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Abstract

The human visual system utilizes attention to direct processing towards areas

of interest. In particular, certain objects in a visual scene can be salient, meaning

they attract attention rather than being the targets of some search process. Visual

salience appears to be driven by the formation of visual proto-objects, which have

been hypothesized to cause an increase in synchronous firing between neurons encod-

ing parts of an object. This thesis approaches proto-objects both from a behavioral

level and at a low level of analyzing synchrony. At the behavioral level, existing stud-

ies of visual salience rely on many repetitive trials or task instructions to tell study

participants what to do, which can influence attentive behavior in a top-down man-

ner, confounding the measurement of salience. I introduce an experimental paradigm

that records attentional selections from subjects without any such information, and

used this paradigm to analyze whether proto-objects interact in the determination of

salience. The results show that uniqueness of an object does indeed attract attention,

and I develop a model that normalizes among proto-objects to explain the measured

data. At the neuronal level, I develop a more rapid method to perform jitter hy-
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ABSTRACT

pothesis tests regarding detecting the presence of synchronous spiking between pairs

of neurons. While the detection of synchrony does imply some connection between

neurons, I also show that the inference of a change in common input from changes in

synchrony is not possible.

Primary Reader: Ernst Niebur

Secondary Reader: Howard Egeth
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Chapter 1

Introduction

Humans and many animals use their visual system to obtain an understanding of

the world around them. The human visual system receives 9̃00 kilobits of informa-

tion per second from each eye (Koch et al., 2006). This information is more densely

represented at the fovea than in peripheral vision, and as such the brain has an impor-

tant role to play in determining where to point the eye to receive the most pertinent

information from the environment. The selection of gaze direction is referred to as

overt attention in the literature because the process is an externally visible indica-

tor of what a person is paying attention to. This distinguishes overt attention from

covert attention, where a person can fixate on one location but allocate attentional

resources to something in their peripheral vision (James, 1890). Covert attention is

usually measured by how well human or animal subject does at some visual task in

the periphery. Cues that have a high probability of being informative can allow ex-
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perimenters to measure the relative performance of some task in an attended location

(where the cue indicates) and in an unattended location (away from the cue) at some

lower frequency. In an example neurophysiological experiment (Martin and von der

Heydt, 2015) a cue indicated that monkeys needed to discriminate motion 80% of the

time in one location and 20% of the time the motion would occur elsewhere. Findings

of differing behavioral performance can then be interpreted as a behavioral affect due

to attention being directed towards the cued location, and neurophysiological corre-

lates of attention can be measured.

Attention was originally thought of as a spotlight in which additional informa-

tion was gathered (James, 1890). However, the spotlight metaphor has a number of

drawbacks. Scholl (2001) reviewed a number of studies in which attention appears

to be directed more towards objects in a scene than spatial regions, as the spotlight

metaphor may imply. For example, Egly et al. (1994) showed that attending to one

part of an object caused increased attention (i.e. increased accuracy in detecting a lu-

minance change) in other parts of the same object. Moore et al. (1998) extended this

result by showing that the parts of the same object could be occluded from one an-

other and the attentional benefit would still persist. These results and others reviewed

in (Scholl, 2001) led to the conclusion that there is some pre-attentional processing

that forms an organization of the visual scene. However, Rensink (2000) pointed out

that this pre-attentional processing has substantial limits. Without attention, we are

subject to change blindness, where modifications to unattended portions of a scene

2
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go unnoticed. As such, he proposes that the pre-attentional organization of a scene is

in the form of proto-objects, which are temporally fleeting representations of portions

of a scene that do not contain as much information as an attended object.

This thesis consists of theoretical contributions to the understanding of proto-

objects, both at the behavioral level and at the level of interactions between individual

neurons. In Section 1.1 I introduce the connection between proto-objects and visual

salience. Analysis of existing methods of measuring visual salience led to a new

experimental paradigm for recording attentional responses (Chapters 2), and a test

of existing models of visual salience that led to the development of a new model

(Chapter 3). In Section 1.2 I discuss neurophysiological data that correlates with

proto-object representations. One key measure is jitter-corrected synchrony between

neuronal spike trains of neurons that represent parts of a proto-object. In Chapter 4

I describe closed-form methods for computing relevant statistics, and in Chapter 5 I

describe some limitations in interpreting these statistics.

1.1 Proto-Objects and Visual Salience

Factors that affect attention can be separated into two categories. The first cate-

gory consists of top-down effects, which depend on the internal state of the observer.

These influences can include the present goals or an assigned task, which have been

shown to change viewing behavior (DeAngelus and Pelz, 2009; Yarbus, 1967). The
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second category of affects on visual attention are bottom-up, driven by the contents

of the visual scene. A region that attracts attention independently of any task is

said to be visually salient. For example, a bright flash in an otherwise still scene will

attract attention (e.g. Anderson et al., 2011) 1.

Visual salience has been connected to proto-objects by findings that show that the

organization of elements of a scene can affect visual salience (Kimchi et al., 2007).

They created scenes out of L shapes, which could be organized so that the orientation

of four L’s would make up a square (one L at each corner) or not. Study participants

were then asked to make a discrimination about the color of one of the L’s that was

either part of the square, outside of the square, or when no square was present. The

authors observed lower reaction times when the target L was inside a square compared

to the no-square condition, and higher reaction times when the target was outside

the square. These finding indicate that the proto-object organization of elements of a

scene (i.e. the organization of the L’s into the proto-object of a square) are not only

the basis of attentional selection, but they also can be visually salient.

Visual salience gives us an opportunity to explore the formation and features

of proto-objects in a computational manner. A good model of visual salience can

be evaluated against experiments where eye fixation is controlled like Kimchi et al.

(2007) as well as eye-tracking experiments where the participant is able to freely view

a natural scene (Parkhurst et al., 2002), and the features of such a model should be

1Though I should note that a top-down signal to ignore salient stimuli can avoid attentional
capture (Bacon and Egeth, 1994)

4



CHAPTER 1. INTRODUCTION

predictive of the features the brain assigns to proto-objects.

However, the measurement of visual salience independent of top-down influences

on attention is difficult. If we are interested in proto-objects, then the these top-down

influences are important to remove, as higher-level representations of objects and their

relations may begin to influence behavior. In existing controlled studies (e.g. Kimchi

et al., 2007; Nothdurft, 2000), participants are shown the same or similar visual scenes

repeatedly and often with task instructions that inform the viewer of what they will

see. Such information will induce expectations about the upcoming stimulus in the

participant, which may cause unwanted top-down influences on attention. Therefore,

we cannot conclude from existing evidence that the measured attentional effects are

driven by bottom-up cues.

This confound led us to create a new paradigm using a tablet computer, inspired

by Firestone and Scholl (2014), where participants are näıve to what they are about

to view. Chapter 2, following the work done in Jeck et al. (2017), describes the new

paradigm and validates it by measuring the correlation between existing measures

of attention and the new method. Chapter 2 also contains an interesting bootstrap

hypothesis test to determine how similar two empirically measured probability distri-

butions would be if they were in fact identical. Unlike standard permutation tests, this

method is applicable even in cases where the probability distributions are estimated

in different ways.

With the new paradigm validated, it was then possible to test existing models

5
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of visual salience directly. In Chapter 3, following Jeck et al. (2018), proto-object

based models of visual salience rely on contrast with the background to determine

the presence of a proto-object. However, as we show, visual salience is not always

correlated with such contrast. A unique low-contrast object in a scene can stand out

from the rest because of its relationship to others. For example, a unique gray square

on a white background will have a higher salience than a black square on the same

background if the black squares are numerous (see Figure 3.1 for an example). We

used our new paradigm to gather data illustrating this problem with existing models,

and developed a new one to address the problem.

1.2 Proto-Objects and Synchrony

At the opposite description level, another approach to studying proto-objects is

to analyze the firing behavior of neurons in the visual system. Neurons in the visual

system have regions of the visual field that drive their response. These regions are

referred to as receptive fields in the literature (Hubel and Wiesel, 1968). In general, if

the retinal image is uniform over the receptive field, then the firing rate of the neuron

will be at baseline. This region is sometimes referred to as the classical receptive field

(CRF) because if there is a stimulus in the receptive field, the response of the neuron

can still be modulated by signals outside that field. An example of effects caused by

stimuli outside the CRF is the encoding of border ownership in visual area V2 (Zhou
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et al., 2000). So called border ownership neurons in V2 modulate their responses

to an edge in their CRF depending on which side of the CRF contains a figure,

as opposed to the background. These neurons are similarly modulated by selective

attention (Sugihara et al., 2004), indicating that they may be part of a proto-object

representation.

Zhou et al. (2000) also found that modulation due to side-of-figure in border

ownership neurons arises less than 25 ms after the neurons’ initial firing increase,

independent of how large the figure is. If area V2 were to compute border ownership

by itself, larger figures would cause border ownership to arise more slowly. This

is because V2 is retinotopically organized, and given the slow conduction velocity

of horizontal fibers, integration of information over a larger area would be easily

detected. In contrast, feedback connections from an external area would be very rapid,

explaining the size invariance of the border ownership signals. Craft et al. (2007)

proposed a model of figure-ground assignment in which border ownership neurons

receive common feedback from hypothetical grouping cells, whose activity represents

the presence of a proto-object. If such feedback is from a shared source then the

relevant border ownership neurons will be modulated upwards by the same figure,

and potentially spike at similar times, exhibiting what is known as synchrony. This

synchrony has been found among border ownership neurons whose firing rates are

both modulated upwards by the same figure Dong et al. (2006).

Since then, methods for the detection of synchronous firing have been made more

7
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mathematically rigorous (Amarasingham et al., 2012) and been utilized in the study

of border ownership and attention (Martin and von der Heydt, 2015). In Chapter 4 I

describe improvements to the computational efficiency of these methods, summarized

previously in Jeck and Niebur (2015a). In Chapter 5 I point out that while the de-

tection of non-zero synchronous firing is mathematically rigorous, detecting a change

in the level of synchrony does not have intuitive implications about the strength of

common input, described previously in Jeck and Niebur (2015b).

8



Chapter 2

Attentive Pointing in Natural

Scenes Correlates with Other

Measures of Attention

2.1 Introduction

As noted in 1.1, factors that influence visual attention a separated into top-down

influences and bottom-up influences, referred to as visual salience. While the defi-

nitions of top-down and bottom-up attention are clear, it is in practice difficult to

dis-entangle their effects. For instance, observers who repeatedly perform tasks de-

signed to measure bottom-up attentional effects may form expectations of what the

next trial may be. These expectations will change their internal state and therefore

9



CHAPTER 2. ATTENTIVE POINTING

add a top-down component to their responses. This chapter describes work done in

Jeck et al. (2017). Specifically,the goals of that study were to:

• Introduce open ended self reports as a new experimental assay for selective

attention and show that it can be measured efficiently using a pointing/tapping

paradigm

• Develop a new experimental design in which each participant views only a small

numbers of scenes. This reduces the contamination of bottom-up attentional

effects by top-down expectations due to participants viewing similar stimuli

many times

• Compare the results of this experiment with three other measures of attention

and salience: fixations, interest points, and computed saliency

• Analyze the effects of sample size on estimating correlation between maps. The

small number of samples from the pointing/tapping paradigm results in a sta-

tistical effect that causes the correlation between different maps to be systemat-

ically underestimated. We will clarify the influence of finite numbers of samples

on the correlation between maps

2.1.1 Determining saliency from behavior

There are several methods that allow researchers to characterize items or regions

that observers direct their attention to. One very influential approach has been vi-
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sual search. Search for targets that differ from distractors by one of several low-level

features (e.g. luminance, color, orientation contrast) takes a (generally short) time

that is nearly independent of the number of distractors in the display (Egeth et al.,

1972; Treisman and Gelade, 1980). In contrast, targets that could be distinguished

from distractors only by combinations of such features require search times that in-

creased roughly linearly with the number of distractors (Egeth et al., 1984; Treisman

and Gelade, 1980). These and related results were fundamental in the construction

of computational models for visual search (Wolfe, 1994, 2007; Wolfe et al., 1989) and

for saliency determination and attentional selection (Itti and Koch, 2001; Itti et al.,

1998; Niebur and Koch, 1996).

Given past success in utilizing features that promote efficient search, it is tempting

to continue using visual search as a way to test models of visual salience. However,

search tasks are limited in their applicability to measuring salience because partic-

ipants are typically informed about the types of images they are about to see (e.g.

“an image in which there is a single target and many distractors”), and the target

and distractors are often described before the task begins. This information generates

top-down influences that are likely to interact with bottom-up selection mechanisms.

Even when participants are only told to look for a unique target, without being

informed how it will differ from other objects (“odd-man out” tasks), they are still

being informed about the structure of the image. It is then difficult to decide whether

the participants find the target due to its bottom-up saliency features, or because of

11
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its uniqueness (Bacon and Egeth, 1994). Results therefore may reflect a mixture of

bottom-up (saliency) and top-down components of unknown composition.

This concern applies also to measurements of salience where participants give

their subjective assessment of which of two stimuli is more salient (e.g. Nothdurft,

2000). These experiments require that participants know that a stimulus will appear

made up of oriented bars where two of them (one to the left and one to the right of

fixation) will differ from the rest. As with search tasks, this information potentially

biases the response of the participant. Indeed Nothdurft refers to needing additional

concentration (clearly a top down process) to make difficult salience assessments.

Furthermore, even if participants are not informed explicitly about the nature of the

visual scene they are observing, the process of performing a task many times will

likely give them information about what to expect.

While top-down influences can probably never be excluded entirely, our goal in

this project is to reduce them. One possible way to mitigate top-down influences is to

use “overt attention” in a free viewing task as an indicator for covert attention. In this

approach, introduced by Parkhurst et al. (2002) and used in many subsequent studies

(for a review see Borji and Itti, 2013), observers look at images (or videos) which can

be natural or abstract scenes while their eye movements are tracked. Areas of the

scene that are fixated are taken to be attended, a conclusion supported by findings

from Deubel and Schneider (1996) that visual discrimination performance is enhanced

at saccade targets. In the absence of a specific task (“free viewing”), it seems reason-

12
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able to assume that at least for the first few images, and for the first few fixations

in these images, observers let themselves be guided by the visual input, rather than

by some more complex strategy. This assumption becomes less plausible, however,

the longer the sequence of images becomes and the longer the duration becomes that

observers view any given image. Indeed, Parkhurst et al. (2002) found that the agree-

ment between eye fixation data and predictions of a purely bottom-up computational

model of saliency (Itti et al., 1998) decreased with viewing time/fixation number for a

given image. It is not known whether the level of agreement depended on how many

images had been viewed previously.

In principle it is possible to use the eye tracking method, with näıve participants

viewing only a small number of scenes. In practice, the overhead of setting up an

eye tracker system for each participant would make gathering fixation data for a

small number of images per participant a very cumbersome task. We recruited 252

participants in this study, an order of magnitude more than participated in the lat-

est saliency benchmark by Borji and Itti (2015), making eye-tracking each subject

prohibitive.

To counteract this difficulty, we developed a novel experimental paradigm with the

goal of gathering data from many participants where each participant only performed

a small number of trials. The new paradigm is centered on showing subjects a short

sequence of images and recording the response of each subject to each image. Some of

the images are simple displays (similar to typical visual search arrays like those used

13
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by Treisman and Gelade, 1980) that are designed to test a specific hypothesis about

what features of an image affect salience. Future work will discuss the structure of

these images and the results gathered. Alternating with these images are natural

scenes, the focus of this report. The goal in presenting these scenes to participants

is to determine the extent to which salience as measured in our new experimental

paradigm comports with salience data from previous studies. The natural scenes

were therefore a subset of those used in a previous study (Masciocchi et al., 2009),

and we will compare results obtained in our new paradigm with those from that study.

The data being compared here are attentional maps aggregated over a pool of

participants. Such maps have been used in the study of salience extensively (Borji

and Itti, 2013), and because they are population averages we can gather data to make

attentional maps from a similar population without needing to gather new fixation

data from the same subjects.

2.1.2 Reporting attended locations by pointing to

them

Our new experimental paradigm for fast assessment of attentional selection was

inspired by a study by Firestone and Scholl (2014) although those authors used a very

different stimulus set and had a different motivation. The main idea is that, instead

of recording eye movements, we ask participants to communicate their selections in a
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natural way by tapping on a screen with their (index) finger. Specifically, we ask the

subjects to ”tap the first place you look when the image appears.” This instruction

gives us a quick way to communicate in a non-technical manner that the participant

should select the first attended location on the image, rather than an arbitrary point as

requested by Firestone and Scholl (2014). Even though instructions refer to where the

participants look first, we do not attempt to determine whether any single individual

is able to report their eye movements successfully. Instead, we are concerned with

whether the population-level attentional maps we derive from the responses reflect

previous measures of attention. We will validate our method by comparing these

maps on when gathered for the same set of images.

We view this method of obtaining attentional maps as an alternative read-out of

attention consisting of two (possibly interacting) components: self-report, and manual

selection by finger tapping. Self reports have previously been taken as valid assess-

ments of attentional selection when reporting attended locations in an experiment

(e.g. Nothdurft, 2000). Responding by tapping allows participants to indicate any

location on the screen, rather than a pre-defined set of locations via a key press, or

a less easily quantified verbal report. While it has been shown that planning man-

ual movements can draw attention independently of eye movements (Jonikaitis and

Deubel, 2011) in carefully controlled experiments,it is much more common for eye

movements to guide hand movements when no experimental restrictions are in place

(Fisk and Goodale, 1985; Neggers and Bekkering, 2000), minimizing the probability
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that a manual read out interferes with the self-report. Self reports also allow for the

possibility of participants reporting the location of their covert attention rather than

the location where they fixate, which may differ.

