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Abstract

The ability to accurately model the timing and quantity of contaminant transport from landscapes

to surface waters under different climate conditions is vital to the development of climate-resilient

watershed management tools and strategies. Although hydrologic transport cannot be directly

measured at the full range of relevant scales, a measurable proxy at catchment scale is the integrated

transit time distribution (TTD). The TTD is the time-varying, probabilistic distribution of water

travel times or, equivalently, water ages in catchment outflow. This dissertation presents advances

in hydrologic theory and catchment-scale modeling and uses them to learn about the influence of

climate on TTD behavior at multiple sites. The specific contributions of this work include (1) the

first benchmarking of the sensitivity of catchment transit times to present and projected climate

conditions, which shows that climate change could significantly shift the phenology of stream age; (2)

the introduction of a computationally efficient approach to calibrating integrated surface-subsurface

hydrology models (ISSHMs) under realistic climate forcing to both discharge and stream age, and

subsequent virtual experiments suggesting that the age of baseflow is significantly influenced by

upper soil properties due to dynamic hydrologic partitioning, which is not captured in steady-state

simulations; (3) a novel analysis using flowpath decomposition in an ISSHM to understand the

influence of climate on catchment TTD dynamics, which reveals a complex relationship between

flowpath and water age that belies suggestions in the literature of a one-to-one mapping; and (4)

proof-of-concept of an enhancement to the popular Soil and Water Assessment Tool (SWAT) that

allows users to calculate groundwater TTDs, calibrate TTDs to available data, and more realistically

simulate groundwater nitrate transport with variable recharge rates. The dissertation concludes with

a brief discussion of its implications on our understanding of groundwater nitrate transport in the

Chesapeake Bay watershed under present and future climates.
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2.5 Relationship between the young water fraction anomaly ∆Fi(t) (defined in Section

2.7.2) and mean rainfall averaged over four timescales i: daily (panel a), monthly

(panel b), seasonally (panel c), and yearly (panel d). The dashed line shows a line of

best fit. The error bars show the 90th percentile confidence interval. The right-most

panels indicate the slope s of the line of best fit and the median Fat for all parameter

sets. The gray triangular regions are described in Section 2.8.2. . . . . . . . . . . . 36
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in 100-year simulations. The error bars show the standard deviation of Fy(t). The
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2.8 The interplay between different storm patterns, model parameters, and Fat in the LH.
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(solid line, left axis) and storage anomaly and the fraction of water in discharge from

the youngest 350 mm of catchment storage (dashed line, right axis). Both rise more

sharply at high storage, indicating mobilization of both large volumes of water and

large fraction of the youngest age-ranked water in storage. The dashed lines indicate

the approximate, overlapping location of ηQ and ηΩ for LH and TW. . . . . . . . . 43

xiv



3.1 Map of the study site in the FD36 sub-catchment of the USDA Mahantango experimen-

tal catchment. (a) Location of the catchment in central PA, USA. (b) Satellite image

of the catchment showing the rectangular region modeled in ParFlow and the FD36

catchment boundary. (c) 3D rendering of the rectangular area modeled by ParFlow,

the catchment boundary, the location of the streambed and subsurface fragipan, the

location of the stream outlet and CFC sampling well, and the transect A-A’ used for

the 2D calibration and shown in Figure 3.2. . . . . . . . . . . . . . . . . . . . . . . . 59
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4.1 Map of the study site in the FD36 sub-catchment of the USDA Mahantango experimen-

tal catchment. (a) Location of the catchment in central PA, USA. (b) Satellite image

of the catchment showing the rectangular region modeled in ParFlow and the FD36

catchment boundary. (c) 3D rendering of the rectangular area modeled by ParFlow,

the catchment boundary, the location of the streambed and subsurface fragipan, the

location of the stream outlet and CFC sampling well, and the transect A-A’ used for

the 2D calibration and shown in Figure 4.2. . . . . . . . . . . . . . . . . . . . . . . 96

4.2 Cross-section of the modeled domain across the transect A-A’ (see Figure 4.1), including

the location of the four geologic zones (soil, fragipan, streambed, and fractured rock),

the calibrated model parameters, and the five modeled flow pathways into the stream:

direct rainfall (DIR), overland flow (OVR), interflow (INT), shallow groundwater

(SGW), and deep groundwater (DGW). Section 4.5.2.4 gives the operational definition

for flow pathway classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3 Important ParFlow-CLM model inputs, outputs, and performance for the FD-36

catchment. Panel (a) shows total precipitation Jprec and total infiltration to the

land surface after accounting for above-surface processes including snow accumulation,

snowmelt, and canopy interception and evaporation Jinf . Panel (b) and (c) shows

surface ET and Q simulated by the ParFlow-CLM model (black) and by particle

tracking (gray). Panel (c) also shows observed daily discharge against time (red circles)

and against simulations in log-log space (see inset). Panel (d) shows total water storage

in the catchment over time. Panels (e) and (f) show the time-series of median transit

time (MTT) for ET and Q (black lines) with the 10-90th percentile ages shaded gray.

