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Abstract

The investigation into the chemical/physical properties of synthetic copper
complexes provide fundamental insights into the understanding of the enzyme chemistry
overviewed in this dissertation.

In Chapter 1, copper monooxygenases and oxidases involved in C—H/O-H bond
oxidation are introduced, along with biological functions, coordination environment of
their metal active sites and their proposed mechanisms. Recent investigations of various
synthetic oxygen-derived copper intermediates, including their characteristics and
reactivity, are described. Possible reaction mechanisms are also highlighted by comparison
to aqueous Oz-reduction chemistry.

In Chapter 2, with the goal of understanding the mechanism of phenol oxidation
by mononuclear cupric superoxo species, kinetic studies were performed with the reaction
of a new copper(I) superoxo complex [(DMM-tmpa)Cu(O>)]" and a series of para-
substituted-2,6-di-tert-butylphenols  (p-X-DTBP’s) affording 2,6-di-tert-butyl-1,4-
benzoquinones (DTBQ’s). Significant deuterium kinetic isotope effects (KIE's) and a
positive correlation of second-order-rate constants (k2’s) compared to rate constants for p-
X-DTBP’s plus cumylperoxyl radical reactions indicate a mechanism involves rate-
limiting hydrogen atom transfer (HAT). Product analyses, '*0-labeling experiments, and
separate reactivity employing the 2,4,6-tri-tert-butylphenoxyl radical provide further
mechanistic insights.

Chapter 3 reports the first example of sulfur-ligated mononuclear superoxo species
which mimics the putative Cu'(O,"™) active species of the peptidylglycine-a-hydroxylating

monooxygenase, PHM. This complex exhibits enhanced reactivity towards both O-H and

il



C-H substrates in comparison to close analogues [(L)Cu'(O2)]*, where L contains only
nitrogen donor atoms. Cu-Sioether) ligation with its weaker donor ability (relative to an N-
donor) are demonstrated by comparisons to the chemistry of analogue compounds.

Chapter 4 provides the coordination chemistry and reactivity study of primary
Cu'/Os species featuring an intramolecular hydrogen bonding substituent, (XBA)Cu'{(O,*-
) (XS). The stability of XS compounds are ascribed to internal H-bond, from the secondary
coordination sphere, to the proximal superoxide ‘O’ atom. Direct evidence for hydrogen
atom transfer from phenol substrates by XS complexes was obtained, and enhanced
reactivity of copper(Il) superoxo complexes possessing electron-withdrawing groups (i.e.,
X) compared with other Cu'{(O,*") analogues was observed. This behavior is discussed and
correlated to the H-bonding ability of the *BA ligands and the copper ion centered redox
behavior for varying XS complexes.

In Chapter 5, we describe an overview of the copper proteins with respect to their
preference for tautomeric histidine binding sites (0Nuis vs €Nnis) and a unique histidine-
chelated ligand environment. Newly designed copper-histidine complexes are introduced,
which possess ligands mimicking the copper center of certain enzymes. Dioxygen-derived

1

copper species are determined to be (trans-peroxo)Cu'; and (bis-p-oxo0)Cu'; complexes

based on spectroscopic studies.
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complex forming by the reaction of 2 with one equiv phenol substrate. Also,
see Figure S7.

The table of pseudo-first-order rate constants (kobs’s) from the reactions of p-
OMe-DTBP plus [(NMe,-tmpa)Cu'(O>™)]" and the plot of kos’s against the
concentrations of p-OMe-DTBP to obtain second-order-rate constant (k> = 4.6
M-ls ).

Plots of kobs’s against the concentrations of p-OMe-DTBP(black circles) and
deuterated 2H-O p-OMe-DTBP (red circles) to determine second-order-rate
constants and KIE (= 9.0).

Table of pseudo-first-order rate constants (kobs’s), second-order rate constants
(k2’s) and kinetic isotope effects (KIEs) for the reactions of [(DMM-
tmpa)Cu'(0,)]" (2) and para-methoxy-2,6-di-tert-butylphenol (p-OMe-
DTBP; H-O vs H-O) in acetone over the temperature range of —100 °C ~ -85
°C (upper panel). Eyring plots of k»’s against 1/T for the oxidation of p-OMe-
DTBP (H-O for blue and 2H-O for red) to determine the reaction activation
parameters (lower panel).

EPR spectra of [(DMM-tmpa)Cu(O,")]B(Cs¢Fs)s (2) + one equiv para-
methoxy-2,6-di-fert-butylphenol (p-OMe-DTBP) at low temperature (blue)
and solution of 2 + one equiv p-OMe-DTBP which was warmed up to room
temperature and then frozen again (red) (2 mM; 3X-band, v = 9.426 GHz;
acetone at 23 K). For both samples, blue and red, g, = 1.96, 4,=76 G, gl =
2.20, AL = 97 G. Thus, the red spectrum is representative of [(DMM-
tmpa)Cu™-OH(H)]".