From a practical point of view, the method we use to record pointing behavior

makes it a very fast, intuitive and simple process for collecting large amounts of selec-

tion data from a large and diverse participant population. Images were presented on

an electronic tablet, and participants were instructed to tap on the first location that

they looked at in the image, allowing for easy and precise recording of tap locations.

In addition to allowing us to gather data from a large number of participants, the

process reduces the information the participants were likely to have about the nature

of the stimulus. We could then compare the responses of these relatively uninformed

subjects to previously obtained measures of salience.

2.1.3 Limitations due to map estimation

We will follow the approach by Masciocchi et al. (2009) for computing correlations

between different selection responses over the image. In that study, participants were

asked to select interesting points on an image with a mouse. The distribution of

selected points on the image was then interpreted as an estimate of the “interest

map” internal to the participants that generated the data. Similarly, the distribution

of recorded fixations from a free viewing task was turned into an estimate of a “fixation

map.” Both were compared with computed saliency maps. In the present study, we
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will introduce a third set of human response maps, defined by the pointing/tapping

locations which we call “tap maps.”

When comparing any two of these estimated maps, their measured correlation is

determined by the nature of the two tasks and data types, as well as the amount

of data collected to form the estimate. As we show in Section 2.2.3.3, the finite

amount of collected data biases the computed correlation between maps toward zero.

We develop a bootstrap procedure to estimate how large the bias would be if the

two maps were drawn from the same underlying distribution. This procedure gives

us insight into how correlated the data types could be and helps determine which

comparisons between maps may benefit from further data collection.

2.2 Methods

All methods were approved by the Johns Hopkins Institutional Review Board

and carried out in accordance with the Code of Ethics of the World Medical As-

sociation (Declaration of Helsinki). Alpha for all significance tests was set to 0.05.

All data and code used for the analysis described in this section are available at

https://github.com/dannyjeck/Attention-maps-comparison.
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2.2.1 Apparatus, participants, and procedure

Participants were 252 passers-by on the Johns Hopkins University Homewood

Campus (151 female; see Figure A1 for demographic information). They were ap-

proached by the experimenter and asked if they were interested in performing a short

psychology experiment. If they answered in the affirmative, they were given instruc-

tions, as follows.

Participants were asked to give their gender (male/female) and age group (18-22,

23-30, 31-40, 41-50, and 51+). On a tablet computer (Apple Computers, iOS 8.3

operating system, screen 9.7” with 1024 × 768 resolution, occupying approximately

15◦ − 35◦ of visual angle depending on how far away it was held), participants were

then shown a white screen with two small black squares (see Figure 2.1), which we

call the initialization screen. They were informed that tapping on either one of the

squares would bring up a test image, and were instructed, “When the image appears,

tap the first place you look.” After the participant had tapped first the initialization

screen and then the location selected by him or her on the test image, the latter

was immediately replaced by the initialization screen, and the cycle recommenced.

This sequence of events continued until all images had been shown, with participants

responding at their own pace. The position of the tap on the test image and the time

between the taps on the initialization screen and on the test image were recorded.

Test images strictly alternated between a natural scene and a simple scene consisting

of colored squares on a white background, see section 3.2.2 and Figure 2.1. Each
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participant saw a total of 12 images of which the first always was a natural scene.

Initialization Screen

Natural Scene

Simple Scene

Presentation Order

Initialization Screen ...

Figure 2.1: Experimental procedure. The rectangles represent an approximation of
what was shown to participants on the tablet screen. First, they saw an initialization
screen and tapped on either of the small black squares at the bottom. This brought
up a test image which alternated between natural scenes and simple scenes. They
then tapped on the test image at a place of their choosing which was, according to
instructions, the first place they looked at when the test image had appeared. Tapping
position and reaction time were collected, the initialization screen reappeared, and
the cycle re-commenced.

2.2.2 Stimuli

The stimulus set consisted of 48 natural scenes and 30 simple scenes. The nat-

ural scenes were taken from a previous study by Masciocchi et al. (2009) in which

participants performed two tasks. One was free-viewing the scenes while their eye

movements were recorded. In the other task, participants clicked with a mouse on

locations on the scenes that they considered the most interesting; these locations

were called “interest points.” The size of the original images was 640× 480, and they

were resized for our purposes using MATLAB’s (The MathWorks, Inc., Natick, MA)

19



CHAPTER 2. ATTENTIVE POINTING

default image resizing function to fit the 1024 × 768 resolution of the tablet screen.

Out of the four image classes in the Masciocchi et al. (2009) study we only used two,

consisting of images of buildings and landscapes. Out of this set of 50 images, we

randomly removed two to make the total number of natural scenes a multiple of six

(the number of natural scenes each participant saw). The chosen 48 images were then

separated into eight groups of six. The natural scenes for each participant rotated

through these groups of six, such that every eighth participant saw the same six nat-

ural scenes. These scenes were presented in randomized order and always alternated

with the simple scenes. No participant saw the same image twice.

The simple scenes consisted of a white background with randomly placed colored

or gray-level squares, as shown in Figure 2.1. For the purposes of this study, they

only served to interrupt the sequence of natural scenes and to decrease potential

interactions between tapping locations on subsequent natural scenes. For more infor-

mation about the motivation behind the generation of the simple scenes and results,

see Chapter 3. We note that the strict alternation of simple and natural scenes may

allow participants to develop an expectation of the type of the subsequently presented

image (simple or natural). Neither simple nor natural scenes are, however, predictive

in any way about the contents of the next presented image, therefore no information

about salient locations in an upcoming image is predicted by the sequence of images.

Furthermore, no prediction is possible until at least one repetition has occurred, i.e.

the second natural scene, which applies to one-third of the data collected.
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2.2.3 Data Analysis

2.2.3.1 Correlations between maps

Selections of image areas by human observers (fixations, interest points, and taps)

were first transformed into maps of the same dimension as the images. Computing the

pairwise correlations between such maps as well as between the maps and the results of

computational models of salience provide a measure of similarity between the different

data collection methods and the models used. We reduced the resolution of the

maps by binning the data. The reduction in resolution mitigates the possibility that

fixations, taps, or interest selections that are near to each other are being counted as

entirely distinct, though this is not the case for responses near the edge of the selected

bins. We chose a 12 × 16 grid to tile the image (for an example see Figure 2.2B),

therefore, each bin covers 64 × 64 image pixels. We chose this level of reduction in

resolution since it is comparable to the eye tracker error used in obtaining fixation

data (see Masciocchi et al., 2009, for details) and also roughly matches the size of a

human finger pad when collecting tapping data. We also analyzed a coarser image

resolution to examine the effects of resolution on the different correlations, results are

shown in Figure 2.5. Similar findings between these two bin sizes confirm that the

results are robust to bin size selection.

Tap maps were generated by weighing each tap on the appropriate image equally

and binning them as described above. Interest maps were generated from from the
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data of Masciocchi et al. (2009), by taking each subjects first interest selection, the

most interesting point per the instructions in the experiment, with each subject

weighed equally. Fixations maps were generated by weighing each fixation by its

duration. We also compared the distributions of fixations, interest points, and taps

with saliency maps that were generated from the Itti et al. (1998) computational

model of saliency at the same resolution.

Here we analyze the relationships between four processes: the three unknown pro-

cesses, F generating fixation data, I generating interest point selections, T generating

taps, and the known process S generating computed salience. If we assume each sub-

ject response is independent, then for a specific image, each unknown process can be

described by a multinomial probability distribution (similar to a dice roll) from which

data are drawn. We indicate the image number by adding a subscript to the process.

For instance, for the k-th image Ik is a distribution from which each new interest

point selection (by a different participant) is drawn. When we gather data, we are

able to form estimates of these processes F̂k, Îk, and T̂k by computing the fraction

of data points that fall in each bin for the k-th image. Since we are estimating a

multinomial distribution using counts of the data, the resulting estimates of the rate

of responses falling in a given bin are unbiased. However, as we will show in Sec-

tion 2.2.3.3, the correlation values in comparing these maps are biased. Finally, as S

is a known computational model, there is no need to form estimates of this process.

The measured covariation between any two processes P and Q on the k-th image,
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indexed in their horizontal and vertical dimensions by (i, j), with M bins total is,

C(P̂k, Q̂k) =
1

M

∑

i,j

P̂k(i, j)Q̂k(i, j)−
1

M2

∑

i,j

P̂k(i, j)
∑

i,j

Q̂k(i, j)

=
1

M

∑

i,j

P̂k(i, j)Q̂k(i, j)−
1

M2

(2.1)

where the last equality holds because P̂k and Q̂k are probability distributions and

therefore sum to unity.

The Pearson correlation coefficient R between estimates P̂k and Q̂k is then com-

puted as,

R(P̂k, Q̂k) =
C(P̂k, Q̂k)

√

C(P̂k, P̂k)

√

C(Q̂k, Q̂k)
(2.2)

This quantity can vary between R = −1 for perfectly anticorrelated data and

R = 1 for perfectly correlated data. We compare its value against two hypotheses,

discussed in the following two subsections, 2.2.3.2 and 2.2.3.3. We refer to the average

correlation coefficient over all images by dropping the subscripts in the argument.

2.2.3.2 Null hypothesis: Correlations reflect no differences

between images

We consider first the (null) hypothesis that the contents of specific images do not

affect the participants’ responses. Under this hypothesis, for instance R(F̂i, T̂i), the

correlation between the fixation map from image i and the tap map from the same
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image is drawn from the same distribution as R(F̂i, T̂j), the correlation between the

fixation map from image i and the tap map from image j, for all i and j. We can

approximate this null hypothesis distribution using a bootstrap technique to compute

correlations between two types of maps (e.g. tap maps and fixation maps) using per-

mutations of the image orders. Note that under this null hypothesis, image contents

can still exert systematic influences on the selections but these influences do not differ

systematically between different images. Therefore, the hypothesis includes correla-

tions due to influences like center bias, “photographer’s bias” (systematically placing

objects of perceived importance in specific locations in the image), similarities due to

similar image content, or other spatial preferences in common between participants.

The null hypothesis does, however, exclude correlations caused by salient features of

specific images.

2.2.3.3 Hypothesis: Correlations are limited by sampling er-

ror

At the other extreme, even for strong influences of image contents on correlations,

estimating correlation from noisy estimates of the true processes generating the data

create a bias in the measured correlation between any two types of maps. We illustrate

this effect in a simple example. Consider two very simple one-dimensional identical

distributions Pk = Qk = [0.5, 0, 0.5]. If we draw an infinite number of samples from

these (identical) distributions and use equation 2.2 to compute the correlation between
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the measured estimates, we obtain R(P̂k, Q̂k) = 1, as expected. But now consider

the case of finite numbers of samples, and in the extreme, that only one sample from

each distribution is drawn. Then, the estimate of the each distribution will either be

[1, 0, 0] or [0, 0, 1]. If they are the same, then R(P̂k, Q̂k) = 1 but if they are different

R(P̂k, Q̂k) = −1
2
. Therefore, the expected correlation is 1

4
. This bias towards zero

will be non-zero for any finite number of samples drawn.

We want to gain an intuitive understanding of the bias in correlation for the un-

known distributions underlying our data that is caused by the limited number of

samples drawn. For this purpose, we developed a procedure in which we resample

one of the maps with the same number of data points measured in the other to ap-

proximate how correlated the data could be under the hypothesis that the underlying

processes were identical. Let Pk and Qk be two processes with P̂k estimated using nP

data points and Q̂k estimated using nQ data points, and let nP > nQ. First we select

the type of map with the most data points, P̂k, and treat it as a perfect estimate of

its underlying process. We then draw nQ data points from P̂k (with replacement) and

compute a surrogate, P̃Q
k . The tilde is used to indicate that the value is a resampling

of the data from P̂k and the superscript indicates the source of the number of data

points used in the resampling. We then compute R(P̂k, P̃
Q
k ), the correlation between

the surrogate data and the original map (see Figure 2.2C). For example, if the two

maps in this procedure were fixations and taps and there were more fixations than

taps, we would draw (with replacement) a number of surrogate data points from the
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fixation data set that was the same as that of recorded taps, and compute R between

the surrogates and the original fixation map, R(F̂k, F̃
T
k ). For the reasons discussed

in the previous paragraph, this value will be less than unity and it provides an in-

tuitive estimate for how much the sampling error biases the measured correlations,

R(F̂k, T̂k). This procedure of generating surrogates and correlating with the original

data can be repeated many times to refine the estimate of the bias in the correla-

tion measurement under this hypothesis and to build a distribution against which to

perform a hypothesis test (Figure 2.2D). We call this hypothesis the “sample error

hypothesis,” which assumes that a non-unity correlation measurement is due entirely

to finite sample size. We note that this hypothesis is not truly an upper bound on

the measured correlation (see Section 2.4.2 for a counterexample). We also note that,

while this hypothesis is technically a null hypothesis against which we perform sta-

tistical tests, for the sake of clarity we will reserve the name “null hypothesis” for the

hypothesis described in Section 2.2.3.2.

All resampling procedures were repeated with 1000 surrogates compared against

the original.

2.2.3.4 Population averages

We analyzed the mean correlations between types of maps (e.g. taps and fixations)

across all images (see Figure 2.3), which, as before, we denote by dropping the image

number subscript. For example R(F̂ , Î) is the correlation between measured fixation
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and interest data averaged over all images. Similarly the average correlation under

the assumption that the underlying distributions are actually identical (being the

distribution of the interest data, which is the larger data set) and sampled with

the number of fixations is given by R(Î , ĨF ). The distributions of the null hypothesis

differ between the combinations of maps but are identical for all image pairs of a given

combination, e.g. Fixation and Interest maps in Figure 2.3B. Since many correlation

values are averaged and we are measuring the difference between two mean values,

hypothesis testing against the null becomes a two-sample Z-test. When testing against

the sample error hypothesis we also perform a two-sample Z-test (see Section A1.3

for validation of this method). Because both the final tests of significance average

over all images and because the null and sample error hypotheses are relatively easy

to reject (even though they are non-trivial), small p-values are expected. Beyond

hypothesis testing, the mean correlation values provided by the null and sample error

hypotheses also give points of reference against which we can compare the measured

correlation values.

2.3 Results

We recorded 1510 taps from 252 participants (151 female; see Figure A1 for de-

mographic information). The median of the reaction time (RT), defined as the time

from tapping on the initialization screen to tapping on the test image, was about 1.4
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Figure 2.2: Data analysis method. (A) Example image overlaid with collected
fixation points (blue dots) and tap points (yellow dots), and grid lines used to bin
the data. (B) Corresponding fixation map and tap map. Both maps are binned in a
12×16 grid, with each bin showing the average of 64×64 pixels. (C) Surrogate maps
generated from the fixation data used to approximate sampling error in the correlation
between the fixation and tap data, see text. (D) Comparison of the measured value
(red) to the histograms of the null hypothesis (blue) and the sampling error hypothesis
(black). Means and standard deviations of the distributions generated from the null
hypothesis and the sampling error hypothesis are shown above the distributions. For
this image, fixation data and tap data correlate more than predicted by the null
hypothesis (p = 0.002), and cannot be distinguished from predictions of the sampling
error hypothesis (p = 0.11).
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seconds. Reaction times were skewed to the right (mean 1.6 seconds). We did not

analyze RTs in detail because our data collection system did not allow precise control

of the timing of image presentation. Data collection was completed after seven days

of full time data collection.

2.3.1 Fixations vs. Interest Points

Aggregate results of our analysis for all images are shown in Figure 2.3. First, we

re-analyzed the data from the Masciocchi et al. (2009) study with our methods. The

analysis confirmed their result that interest and fixation data are correlated beyond

the null hypothesis, R(F̂ , Î) = 0.53, Z-test p = 1.3 × 10−73; see Figure 2.3A. In

addition, we now extend their results by showing that sufficient data was collected in

that study so that the correlation under the sample error hypothesis between interest

and fixations is very high, R(F̂ , F̃ I) = 0.98, indicating that the measure of correlation

R(F̂ , Î) = 0.53 likely has very little bias. Differences between fixation and interest

maps were not due to sampling error, Z-test p = 1.5× 10−74.

2.3.2 Fixations vs. Computed Saliency

For the comparison of fixations and computed saliency from the Masciocchi et al.

(2009) study (see Figure 2.3B) we found that the measured correlation exceeded the

null hypothesis, R(Î , S) = 0.19, Z-test p = 1.6× 10−16. Correlation under the sample
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error hypothesis is low for this comparison, R(S, S̃I) = 0.58, though clearly higher

than the measured correlation, Z-test p = 6.8× 10−23.

2.3.3 Interest Points vs. Computed Saliency

We also compared interest points and computed saliency from Masciocchi et al.

(2009), see Figure 2.3C. We found that the measured correlation exceeded the null

hypothesis, R(F̂ , S) = 0.30, Z-test p = 1.1 × 10−18. Here the correlation under the

sample error hypothesis is much lower than unity, R(S, S̃F ) = 0.55, indicating a

potential bias in the measured correlation, though again higher than the measured

values, Z-test p = 9.5× 10−67.