The red strip shows the tracer-derived age of baseflow in a nearby stream (McGuire,

DeWalle, and Gburek, 2002). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
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4.4 The partitioning of rainfall into different flow pathways. Panel (a) shows the fraction

of Jinf exiting to different flow pathways for daily rainfall during the 1-year simulation.

The white column breaks indicate periods with zero infiltration. Panel (b) shows the

fraction of each flow pathway contributing to daily Q. Panel (c) shows the median

transit time for each flow pathways contributing to Q and ET . All flowpath acronyms

are defined in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5 Time-series of simulated Q for each flowpath and comparisons to S, Jprec, and Q.

The first column shows total flux from DIR, OVR, INT, SQW, and DGW. Note the
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The last column plots simulate discharge against Jprec (panel a3) and total Q (panel
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4.6 Analysis of age, storage, and outflow for ET (top row) and its constituent flowpaths

ETG and ETT (bottom two rows) during the 1-year simulation. The left column

shows the median backward transit-time distribution ←−P (T ) at four different ranges of

catchment storage: very dry (lower 10th percentile storage, lightest blue line), moder-

ately dry (10-50th percentile, lighter blue line), moderately wet (50-90th percentile,

darker blue line) and very wet (greater than 90th percentile, darkest line). The light

red shading shows the 80th percentile daily range of ←−P (T ). The middle column is

similar but shows the SAS functions and the approximate analytic solutions derived

in the text (red dashed lines, panels (e) and (h)). The last column shows the rSF

functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
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4.7 Analysis of age, storage, and outflow for Q (top row) and its constituent flowpaths DIR,

OVR, INT, SGW, and DGW (bottom five rows) during the 1-year simulation. The left
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percentile, darker blue line) and very wet (>90th percentile, darkest line). The light

red shading shows the 80th percentile daily range of ←−P (T ). The middle column shows

the SAS functions. The insets in panels (d) and (e) zoom into the youngest portion of
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Chapter 1

Introduction

The ability to accurately model the timing and quantity of contaminant transport from landscapes

to surface waters under different climate conditions is vital to the development of climate-resilient

watershed management tools and strategies. Much progress has been made over the past decades

in observing and modeling the relationships between climate and contaminant transport at the

watershed scale. Less progress is evident in distinguishing the watershed processes underlying these

relationships, which is important for developing robust predictive models, especially under a changing

climate. A good approach to studying these watershed processes requires consideration of the

watershed transit time distribution (TTD), though it has been historically difficult to measure the

temporal variability of TTDs that result from realistic climatic conditions. There are, however, new

advances in theory, computational power, and data availability for models that estimate time-varying

TTDs at the watershed scale, encapsulated in (1) lumped parameter transit time models using

rank StorAge Selection (rSAS) functions and (2) particle tracking models (PTMs) using discreet

element numerical solvers. A central hypothesis of this dissertation is that these time-varying transit

time modeling approaches can be used to improve our understanding of the influence of climate on

catchment scale hydrologic transport, including transport of groundwater nitrate transport in the

Chesapeake Bay watershed.
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Chapter 1. Introduction

1.1 Motivation

1.1.1 Non-point source pollution

Non-point source (NPS) pollution is any contaminant that reaches surface waters from multiple,

diffuse sources. NPS pollution most commonly originates from manure and synthetic fertilizer

application and atmospheric deposition onto the landscape, and gets transported to surface waters

by rainwater moving through complex catchment flow pathways. NPS has been described as “the

nation’s largest water quality problem” (EPA, 1996) and “among the most difficult water-quality

challenges” (Palanaippan et al., 2010). A major source of NPS pollution is excess nitrogen (N) and

phosphorus (P) from agricultural and urban activities (Carpenter et al., 1998), and these excess

nutrients are a leading cause of water impairment in the U.S. (EPA, 2012). For example, nitrate is

one of the most pervasive NPS pollutants and a target of management action across the country.

