression likelihood function. This penalization helps to correct

bias to the first order. [5] Further improvement can be achieved by using the following FLAC procedure

proposed by [14]:

1. Estimate φ using Firth’s method;

2. Compute the hat matrix, which provides a measure of leverage hi for each observation i;

3. Create a new stacked dataset with three parts:

(a) Original outcome, original covariates, a new covariate taking on the value 0 for each observation

and an individual-specific weight equal to hi ;

10



Figure 3.2: Q-Q Plots for Poisson Regression, ZIP and ZINB Models for Observed Outcomes, Stratified by
Treatment Group

(b) Original outcome, original covariates, a new covariate taking on the value 1 for each observation

and an individual-specific weight equal to hi/2 ;

(c) Reverse coding of original outcome (1 to 0; 0 to 1), original covariates, a new covariate taking on

the value 1 for each observation and an individual-specific weight equal to hi/2 ;

11



Figure 3.3: Daily Count of Assessments, Stratified by Treatment Group

4. Use the stacked dataset to estimate φ using weighted maximum likelihood.

FLAC works by ensuring that the average predicted probability is close to the observed proportion of

events. It also moves the log odds ratios closer to 0 as compared to the classic logistic regression model. [14]
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3.2.4 Estimation of E[Y (t)]

Let β̂ and η̂ be the estimators of β and η, the parameters of the observed outcome regression model. Let

φ̂ be the estimator of φ, the parameter of the assessment process regression model. Using (3.6), estimation

of E[Y (t)] proceeds by iterating the following procedure:

1. Draw o(t−) from the empirical distribution of O(t−);

2. Use φ̂ to estimate the probability that dN(t) = 1 given O(t−) = o(t−); call the resulting probability

P̂ (dN(t) = 1|O(t−) = o(t−))

3. Use β̂ and η̂ to drawK y(t)’s from the estimated distribution of Y (t) givenN(t) = 1 andO(t−) = o(t−);

denote these draws by yk(t), k = 1, . . . ,K. Estimate

E(exp{−q(t, O(t−), Y (t);α)}|dN(t) = 1, O(t−) = o(t−)) by

Ê(exp{−q(t, O(t−), Y (t);α)}|dN(t) = 1, O(t−) = o(t−))

=
1

K

K∑
k=1

exp{−q(t, o(t−), yk(t);α)}

4. Use β̂ and η̂ to draw one y(t) from the estimated distribution of Y (t) given N(t) = 1 and O(t−) = o(t−);

denote this draw by ŷ(t) and compute

ŷ(t){P̂ (dN(t) = 1|O(t−) = o(t−))

+
{1− P̂ (dN(t) = 1|O(t−) = o(t−))} exp{−q(t, o(t−), ŷ(t);α)}
Ê(exp{−q(t, O(t−), Y (t);α)}|dN(t) = 1, O(t−) = o(t−))

} (3.14)

Steps 1 to 4 are repeated J times and the results from Equation (3.14) are averaged.

The procedure is called the G-computation algorithm. This method was first introduced by James Robins

in 1986. [18]

3.2.5 Treatment Comparison

The above models and associated estimation procedures will be employed separately by treatment arm.

For combinations of treatment-specific sensitivity analysis parameters, confidence intervals for the difference

in asthma control means (PT + HV minus PT) will be computed using non-parametric bootstrap (separate

re-sampling of observations within treatment arms).
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Chapter 4

Data Analysis

To describe the analysis of the ARC study, we introduce the following notation. Let κ(t, O(t−)) =

max{s : dN(s) = 1, 0 ≤ s < t} and Ylag(t) = Y (κ(t, O(t−)). In the observed outcome regression model, we

let

g(t, O(t−);β) = s(Ylag(t);β)

log{θ(t, O(t−); η1)} = s(t; η1,1) + s(t− κ(t, O(t−)); η1,2) + s(Ylag(t); η1,3)

log{µ(t, O(t−); η2)} = s(t; η2,1) + s(t− κ(t, O(t−)); η2,2) + s(Ylag(t); η2,3)

where s(·; ·) is a natural cubic spline function with 3 degrees of freedom, η1 = (η1,1, η1,2, η1,3) and η2 =

(η2,1, η2,2, η2,3). For the assessment regression model, we let

l(t, O(t−);φ) = s1(t;φ1) + s2(t− κ(t, O(t−));φ2) + s3(Ylag(t);φ3)

where φ = (φ1, φ2, φ3). In our model, s1(·; ·) has 5 degrees of freedom, s2(·; ·) has 10 degrees of freedom, and

s3(·; ·) has 3 degrees of freedom. We fit the ZINB model by using the R function zeroinfl from the pscl

package. We fit the FLAC method using the logistf function in the logistf package.