2.3.4 Fixations vs. Tap Points

In the remaining three panels of Figure 2.3 we compare the correlations between

the tap data collected in the present study with other attentional selection quantities.

Correlations between fixation and tap data are shown in Figure 2.3D. The correlation

level is similar to that between fixations and interest points in the Masciocchi et al.

(2009) study, R(F̂ , T̂ ) = 0.45, and it is again significantly above the null hypothe-

sis (p = 1.0 × 10−39). Because fewer taps were collected than fixation points, the

correlation under the sampling error hypothesis is R(F̂ , F̃ T ) = 0.64. This is still sig-

nificantly above the measured value (p = 6.5× 10−16) but substantially below unity,
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indicating that the correlation may be substantially biased by the limited amount of

data gathered.

It is unclear whether gathering more data would cause the measured correlation

to increase or not. It may be that the “true” tap map T (which would be obtained if

unlimited amounts of data were collected) is less diffuse than the measured fixation

map F̂ , in which case the measured tap map T̂ is a good estimate of the T map and

the measured R(F̂ , T̂ ) value is close to R(F, T ). Alternatively, the T map could be

much more correlated with fixations than our measured map, in which case gathering

more data will increase the correlation. We can say with high confidence that R(F, T )

is less than unity and greater than 0.41 (two standard errors below R(F̂ , T̂ ) = 0.45).

We investigated the relationship between R(F, T ) and R(F, I) further by com-

puting R(F̂ , T̂ ) and R(F̂ , Î) with subsets of the data collected for T̂ and Î. We

did this by drawing a number of data points without replacement from the tap data

and interest data, and forming new estimates of the tap and interest maps. These

were then correlated with F̂ to qualitatively see whether the correlations R(F̂ , T̂ ) and

R(F̂ , Î) are converging as data is collected and to compare the two measures when

equal numbers of data points are gathered. Results for various sizes of subsamples

(up to the number of taps and interest points gathered per image) are shown in Fig-

ure 2.4. It is seen that for equal numbers of data points, R(F̂ , T̂ ) and R(F̂ , Î) track

each other closely, with both correlations increasing approximately logarithmically

(about linearly in the semi-logarithmic plot) with the number of data points. For
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example, R(F̂ , T̂ ) = 0.44 and R(F̂ , Î) = 0.46 when 29 interest points/taps are used

per image. This is the largest number of taps available for all images. The number

of data points available for fixations is larger than for taps and it can be seen that

for much larger numbers (above ≈ 100), R(F̂ , Î) starts to plateau. The observation

that R(F̂ , Î) plateaus agrees with our previous analysis that R(F̂ , Î) has very little

bias since R(F̂ , F̃ I) is nearly 1 and the asymptotic value in Figure 2.4 approaches the

mean of R(F̂ , Î) shown in Figure 2.3B, about 0.53.

2.3.5 Interest Points vs. Tap Points

Tap data was also found to be significantly correlated with interest point data

beyond the null hypothesis, R(Î , T̂ ) = 0.50, p = 1.2×10−58, and correlation under the

sample error hypothesis was significantly higher than the measured value, R(Î , ĨT ) =

0.85, p = 1.3 × 10−34, Figure 2.3E. The difference between R(Î , ĨT ) and R(F̂ , F̃ T )

indicates that there is some difference between interest points and fixations that can

not be explained by the smaller number of tap data. Despite drawing the same

amount of data (the number of tap points) from the interest maps as we did from the

fixation maps, the correlation under the sample error hypothesis is higher for interest

maps because they are more focused than fixation maps (i.e. participants selected

interest points in tighter clusters than was found in their fixations). Therefore, these

clusters can be estimated more accurately with a smaller amount of tap data than

for the more diffuse fixation maps.
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2.3.6 Tap Points vs. Computed Saliency

Finally, saliency maps computed from the Itti et al. (1998) model were compared

against the tap data and found to correlate beyond the null hypothesis, R(S, T̂ ) =

0.21, p = 4.3 × 10−15, though not significantly below the sample error hypothesis,

R(S, S̃T ) = 0.25, p = 0.075. This relatively low value of R(S, S̃T ) is obtained because

the computed saliency maps were relatively diffuse.

2.3.7 Coarse Scale Analysis

We also repeated the above analysis using fixation, interest, tap and salience maps

at a coarser 3×4 resolution (the coarsest resolution possible with square bins). Results

are shown in Figure 2.5. At this resolution all measured R values and resampled R

values were higher, with measured R always falling between the null hypothesis and

the sample error hypothesis (all p < 0.05). The level of measured correlation is thus

dependent on the resolution used but the main results for the finer resolution hold.

Because the measured correlations are still above the null hypothesis we can conclude

that even for a very coarse grid, the image content is still informative beyond center

bias, photographer’s bias, or other structures common to a large fraction of images.

In summary, we found that tapping locations are correlated with the locations

selected by each of the three measures considered previously: fixations, interest, and

computed saliency (Masciocchi et al., 2009). The null hypotheses of lack of correlation
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Figure 2.3: Aggregate results of natural scene analysis at 12× 16 resolution. Each
subplot shows a distribution of measured correlations between two types of maps
compared against the null hypothesis and sample error hypothesis. Means of each
distribution are shown above the histograms, with error bars indicating standard er-
ror given the 48 images used. Most error bars are smaller than the markers used. (A)
Fixation and Interest maps. (B) Fixation and Computed saliency maps generated
from Itti et al. (1998). (C)Interest and saliency maps. (D) Fixation and Tap maps.
(E) Interest and Tap maps. (F) Computed saliency and Tap maps. All measured
averages are significantly above the null hypothesis (p < 0.05). All measured averages
are below the sample error hypothesis (p < 0.05), with the exception of the compar-
ison between computed saliency and tap maps (p = 0.08), panel F. The legend in
panel B applies to all panels. For color figures see the online version of the article.

between tap locations and these three measures could all be rejected with high signif-

icance. Furthermore, we identified an important source of systematic downward shift

(bias) of correlations between maps which is due to the finite numbers of selection

points.
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ulations. 100 Simulations were performed for each number of data points. Standard
error is less than line width. For color figures see the online version of the article.
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Figure 2.5: Aggregate results of correlation analysis at coarse resolution, when
images were divided in a 3 × 4 grid. Symbols as in Figure 2.3. For color figures see
the online version of the article.
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2.4 Discussion

2.4.1 A new experimental paradigm for quantita-

tive characterization of attentional selection

We have developed a new experimental paradigm to evaluate what parts of an

image attract the attention of observers. We do so by asking the study participants

to report where they look and read out that report with a finger tap on the selected

location. As far as we are aware, this is the first study in which open ended self-

reports of attended locations are gathered. Unlike previous methods, this paradigm

is particularly well suited to collecting data from participants who are not informed

about the nature of what will be presented, mitigating top down effects related to

expecting certain stimulus types. We therefore interpret this new paradigm as a

supplement to existing paradigms (free viewing, visual search, etc.) that can used to

reduce top-down expectations that might bias participants’ performance. Due to the

simplicity of the experimental design, we were able to gather data from 252 subjects

in seven days of data collection.

Pointing with a finger (similar to tapping a location) is a very natural and universal

human behavior (Kita, 2003) which already appears during infancy, at about one

year of age (Leavens et al., 2005; Tomasello et al., 2007). The purpose of finger

pointing is typically to direct attention (either that of the tapping person or more
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commonly that of another person) towards a specific part of the world. This behavior

is thus often a direct, voluntary expression of attentional selection. It is more closely

related to guiding the attentional direction of others than eye movements, although

eye movements can also be used for directing attention in certain situations. While the

term “overt attention” is traditionally used for eye movements (because they make the

outcome of the covert attention process visible to the outside), pointing can therefore

be seen as another form of overt attention, one that makes the outcome of the agent’s

attentional selection process explicit and instructs the observer to generate a “joint

attentional frame” (Tomasello and Carpenter, 2007). This strong connection with

attentional selection makes this process not only attractive by itself, for the purpose

of deducing the outcome of the covert selection process, but also for comparison with

other correlates of attention, like eye movements and conscious selection of interesting

parts of a scene. It thus complements the classical eye tracking method (Parkhurst

et al., 2002; Yarbus, 1967) and the selection of interest points (Masciocchi et al.,

2009).

The high levels of correlation between the four measures used in this study (fixa-

tions, interest points, taps and computed salience; see Figure 2.3) support the conclu-

sion that the tapping paradigm is a valid measure of salience. For instance, the high

correlation between taps and fixations (R(F̂ , T̂ ) = 0.45) indicates that the taps are

capturing an aspect of salience seen in previous fixation studies. In fact, the value of

R(F̂ , T̂ ) is likely biased downwards by the limited sample size,like all the correlations
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between maps. We have shown that if the fixations and taps were perfectly correlated,

given the available number of data points the sampling error would still only result in

a correlation coefficient of R(F̂ , F̃ T ) = 0.64. See Section 2.4.2 for further discussion

of the sample error hypothesis

There are further factors that are expected to reduce the correlation of the mea-

surements between taps and fixations, bolstering our result. The set of participants,

screen, image resolution, and viewing conditions all varied between paradigms, and

the outdoor conditions of the tap experiment allowed for multiple sources of possible

distractions, including other passers-by. The fact that we find significant correla-

tions in the presence of all of these confounding variables indicates that the responses

given by participants are robust to a variety of low-level manipulations even though

the measured correlations are likely decreased by these effects. Our finding suggests

that attention is deployed based on invariant representations that are shared by the

various participants and invariant to changes in viewing conditions.

Another difference between paradigms was the duration of presentation. While

the tapping paradigm may be considered deliberative, the fixation data we used (from

Parkhurst et al. (2002) and Masciocchi et al. (2009)) were gathered over a five second

viewing period for each subject, more than three times the median reaction time

during the tapping experiment (1.4 seconds). Free viewing periods of five second

duration are in common use also for fixation datasets such as the widely used CAT2000

dataset (Borji and Itti, 2015). Note that for the tapping study, the reaction time
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includes the time after the subject has decided where to tap, the movement of the

hand, as well as the (relatively short) delay between the tap on the initialization

screen and the presentation of the image. We therefore estimate that the majority of

subjects performed three or fewer saccades before deciding where to tap. In principle,

one could compare the tapping locations with only the first fixations from the studies

that presented the same images Masciocchi et al. (2009); Parkhurst et al. (2002).

However, given the small number of participants in those studies, this analysis would

not provide a meaningful map of fixated locations to compare against taps.

Finally, the process of making a hand movement may modify by itself the deploy-

ment of a participant’s visual attention (Baldauf and Deubel, 2008; Jonikaitis and

Deubel, 2011) thereby possibly changing the selected location. However, previous

studies (Baldauf and Deubel, 2008; Deubel and Schneider, 1996, 2003; Jonikaitis and

Deubel, 2011) all study conditions in which the reaching movements and saccades

are planned in response to a cued location rather than indicating a salient stimulus.

While more controlled research would be required to properly elucidate the interaction

between manual selection and attention, we find it highly likely that the participant’s

selection is driven by their initial response to the image before the hand movement. If

this were not the case, we would expect our measured correlations to be substantially

lower.

In comparing the interest points and tap points (Figure 2.3 B-D), the results

indicate that the correlation between our tap data and fixation data is approximately
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as strong as the correlation between fixations and interest points (R(F̂ , T̂ ) = 0.45

vs. R(F̂ , Î) = 0.53). The correlation between interest and fixations is not subject to

sample size bias to the same extent described above because the correlation under the

sampling error hypothesis (R(F̂ , F̃ I) = 0.98) is so close to unity. Given these results,

we speculate that the responses for the tap experiment lie somewhere in between the

more involuntary fixation responses and the more deliberative responses given in the

interest points task.

The level of correlation between taps and computed salience (R(S, T̂ ) = 0.21)

in the natural scenes was lower than previous findings indicated for other correlates

of attentional selection. Masciocchi et al. (2009) found the correlation coefficients

between fixations and computed salience to be R = 0.32, and between interest and

computed salience to be R = 0.37 using slightly different methods. The results of

Masciocchi et al. (2009) are in closer agreement with our low-resolution analysis,

which found R(S, T̂ ) = 0.38 and R(S, S̃T ) = 0.53. These results indicate that the

salience model from Itti et al. (1998) which was used in both the previous study

and this one captures a substantial aspect of the bottom up processes that influence

attention. However given the low correlation value, it is likely that other aspects of

those processes are not being captured.

Overall, our results show highly significant correlations between attentional se-

lections executed by the oculomotor system [Parkhurst et al, 2002, and many other

more recent studies; for a review see Borji and Itti, 2013] and by the skeletomuscular
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system. For the latter, this is the case both when conscious deliberation is encouraged

(Masciocchi et al., 2009) and when it is discouraged (this study). Remarkably, these

measures also correlate well with predictions of a very simple computational model

of bottom-up attention (Itti et al., 1998). Without doubt, this simple model has lim-

itations, e.g. in the representation of objects (Einhäuser et al., 2008, but see Borji et

al, 2013), even though they can be overcome at least partially by more sophisticated

proto-object based models (Mihalas et al., 2011; Russell et al., 2014). However, the

fact that even a very basic model captures human behavior over such a large range

of tasks illustrates the fundamental role of attentional selection for behavior.

2.4.2 Effects of sampling error on correlations

Another contribution of this study is a new way of analyzing correlations between

maps of different types, such as fixations or taps, although our method should apply

to many other kinds of maps. These maps are generated by accumulating many

individual measurements into a “heat map,” which can be interpreted as an estimate

of the probability distribution of the data. The measured correlation between the

maps (e.g. R(F̂ , T̂ )) and the estimates of those probability distributions (here F̂ and

T̂ )) will depend on both the underlying distributions (F and T ) and the quality of

the estimates. The differences between the true distributions are of scientific interest.

For the case of the maps considered in this study, these differences may be useful in

determining what aspects of a scene draw attention, and their correlation is useful in
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determining the validity of the tap experiment as a measure of salience.

Estimates of the true distributions based on finite amounts of data will, however,

bias our estimate of the correlation. With an infinite number of data points, the true

distributions could be measured to perfect accuracy. Given a fixed limited sample

size, increasing the resolution of the maps increases the number of parameters in the

distribution to be estimated and therefore decreases the accuracy. Similarly, if the

true distribution is spread widely across the image, the accuracy of the estimate will

be reduced much in the same way that, everything else being equal, the standard

error of the mean for a distribution with high variance is greater than the standard

error of the mean for one with low variance.

This source of bias in correlation measurements differs from the reduction (“at-

tenuation”) in correlation described by Spearman (1904) when measuring the corre-

lation between two signals in noise. While both effects bias the observed correlation

towards zero, the underlying mechanisms are quite different between our effect and

Spearman’s, making his method for correcting the bias inappropriate in our case.

Spearman observed that the correlation between two processes is attenuated if noise

is added to one or both of them, and in his 1904 study he developed a method to

correct for the bias found in correlating noisy measurements. In contrast, in the effect

described in the present study, no noise is added. The bias in the correlation here

is due to the finite number of observations of the underlying distributions (for tap,

fixation, and interest selection). In the example in Section 2.2.3.3 of the two simple
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distributions, the correlation is biased because we only sample from a small number

of points (in the extreme case discussed, just one), but there is no noise in the sam-

ples. The two effects are independent, one could have one or the other or both, and

each contributes its own bias to the total decrease of the correlation. For instance,

while the bias due to the limited sample size described in Section 2.2.3.3 disappears if

the sample size goes to infinity, this is not the case for the noise-induced attenuation

effect discovered by Spearman (1904).

One may still be tempted to apply the method from Spearman (1904) to correct

for the bias found in correlating noisy measurements of probability distributions.

After all, the estimates of probabilities can be thought of as a measurement of the

true distributions plus noise. However, the noise characteristics are entirely different

in the present case. Spearman (1904) assumes independent identically distributed

additive noise, while the estimation error resulting from drawing a finite number of

samples from a multinomial distribution is dependent on the value measured and

exhibits covariation between bins (since the error must sum to zero) Spearman’s

method is therefore not a valid solution to this problem.

Given the potential sources of error in estimating correlation, we have developed

a simulation-based method (Section 2.2.3 and Figure 2.2) to compute the correlation

between maps assuming that the true maps are perfectly correlated. Note that,

although one might think that the correlation of a map with itself is an upper bound

on the correlation of the map with other maps, even for finite numbers of samples, this
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is not the case. For a counter example, if P̂ = [0, 1, 0] is measured with one sample,

and Q̂ = [0.3, 0.4, 0.3] is measured with (infinitely) many samples, then R(P̂ , Q̂) = 1,

but the expected value of R(Q̂, Q̃P ) is 0.1 because there is a probability of 0.6 that

the single sample drawn from Q will be from either the first or last bin. In this case,

the correlation is −1
2
because the peak in one distribution aligns with one of the two

equal troughs in the second.

The use of Pearson correlation (R) is useful in gaining a qualitative measure of the

similarity between the distributions. Overlapping peaks and troughs in distributions

will result in positive R values. However, R is invariant to linear scaling. If one

distribution is relatively uniform while another has high peaks and troughs, the R

function may find them to be highly correlated so long as their peaks and troughs

align. As such, the correlations measured in this study show that interest points,

taps, and fixations all seem to fall on similar locations, though the distributions may

have substantial differences under another metric.