Left: Dicationic portion of [(DMM-tmpa)Cu(CH3CN)](ClO4),. Right:
Selected bond distances and angles are given below; t=0.9495 where a t value
= 0 would represent a perfect square-pyramid and a value of 1.0 would equal
a perfect trigonal-bipyramid. See Experimental details concerning the X-ray
crystallographic analysis, just below.
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Figure S9.

Figure S10.

Table S1.

Figure S11.

Figure S12.

Figure S13.

Figure S14.

Figure S15.

Figure S16.

Low temperature 2H-NMR spectra collected at —90 °C for the reaction solution
of [(DMM-tmpa)Cu'(0,~)]" (2) mixed with five equiv of (a) p-OCD3-DTBP
and (b) p-OCD,CD3-DTBP in acetone. (a) The blue spectrum is the reaction
mixture at —90 °C. The red spectrum is the reaction mixture after it is allowed
to be warmed to room temperature (RT). {Note: The deuterated methanol
product (CD3;OH) is only observed in the red spectrum, which forms after the
reaction mixture is allowed to warm to RT.} (b) The blue spectrum is the
reaction mixture at—90 °C. Displayed in the red spectrum is the NMR spectrum
obtained after the reaction mixture is allowed to warm to RT. The black
spectrum is the room temperature reaction mixture (blue) which was spiked
with ds-ethanol. The NMR spectral *H resonances corresponding to p-
OCD,CDs3-DTBP and CD3;CD,OH are indicated with arrows, respectively.
*denotes solvent, *denotes CsHs used as an internal reference.

Pseudo-first-order plots for the reactions of [(DMM-tmpa)Cu(0>™)]" (2) and
p-X-DTBP’s to determine pseudo-first-order rate constants (kqbs’s). (see Table
1 for second-order-rate constants)

Product yields

UV-vis spectral changes of the titration of [(DMM-tmpa)Cu"(O,™)]B(CeFs)4
(2) 0.4 mM acetone solution with 0.2 ~ 1 equiv. TEMPO-H at 183 K affording
new species presumed to be [(DMM-tmpa)Cu'(OOH)] (3) (nax =374 nm, ¢
=2000 M cm?),.

UV-vis spectral changes of 0.4 mM [(DMM-tmpa)Cu(OOH)]B(CsFs)s (3)
acetone solution (which was generated from 2 + 0.2 ~ 1 equiv. TEMPO-H;
Figure S12) with H[B(CsFs)4] acid titration.

UV-vis spectra for d-d band comparison of possible Cu(II) products in
acetone; [(DMM-tmpa)Cu'(0,7)]B(CsFs)s (2) + phenol at low temperature,
warmed up solution of 2 + phenol, [(DMM-tmpa)Cu'(OOH)]* (3), [(DMM-
tmpa)Cu"(CHsCN)](CIO4), [(DMM-tmpa)Cu'(CH;CN)](CIO4); + BwsOH,
and 2+ 'Bu3ArO-.

MALDI-TOF spectra of possible Cu(II) products; warmed up solution of
[(DMM-tmpa)Cu(0,-)]* + phenol, [(DMM-tmpa)Cu"(CH;CN)]**, [(DMM-
tmpa)Cu''(CH3CN)]?>* + ‘BusOH, and [(DMM-tmpa)Cu"(CH3CN)]?>* + H,O.

Left: Scheme for the oxidation of 3,5-di-tert-butylcatechol to 3,5-di-fert-butyl-
1,2-benzoquinone by [(DMM-tmpa)Cu(O,~)]*. Right: Second-order-rate
constants and fitting for the reaction of [(DMM-tmpa)Cun(O2--)]+ (2) and 3,5-
di-tert-butylcatechol.

(a) UV-vis spectra of the reaction of 0.26 mM [(DMM-tmpa)Cu(02)]" (2)
with 10 equiv of 4-methylcatechol in acetone at —90 °C. Inset: Time traces at
409 and 516 nm. (b) Pseudo-first-order fitting of the reaction.
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Table S2. Pseudo-first-order values of the reaction of [(DMM-tmpa)Cu'((O,™)]* (2) with 114
4-substituted-catechol derivatives.

Figure S17. Second-order-rate constants and fitting for the reaction of [(DMM- 115
tmpa)Cu'l(0,7)]" (2) and (a) 4-methoxycatechol, (b) 4-methylcatechol, (c)
catechol, and (d) 4-chlorocatechol.