Nitrate that reaches surface waters is associated with human toxicity, harmful algal blooms, and

eutrophication (e.g., Kemp et al., 2005). Human activity has more than doubled the rate of N inputs

into the terrestrial N-cycle (Vitousek et al. 1997). A significant portion of N inputs take the form of

nitrate that leaches into groundwater, where concentrations often rise to hazardous levels, especially

in agricultural areas (Spalding and Exner, 1993).

1.1.2 Influence of climate on NPS pollution transport

A growing body of research shows that the quantity and timing of NPS loading to streams is influenced

by the variability of climate, broadly defined here to include weather and its statistical properties. In

addition, the overall influence of climate on NPS transport may be shifting due to global climate

change (e.g., Najjar et al. 2010). Therefore, managing NPS pollution requires knowing, among other

things, how climate affects NPS delivery to surface waters.

Climate can influence NPS transport by altering contaminant inputs, by altering hydrological

processes, and by changing biogeochemical processes. While the influence of climate on these three

pathways are often studied as a group, their individual influence on water quality is more difficult to

understand. For example, researchers have used relatively simple input-output models to determine

statistical relationships between historic climatic inputs and contaminant exports. These models
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Chapter 1. Introduction

have shown, for example, that increases in precipitation are associated with higher fluxes of nitrogen

from watersheds on both short (<1 year) and long time scales (e.g., Howarth et al. 2006). The

statistical relationships determined by input-output models do not, however, allow one to determine

which causal pathway is most important.

Other researchers have used process-based watershed models to study the link between climate

and NPS transport. For example, Yang et al. (2015) calibrated a process-based model with data from

1901-2008 along eastern U.S. coastal watersheds. They found that changes in climate (temperature

and precipitation) were the primary driver of interannual variability in nitrogen export to the Atlantic

Ocean, with wetter periods seeing higher export. At a smaller scale, experiments run using the

process-based Chesapeake Bay Community Watershed Model Phase 5.3.2 showed that increases

in rainfall variability induced increases in the export of nitrate and other NPS pollution from the

Patuxent river to the Chesapeake Bay (Wilusz and Ball, 2014). In principle, the internal structure

and sensitivities of these process-based models could be scrutinized to understand how different

causal pathways relate climate to transport. In practice, however, process based models often give

uncertain representations of the interplay between climate and transport because of missing critical

processes (Bernal and Hedin 2012). For example, many process-based models assume that water

and the contaminants it carries are completely mixed within conceptual model storage zones (e.g.,

Neitsch et al., 2011), yet a growing body of research suggests that this assumption would be violated

in many watersheds of interest (e.g., Benettin et al., 2015).

1.1.3 Transit-time models

Transit-time models are a promising alternative to input-output and overly simplistic process-based

models for studying the link between climate and water quality. Transit-time modeling uses observed

watershed behavior to simulate the watershed TTD, which is a probabilistic distribution of water

travel times through a watershed. The TTD varies spatially and temporally according to local

watershed characteristics including catchment geometry, topography, soil type, land use, and climatic

conditions (McGuire and McDonnell, 2006). The shape of the TTD can be used to infer the dominant

hydrologic processes within a watershed. For example, a higher proportion of younger water in

watershed discharge is suggestive of more overland flow, and a higher proportion of older water is
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suggestive of more groundwater flow. The shape of the TTD can be determined experimentally

based on variations in the input and output of isotopes and other environmental tracers. Researchers

have also shown that TTDs can be estimated from a priori knowledge of watershed flow pathways

(McDonnell et al., 2010). Figure 1.1 gives illustrative examples of the kinds of TTDs that could be

inferred in watersheds.

Climate is a very important factor in determining the shape and time-variability of the TTD.

Consider, for example, a parcel of rain water that falls on watershed soils and flows towards surface

waters. If climate conditions are wet due to high rainfall or low ET, the water parcel might travel

quickly. If climate conditions are dry, the parcel might stagnate. Alternatively, wet conditions

might open flow pathways to passive storage zones with long residence times, and dry conditions

Figure 1.1: Three hypothetical TTDs that could describe the flow-weighted average TTD of baseflow using
traditional TTD modeling methods. These TTDs are gamma distributions with identical means (10 years)
but different median and mode values. The shape of the TTDs suggest that watershed A may have more fast
overland flow paths, whereas watersheds B and C have more groundwater flow paths.
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might reduce soil permeability and increase fast-moving overland flow. Although simple, these cases

illustrate the important but complex role of climate in determining the watershed TTD.