To assess goodness of fit, we used the estimated models to simulate, for each treatment group, a simulated

dataset with 2000 individuals. Figure (4.1) displays cumulative distribution functions of simulated and

observed asthma control scores for the four assessment times, stratified by treatment group. The figures

show a reasonable fit, except possibly for the second assessment in the PT + HV group. Figure (4.2)
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displays simulated versus observed densities of first, second, third, and fourth assessment times, stratified

by treatment group. The goodness of fit is also reasonable but appears to be better for the PT group than

the PT + HV group.

Figure 4.1: Cumulative Distribution Functions for Simulated and Observed Asthma Control Scores by
Assessment Time, Stratified by Treatment Group

Figure (4.3) displays treatment-specific estimates of the mean asthma control as a function of time since
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Figure 4.2: Simulated versus Observed Densities of First, Second, Third and Fourth Assessment Times,
Stratified by Treatment Group

randomization for various choices of α. Notice that the means decrease with α. This makes sense because

positive values of α imply that individuals with worse asthma control are more likely to be assessed at any

time t, above and beyond the past history. The figure also shows the observed means for the asthma control

scores that were categorized as 3, 6, 9, and 12 months, as in Figure (1.1). These means are similar to those
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estimated under AAR.

Figure 4.3: Estimated Mean Asthma Control Score by Time for Various Choices of α, Stratified by Treatment
Group

Table (4.1) displays the results of the naive analysis that compares treatments with respect to the observed

means for the asthma control scores at four assessments. Based on this analysis, there is no evidence of a

treatment difference.
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Table 4.1: Treatment Comparison Based on Naive Analysis

Table 4.2: Treatment Comparisons for Various Combinations of Treatment-Specific Sensitivity Analysis
Parameters at 90 Days

Tables (4.2) - (4.5) present treatment comparisons for various combinations of treatment-specific sensi-

tivity analysis parameters, for 90, 180, 270 and 360 days, respectively. As with the naive analysis, analyses

conducted assuming AAR holds in both groups (i.e. α = 0) provide no evidence of a treatment effect. If,

however, there are differential informative assessment mechanisms across the two treatment arms, there is

evidence of a difference in mean asthma control between groups; the direction of the difference depends on

the difference in signs of the treatment-specific α’s. There is no evidence to suggest a differential informa-

tive assessment mechanism across two treatment arms. Thus, this analysis does not allow us to conclude a

difference between asthma control groups.
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Table 4.3: Treatment Comparisons for Various Combinations of Treatment-Specific Sensitivity Analysis
Parameters at 180 Days

Table 4.4: Treatment Comparisons for Various Combinations of Treatment-Specific Sensitivity Analysis
Parameters at 270 Days

Table 4.5: Treatment Comparisons for Various Combinations of Treatment-Specific Sensitivity Analysis
Parameters at 360 Days
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Chapter 5

Discussion

In this thesis, we introduced a sensitivity analysis methodology for evaluating the effect of treatment in

randomized trials in the presence of potentially informative assessment times. We developed this methodol-

ogy within the context of the Asthma Research for the Community (ARC) study. In applying the method-

ology, we addressed two key challenges: zero-inflated outcomes and rare events.

The methodology relies on the specific of treatment-specific sensitivity analysis parameter. This param-

eter is interpreted as a regression coefficient in a logistic regression model. Ideally, the range of plausible

values of these parameters needs to be specified in conjunction with subject matter experts. This can be a

difficult exercise and is best executed prior to data analysis.

A key limitation of our approach is its reliance on fully parametric models. It would be useful to develop

a semiparametric extension of our methodology. It would also be useful to extend the methodology to allow

the inclusion of auxiliary covariates.
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