Figure S18. Hammett plots of the catechol reactions against (a) op and (b) op™. 115

Chapter 3: A N3S(thioether)-Ligated Cu''-Superoxo with Enhanced
Reactivity

Page
Number

Scheme 1. (a) Dioxygen-bound Cuym site of PHM and (b) a new mononuclear cupric 118
superoxo complex with thioether ligation.

Scheme 2. Dicopper-oxygen species possessing sulfur-containing ligands. 119

Figure 1. Displacement ellipsoid plots of the cations; (a) [(PMAN3S)Cu']* (1) and (b) 120
[(PMAN;3S)Cu''(H,0)(Cl04)]* (3). Hydrogen atoms were removed for clarity.

Figure 2. Low-temperature UV-vis absorption spectra of the reaction of 1 with O, at — 121
135 °C in MeTHF (0.2 mM). The superoxo product 25 is observed
immediately upon O, addition (red) and converted to the peroxo 2F (t=50s,
blue).

Figure 3. (a) Low-temperature (~135 °C) UV-vis absorption spectrum of 2% (containing 122
~11% 2%, Amax = 526 nm, & = 6500)'? as recorded ~40 s after bubbling O, into
a MeTHF:TFE (4:1) solution of 1 (0.098 mM), and (b) 1R spectra of frozen 25
(0.62 mM, Aex = 413 nm, 77 K) in MeTHF:TFE (4:1).”

Table 1. Comparison of LCu'/LCu' Redox Potentials and Reactivity of Derived 124
[(L)Cu"(O2)]" Complexes.

Scheme 3. Oxygenated products of ligand-Cu' complexes. 126

Sheme S1. Ligand synthesis scheme 134

Figure S1. EPR spectrum of [(PMAN;S)Cu(OCI03)(H20)](C104) (3) (2 mM). 136

Figure S2. EPR spectrum of [(PMAtmpa)Cu((OC103)(H20)](C104) (2 mM). 137
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Figuer S3.

Figure S4.

Figure SS.

Displacement ellipsoid plot (50% probability level) of [(P°MAN3S)Cu!|B(CeFs)4
(1) at 110(2) K. The H atoms are omitted for the sake of clarity. The structure
is ordered. [(PMAN;S)Cu'|B(CeFs)4 (1): Fw = 1192.24, irregular colorless lath,
0.54 x 0.18 x 0.08 mm?, triclinic, P-1 (no. 2), a = 12.4367(3), b = 15.1159(3),
c = 15.4174(4) A, a = 69.996(2), S = 66.443(2), y = 71.641(2)°, V =
2442.48(11) A3, Z = 2, Dy = 1.621 g em™, g = 2.115 mm™", Tin-Timax:
0.57-0.86. 32542 Reflections were measured up to a resolution of (sin &'A)max
=0.62 A", 9586 Reflections were unique (Rin = 0.0232), of which 8727 were
observed [/ > 20(l)]. 708 Parameters were refined. R1/wR2 [I > 20o(])]:
0.0307/0.0785. R1/wR2 [all refl.]: 0.0342/0.0811. S = 1.024. Residual electron
density found between —0.43 and 0.36 e A~

Displacement ellipsoid plot (50% probability level) of
[(PMAN;S)Cu'(H,0)(OC105)](C104) (3). The H atoms are omitted for the sake
of clarity. The structure is mostly ordered. Both counterions are found to be
disordered over two orientations. The occupancy factors of the major
components of the disorder refine to 0.727(7) and 0.9465(18).
[(PMAN;S)Cull(H,0)(OCl03)](Cl04) (3): Fw = 730.10, blue lath, 0.35 x 0.15
x 0.10 mm3, monoclinic, P2i/c (no. 14), a = 15.0863(2), b = 11.06407(18), ¢
=19.2816(3) A, f=99.6221(14)°, V' =3173.13(8) A’>, Z=4, D, = 1528 ¢
cm3, 4= 3.641 mm', abs. corr. range: 0.65-1.00. 25665 Reflections were
measured up to a resolution of (sin &A)max = 0.62 A1, 6227 Reflections were
unique (Rine = 0.0302), of which 5302 were observed [/ > 20(])]. 496
Parameters were refined using 287 restraints. R1/wR2 [I > 2o(])]:
0.0355/0.0921. R1/wR2 [all refl.]: 0.0435/0.0990. S = 1.033. Residual electron
density found between —0.50 and 0.81 ¢ A=,

Displacement ellipsoid plot (50% probability level) of
[(PMAtmpa)Cu'(OCl03)(H,0)](ClO4). The H atoms are omitted for the sake
of clarity. The structure is mostly ordered. One of the two crystallographically
independent perchlorate counterions is found to be disordered over two
orientations, and the occupancy factor of the major component