Model-based estimates of the catchment transit time distribution can be convolved with time-series

of hydrochemical inputs such as nitrate to simulate transport to the watershed outlet:

Cout(t) =
∫ ∞

0

←−−pout(τ, t)Cin(T − τ)e−λτdτ (1.1)

with an inflow concentration Cin(t), catchment TTD ←−−pout(τ, t), first order rate of denitrification λ,

time t, and a dummy variable of integration representing age τ (Cook and Herczeg, 2012). Numerous

papers have used the convolution integral to simulate nitrate transport at watershed scales (e.g.,

Morgenstern et al., 2015). To the extent that the catchment TTD depends on climate, Equation

1.1 defines a quantitative relationship between climate variability, shifting hydrologic pathways, and

contaminant transport.

1.1.4 TTD model advancements

In practice, a major barrier to using transit time models to study the link between climate and water

quality has been that most transit time models have assumed that transit times are stationary. This

may be reasonable over time scales much longer than the rate of major climatic variability (e.g.,

decadal). It can be shown, however, that actual TTDs vary significantly at times scales of interest

to watershed managers (e.g., days to years). To date, relatively few studies have examined the

time-variability of TTDs due to climate variability. For example, Rodhe, Nyberg, and Bishop (1996)

showed how a discharge-weighted-time-invariant TTD could be used to estimate the time-varying

TTD of a small hillslope in Sweden. Hrachowitz et al. (2010) used a long record of chloride tracer

to parameterize steady-state gamma-shaped TTDs for three-year periods over roughly 20 years.

Both studies found that the shape of the TTD varied systematically with precipitation, with more

young water discharged during wet periods. Preliminary work for this dissertation looked at transit

time studies in six locations around the world and compared their monthly estimates of stream age

(mean or median) with remotely sensed estimates of watershed precipitation, temperature, and ET.

The results showed a consistent negative correlation between stream age and rainfall volume, and a

positive correlation between stream age and temperature and ET (Wilusz, 2015).
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Two analytical methods have emerged that are capable of building on past efforts to estimate the

time-variability of the TTD without a priori assumptions about discharge-weighted time invariance

or smoothness. They are (a) the lumped parameter transit time models using a rank StorAge

Selection (rSAS) functions and (b) particle tracking models (PTMs) for groundwater. Both are

briefly described below.

1.1.4.1 rSAS-LPMs

The rSAS-LPM was introduced by Harman (2015) as an enhancement to the more general StorAge

Selection modeling framework (Rinaldo et al. 2015). The model is able to (a) estimate the distribution

of ages of water fluxes flowing out of a watershed (i.e., the time-varying TTD of Q and ET ) and (2)

use the time-varying TTD to simulate solute transport from rainfall to discharge. In its most basic

form, the rSAS-LPMs works by representing the watershed as a single control volume (see Figure

1.2). The input data includes fluxes coming in (P ) and out (Q, ET ), which must be measured or

estimated. Rainfall is assumed to be age zero. The distribution of ages of water "selected" from

storage into each outflow is determined by a parameterized rSAS function, which is the probability

distribution function (PDF) of storage ranked by age. If the rSAS functions for Q and ET are

known, the time-varying TTD of Q and ET can be determined by solving a master differential

equation expressing continuity of water age and mass (Botter, Bertuzzo, and Rinaldo, 2010). If

input concentrations are known, they can be convolved with the time-varying TTD to estimate

output concentrations (as in Equation 1.1). The convolution equation can be modified to account for

both conservative and non-conservative transport. Importantly, an rSAS-LPM can have a different

rSAS function for each outflow. For example, an application of the rSAS-LPM at Plynlimon, Wales

suggested that the rSAS for ET flows should be a uniform distribution while the rSAS for Q should

be a gamma distribution with a shape parameter that varies according to the total storage, as shown

in Figure 1.2 (Harman, 2015).

The rSAS-LPMs have several advantages over direct parameterization of the TTD, which has

been common in the literature (McGuire and McDonnell 2006). First, the rSAS function can be

approximated by a simple and/or time-invariant CDF function while still representing the erratic

time-variability of the TTD in a manner that conserves mass and age. Second, the parameters of the

rSAS function may be more closely related to physical characteristics of the landscape compared to
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parameters of the TTD, which are highly dependent on climate. Third, the rSAS-LPMs can directly

simulate the effect of climatic inputs on the evolution of the time-varying TTD.

The principal challenge of rSAS modeling is the identification of the rSAS functions (shown in

Figure 1.2(a)). rSAS functions describe the emergent tendency of all watershed processes to select

outflow from different parts of storage. Identifying the rSAS function is closely related to identifying

a watershed closure relation, a nonlinear hysteretic function that relates watershed inputs to outputs.