The method of estimating the sampling error effect that we introduce is applicable

to any correlation computation between estimates of a true distribution. In fact,

the method can be extended to any metric of similarity between distributions or

maps. For example, if Kullback-Leibler divergence (KLD) is believed to be a more

appropriate metric of similarity, the sample error hypothesis can be used to generate

surrogate data under the hypothesis that the two types of data are drawn from the

same distribution. Then the KLD between the surrogate data and the original map

44



CHAPTER 2. ATTENTIVE POINTING

can be used to determine the size of the sampling error effects.

We also note that there may be methods to reduce the bias in the measured corre-

lation using a Jackknife procedure (Efron, 1982), though it is unknown to what extent

such a procedure would introduce unwanted variance into the estimation procedure.
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Utilizing the Salience of Unique

Objects to Test Models of Salience

3.1 Introduction

Having developed a simple paradigm for recording attentional selections from

näıve participants, we wished to test existing models of visual salience. Computa-

tional models of visual salience (e.g. Itti et al., 1998, see Section 3.1.1 for a discussion

of more models) predict that regions of large center-surround contrast are salient.

This contrast can arise in several visual submodalities (e.g. color, intensity) and at

several spatial scales but the magnitudes of center-surround contrast and saliency

are always positively correlated: higher contrast in a given submodality and scale

contributes more to saliency than lower contrast. This leads to an interesting and
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counterintuitive prediction that we test in this contribution.

Consider the image in Figure 3.1A, a number of black squares and one gray square

on a white background. As long as the unique gray square is easily discriminated

from both the background and the black squares, our intuition suggested to us that

its uniqueness makes it the most salient stimulus. However, saliency models predict

the opposite. First, we observe that only intensity contributes to saliency in this

simple scene (no color etc.). Second, the center-surround contrast of the gray square

is smaller than that of the black squares since it’s intensity is closer to the background

than that of the black squares. Therefore, the models predict that the black-on-white

squares have higher saliency than the gray-on-white square. This is illustrated in

Figure 3.1B which shows center-surround responses to the intensity channel of the

image in Figure 3.1A at different spatial scales for the center and surround. For each of

these center-surround computations, the gray square produces a weaker response than

the black squares. Because of the lowered center-surround responses, the resulting

saliency map (Figure 3.1C, computed from the model in Itti et al., 1998) associates

a lower saliency level to the unique gray square than to the black squares. Indeed,

no linear combination of these center surround maps can generate a saliency map

in which the gray square has a higher value than both the black squares and the

background (see Section 3.5.1).

One might expect that at large spatial scales the center-surround operation would

compare the intensity of the squares with that of their neighbors, enhancing the gray
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square. Salience of a unique stimulus is, indeed, enhanced if the distance between

this stimulus and the other stimuli is small enough that the latter are located in

the surround (as defined by the model) of the former (see e.g. Niebur et al., 2002,

Figure 4). However, for the stimulus in Figure 3.1A, even though the surround

of each square at larger spatial scales includes the black squares, it also includes

much of the white background. The latter dominates in all cases, resulting in a

mostly-white surround for all squares. When the center-surround operation computes

the difference between the center (black or gray) and the surround (mostly-white),

the black squares produce a larger difference than the gray one. We hypothesize

that what makes the gray square unique, and therefore salient, is the difference of

intensity between it and the set of black squares. Thus, saliency is still determined

by a center-surround difference but this difference is computed in “feature space,”

with comparisons between objects rather than between spatially defined regions of

the visual field. In Section 3.3.3 we propose a novel model of inter-object comparison

that assigns high salience to unique objects. This raises a conflict between predictions

of saliency map models (e.g. Itti et al., 1998) and our intuition that the gray square

is salient. The goal of this paper is to test whether human behavior agrees with our

intuition or with this and other models of salience. We also propose a novel model of

inter-object comparison that assigns high salience to unique objects.
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3.1.1 Related Models

Is the failure to assign higher saliency to a unique object limited to the original

saliency map studies (Itti et al., 1998; Niebur and Koch, 1996), or does it affect a

larger class of models? Since, as we discuss in Section 4.4, we believe that higher

salience is assigned to unique objects because visual scenes are processed in terms of

objects rather than of elementary visual features, we were first particularly interested

in models that involve the formation of perceptual objects (or proto-objects, discussed

in section 3.2.3). This is the case for the models developed by Walther and Koch

(2006) and by Russell et al. (2014). We therefore ran these models on the input

shown in Figure 3.1A, with results shown in Figure 3.2A and 3.2B, respectively.

Both models assign lower salience to the gray square compared to the black squares,

in disagreement with our intuition.

Given that we believe it is the uniqueness of the gray square that makes it stand

out (or salient) in perception, we then searched for a model that is specifically designed

to detect unique elements. We narrowed the choice down further by demanding that

the model only takes into account the one feature, namely color (of which intensity is

a special case) that distinguishes the unique stimulus from all others in our images,

rather than integrating different submodalities (color, orientation, motion, etc.), as

the saliency map models typically do in order to make them applicable to large classes

of stimuli. Both of these conditions are fulfilled by a study by Perazzi et al. (2012). In

their model, an image is decomposed into compact regions of roughly similar colors,
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and the salience of a region is driven by the relation of two factors, the “uniqueness”

and the “distribution” of a color. Colors that are far away in color space from others

present in the image (such as gray in Figure 3.1A) are considered “unique” and

therefore salient. Colors that are spatially distributed in the image (black and white

in Figure 3.1A) are given a high “distribution” level, resulting in lowered salience.

The output of the Perazzi et al. (2012) model for the scene in Figure 3.1A is shown

in Figure 3.2C. Given its design, we were surprised that it does not label the gray

square as salient. We ran the Perazzi et al. (2012) model on all of the ten stimulus

arrays with faint objects that we used in our behavioral experiments, described below

and shown in the left panels of Figures 3.7 and 3.8. For eight of them, the unique

square was not labeled as salient. We analyzed the internal model function and by

fine-tuning one of its model parameters (σc), we managed to have the unique square

labeled as salient for each of the ten images. However, we do not know how the

modified model performs on images other than those ten for which its parameters

were specifically tuned. We are also uncertain how this parameter change affects the

behavior of the model on natural scenes. A further consideration is that the Perazzi

et al. (2012) model is defined in purely functional terms and its relationship with

what we know about early visual processing in biological systems is remote at best.

Finally, we tested our hypothesis on a model that predicts salience which was

developed by Kümmerer et al. (2016). The model uses features from VGG-16 (Si-

monyan and Zisserman, 2015), a deep network trained for object recognition. This
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model achieves high performance on natural scenes and is currently ranked highly on

the MIT300 saliency benchmark which was introduced by Judd et al. (2012). For com-

patibility with other tested models, we used a version without center bias. As seen in

Figure 3.2D, this model also assigns a lower salience to the unique object, indicating

that the training of the model does not generalize well to comparing objects.

A) Original Image C) Saliency MapB) CS maps

Figure 3.1: Example salience processing of Itti et al. (1998).(A) One of the ex-
perimental stimuli used as input to the model. (B) Three example scales of center-
surround (CS) response. At all scales, the gray square has the weakest response. (C)
Final output of the model. Intensity represents saliency. Color and orientation chan-
nels are included in the computation but they do not make a substantial contribution
for this image.

A B C D

Figure 3.2: Output of models of salience for the input shown in Figure 3.1A with
white regions indicating high salience. (A) Walther and Koch (2006) (B) Russell et al.
(2014), (C) Perazzi et al. (2012), (D) Kümmerer et al. (2016).
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3.1.2 Psychophysical Support and Limitations

Empirical data from the visual search literature are consistent with our intuition

that the gray square in Figure 3.1A is salient. Treisman and Gormican (1988) showed

that search for a gray target among black distractors is efficient (independent of the

number of distractors) when the distractors, background and target colors are all

easily discriminated. Efficient search can be explained most easily by assuming that

attention is directed to the target. Bauer et al. (1996, their Figures 13 and 15) support

a similar intuition for a case with distractors of two colors and the target falling

between them in color space. Nothdurft (2006) also reports on several psychophysical

experiments in which the participants assess the salience of different stimuli, and

report the salience of a single low-contrast target among multiple high-contrast ones.

A substantial concern with these experiments is that all of them inform partici-

pants about the upcoming visual scene either directly, through the task instructions,

or indirectly, by repeatedly presenting similar scenes (e.g. circular displays of dots

where a few differ from the rest). Top-down influences of the task to be performed

have been shown to affect participants’ eye movements (DeAngelus and Pelz, 2009;

Yarbus, 1967) and thus likely their attentional state. Therefore, we cannot conclude

from existing evidence that the measured attentional effects are driven by bottom-up

cues.

In Chapter 2, following Jeck et al. (2017), we addressed the difficulty of minimiz-

ing the contamination of behavioral measurements by top-down effects. The basic
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ideas are that (a) task instructions are kept to a bare minimum, (b) spontaneity of

responses is encouraged over long deliberations, and (b) every participant performs

the task only a very limited number of times. These features are designed to mini-

mize expectation which stimuli will be delivered next and anticipation of responses

that participants might believe they are expected to provide. More specifically, we

described a method of obtaining attentional responses from participants who were

only minimally informed about the upcoming stimulus. Inspired by an experimen-

tal paradigm developed by Firestone and Scholl (2014), participants were shown a

short sequence of complex natural scenes on a tablet computer and asked to “tap the

first place you look when the image appears.” Tapping responses were found to be

significantly correlated with other measures of attention, specifically eye movements

(Parkhurst et al., 2002), conscious selections of interesting image parts (Masciocchi

et al., 2009), and the computational model by Itti et al. (1998).

In the following, we use the methods from Chapter 2 to empirically address the

question of whether unique faint stimuli appear salient among a set of stronger stimuli,

like the gray square among black squares in Fig 3.1A. We will use simplified images,

similar to that figure, that are designed specifically to address this question by mini-

mizing other possible influences although we believe that the effect is also present in

more complex images. The scenes we use are described in detail in Section 3.2.2.
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3.2 Methods

All methods were approved by the Johns Hopkins Institutional Review Board.

Participants were passers-by on the Johns Hopkins University Homewood Campus.

The significance level for all statistical tests was set to α = 0.05. Code for the

model described below will be made available at https://github.com/dannyjeck/

Proto-Object-Comparison

3.2.1 Experimental Paradigm

We utilize the method described in Section 2.2 where participants are approached

and asked to do a quick psychology experiment on a tablet computer. They are first

shown a white screen with two small black squares (see Figure 2.1), which we call

the initialization screen. They were instructed to tap on either one of the squares to

bring up a test image, and were told “When the image appears, tap the first place

you look”. The image then appeared and, after the participant had tapped his or her

selected location on it, the position of the tap and the reaction time (time between

this tap and the tap on the initialization screen) were recorded. Test images strictly

alternated between a natural scene and a “simple” scene (as defined in section 3.2.2).

Each participant saw a total of 12 images of which the first always was a natural

scene.
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3.2.2 Stimuli

The stimulus set consisted of 30 images, with each showing a set of colored squares

on a white background. We refer to these as “simple scenes” to distinguish them from

the natural scenes that were presented in alternation with them. Responses to the

natural scenes have been analyzed previously (Jeck et al., 2017), for the purpose of

the current study they only serve to separate the simple scenes and to possibly reduce

the predictability of the image sequence. On each of the simple scenes, the screen was

separated equally into a 5× 3 grid. In ten of the grid locations (randomly chosen) a

square (120 × 120 pixels) was placed. Each square was placed at a random location

(uniform distribution) within the central 80% of the grid cell in the horizontal and

vertical directions. This placement pattern spaced out the squares evenly on average

without creating a percept of a predictable pattern. The color of the squares varied

among the six square image types generated, Gray/Black, All-Black, Black/Gray,

Blue/Yellow, Pink/Red, and All-Red; an example of each is shown in Figure 3.3.

Five images were generated for each image type. Each of the All-Black images was

identical to one of the Gray/Black images except that the color of the single gray

square was changed to black. This design allowed for a direct comparison between

the gray square and the corresponding black square since the geometries of one All-

Black and one Gray/Black image were identical. Likewise, each of the All-Red images

was identical to one of the Pink/Red images except that the pink square was changed

to red. Otherwise, all images were independent of each other. Note that the Itti

55



CHAPTER 3. UNIQUE OBJECT SALIENCE

et al. (1998) model predicts that in a pair of Gray/Black and All-Black images with

the squares at the same positions, the black square in the All-Black image at the

same position of the single gray square is more salient (see Figure 3.1C) and therefore

should be tapped more than the gray square. The analogous argument applies to the

All-Red and Pink/Red pairs of images.

The simple scenes were separated into five groups of six, with each group contain-

ing one image from each type, and each of the matched images in the same groups.

Thus each participant saw exactly one Gray/Black image, and the matched All-Black

image was always shown to the same participant. Likewise, a Pink/Red image was

shown with its matched All-Red image. Images were presented in randomized order,

with the constraint that the first simple scene of a matched pair was always chosen

such that each of the two members of a matched pairs of images had an equal num-

ber of participants see it first. For instance, the number of participants that saw the

first Gray/Black image was the same as that of participants that saw the matched

All-Black image as their first simple scene. This allowed us to perform a direct com-

parison of data gathered from the first time a participant saw a simple scene with

matched sample sizes.

3.2.3 Proto-Object Comparison Model

One strategy how humans and other animals cope with the complexity of their

environments is to transform raw sensory input into representations that match more
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A

B

C

Figure 3.3: Example set of simple scenes, overlaid (green dots) with tap locations
of all participants who saw this set. All taps shown are in response to the first time
participants saw these scenes. (A) Gray/Black (left) and corresponding All-Black
(Right) images. Note that the corresponding image has an identical spatial arrange-
ment of squares. (B) Pink/Red (left) and corresponding All-Red (right) images.
Again, the spatial arrangement is identical. (C) Black/Gray (left) and Blue/Yellow
(right) images. The Black/Gray and Blue/Yellow images had independent spatial
arrangements.

closely the functional relationships in the world. In the visual and auditory modalities

this process is called perceptual organization Bregman (1990); Kimchi et al. (2003). In

the visual system, the fundamental units of this representation are no longer activity
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levels of retinal ganglion cells but their correlated patterns that correspond to visually

perceived objects. We and others have developed quantitative models to understand

the underlying computations Ardila et al. (2012); Craft et al. (2007); Hu et al. (2015,

2016, 2017); Mihalas et al. (2011); Pentland (1986); Ramenahalli et al. (2014); Russell

et al. (2014); Walther and Koch (2006). As was observed by Rensink (2000) and Zhou

et al. (2000), perceptual organization does not require the formation of fully-formed

objects as would be needed for tasks like object recognition or discrimination. Instead,

it is sufficient that the scene is segmented into entities that are characterized by a

few elementary features, like their position, size etc.. Following Rensink (2000), we

call these entities proto-objects. For the sake of simplicity, from now on we will use

the terms “object” and “proto-object” interchangeably.

The behavioral results reported in section 3.3 suggest that humans compute rel-

ative saliency of simultaneously present (proto-)objects by comparing the features

of these objects, rather than properties of regions that are defined by simple spa-

tial relationships, as in center-surround contrast computations. To understand these

behavioral results, we develop a computational model of visual saliency based on

comparisons between objects. The model generalizes the idea that objects that differ

from other objects are salient, while repeated objects are not salient. While in early

models (Itti and Koch, 2001; Itti et al., 1998; Koch and Ullman, 1985; Niebur and

Koch, 1996) the elements to be compared were defined purely spatially, newer ap-

proaches are based on proto-objects (Russell et al., 2014; Walther and Koch, 2006).
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However, as discussed previously, these models cannot explain that humans assign

higher salience to unique objects over repeated objects. In the following, we develop

a model of this competitive interaction between objects.

To obtain a representation of proto-objects in a visual scene, we compute grouping

cell activity as in the Russell et al. (2014) model but we remove the normalization

procedure that follows in that model. These grouping cells tile the entire image

with overlapping proto-objects of many different radii, and are computed on different

submodalities (intensity, color, and orientation). A grouping cell in the Russell et al.

(2014) model will have a strong response if it is at the center of a set of co-circular

edges at the preferred radius of the grouping cell. Grouping cells in our model have

a minimum preferred radius of 32 pixels and a maximum of 256 pixels.

Proto-objects in our model are defined by their position (X,Y ) and radius (r).

We do not, however, assume a binary distinction between the presence and absence

of proto-objects at any location. Instead, the activity of grouping cell responses in

the Russell et al. (2014) model provides a graded measure of the “belief” that a

proto-object with a specific radius is present at a specific location. Let (Xi, Yi), and

ri represent position and radius for the i-th proto-object. We define its strength Si

as the product of r2i with the i-th grouping cell response. Since proto-objects are

calculated by contrast-based mechanisms, the S values of proto-objects representing

the gray square in Figure 3.1A are lower than those of black squares. An example of a

set of grouping cell responses with a radius of 32 pixels to the stimulus in Figure 3.4A
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is shown in Figure 3.4B.

In order to compare between proto-objects in our new normalization step below,

we must first compute a set of features for each proto-object. For each proto-object,

the POC model computes features over the image region defined by the circle with

center at (Xi, Yi) with radius ri (see 3.4C for an example). We compute histograms

of L, a∗, and b∗ values from the CIELAB color space (Ibraheem et al., 2012). Each

of these histograms has nine bins and is normalized to sum to 1 so that patches of

different radii can be compared appropriately. We also compute histograms with nine

bins for the potential radii of proto-objects in the patch. Eight of the bins have the

value zero and the one which corresponds to the actual object radius having the value

unity. For the i-th proto-object, this gives us a feature vector Fi whose components

are the values of 36 different bins (nine bins for each of the four features Li, a∗i ,

b∗i , and ri). We refer to the value for the i-th proto-object in the j-th bin as Fij.