Identification of the closure relationship is one of the most pressing problems in hydrology (Beven,

2006b). It is therefore promising that researchers have been able to use environmental tracers to

parameterize rSAS functions as simple distributions (e.g., uniform, gamma distributions) that can

Figure 1.2: Illustrative example of rSAS-LPM operation. Panel A shows rSAS functions for two hydrologic
fluxes (Q and ET) in a hypothetical watershed. The upper rSAS function shows the fraction of ET selected
from different volumes of age-ranked storage. The median of the rSAS PDF represents the volume of water
in storage from which the youngest half of water is sampled. The lower plot shows how the rSAS function
might vary with time (i.e., t1 and t2) according to a state variable (e.g., total storage). Panel B shows how
the rSAS functions act on storage ranked by age (shown as a conceptual storage column) for t1. The storage
column represents the water in storage with the younger water stacked over the older water. The proportion
of water ages selected in each outflow is represented by the size and color of the arrows, which (by definition)
trace the shape of the rSAS functions. The composition of ages will vary with time due the dynamic fluxes in
and out. Panel C illustrates that the model produces a different TTD at each time step. The TTD captures
the erratic time history of precipitation inputs. (Conceptualization modified from Harman 2015.)
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vary with system state variables like storage (Harman, 2015; Benettin et al., 2015).

1.1.4.2 Particle tracking models

An alternative approach to the empirically-based rSAS-LPMs for estimating the time-varying TTD

is the physically-based approach adopted by particle tracking models (PTMs). The foundation of

current-generation PTMs are process-based, finite element numerical models that solve fundamental

mass-flux equations in a detailed 3D grid for surface and/or ground waters. Model parameters are

calibrated against available field observations such as surface water maps, water depth, pressure

measurements, and tracer-based age estimates. Once the numerical model is calibrated, a PTM is used

to virtually introduce tracer particles into the groundwater recharge and track their movement through

the subsurface until they are discharged into surface waters. By injecting and tracking particles across

the entire landscape surface at different times, the time-varying TTD can be estimated. Although

numerical models with PTMs have been in use since the 1960s (Pinder, 1973), their application

has been limited by computational requirements to either steady-state, small-scale, and/or low

resolution modeling. With modern computing capabilities, however, it is increasingly possible to

model time-variability at relatively high resolution and scale. For example, Engdahl and Maxwell

(2015) used the ParFlow PTM model to estimate the response of age distributions to changes in

climate in different storage zones of a virtual watershed.

1.1.5 Research objectives and dissertation outline

The overarching goal of this research was to make discoveries about the relationship between climate

variability and catchment-scale transit times using a combination of (1) data-rich field sites, (2)

recent developments in rSAS-LPM theory, and (3) innovative approaches to time-varying particle

tracking in PTMs. The dissertation is split into four main chapters.

In Chapter 2, I explore the relationship between rainfall variability and catchment transit time

distributions at the Plynlimon experimental catchment in Wales, UK. The rSAS-LPM is coupled

to a hydrologic model and rainfall generator to answer the following research questions. How do

the amount and pattern of rainfall affect catchment transit times under historic conditions? How

could shifts in rainfall and evapotranspiration affect catchment transit times under projected future

8



Chapter 1. Introduction

conditions? The contributions of the study include benchmarking the influence of rainfall variability

on the young water fraction in streams, developing and describing a Bayesian approach to classifying

catchment transport, and providing the first-ever estimate of the effect of climate change on catchment

transit times.

Chapter 3 explores the relationship between catchment characteristics and the catchment transit

time distribution under realistic climate conditions for a system simulated by an integrated surface-

subsurface PTM. The model is configured and parameterized with data from the Mahantango

experimental catchment in PA, USA to answer the following research questions: what is the

sensitivity of catchment transit times to changes in catchment characteristics such as porosity and

lateral hydrologic conductivity? Which hydrologic processes drive this sensitivity? Methodological

contributions include the first-ever implementation of daily-scale particle tracking in an open source

integrated hydrology model, the first-ever calibration of such a model to discharge and tracer-based

age data, and a novel, non-parametric sensitivity analysis using boosted regression trees.

Chapter 4 introduces a new technique for understanding catchment transit time distribution

behavior in time-varying systems by disaggregating outfluxes into constituent pathways. The approach

analyzed results from the PTM model in Chapter 3 with the SAS function theory applied in Chapter

2 to answer the following questions: what climatic factors cause the time-variability of catchment

transit times including the inverse storage effect? To what extent can the flowpaths of discharge and

ET be inferred by the shape of its transit time distribution? Methodological contributions include a

new particle tracking approach that accounts for losses to ET, a generalizable method to demarcating

flowpaths in PTMs, and a novel statistical approach to classifying the shape of catchment transit

times.