In the brain, we presume that these features are computed simultaneously with the

computation of proto-objects themselves. The entries in the histograms correspond

to activity patterns of separate neuronal populations that are tuned to the features

represented by the histogram bins. We chose those features in our model partly

for reasons of computational efficiency rather than as detailed implementations of

biological processes. For instance, we do not claim that there are neuronal populations

that one-by-one code L, a∗, and b∗ values from the CIELAB color space but we do

believe that color is represented explicitly in neuronal activity patterns.
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Interaction between proto-objects is introduced through a normalization process,

Nij =
SiFij

∑

k SkFkj

(3.1)

if
∑

k SiFkj 6= 0, otherwise Nij = 0. In this equation, the value in each histogram

bin is multiplied by Si so that strongly detected objects are given more weight in the

normalization process, and strongly detected objects with the same feature values

will suppress one another. This is illustrated in Figure 3.4D for three proto-objects:

two with high Si that share the same feature values and one with a lower Si value

that is unique. The strength of each proto-object is then computed as

Pi =
∑

j

Nij (3.2)

and a saliency map Q is defined as a sum of Gaussians with weight given by Pi

and locations given by the proto-object.

Q(x, y) =
∑

i

Pi exp

(

−
(x−Xi)

2 + (y − Yi)
2

2σ2
i

)

(3.3)

where the spread σi = ri
2

of the Gaussian ensures that most of a proto-object’s

activation is near its center. A saliency map for the three proto-objects and the full

output using all proto-objects is shown in Figure 3.4E.

We noted that the saliency maps generated by the POC model are blurrier than
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the Russell et al. (2014) model, which has in the past correlated with improved

performance on natural scenes (Judd et al., 2012). To illustrate the importance of

the normalization process rather than the other implementation details of the model

(e.g. the creation of the saliency map using a sum of Gaussians), we also generate a

saliency map using equation 3.3 but replacing Pi with Si. Note that this is equivalent

(up to a scaling factor) of computing equation 3.1 without the denominator, since

∑

j Fij = 1.

3.3 Results

We recorded 1512 taps on simple scenes from 252 participants (101 male, 151

female). Population results are shown in Figure 3.5. Reaction time (RT) was defined

as the time from tapping on the initialization screen to tapping on the test image.

Median RT was 1.3 seconds (mean 1.4 seconds). We did not analyze RTs in detail

because our data collection system (iPad) did not allow control about the exact timing

of image presentation.

3.3.1 First View Only

As noted, All-Black images and Gray/Black images came in pairs with identical

layouts, with the only difference between the two members of a pair being that one

of the black squares in the former had been changed to a gray square in the latter.
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tapped the singleton square (gray or pink) significantly more frequently than the

corresponding square that shared its color with the other squares (black or red). This

result holds both for a gray square among black squares (Figure 3.5A) and for a pink

square among red squares (Figure 3.5C). In the former case, we observed 14 taps on

the gray square taps vs. 6 taps on the black square, both out of 51 taps. A one-tailed

Fisher’s exact test gives p = 0.039. In the latter case, we observed 16 taps on the

pink square vs. 8 on the red square, both out of 47 taps. A one-tailed Fisher’s exact

test gives p = 0.048.

This result confirms the intuition that a unique stimulus that is closer to the

background color is more salient than a non-unique stimulus with higher contrast to

the background.

3.3.2 All Presentations

Each image had a different singleton tap rate, defined as the fraction of times

that participants tapped on the singleton square. We did not ensure that the same

number of participants saw the same scene as their first, second, or n-th simple scene.

Therefore, we can not quantify whether the location of an image in the image sequence

influences tap rates. For the remainder of our analysis, we therefore aggregated data

over all six presentations of simple scenes.

Results are highly significant for aggregated data. Including all six views by each

participant, gray squares are tapped more than the black squares in corresponding
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positions (90 taps on gray squares vs. 21 on black squares, out of 252 taps in both

cases; a paired t-test gives p < 10−14; Figure 3.5B) and the same holds for pink

squares vs. corresponding red squares (101 vs. 59 out of 252; p < 10−5; Figure 3.5D).

Note that a paired t-test is appropriate in this case because the same participants saw

paired Gray/Black and All-Black images on different presentations (and the same for

Pink/Red and All-Red images). More detailed analysis shows that direct comparisons

between Gray/Black and All-Black images were significant individually for each of the

five pairs (see Figure 3.7), as well as for three out of the five pairs of Pink/Red and

All-Red images (Figure 3.8). For the two images without significantly increased tap

rates on the pink squares, the corresponding red square was the most tapped square

on the All-Red image and in both images it was located close to the center of the

scene. A ceiling effect, likely due to the geometrical arrangements of stimuli (center

bias, see next paragraph), may thus be the reason why we did not find a significant

effect in these cases.

As in previous studies (Buswell, 1935; Parkhurst et al., 2002; Tseng et al., 2009),

we found a strong center bias in our results. Figure 3.5E shows the rates at which

participants tapped on a singleton square as a function of the square’s Euclidean

distance from the center of the image. The lines in the figure are generated from a

linear regression model where each type of stimulus and the distance from the center

are used to predict the tap rate. Also shown are the tap rates and linear fits for the

non-singletons in the All-Black and All-Red images. A significant effect of distance
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from the center was found for each line (F-test, all p < 10−5). The negative slope of

all lines confirms the existence of a center bias in all conditions. Interaction terms

between the distance from the center and the stimulus type were not found to be

significant except in the case of the non-singletons.

By analyzing the intercepts of the fit lines (Figure 3.5F) we can roughly gauge the

salience for the different image types independently of the center bias. By performing

pairwise comparisons between the intercepts, we found that the Blue/Yellow intercept

was significantly higher than the Gray/Black and the Pink/Red intercepts (F-test, all

p < 0.05), and intercept of the fit line for non-singletons was lower than for any of the

images containing singletons (all p < 10−11). These results held after performing a

False-Discovery Rate correction (Benjamini and Hochberg, 1995) to control for mul-

tiple comparisons. We also found that the singletons in Black/Gray and Blue/Yellow

images are generally more salient than either the singletons in Gray/Black or sin-

gletons in Pink/Red images. These results agree qualitatively with previously found

search asymmetry studies (Treisman and Gormican, 1988) since the Gray/Black sin-

gletons are less salient than the Black/Gray singletons, (Fig. 3.5E) while confirming

that the singleton gray squares in the Gray/Black images can still be salient.

3.3.3 POC Model

The POC model is able to predict increased attention to unique objects in a

scene. For each of the simple scene stimuli shown to participants, the POC model
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Figure 3.5: (A-D) Rates at which participants tapped on singleton (sing.) squares
vs. non-singleton corresponding squares (Non-sing.) in a control image. Error bars
represent standard error. (A) Gray/Black vs. All-Black comparison for each par-
ticipant’s first tap. (B) Gray/Black vs. All-Black comparison for all taps. (C)
Pink/Red vs. All-Red comparison for each participant’s first tap. (D) Pink/Red
vs. All-Red comparison for all taps. (E) Rates at which participants tapped on the
singleton squares (colored circles, see legend), and each of the various non-singleton
squares in the All-Red and All-Black images (green circles). The horizontal axis is
the Euclidean distance from the center of the image. Fit lines were generated for
each singleton image type individually and for Non-singletons combined, colors same
as for the corresponding circle symbols. (F) The vertical intercept of each fit line
from (E) with standard error bars (G/B = Gray/Black, P/R = Pink/Red, B/G =
Black/Gray, B/Y = Blue/Yellow, NS = Non-singletons). The symbol ≈ indicates
that no pairwise difference was found (p ≥ 0.05). All other intercept pairs differed
significantly (p < 0.05).
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was able to predict that the unique object was the most salient object in the image

(see Figure 3.6, top row for an example). This held for all stimuli shown in Figures 3.7

and 3.8, even without accounting for center bias. Parkhurst et al. (2002) showed that

even a very simple filter (convolution with a 2-D Gaussian) that emphasizes processing

in the center of the visual field improves salience prediction (their Figure 9) but since

the POC model already has perfect performance in this respect, it seems besides the

point to add this modification. However, if in the future the model performs less than

perfect on other data sets, it is highly likely that this simple change will improve its

performance.

We also wondered whether the POC model is able to maintain the same level

of performance on natural scenes as the Russell et al. (2014) model on which it is

based. We tested the output of the POC model on images where we had previously

recorded fixations to generate saliency maps, and used the Pearson correlation R

between fixation maps and these saliency maps as our measure of accuracy (see Jeck

et al. (2017) for details). Average R over the 100 images we tested was 0.484 for the

POC model, actually slightly higher than the value of R = 0.472 for the Russell et al.

(2014) model.

We also tested the POC model without inter-object competition, replacing Pi in

equation 3.3 with Si. This test was included to ensure that among the differences be-

tween the Russell et al. (2014) model and the POC model, the normalization process

itself was not detrimental to performance on natural scenes. We found that the aver-
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A) Input B) Russel et al. C) S D) POC E) Datai

Figure 3.6: Model behavior on an example simple scene (top row) and natural
scene (bottom). (A) Input image. (B) Output of the Russell et al. (2014) model. (C)
Output of the model without normalization, using Si instead of Pi in equation 3.3. (D)
Output of the POC model. (E) Image with tap data (top) and fixation map (bottom)
overlaid. For the natural scene saliency and fixation maps are downsampled to the
12× 16 resolution used in Chapter 2.

age R for this modified model was 0.464, indicating that the normalization procedure

does provide value on natural scenes as well as simple scenes.

3.4 Discussion

3.4.1 Simple Scenes and Models of Salience

Using the tapping paradigm we have shown that participants preferentially report

that the first place they look is on a unique object. It was to be expected, and

is predicted by quantitative models of salience computation, that this applies to

unique objects that have high contrast relative to all other scene elements including

the background. We show that this is the case for intensity contrast (black square
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surrounded by white background and gray squares) and for color contrast (blue square

surrounded by white background and yellow squares). In contrast, all computational

models we tested predict the opposite outcome for a “faint” singleton object: As

long as the singleton is well-isolated from other objects so that local center-surround

differences incorporate substantial input from the background, models assign low

salience to a singleton with lower contrast against the background than other objects

in the image (gray or pink squares surrounded by white background and black/red

squares). We show that humans select these singletons over otherwise identical stimuli

that are not singletons. As long as the singleton, background, and other objects are

sufficiently far apart from each other in color space, the singleton will be preferentially

selected.

While previous research in the visual search and psychophysical literature have

arrived at similar conclusions about salience (Bauer et al., 1996; Nothdurft, 2006;

Treisman and Gormican, 1988), the participants involved in those studies were either

explicitly informed about the nature of the images being presented, or they performed

enough trials that they likely expected certain types of images. It is therefore not

clear to what extent responses influenced by systematic top-down effects rather than

controlled by the perceptual qualities of the visual stimuli. We therefore developed an

experiment in which participants received minimal information on the stimuli. Our

results show significantly increased salience of unique objects even for the very first

time a participant sees a scene.
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3.4.2 Top down Influences and Possible Experi-

mental Confounds

Our experimental paradigm makes it feasible to measure behavioral responses from

a large number of participants while minimizing expectations of stimulus contents

they may have or develop during the experiment. Nevertheless, given the complexity

of the human mind, it is extremely difficult to completely exclude top-down influences.

In the following, we discuss potential remaining top-down effects that may have biased

our results, from the more generic to the more specific.

Our experimental paradigm certainly does not remove all top-down influences on

attention. Participants’ behavior will naturally be affected by outdoor distractions,

their internal state etc.. However, we suggest that removal of (explicitly or implicitly

provided) information about the visual stimuli removes those top-down influences

that are specific to the images they see, leaving only those of a generic nature that

are independent of the images. Furthermore, in our experiment each image with a

faint singleton square is paired with another one that is identical in all respects except

that the singleton is replaced by a distractor square. There is no reason to assume

that top-down influences due to generic distractions etc. are different between the two

images of a pair. Therefore, differences in internal state of a general nature cannot

explain our results.

A second, rather pessimistic interpretation of our results is that the participants
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were priming themselves to look for unusual objects because they knew that they were

participating in a psychology experiment, and that they responded in a way that they

believed the scientist wanted them to respond (“demand bias;” Firestone and Scholl,

2016). It has, indeed, been found that participants in psychology experiments will

modulate their responses based on what they believe the purpose of the experiment

is. For example, Durgin et al. (2009) showed that participants will give a higher

estimate of a slope to be scaled while wearing a heavy backpack if they infer that

experimenters expect that the weight will influence their judgment, compared to a

situation where they carry the same backpack but believe its weight is irrelevant for

estimating the slant (because they are told that it contains measurement equipment).

We acknowledge the possibility that subjects tap the unique object because they

think the experimenter wants that response, though it does not seem probable. Our

experiment was designed specifically to minimize this effect which, if present, should

be much more prevalent in the cited previous behavioral studies of the salience of

faint objects. In our experiment, a significant effect is observed when participants

respond to the very first singleton image they ever see (after one other image showing

an unrelated natural scene), with the response given within about one second. It

seems highly unlikely that participants come to a conclusion of what the experimenter

expects from them in literally a split second without any additional information but

the image itself. In addition, the fact that our results in Chapter 2 (Jeck et al., 2017)

showed significant correlations between behavior in this task and several measures
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of saliency strongly suggests that taps do occur on salient stimuli. Furthermore, in

informal debriefing of participants after the experiment, none of the participants asked

if they were supposed to tap on the singletons. All this supports the interpretation

that our results are not due to demand bias or similar effects.

Another criticism may be that the participants had enough time viewing the image

to engage in a mixture of top-down and bottom-up processing. Under this view, the

fact that the participants have a reaction time greater than a second is a serious

design limitation. Rather than their attention being drawn immediately to the most

salient stimulus and then reporting it, during that amount of time the participants

may saccade to multiple locations and modify their choice of where they report they

first look based on a higher-level interpretation of the scene. While it is true that

the median reaction time of 1.3s would theoretically allow several fixations, this does

not take into account the time needed for making a controlled hand-movement to

a specific location in a task executed without any previous training, performed in a

casual environment (standing on a walkway on campus), and without encouragement

for a rapid response. We consider it likely that the vast majority of the 1.3s long

period between the time the image was presented and the finger reached the tablet

surface was devoted to motor planning and actual limb motion. We also note that

this criticism would likewise apply to fixation data which is typically gathered over

several seconds of free viewing (Borji and Itti, 2013).

Finally, we briefly address two concerns that are not related to top-down influ-
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ences. The first is that, if the scene gist hypothesis (Review: Oliva, 2005) is true, the

overall structure of the scene may begin to have an effect on attention immediately

(within ≈ 100ms). This is not a top-down effect by our definition since the gist is a

property of the scene, rather than of the internal state of the observer. It would be

extremely difficult to separate this effect from guidance of attention to salient stimuli

in any experiment. In fact, if the gist of our singleton scenes can be described by

“several similar objects and one dissimilar object on a homogeneous background”

it would even conceptually be difficult to distinguish its effect from salience-driven

guidance of attention to the singleton. Both explanations may simply be different

descriptions of the same underlying process.

One possible methodological concern may be that participants may not follow our

instructions to “tap the first place you look.” Indeed, we do not control whether they

do but we see this formulation rather as a non-technical way to instruct participants

to indicate where they are attending than as an action that needs to be followed

precisely. Our interest is to assess where attention is deployed, rather than finding

a precise surrogate for eye movements. Pointing with a finger is a very natural

and universal human behavior (Kita, 2003) which already appears during infancy, at

about one year of age (Leavens et al., 2005; Tomasello et al., 2007). The purpose

of finger pointing is typically to direct attention (either that of another person or

occasionally of the pointing person him or herself) towards a specific part of the

world. This behavior is thus a direct, voluntary expression of attentional selection.
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While the term “overt attention” is traditionally used for eye movements, pointing

can therefore be seen as another form of overt attention that makes the outcome of the

agent’s attentional selection process explicit. This is all we need to gauge deployment

of attention in our scenes.

3.4.3 Object-based Models

Regardless of interpretation, a model that would capture the observed behavior

must rely on a computation more advanced than spatially defined center-surround

operations. A natural step in this direction is the formation of proto-objects by

grouping together low level features of the same type. The Russell et al. (2014)

model includes processing that computes where proto-objects are, computing strength

of proto-object representations based on the strength and organization of edges in

the image. However, the model is unable to capture the observed behavior (see

Figure 3.2B) because it does not perform any comparison between proto-objects.

Instead, the edges of the gray square with lower contrast result in a weaker proto-

object representation. The same applies to the Walther and Koch (2006) model.

Models that do capture the observed behavior will need to operate on proto-objects

or object representations. The Perazzi et al. (2012) model (which can capture the

observed behavior after fine-tuning parameters, see Section 3.1.1) breaks the image

into patches and looks for a unique, compactly distributed color. Comparing patches

on a global scale when computing color uniqueness and color distribution allows this
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(modified) model to generate the correct output. Proto-objects offer a representation

that has more fidelity to the physical world, with distinct objects occupying consistent

locations in visual space. Such representations would be more behaviorally useful than

color patches, as predictable changes in the visual scene could be encoded for a proto-

object but not for a color patch. Additionally, existing proto-object representations

like Russell et al. (2014) separate out the background by assigning low Si values

to regions corresponding to the background. This reduces the number of regions

that need comparing, as the Perazzi et al. (2012) model assigns many patches to the

background.