Chapter 5 is a short technical note demonstrating how the commonly-used Soil and Water

Assessment Tool (SWAT) can be modified to enable the calculation and calibration catchment travel

times. The capabilities of the proposed SWAT-SAS model were demonstrated at the Chesterville

experimental catchment in the Eastern Shore, MD. The SWAT-SAS model is intended to facilitate

future efforts to simulate the effects of climate on transit times and NPS transport.

Chapter 6 summarizes key findings and discusses their implication for groundwater nitrate

transport in the Chesapeake Bay Watershed.
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Chapter 2

Sensitivity of catchment transit times to rainfall variability

under present and future climates 1

2.1 Highlights

• A data-driven rSAS model was used to benchmark effects of rainfall variability on fractions of

young water (FYW) in two first-order streams

• Mean FYW was surprisingly sensitive to rainfall pattern as a result of "inverse storage effect"

that may be common elsewhere

• Projected changes in rainfall due to climate change caused simulated FYW to significantly rise

in winter and drop in summer

2.2 Summary

Hydrologists have a relatively good understanding of how rainfall variability shapes the catchment

hydrograph, a reflection of the celerity of hydraulic head propagation. Much less is known about

the influence of rainfall variability on catchment transit times, a reflection of water velocities that

control solute transport. This work uses catchment-scale lumped parameter models to decompose the
1This chapter was published as Wilusz, Daniel C., Ciaran J. Harman, and William P. Ball. "Sensitivity of catchment

transit times to rainfall variability under present and future climates." Water Resources Research 53.12 (2017):
10231-10256. Data for this chapter was archived at Wilusz, Daniel C., Ciaran J. Harman, and William P. Ball. "Data
and code associated with the publication ’Sensitivity of catchment transit times to rainfall variability under present
and future climates’", Johns Hopkins University Data Archive, doi:10.7281/T1/OM3OMQ (2017). Ciaran Harman
and Bill Ball were involved in hypothesis development, study design, results interpretation, and editing of draft text.
Ciaran Harman provided the SAS model code. Other model code, the first draft of text, and all figures and tables
were created by Dano Wilusz.
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relationship between rainfall variability and an important metric of transit times, the time-varying

fraction of young water (<90 days old) in streams (FYW). A coupled rainfall-runoff model and

rank StorAge Selection (rSAS) transit-time model were calibrated to extensive hydrometric and

environmental tracer data from neighboring headwater catchments in Plynlimon, Wales from 1999-

2008. At both sites, the mean annual FYW increased more than 13 percentage points from the

driest to the wettest year. Yearly mean rainfall explained most between-year variation, but certain

signatures of rainfall pattern were also associated with higher FYW including: more clustered storms,

more negatively skewed storms, and higher covariance between daily rainfall and discharge. We show

that these signatures are symptomatic of an "inverse storage effect" that may be common among

watersheds. Looking to the future, changes in rainfall due to projected climate change caused an up

to 19 percentage point increase in simulated mean winter FYW and similarly large decreases in the

mean summer FYW. Thus, climate change could seasonally alter the ages of water in streams at

these sites, with concomitant impacts on water quality.

2.3 Introduction

The influence of rainfall on landscape hydrology is a function of both (1) the celerity with which

hydraulic head perturbations are transmitted through the catchment, which controls the generation

of streamflow and the hydrograph; and (2) the velocity with which rainwater moves through the

catchment, which determines solute transport and controls the shape of the transit time distribution

(TTD) (McDonnell and Beven, 2014). Much has been learned by studying the relationship between

rainfall and the hydrograph, for example, in "rainfall-runoff" models. In contrast, relatively little is

known about how rainfall drives the evolution of time-varying TTDs. In this paper we use recent

advances in time-varying transit time modeling to understand the influence of rainfall variability

on an important metric of transit times, the young water fraction, at two study sites in Plynlimon,

Wales.

2.3.1 Literature review and motivation

TTDs are a fundamental descriptor of catchment behavior (McGuire and McDonnell, 2006). The TTD

concept is based on the representation of catchments as a dynamic population of water parcels that
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age as they move from inflow to outflow. In general terms, the TTD is the probability distribution of

travel times of water parcels that move through a catchment, for example from rainfall to discharge.