3.4.4 What Are Unique/Rare Objects?

If, as we assumed based on our intuition and confirmed by our behavioral ex-

periments, uniqueness contributes to the saliency of a (proto-)object, a definition or

at least characterization of what uniqueness means would be useful. As Kadir and

Brady (2001) observe, this is not a trivial question. Generalizing to the more general

concept of rarity, they point out that what is considered rare depends not only on the

contents of a scene but also on the method by which it is described. If feature descrip-

tors are highly discriminatory, features of all (proto-)objects differ substantially and

everything is rare. On the contrary, if descriptors are very general, all (proto-)objects

have much in common and nothing is rare.

Once a descriptor is chosen, a simple Bayesian argument shows (Kadir and Brady,
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2001) that those areas are of interest that have high entropy. It was shown empiri-

cally that, indeed, fixated (and therefore likely salient) image regions show increased

entropy, contrast and decorrelation between neighboring pixels (McCamy et al., 2014;

Parkhurst and Niebur, 2003, 2004; Reinagel and Zador, 1999). The reason is that their

contents are not well explained by the applied feature descriptor, therefore these areas

require more detailed scrutiny by more powerful mechanisms. The selection of areas

that need to be processed in more detail is, of course, the fundamental function of se-

lective attention. In the language of perception, these areas are salient which directs

attention to them. A well-chosen feature descriptor explains large parts of the image

satisfactorily, therefore this happens only rarely. This is the case even for very simple

descriptors, e.g. the assumption of homogeneity in elementary features or combina-

tions of them. For instance, the classical saliency map models (Itti and Koch, 2001;

Itti et al., 1998; Koch and Ullman, 1985; Niebur and Koch, 1996) make the implicit

assumption that color, intensity and orientation are homogeneous over space and that

deviations from this assumption are marked as salient, to be selected by attention.

This is easily generalized to time-varying input when change or motion are involved

with the implicit assumption that energy in space-time is constant (Itti, 2005; Niebur

and Koch, 1996; Parkhurst, 2002) and, again, deviations from this assumption are

salient. The present work supports the idea that a simple descriptor with a prior of

uniformity in pixels is not sufficient to explain behavior, since high-contrast would

represent a strong deviation from the mean of the uniform distribution. However,
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a descriptor that at first pass describes the numerous objects and background sep-

arately may label a unique low-contrast object as salient because it deviates from

expectations.

3.5 Supplementary Information

3.5.1 Linear separability of the unique faint square

in feature space

While Figure 3.1C shows that the Itti et al. (1998) model of visual salience does

not produce a strong response for the unique gray square, we wondered whether any

linear combination of the intensity features in that model could produce the observed

behavior where the unique square is selected more than an otherwise identical black

square at the same location. If a linear combination of the intensity center-surround

features could produce the desired behavior, then there would exist some set of weights

on the center-surround maps that enhance the gray square while suppressing the black

squares as well as the background.

We therefore set up a set of linear constraints. If they are impossible to satisfy

then the feature space is unable to replicate human behavior. The center surround

features c generated by the original code from Itti et al. (1998) are six 48× 64 pixel

maps, one at every spatial scale in the Laplace pyramid of the intensity submodality.
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For a given (x, y) location on the image, c(x, y) is therefore a vector with six elements

corresponding to each center surround feature value at (x, y). Our constraints are

that a set of weights w must satisfy

wT c(x, y) < K (3.4)

for some constant K, when (x, y) is outside of the gray square. Additionally, for some

point (x′, y′) inside the gray square,

wT c(x′, y′) > K (3.5)

must also be satisfied. For a given value of (x′, y′) this set of constraints can be refor-

mulated as a linear programming problem which allows us to check the satisfiability

of the constraints using off-the-shelf software (Matlab R2012b). We found that for

the image in Figure 3.1A the constraints could not be satisfied for any given (x′, y′)

value on the gray square.

3.5.2 Additional Figures
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Gray/Black Perazzi et al. POC All-Black
16 out of 51

18 out of 70

32 out of 52

13 out of 40

11 out of 39

0 out of 51

2 out of 70

18 out of 52

1 out of 40

0 out of 39

Figure 3.7: Model output and data collected on all Gray/Black images. First col-
umn, images with tap results overlaid (green dots). Text above each image indicates
number of taps on the gray square out of the total number of participants who saw
the image. Second column, output of the Perazzi et al. (2012) model. In four of the
five cases, the unique square is not given high salience. Third column, output of the
POC model. The unique square is always given high salience. Fourth column, corre-
sponding All-Black images shown to participants with overlays of tap results (green
dots). Text above each image indicates the number of taps on the corresponding
black square. p values for direct comparisons between first and fourth column were
computed using a paired t-test (1.57 ∗ 10−5, 7.99 ∗ 10−5, 6.96 ∗ 10−4, 2.10 ∗ 10−4, and
4.22 ∗ 10−4 respectively from top to bottom)
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Pink/Red Perazzi et al. POC All-Red
12 out of 51

40 out of 70

13 out of 52

22 out of 40

14 out of 39

0 out of 51

38 out of 70

4 out of 52

16 out of 40

1 out of 39

Figure 3.8: Model output and data collected on all Pink/Red images. First column,
images with tap results overlaid (green dots). Text above each image indicates number
of taps on the gray square out of the total number of participants who saw the image.
Second column, output of the Perazzi et al. (2012) model. In four of the five cases, the
unique square is not given high salience. Third column, output of the POC model.
The unique square is always given high salience. Fourth column, corresponding All-
Red images shown to participants with overlays of tap results (green dots). Text
above each image indicates the number of taps on the corresponding black square.
p values for direct comparisons between first and fourth column were computed using
a paired t-test (2.68∗10−4, 0.686, 0.0111, 0.160, and 3.48∗10−4 respectively from top
to bottom)
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Chapter 4

Closed Form Jitter Analysis

of Neuronal Spike Trains

4.1 Introduction

Most neurons communicate by series of action potentials (spikes). It is known

that in some cases the detailed time structure of these spike trains is used for in-

formation transmission while in others, only the overall number of spikes in some

interval seems to be important but not their position in the interval. Examples of

the first type are various kinds of “temporal coding” schemes proposed for different

neural system and for different functional roles, e.g. refs Abeles (1991); Niebur et al.

(1993); Riehle et al. (1997); Singer and Gray (1995); Softky (1995); Steinmetz et al.

(2000), while the latter is the well-known rate-code mechanism, e.g. refs. Adrian
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and Zotterman (1926); Shadlen and Newsome (1998). In the context of visual proto-

objects, Martin and von der Heydt (2015) argued that the detection of a particular

temporal code in extrastriate cortex (V2) supports the hypothesis that those neurons

are receiving feedback from a proto-object representation. To distinguish between

the two possibilities of rate and temporal codes, it is necessary to find whether re-

producible correlations at the relevant time scale are present in neuronal data. One

common way to approach this problem is to use auto- or cross-correlation functions

as test statistics. Then one can (a) search for non-trivial structure in the function,

like deviations from uniformity, and (b) detect whether there are differences between

these functions in different experimental (e.g. behavioral) conditions.

The situation is complicated by the influence of rate variations on the raw corre-

lations. To increase the signal-to-noise ratio, correlations are typically computed as

averages over many trials. Changes in the behavioral state of an animal, e.g. due to

onset of sensory stimuli or motor responses that occur always at the same time during

a trial, typically result in changes in neural firing rates which are common to many

neurons. While these are genuine correlations, they are unrelated to the neuronal

coding question. Different techniques have been developed to remove them, e.g. sub-

traction of a “shuffle predictor” Perkel et al. (1967), the average of cross correlations

between spike trains from permuted trials1. While this correction removes correla-

tions that are time-locked to trial onset, it was later pointed out that peaks in the

1A “shift predictor” is very similar but the correlation function is computed from trials that
immediately follow each other, rather than from randomly selected trials.
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correlation function that may be taken as indicative of correlated firing (e.g. at zero

lag) can also be caused by slow rate covariations Brody (1998, 1999). After finding

a significant peak in the cross correlation function, this ambiguity can be addressed

by analyzing the time scale at which the measured correlation arises.

It was pointed out more recently Amarasingham et al. (2012) that the null hypoth-

esis of spike trains being independent in earlier work Perkel et al. (1967) is useless if

their mean rates co-vary. Rate co-variation of means the spike trains are not indepen-

dent which leads to its immediate rejection of the null without providing any further

insight. Amarasingham and his colleagues instead proposed a more detailed null hy-

pothesis, namely that within an interval of width ∆, the exact location of spikes does

not matter. Then, under the null hypothesis, simulated spike trains can be generated

by modifying the spike times of an original measured spike train within a range of ∆.

The cross correlations obtained from these modified (“jittered”) spike trains are then

compared to those obtained from the original. If significant differences are found, the

null hypothesis is rejected and it is likely that non-random correlations at time scales

≤ ∆ are present in the data. Additionally, this method gives rise to the computation

of jitter-corrected cross correlograms, which have been used to compare changes in

synchrony across experimental conditions (Hirabayashi et al., 2013a,b; Martin and

von der Heydt, 2015; Smith et al., 2013). Because the method relies on repeated

simulation of spike trains, it will be referred to as the Monte Carlo jitter method for

the purposes of this thesis.
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While the Monte Carlo jitter method (described fully in Section 4.2.1) is useful

and easily generalized to complex statistical tests and hypotheses, its practical utility

is limited by the inherent trade-off between accuracy and computation time in all

Monte Carlo methods. As we will show in Section 4.3.2, the computation time may

be prohibitively long, and even at this cost, it will only be a numerical approximation

of the true solution. In the case where the test statistic is the cross-correllation value

at a single lag, the p value can be computed exactly, as was shown by Harrison (2013).

In the present study, we therefore explore the benefits of computing in closed form the

distribution which is only approximated by the Monte Carlo simulations. Accordingly

we refer to this method, described in Section 4.2.2, as the closed form jitter method. In

addition to computing the p value for rejecting the null hypothesis exactly we show

that the computation of the jitter-corrected cross correlogram follows readily from

that derivation. The computational performance of the closed form jitter and Monte

Carlo jitter methods are compared theoretically (as computational complexity) in

Section 4.3.1 and practically (as computational time) in Section 4.3.2.

4.2 Materials and Methods

4.2.1 The Monte Carlo Jitter Method

Utilizing the Monte Carlo jitter method (Amarasingham et al., 2012), it is possible

to determine whether correlations arise from fine temporal structure or larger scale
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T Length of binned spike trains
X, Y Two spike trains
τ Correlation Lag
C(τ) Correlation of X and Y
∆ Jitter interval width
i Index over Monte Carlo simulated signals
j Index over jitter intervals
N(X, j) Number of spikes in X in interval j
XMC

i ith Monte Carlo simulated signal
NMC Number of Monte Carlo simulated signals
CMC

i Correlation of XMC
i and Y

Rτ Number of cases where CMC
i (τ) > C(τ)

pτ p Value for correlation at lag τ
JCCG(τ) Jitter-corrected Cross Correlogram
Pτ (C

MC) Monte Carlo estimate of the distribution of correlations at lag τ
C int

j Number of coincidences in the jth interval
Pτ (C(τ)) True distribution of correlations at lag τ
τmax Maximum τ value processed
Nmax Maximum value of N(X, j) or N(Y, j)
Cmax Maximum possible number of coincidences

Table 4.1: Glossary. Variables are listed in the order in which they are introduced.

86



CHAPTER 4. CLOSED FORM JITTER

variations, sometimes referred to as rate covariations. This determination is made by

comparing a test statistic (in this case cross correlations) of an original pair of spike

trains against those computed from a set of jittered spike trains as described below.

The jitter method, like cross correlation, operates on binned spike trains which we

take as binary signals with values 0 and 1 and integer arguments 0 to T − 1, where

T is the number of bins in the spike train. The binary assumption implies that the

bin size is small enough (typically 1ms or so) such that two spikes cannot be recorded

in a single time bin. A sufficiently small bin size can always be chosen since there

are limits on the minimal inter-spike interval time due to the refractory period of the

neurons in question.

Let X(t) and Y (t) be two such binned spike trains. The processing then consists

of the following steps:

1. Compute the cross correlation C(τ) between the original X and Y ,

C(τ) =
∑

t

X(t− τ)Y (t)

where the sum runs from 0 to T − 1 and X is assumed to be 0 if its argument

is outside that range.

2. Subdivide one of the signals, say X, into intervals of width ∆.
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3. Count the number of spikes in each interval of X. In interval j this is,

N(X, j) =

(j+1)∆−1
∑

k=j∆

X(k) (4.1)

4. For X generate NMC Monte Carlo simulated signals {XMC
i }, in which the spike

counts for each interval are the same as in the corresponding interval in X, such

that N(XMC
i , j) = N(X, j) for all i, j. However, now spike times within the in-

terval are all equally likely. Spike times should be sampled without replacement

to ensure that the spike count stays constant without putting multiple spikes

in a single bin.

5. Compute the cross correlation CMC
i (τ) for lag time τ between each XMC

i and

the second spike train Y to get an estimate of the distribution Pτ (C
MC) of cross

correlation values for each time lag τ .

CMC
i (τ) =

∑

t

XMC
i (t− τ)Y (t)

6. Let Rτ be the number of simulations where CMC
i (τ) ≥ C(τ). Then the p value

for a given lag τ is computed as

pτ =
Rτ + 1

NMC + 1
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7. If desired, a jitter-corrected cross correlogram (JCCG), defined using the ex-

pectation operator E[·], can be computed as

JCCG(τ) = C(τ)− E[CMC(τ)] ≈ C(τ)−
1

NMC

∑

i

CMC
i (τ) (4.2)

where the approximation approaches equality with NMC → ∞.

Jittering the spikes within an interval of size ∆ destroys all correlations at time

scales within this interval. The cross correlations computed from the jittered spike

trains therefore are not correlated on time scales ∆ or smaller, and Pτ (C
MC) is the

distribution of correlations at time lag τ obtained under the null hypothesis that

correlations at time scales ≤ ∆ are indistinguishable from random correlations. If the

measured cross correlation C(τ) is significantly outside this distribution, we have to

reject the null hypothesis and we conclude that nonrandom correlations at lag τ with

time scales ≤ ∆ are found in the observed spike trains. If, on the other hand, the

observed correlation is consistent with what is seen in the distribution of jittered spike

trains, then we cannot reject the null hypothesis. This means we cannot exclude that

the observed synchrony is caused by correlations on time scales outside the jittered

range, in other words that the observed correlation at lag time τ is caused by rate

variations on time scales greater than ∆.

In practice, X(t) and Y (t) do not have to be gathered from a continuous block
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of time. In the case of multiple trials of the same experimental condition, it may

be useful to concatenate the recorded spike trains (possibly after removing sections

of them, like those recorded during stimulus onsets). In doing so, a period of no

spiking of width τmax (the largest correlation lag of interest) should be added between

the trials so that correlations between trials don’t affect the outcome of the jitter

procedure.

As mentioned in Section 4.1, the practical utility of the Monte Carlo method is

limited by the trade-off between accuracy and computation time inherent in all Monte

Carlo algorithms. Furthermore, in practice a single set of Monte Carlo simulations

is often generated for many hypothesis tests (i.e. tests at multiple lags), introduc-

ing potential dependencies between the different tests when they should be treated

independently 2. In order to avoid both of these issues, the probability distribution

Pτ (C
MC) can be computed exactly and independently for each time lag as described

in the following.

4.2.2 Closed Form Computation

4.2.2.1 Probability Distribution For One Interval

First, let us consider a single interval consisting of ∆ time bins. For example, if

spike times have been binned to 2 ms, for an interval of width 20 ms we have ∆ = 10.

2The procedure of generating one set of spike trains for multiple lags is appropriate inappropriate
only if each lag is being tested independently. If the test statistic is the sum of C(τ) over a range of
lag values, a single set of simulated spike trains is appropriate.f
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Since time has been discretized, it is still possible to discuss this unitless value as a

length of time, a time scale, or a interval width for a given bin size. As before, we

assume that the sequence is binary, so each bin has either zero or one spike. This is

true even when the spike times are jittered because spike times are sampled without

replacement. For this single interval, the probability of a given number of coincidences

occurring is determined by three values: ∆, N(X, j) the number of spikes in interval

j of spike train X, and N(Y, j) the number of spikes in interval j of spike train Y.

As a first step, we count the number of perfect coincidences, in which one spike

occurs in both X and Y within the same time bin, meaning τ = 0. Using the standard

notation of
(

a

b

)

for the combinatorial operation (a choose b), we find that there are

(

∆
N(X,j)

)

ways to distribute N(X, j) spikes in ∆ available bins. The number of empty

(spike-less) bins in spike train Y is [∆−N(Y, j)]. The number of ways to distribute

N(X, j) spikes such that each of them falls into one of these empty bins is
(

∆−N(Y,j)
N(X,j)

)

.