More specifically, TTDs can be defined in terms of tracking ages forward (i.e., time to exit) or

backward (i.e., time since entrance) in time (Niemi, 1977; Botter, Bertuzzo, and Rinaldo, 2011). The

backward TTD (bTTD) of discharge - defined as the distribution of water ages flowing through the

catchment stream outlet at a certain time - is most relevant for considering catchment controls on

the variability of stream chemistry (Harman, 2015), and is the focus of this work.

Rainfall is one of the primary factors determining the shape and transience of bTTDs (Botter,

Bertuzzo, and Rinaldo, 2010). Conceptually, the rainfall history has two important consequences.

First, it constrains the evolution of the bTTD through conservation of water mass by age. For

example, none of the water in discharge can originate from a time period without rainfall. Second,

rainfall influences the pathways that water travels through the watershed. Heidbüchel, Troch, and

Lyon (2013) described this effect as a "hydrologic response cascade" in which the distribution and

intensity of rainfall influences the way that water fills watershed storage, which in turn determines

flow pathways and transit times. Kim et al. (2016) refined this observation by noting that rainfall

can affect flow pathways in two ways: (1) by changing the flow rate by an equal proportion along all

existing flow paths (flow path acceleration) or (2) by changing the arrangement of, and/or partitioning

between flow paths (flow path reorganization or activation). The effect of rainfall on bTTDs is also

mediated by other inherent properties of the watershed, including geology, topography, soils, and

vegetation (Heidbüchel, Troch, and Lyon, 2013).

A major challenge to understanding the link between rainfall and bTTDs has been accurate

estimation of the bTTD, which cannot be directly observed. Previous studies have inferred the bTTD

in at least three different ways, providing three different perspectives on the importance of rainfall.

First, isotope-based hydrograph separation and hydrochemical-based end-member mixing analysis

(IHS/EMMA) use tracers to estimate a categorical bTTD by separating hydrographs into event

(i.e., younger) and pre-event (i.e., older) contributions (Buttle, 1994; Hooper, Christophersen, and

Peters, 1990). Second, models based on the assumption of a time-invariant bTTD use either inverse

modeling and conservative tracer data (e.g., McGuire and McDonnell, 2006) or particle tracking in

a steady-state distributed model (e.g., Pollock, 1988) to estimate an emergent steady-state bTTD
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even when the true bTTD is known to be unsteady. Third, time-varying bTTD models use advanced

approaches to inverse modeling (e.g., Rinaldo et al., 2015) and flux tracking (e.g., van der Velde

et al., 2012; Davies et al., 2011) to make consecutive estimates of the time-varying bTTD averaged

over shorter periods (i.e., hours to days) that integrate information from the history of time-variable

inputs.

Studies using IHS/EMMA indicate that the intensity and pattern of rainfall have a complex and

site-specific influence on the amount of event water in runoff. As summarized in the recent literature

review by Klaus and McDonnell (2013), larger storms tend to yield higher fractions of event water

in storm runoff. At the same time, they report that, in some case studies, storm runoff during

wet periods tends to have a smaller fraction of event water than does runoff during dry periods.

IHS/EMMA has also been combined with field observations to make inferences about dominant

hydrologic processes. Studies at some sites find that intense storm events generate overland flow and

activate other fast flow pathways that mobilize large volumes of event water into streams (e.g., Burns

et al., 2001; Buttle, Vonk, and Taylor, 1995). Conversely, other studies show that intense storms

trigger pressure waves (Torres et al., 1998), groundwater ridging (Sklash and Farvolden, 1979), and

other phenomena that mobilize large volumes of pre-event water (e.g., McGlynn, McDonnel, and

Brammer, 2002).

Of the many studies employing time-invariant transit time models (e.g., sine-wave model, con-

volution approach) (McGuire and McDonnell, 2006), only a few have explored the relationship

between rainfall and the shape of the bTTD; they find that increased rainfall is sometimes (but not

always) associated with faster transit times. For example, Hrachowitz et al. (2009) and Hrachowitz

et al. (2010) compared estimates of the time-invariant bTTD between years and between sites at

several humid Scottish watersheds and found a significant, but sometimes highly scattered, negative

correlation between mean rainfall and mean transit time. Engdahl and Maxwell (2015) estimated

the time-invariant bTTD in a series of virtual watershed experiments and found that higher effective

precipitation (mean rainfall minus evapotranspiration) yielded faster transit times, especially through

the vadose zone. Other studies spanning larger geographies, however, suggest that mean rainfall

may not be a good predictor of travel time. Maxwell et al. (2016) tracked particles through a

surface-subsurface flow simulation to estimate the bTTD of six major North American watersheds.
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They reported no association between the mean transit time and rainfall, though they did find that

the variance of the bTTD was greater in wetter watersheds. Jasechko et al. (2016) estimated a

time-invariant fraction of young water in 254 catchments around the world and found no significant

correlation with annual rainfall. A common limitation of many of these studies is the sparse sampling

of isotope concentrations that underlie the analysis.