These are all possible cases in which a coincidence is avoided. The probability that

zero coincidences occur in the j-th interval is therefore

P (C int
j = 0|∆, N(X, j), N(Y, j)) =

(

∆−N(Y,j)
N(X,j)

)

(

∆
N(X,j)

) (4.3)

where C int
j is the number of coincidences in this interval.

We can generalize equation 4.3 to a non-zero number c of coincidences by breaking

the numerator up into the number of ways that c spikes can coincide with the spikes
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in Y , and N(X, j) − c spikes coincide with the gaps (or non-spikes) in Y . We can

thus compute a probability distribution for each interval j,

P (C int
j = c|∆, N(X, j), N(Y, j)) =

(

∆−N(Y,j)
N(X,j)−c

)(

N(Y,j)
c

)

(

∆
N(X,j)

) (4.4)

where we follow the customary convention of setting the value of a “choose” operation

to zero if either of its arguments is negative, or if its upper argument is less than the

lower. If this happens in the numerator of eq. 4.4, the probability on the left hand

side becomes zero. Of course, the denominator is always positive since N(X, j) ≤ ∆.

This is a hypergeometric distribution.

Equation 4.4 is easily generalized to nonzero values of τ by applying the analysis

leading to it to a shifted version of Y . For the computation of N(Y, j), this implies

adding τ to the summation limits in eq. 4.1. As with other correlation algorithms,

the boundaries of finite spike trains (beginning and end) result in fewer intervals to

analyze as τ gets further away from zero. Thus generalizing eq. 4.4 to non-zero τ , we

denote the resulting number of coincidences as C int
j (τ) and the associated probability

distributions as P int
τ .

4.2.2.2 Jitter-Corrected Cross Correlation

Once we have the analytical probability distribution for the correlations, we can

obtain all relevant quantities to characterize the pairwise correlations between two
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spike trains. It is straightforward to compute the commonly used jitter-corrected

cross correlogram (e.g., Hirabayashi et al., 2013a,b; Martin and von der Heydt, 2015;

Smith et al., 2013) which shows the correlation function after all correlations on time

scales longer than ∆ have been removed. It is defined in analogy to equation 4.2

where the expectation value of the stochastic solution, E[CMC(τ)], was used. We

can replace this approximation by the exact solution E[C int(τ)]. Furthermore, by the

null hypothesis each interval is conditionally independent based on the spike counts.

Therefore, the JCCG can be computed without approximation by

JCCG(τ) = C(τ)− E

[

∑

j

Cint
j (τ)

]

= C(τ)−
∑

j

E
[

Cint
j (τ)

]

(4.5)

which, as should be remembered, is computed for a specific jitter interval width ∆.

The expectation on the right can either be calculated for each window as N(x, j) ×

N(y, j)/∆.

The jitter-corrected cross correlogram is used, for instance, when the scientific

question of interest is whether there are significant changes in synchrony between

conditions, rather than a test of the presence or absence of synchrony. It is then used

as part of a bootstrap statistical test in which the observed pairwise correlation is

compared with the distribution obtained from eq. 4.5.
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4.2.2.3 Probability Distribution For Spike Train

One can also obtain the probability distribution for the entire signal Pτ (C(τ))

as the convolution of the individual probability distributions for all intervals, P int
τ .

This is identical to computing Pτ (C
MC) from Section 4.2.1 with an infinite number of

Monte Carlo simulations for each value of τ . One can then evaluate how likely it is

that the observed cross correlation C(τ) is explained by this probability distribution.

The likelihood p that this is the case is obtained as the integral of the probability

density function exceeding C(τ), as in

pτ =
∞
∑

c=C(τ)

Pτ (c) (4.6)

4.3 Results

4.3.1 Computational Complexity

In many situations, the statistical distributions underlying the phenomena under

study are complicated or unknown and performing Monte Carlo simulations are the

only way to make progress, even though it may be costly and it introduces additional

randomness in the processing. In the case considered here (binary spike trains, null

hypothesis of uniform spike time distribution in fixed interval, cross correlation test

statistic), the distribution Pτ (C) can be computed directly, using the closed form jitter
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method described above, without the need for repeated simulations. This section will

compare the computational complexity of using the Monte Carlo jitter method against

the direct computation using the closed form jitter method.

4.3.1.1 Monte Carlo Method

In the Monte Carlo algorithm, the data generation step requires a permutation

of ∆ data points for each interval and simulation. Since a single permutation oper-

ation has a computational complexity O(∆), and ∆ times the number of intervals is

the length of the signal T , generating the set of Monte Carlo simulations {XMC
i } is

O(NMC × T ). The complexity of cross correlation or convolution of two signals with

lengths T is O(T × log T ), assuming an FFT-based method (Cooley and Tukey, 1965)

is used. So computing the full Monte Carlo probability distribution for all values of τ

is O(NMC×T×log T ). In many cases, not all values of τ are needed. If the correlation

is computed only for the subset of delay values from 0 to τmax, the complexity for the

Monte Carlo jitter method is

O(NMC × T × τmax)

Computing the jitter-corrected cross correlogram by this method only requires

one additional sum, with complexity O(NMC × τmax) so the total complexity remains

unchanged.
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4.3.1.2 Closed Form Probability Distribution

To compute the exact probability distribution with the closed form jitter method,

note that the values of the distribution can be precomputed based on the maximum

values of N(X, j) and N(Y, j) over all j; call this maximum Nmax. Also, n choose

k operations can be as fast as O(min(k, n − k)) (Manolopoulos, 2002). Therefore,

a three dimensional table of all possible values of P (C int
j |N(X, j), N(Y, j)) can be

precomputed and then looked up for each interval. Generating this table requires up

to Nmax different values of C, Nmax values of N(X, j), and Nmax values of N(Y, j).

Computing each value requires three n choose k operations, which are on the order

of O(Nmax), so the total computation of the probability table is O(Nmax
4). While

the exponent is high, the expression does not have any dependence on the length

of the signal and, furthermore, Nmax ≤ ∆ is a small number in essentially all cases

of interest. In practice, for analyzing neurophysiological data it is rare that a time

resolution finer than 1 ms is needed, or controlling for cross correlations at time scales

larger than approximately 100 ms (i.e. ∆ ≈ 100). The full lookup table is therefore

maximally a 100× 100× 100 matrix, which requires negligible resources to compute

and store.

To compute the combined probability distribution Pτ (C) over all intervals, all

interval probability distributions Pτ (C
int
j ) must be convolved, and the computational

complexity of the problem is dominated by these convolution operations. As will

be shown, we can improve performance by taking advantage of the structure of the
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problem at hand, since many of the convolution operations are identical. As a result,

the convolutions can be grouped together based on N(X, j) and N(Y, j) and quickly

combined so that O(T ) convolutions will turn into O(Nmax
2) convolutions. This can

be done by the following procedure:

1. Take the Fast Fourier Transform (FFT) of Pτ (C
int
j |N(X, j), N(Y, j)) for each

encountered value of N(X, j) and N(Y, j).

2. Raise each complex frequency spectrum value to a power equal to the number

of times that the (N(X, j), N(Y, j)) pair appears.

3. Multiply these frequency spectra.

4. Take the inverse FFT of the result to get the final probability distribution Pτ (C)

and compute pτ as in equation 4.6.

5. Repeat steps 2 through 4 for each value of τ to be tested.

The FFT operations in step 1 must be zero-padded up to the maximum number

of coincident spikes Cmax to account for the highest possible number of synchronous

spikes in the combined probability distribution. Therefore the FFT operation in

step 1 is O(Cmax × log(Cmax)). In step 2, exponentiation is O(1). However there

are O(T × Nmax
2) exponents to be taken, repeated τmax times in step 5. Step 3

requires O(T × Nmax
2) multiplications, again repeated τmax times. In step 4, the

length of the spectral signal (to be inverted by FFT) is Cmax, so the operation is
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O(Cmax × log(Cmax)) repeated τmax times. When combining these steps, note that

Cmax is proportional to T . However Cmax will be used when relevant because it

captures the frequency dependence of the computation time. Therefore the total

computational complexity is

O(Cmax × log(Cmax)× τmax)

.

Note that because the zero-frequency component of a probability distribution is

always exactly unity, the inverse FFT computation will have accuracy limited by the

precision of the numerical system. In practice this implies that p values less than

10−13 will not be estimated accurately.

4.3.1.3 Jitter-Corrected Cross Correlation

Both the complexity analysis and the actual computation of the jitter-corrected

cross correlogram is much simpler than that of the probability distribution. We

generate a lookup table of possible E
[

C int
]

values and, from equation 4.5, the jitter-

corrected correlogram can be computed at a speed of

O(T × τmax)

.
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4.3.2 Computational Execution Time

For practical applications, consumption of resources is an important limitation for

any computational method. For the size of problems encountered in typical neuro-

physiological experiments, the only limiting resource is execution time. To compare

the performance of the Monte Carlo jitter and the closed form method, the two algo-

rithms were run side by side in the MATLAB environment (Mathworks, Natick MA).

Synthetic spike trains were generated that varied in both frequency of spiking (5 to

500 Hz) and length (1 to 91 seconds). For each (time, frequency) condition, 50 spike

trains were generated, binned to 1 ms, and the average processing time was computed.

Processing was performed with τmax = 100ms and ∆ = 20. All computations were

performed on an Intel i7 920 processor with 12 GB of RAM running Linux Ubuntu

12.04.

For the Monte-Carlo method, NMC was set to 1000. This selection of NMC is un-

realistically low for two reasons. First, it can at best result in a Bonferroni corrected

p value of 0.201 due to the 201 p values being tested in the range of −τmax to τmax.

As the execution for NMC = 1000 already takes 5.7 days to run, increasing NMC is

impractical. Second, only a single set of Monte-Carlo trials were generated for all lag

values computed, inducing potential correlations between the p values. These correla-

tions should decrease as more trials are generated. Therefore results are extrapolated

to NMC = 20, 000 (resulting in a minimum p ≈ 0.01) under the assumption that the

processing for 20 times as many simulations would take 20 times as long. Though the
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bonferroni correction used here is conservative, it is less conservative (by an order of

magnitude) than simulating a whole new set of spike trains for each p value as would

be required to entirely eliminate any correlations between the p values.

For the closed form jitter method, all lookup tables were computed de novo for

each spike train. This is a conservative approach (favoring the Monte Carlo technique)

since performance of the closed form jitter method could be improved by computing

the tables only once and using them for all spike trains. This is certainly advised in

a “production environment.”

The results of this simulation, shown in Figure 4.1, illustrate a number of features

about the speed of the two algorithms. Plotted is the performance gain, defined as the

ratio of the computation time between the Monte Carlo jitter method and the closed

form jitter method. The first observation is that the closed form method is substan-

tially faster than the Monte Carlo method in all cases considered. Second, while the

performance gain depends only weakly on spike train length, it does decrease with

increasing firing rate. This is because the computation time of the closed form jitter

method increases with firing rate. In practice, however, it is rare to observe firing at

sustained frequencies exceeding 100 Hz in physiological recordings. In the physiolog-

ical range, the closed form jitter algorithm is faster by a factor of approximately 180

to 7200.

Harrison (2013) uses importance sampling to accelerate the Monte Carlo hypoth-

esis testing process which requires drawing fewer samples. In that work the number
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of samples needed, even for a low Bonferroni corrected p value, is reduced to 100.

However, each sample is reported to take 18 times as long to generate and process

as before, effectively resulting in a simulation about 11 times faster than the Monte

Carlo simulation with NMC = 20, 000. Therefore, under physiological conditions the

closed form computation has an expected speed-up of 16 to 650 times compared to

the importance sampling method. It should be noted that in cases where even lower

p values are needed because of multiple hypothesis constraints, importance sampling

will provide larger gains in estimating very small p values. In these cases, increasing

the p value requirements has no effect on the computation speed of the closed form

method, so the closed form method can be expected to be faster in all cases.

Another improvement mentioned in Section 4.2.2.2 is the ability of the closed form

jitter method to compute the jitter corrected correlogram very rapidly, without com-

puting the null hypothesis distribution of correlation values. To show the magnitude

of the improvement, the simulation was repeated with only the mean of the null hy-

pothesis distribution computed under the closed form jitter method since this is all

that is needed for the corrected correlation function, eq. 4.5. We also restricted firing

frequencies to the range 5–200 Hz. Figure 4.2 shows the ratio of the time it takes to

compute equation 4.2 vs. equation 4.5. In these cases, the closed form jitter calcu-

lation is substantially faster (480x–13,000x), with increasing benefits for increasing

spike train lengths. As discussed previously, the spike train length is typically not

that of individual trials but of the concatenation of many trials.
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4.4 Discussion

The importance, or absence of it, of precise timing of neural spikes has been

discussed for the last half-century. Several techniques have been developed to char-

acterize neuronal responses at fine time scales and it is clear that statistical methods

have to be developed with much care to avoid wrong conclusions (e.g. Gawne and

Richmond, 1993; Roy et al., 2000). One important difficulty is that firing rates can

co-vary in the neurons under study. It is well-known that such co-variations are ob-

servable in quantities like pairwise cross correlation functions but they are typically

considered as irrelevant from the point of view of neuronal coding or of determining

the connectivity in the underlying circuitry. For instance, the onset of a stimulus will

typically generate a temporary increase in firing rates in sensory cortex but the re-

sulting increase in cross correlation is usually not considered of importance for neural

coding (for an exception see ?, who showed that spike timing relative to onset-related

population activity is informative). One common way to subtract such stimulus-

locked effects is by subtracting a “shuffle predictor” (Perkel et al., 1967), obtained

by computing cross correlations between spike trains from permuted trials. It has

been pointed out repeatedly (see references in the Introduction) that this does not

eliminate spurious correlations, including close to τ = 0 (synchrony).

Brody (1998, 1999) and Amarasingham et al. (2012) proved that adopting the null

hypothesis of independent neurons can not solve the problem. Observation of such

correlations is, indeed, evidence against the null hypothesis of independence between
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the two observed spike trains. Rejection of this null hypothesis can, however, occur

either because spikes in the two spike trains are correlated “one-by-one” (synchrony),

or because of slow firing rate covariations common to both spike trains. The fact

that this null hypothesis can be rejected does not tell us why it is rejected. If the

question is whether synchrony exists at less than a given time scale (only), this is

the wrong null hypothesis. Instead, the time scale needs to be specified explicitly.

The null hypothesis chosen by Amarasingham et al. (2012) is that changes of spike

times within a time interval of size ∆ have no effect on the computed statistic, in this

case the correlation function. It is this null hypothesis that is tested by computer

simulation in the Amarasingham et al. (2012) study and analytically in this report.

A key element of the methods discussed here is that the jitter intervals are defined

without reference to the original spike trains. This ensures that if the null hypothesis

is true, there is no way to distinguish the original spike trains from the Monte Carlo

simulated spike trains. This characteristic (called exchangeability) ensures that the

obtained p values are from a well formulated hypothesis test. If, on the other hand,

the resampling method was changed so that each spike was jittered about it’s original

spike time, then even under the null hypothesis the original spike train would stand

out from the rest because all of its spikes would be at the center of the jitter intervals.

Therefore the resulting test would not be a proper statistical test and should be

avoided (Amarasingham et al., 2012).

We have discussed two ways one can choose to characterize the correlations be-
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tween two spike trains. One is a strict hypothesis testing approach. A null hypothesis

is formulated, namely that the observed correlations are indistinguishable from cor-

relations between spike trains whose spikes have been distributed randomly within

intervals of length ∆, without changing the number of spikes in each interval. By

comparing the observed correlation with those in the distribution generated under

the null hypothesis, it is then decided for a given α whether the null hypothesis can

be rejected.

The alternative is to compute the time-resolved correlation function and “correct”

for the correlations as observed under the null hypothesis, by subtracting the expecta-

tion value of the latter. This is the more commonly chosen approach, perhaps because

the time-resolved correlation function is both intuitive and familiar. The distribu-

tion of JCCG values can be compared between experimental conditions (indicating a

change in ’excess synchrony’) using a bootstrap test to test for significance. Also, its

shape (e.g. the location of peaks) may provide insight that goes beyond the yes-no

answer whether the null hypothesis can be rejected or not.

In the Amarasingham et al. (2012) study, the Monte Carlo procedure is further

developed to account for more potential causes of fine timing effects besides synchrony

such as ramping spike rates within an interval or inter-spike interval distribution ef-

fects. These methods are straightforward and statistically well-defined. Like any

Monte Carlo method, however, they only generate an approximation to the underly-

ing distribution whose quality depends on the number of surrogate spike trains. In
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practice what is more problematic is that the method can be computationally very

costly. For instance, as discussed in section 4.3.2, our example problem using the

simplest of the null hypotheses discussed (50 spike trains of a few seconds long each,

mean rates between 1 and 100 Hz, maximal time lag of 100 ms, α = 0.01 with Bon-

ferroni correction applied) would have required a simulation several months long on a

reasonably fast machine. We therefore only simulated NMC = 1000 trials and extrap-

olated to the execution time needed for NMC = 20, 000 but even that abbreviated

Monte Carlo run took nearly six days. Some progress can be made by using much

faster machines or many machines (the problem parallelizes easily) but execution time

is clearly a problem.

In contrast, the closed form jitter methods this report focuses on are exact, rather

than approximate. More important for practical applications may be that they are

extremely efficient, with a speed-up of at least two orders of magnitude for the hypoth-

esis testing approach, and four orders of magnitude for the full correlation functions.

Even over importance sampling methods (Harrison, 2013), they have been shown to

provide a substantial increase in speed. For the hypothesis testing examples used

in our study (whose scope is quite comparable to that of typical neurophysiological

experiments, assuming a proper Bonferroni correction is applied), computation time

is reduced from more than 100 days under the original Monte Carlo method to about

one night. Computational time required for the full correlation function is reduced

from over 100 days to a few minutes. An increase in performance on this scale is more
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than merely a quantitative improvement. For instance, it is essentially impossible to

explore variations in the analyses (like the influence of the jitter time scale ∆) if each

computational run takes a few months, but it is easy to do if it takes minutes.

So far we were only concerned with correlations between two spike trains. Modern

recording techniques are already increasing the number of simultaneously recorded

spike trains to tens or hundreds. Unfortunately, the closed-form jitter method is

limited in the ability to analyze large ensembles. This is because the correlation

functions of some pairs in an ensemble will restrict the possible correlation values of

other pairs. For example, if there are three neurons X, Y , and Z, and the pairs XY

and Y Z have perfect correlation, then the pair XZ must also have perfect correlation.

A Monte-Carlo jitter analysis that jitters an entire ensemble of neurons and then

performs a hypothesis test on the ensemble can be performed relatively simply, but

no such closed-form method exists yet. In order to avoid the constraints of the type

described above, onlyN−1 pairs of neurons can be analyzed with closed form methods

when N neurons are recorded.

Additionally, the nature of the exact solutions provides an opportunity for further

exact analysis. Having a closed form solution allows questions about the effects of

spike sorting errors, the value of ∆, or the structure of JCCG(τ) to be addressed

rigorously and more precisely than is possible with any numerical method.

In conclusion, we study a statistical framework for quantifying correlations be-

tween spike trains at given time scales. It can be applied both for hypothesis testing
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and for correcting observed correlation functions for correlations at these time scales.

Results are exact, and both computational complexity and computational time for re-

alistic examples are several orders of magnitude lower than related approaches based

on Monte Carlo simulations.

Matlab code is available at https://github.com/dannyjeck/closed-form-jitter
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Figure 4.1: Performance gain in implementing the closed form jitter method for p
value computations. Gain is defined as the ratio in computation time between the
Monte Carlo Jitter method and the closed form jitter method. Processing parameters
used are τmax = 100ms, ∆ = 20, and NMC = 20, 000 (see text for details).
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Figure 4.2: Performance gain in implementing the closed form jitter method for
Jitter Corrected Correlogram computations. Gain is defined as the ratio in computa-
tion time between the Monte Carlo Jitter method and the closed form jitter method.
Processing parameters used are τmax = 100ms, ∆ = 20, and NMC = 20, 000 (see text
for details). The lowered performance gain at signal length of 1 second is due to the
overhead of computing the probability table de novo for each spike train.
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Chapter 5

Neuronal Common Input Strength

is Unidentifiable from average

firing rates and synchrony

5.1 Introduction

One of the fundamental questions of neuroscience is the nature of neuronal codes.

It is well-established Adrian and Zotterman (1926) that in some cases information

is represented in the mean firing rates of neurons, averaged over a suitable interval,

typically some fraction of a second. There is also a rich literature suggesting that in

many other cases, relationships between spikes at a much finer scale are employed for

neural coding, at resolutions of milliseconds Abeles (1991); Riehle et al. (1997); Singer
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and Gray (1995); Steinmetz et al. (2000) or even less Rokem et al. (2006). Whether

fine timing relationships are available for use at least potentially can be determined

by observing whether reproducible correlations at the relevant time scales are present.

Independent of any functional role of temporal correlations between spikes, it has

been proposed that the relative timing of spikes from different neurons can provide

information about the architecture of the circuit they are part of. For instance, if a

direct connection exists between two neurons, a correlation between their spikes can

be expected with a non-zero time lag which is given by the sum of the propagation

delays along axon and dendrite and across the synapse, all of which are strictly

positive. If, on the other hand, two neurons receive synapses from another neuron

(common input), a peak in the cross correlation function is expected whose time lag

is determined by the difference in time at which the common input reaches these

neurons; this time difference may be zero. Indirect (multi synaptic) connections

can at least in principle be identified, too, from the correlation between spikes in

simultaneously recorded neuronal responses.

The first issue to address when analyzing two spike trains is whether the corre-

lations are significant given the firing rates of the neurons. As noted, firing rates

are determined by averaging over some period of time, which introduces a time scale

(to be distinguished from time lag) to the analysis. One rigorous method to deter-

mine the presence of a significant correlation at a particular time scale is the jitter

and spike resampling algorithm Amarasingham et al. (2012). However, finding sig-
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nificant correlations does not necessarily prove that the correlations are part of the

neuronal code for any particular variable. To show that correlations are involved in

coding neuronal contents, spike trains must be recorded under two experimental con-

ditions that differ with respect to these contents, and correlation should be found to

change significantly between them. For example, to understand coding of attentional

modulation, in one condition the subject should be paying attention to a stimulus

represented by the recorded neural population, and in another condition attention

should be elsewhere Steinmetz et al. (2000).

Determining whether correlation has changed significantly between conditions in-

herently implies an underlying model. Previous work has been based on highly sim-

plified assumptions, e.g. that the rate of detecting synchrony does not vary due to

a change in firing rate alone Steinmetz et al. (2000), or that correlations are created

when otherwise independent spike trains have synchronous spikes added Amarasing-

ham et al. (2012); Martin and von der Heydt (2015). These models can then rely on

simple metrics (the rate of detected synchrony, and the correlation above chance, re-

spectively) to determine whether changes in the spike trains are solely due to changes

in firing rates or not. However, for any but the most basic models, determining a

change in synchrony independently of a change in firing rate is at best highly complex,

and at worst, impossible. Here we will illustrate this point using a very simple network

consisting of two leaky integrate and fire (LIF) neurons receiving both independent

and common input (Figure 5.1). We will define an increase in synchrony independent
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of firing rate as occurring when the fraction of the input arriving from the common

input increases. We show that identifying changes in common input current from

average firing rates and average jitter-corrected correlation is impossible.

LIF1

P
C

P
1

LIF2

P
2

Figure 5.1: Network Structure. Two LIF neurons (LIF1 and LIF2) receive input
with Poisson statistics that is the sum of independent (P1, P2) and common (PC)
spike trains.

5.2 Methods

The network we use, shown in Figure 5.1, is among the simplest possible that

still allow the study of synchrony. It consists of two LIF neurons (LIF1 and LIF2)

that receive excitatory spike train inputs modeled as Poisson processes. Each LIF
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neuron has one input that only it receives (P1 and P2 respectively), and one that

is common to both (PC). They are parameterized by their rates λ1, λ2, and λC

respectively. The inputs are then multiplied by their synaptic weights w1, w2, and

wC respectively; for simplicity, the synaptic weights of PC to both LIF neurons are

identical. As a simple model of synaptic dynamics, inputs to each neuron are filtered

by applying exponential decay with time constant τe, the same for all synapses, and

then summed, shown in eq. 5.1 below. To perform simulations of this system, we

have to assume numerical values for all parameters. We chose all parameters within

physiological ranges; for the synaptic time constant, we use τe = 2 ms. Our results do

not, however, depend on the details of these choices. Note that there no interactions

between neurons, to keep the network as simple as possible.

The membrane voltage of each LIF neurons is then

dVi

dt
=

−Vi

τm
+ Ii(t) + IC(t) (5.1)

where Vi is the membrane voltage of the i-th LIF neuron, τm is the membrane time

constant (chosen as 20ms), Ii(t) is the input current (exponentially filtered stochastic

Poisson process) from the independent input Pi, and IC(t) is the input current
1 from

the common process PC . If a neuron’s voltage exceeded a threshold of 1, a spike was

recorded for that neuron and the voltage of that neuron was reset to 0. This choice

1Technically, Ii(t) and IC(t) are not currents but changes in voltage caused by synaptic current
inflows but they are commonly referred to as input currents.
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of threshold value allows easy interpretation of the synaptic weights as the fraction of

an input required to cause a spike to occur. Simulated trials of the network consisted

of numerical integration of eq. 5.1 for 1 second (forward Euler, time step 0.1 ms).

Synaptic weights for each input as well as Poisson input rates were varied between

simulated trials.

We limit the size of the explored parameter space by restricting expected total

input current to each LIF neuron (w1λ1 + wCλC , and w2λ2 + wCλC) to values such

that the neurons fire in a range around 20-30 Hz. Thus, given values for w1, w2,

and wC , as well as for the fraction of current coming from the common input R =

wCλC/(w1λ1 + wCλC) = wCλC/(w2λ2 + wCλC), all six input parameters can be

determined.

For each input parameter set, the simulation was run 10, 000 times and a sample

of the LIF neuron firing rates and the jitter-corrected correlogram (JCCG) value

at zero lag was determined for each run (see Amarasingham et al. (2012) for jitter

correction). These initial samples were used to generate a distribution of firing rates

and JCCG values given the input parameter set. The simulation was repeated and

the distribution was updated until the Kullback-Leibler divergence between updates

dropped below a threshold of 10−6.

As previous work (e.g. ref Steinmetz et al. (2000)) has focused on changes in

the means of synchrony and firing rates between experimental conditions, our further

analysis will focus on these values, which are found by taking the expected value of the
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output distribution for a given parameter set. It should be noted that if the network

model was an accurate representation of real neurons (i.e. if the model captured

all aspects of the neuron that influence the spike counts and JCCG) then it may be

possible to use the full distribution of the output measurements to estimate all of

the model parameters. However, in designing our model, we deliberately ignored a

number of factors that could affect the outputs, including different temporal (non-

Poisson) structure of the inputs, slow variations in firing rate, and time-dependent

synaptic weights. Future work will focus on how these changes affect the output

distribution of a given parameter set, and whether the distribution of measured output

values can practically be utilized to estimate network structure.

5.3 Results

The input parameters w1, w2, wC , and R form a four-dimensional space. The

simulation can be thought of as a map from this space to a three-dimensional space

defined by the three output statistics: the expected values of the two firing rates and

of the JCCG at zero lag, or synchrony. Given that the input parameter space is of

a higher dimension than the output space, the inverse problem of finding the inputs

from the outputs is likely impossible. However, we are only interested in whether the

fraction of common input R can be determined from the test statistics. A necessary

condition for achieving our goal is that there exists some reverse mapping of the 3-D
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Figure 5.2: Example results. Two slices through the input parameter space are
shown to intersect in output statistic space. Color indicates the value of R
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output space back onto R. Note that the rest of the input parameters need not be

determined.

Figure 5.2 shows how two sets of input parameters are mapped onto the output

statistic space. Two of the four parameters are kept fixed on each of the surfaces,

(w2 = 0.02, wc = 0.07 on one and w2 = wc = 0.03 on the other) and the other two were

varied continually, w1 in the range 0.02− 0.07 and R from 0.18 to 0.91. These ranges

were chosen to ensure that output firing rates were in the target range, 20-30 Hz,

and JCCG values were within a reasonable measurement range. The projections of

the two-dimensional (w1, R) space into the three-dimensional space spanned by the

two firing rates and synchrony are shown as the colored surfaces where the coloring

represents the value of R along each surface. The figure shows that the mappings

intersect, and notably they do so in such a way that there is a color discontinuity on

the line of intersection. As color represents the value of R, no reverse mapping can

be obtained since multiple values of R are mapped on the same points in the space of

measurements. It follows that for this example, R is not identifiable from the mean

firing rates and the mean level of synchrony.

Unfortunately, this is not an unusual case. Figure 5.3 shows two views of the

output statistic space for a variety of sets of input parameters. In Figure 5.3(a) each

surface is generated by varying w1 and R with a fixed value of wC and w2, as in

Figure 5.2. The different surfaces correspond to different values of wC and w2 which

were varied independently in steps of 0.01 from 0.02 to 0.07 (inclusive). The surfaces
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5.4 Conclusion

We have shown that the identification of changes in synchrony independent of

firing rate is ambiguous. Even in an extremely simplified case where it is known that

each neuron only has two inputs of known structure and that there are no interactions

between neurons, observation of mean firing rates and synchrony (JCCG at zero lag)

does not determine the level of input from a common source. While this shows that

the fraction of common input current is unidentifiable, it may yet be possible to

determine some other synchrony transfer function that can be identified from these

spike train statistics. However, the “network” that we studied here is extremely

simple compared to almost any biological system. Whether it is possible to find a set

of functions that makes relevant system parameters identifiable is unknown.
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A1 Natural Scenes Tapping Experiment

Below is additional information referred to in Chapter 2.

A1.1 Demographics

Detailed demographics are shown in Figure A1. Participants were passers-by on

the Johns Hopkins University campus. No deliberate selection criterion was applied,

except for (possibly unconscious) perceptions of approachability and whether the indi-

viduals seemed in too much haste to be likely willing to participate in the experiment.

Post-hoc we noticed that gender groups were generally balanced, with the exception

of the 23-30 age group in which female participants dominated for unknown reasons.
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Figure A1: Demographics of the 252 participants.

A1.2 Error modes

The experiment had a number of error modes, as follows.

1. Two taps by one participant were lost when transmitting data from the tablet

to the server.

2. Some participants would tap the black square on the right side of the initial-

ization screen but the tablet registered the tap as being on the status bar (not

visible to the participant) and did not process it within the experiment. This

caused some confusion for some early participants before an image was pre-

sented, but no data was lost. Later participants were told to only use the

square on the left, away from the status bar.

3. Some participants would accidentally tap either the test image or the initial-

ization screen twice in rapid succession. 15 taps were recorded to take place
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within 400 milliseconds of another tap.

4. There was some variability between the loading times of images. Some seemed

to consistently load more slowly than others. As mentioned in the main text,

we did not analyze reaction times in detail for this reason.

5. One participant seemed to understand the instructions when starting the ex-

periment, but this became doubtful while she performed the experiment. She

tapped in a tight group on the right side of the screen. The possible reason

was that she was English-challenged, something that was not apparent while

she was recruited and instructed.

6. Some participants seemed to consistently take a very long time to complete the

task.

Since all these error modes resulted in a very small number of possibly problematic

taps, no exclusion criteria were defined before analyzing the data, none was excluded.

All participants and taps are included in the analysis of the paper barring the two

taps that were not recorded.

A1.3 Statistical validation

To validate our statistical approach we will first repeat our tests using a stan-

dard bootstrap technique, and then introduce the motivation and validation of the

technique used in the main text.
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A canonical bootstrap technique (Efron, 1982) draws samples with replacement

from some empirical distribution to generate new samples. This is the way we generate

the surrogate maps under the sample error hypothesis. A standard way to gather

p-values is to generate surrogate samples under a null hypothesis and compare a

measured value to those samples. Consider as an example the sample error hypothesis

that R(F̂ , T̂ ) is a sample from R(F̂ , F̃ T ). Let N be the number of samples from

R(F̂ , F̃ T ) that are drawn, and n be the number of those samples that satisfy

R(F̂ , T̂ ) ≥ R(F̂ , F̃ T )

We can then generate a valid p-value as

p =
n+ 1

N + 1
(A.1)

Here, the +1 in the numerator and denominator arise because when hypothesis testing

we assume the null is true, and therefore the measured value of R(F̂ , T̂ ) is also part

of the null hypothesis.

We computed p-values using equation A.1 on the data shown in Figure 3D using

1000 samples drawn from the sample error hypothesis. The measured value of R(F̂ , T̂ )

did not exceed any of the 1000 surrogate correlation values. We repeated this analysis

for each of the sample error hypotheses shown in Figure 3 and obtained the same

result. All p-values are therefore equal to 1/1001. This includes the case of R(S, T̂ ),
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which had a p-value above 0.05 in the main text.

A hypothesis test is considered valid if, when the null hypothesis is true, the rate

of getting a p-value below a threshold α is less than or equal to α (Casella and Berger,

2002). This is true if the distribution of p-values under the null hypothesis is uniform,

or if the left side of the distribution is lower than a uniform distribution (in which

case it is also called a conservative test). To further validate the simple bootstrap

test from equation A.1, we generated 1000 p-values when R(F̂ , T̂ ) is replaced with

a sample from R(F̂ , F̃ T ) (i.e. assuming that the sample error hypothesis is true) to

show that the distribution of p-values is uniform. This is, indeed, the case, as shown

in Figure A2A.

While these results confirm the validity of our hypothesis test with the chosen

α = 0.05, we were curious how confident we can be that our results hold for stricter

choices of α. We could choose to generate more samples from the sample error hypoth-

esis, however these are computationally expensive and unreasonably large numbers of

samples would be needed to obtain the low p-values we measure. An alternative ap-

proach is to use a closed-form approximation of the distribution of interest and then

compute the p-values using that approximate distribution. Because the correlations

we test are all averages over many images, we chose a Gaussian approximation. The

associated hypothesis test is therefore a two-sample Z-test. In order to validate the

approximation we must ensure that p-values generated under the null hypothesis are

valid. To do so we repeat the processing used to generate Figure A2A, but now we
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compute the p-values using the Z-test. The positive slope of the resulting distribution

(shown in Figure A2B) indicates that the test is valid, and indeed conservative, with

(much) fewer than 50 of the 1000 p-values below the threshold of 0.05 that would be

expected under a uniform distribution.
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Figure A2: Histograms of 1000 p-values under the null hypothesis (A) under the
empirical p-value from equation A.1, and (B) under the Gaussian assumption from
the main text.
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