More recently, researchers have applied time-varying transit time models to study the relationship

between rainfall and bTTDs, although careful sensitivity analyses have not been done. As might

be expected, these studies show that stream age tends to be inversely related to rainfall intensity

(e.g., Rodhe, Nyberg, and Bishop, 1996; Morgenstern, Stewart, and Stenger, 2010; Heidbüchel

et al., 2012; Hrachowitz et al., 2013; Peters, Burns, and Aulenbach, 2014; Benettin et al., 2015).

More unexpectedly, several studies have found the bTTD to be approximately time-invariant in

discharge-weighted time (e.g., Rodhe, Nyberg, and Bishop, 1996). With regard to rainfall pattern,

Heidbüchel, Troch, and Lyon (2013) found that rainfall clustering seemed to have an important effect

on mean transit times at two zero-order, arid, mountainous catchments. Specifically, more clustered

rainfall produced faster and younger runoff, presumably due to the exceedance of certain storage

thresholds.

This brief literature review shows that fundamental questions about the relationship between

rainfall variability and bTTDs remain unanswered, to the detriment of applied hydrology. A better

understanding of what drives the evolution of bTTDs has the potential to (1) reveal dominant

hydrological processes within the watershed (McGuire and McDonnell, 2006; McDonnell et al.,

2010) and (2) improve the performance of catchment water quality models (Wellen, Kamran-Disfani,

and Arhonditsis, 2015; Hrachowitz et al., 2016). Shifts in the bTTD due to variability in rainfall

intensity and pattern, which could increase due to climate change (Lau, Wu, and Kim, 2013), might

significantly alter the rate of chemical flushing through watersheds and modify the chemistry of water

discharged to streams. From a watershed management perspective, this could call into question

analyses that extrapolate estimates of transit times or stream chemistry from one time period or

location to another (e.g., Sanford and Pope, 2013; Morgenstern et al., 2015). Further, watershed

management models that incorrectly capture the relationship between rainfall and the bTTD might

be missing important watershed processes (McDonnell and Beven, 2014), and thus be prone to giving
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Table 2.1: Notation used to represent the mean fraction of young water F (t) and rainfall J(t) at different
timescales. Notation for Q(t) and ET (t) is similar to J(t). The last column lists the number n of times the
quantities were estimated in each of the two watersheds over the 10 year study period from 1999 to 2008.

Averaging n
Notation period (99-08)
Fi(t), Ji(t) some period i varies
Fd(t), Jd(t) daily 3653
Fm(t), Jm(t) monthly 120
Fq(t), Jq(t) quarterly 40
Fy(t), Jy(t) yearly 10
Fat, Jat all time 1
Faw, Jaw all winters 1
Fas, Jas all summers 1

wrong results, or right results for wrong reasons (Kirchner, 2006).

2.3.2 Key metrics and notation

Although we are concerned with the behavior of the entire bTTD, the present analysis focuses

on a summary statistic, the fraction of water in discharge younger than 90 days. We focus on

this fraction of young water (FYW) for the following reasons. First, summary statistics facilitate

the interpretation and visualization of changes in the bTTD, which varies across two dimensions

(time and age). Previous transit time studies have also employed summary statistics such as the

mean age, median age, and FYW (e.g., Rodhe, Nyberg, and Bishop, 1996; Hrachowitz et al., 2010;

Peters, Burns, and Aulenbach, 2014; Benettin et al., 2013; Engdahl and Maxwell, 2015; Jasechko

et al., 2016). Second, some evidence suggests that estimates of the FYW may be more certain

than other commonly used summary statistics. Kirchner (2015b) and Kirchner (2015a) showed that

tracer-based estimates of the mean and median water age may be more vulnerable than the FYW to

aggregation error caused by catchment heterogeneities. Third, the FYW is an inherently interesting

age fraction to study because young water is a significant portion of the global runoff budget that

rapidly transmits soluble contaminants from landscapes to streams (Jasechko et al., 2016). The 90

day window also captures and isolates seasonal shifts in stream age that might affect the phenology

of aquatic ecosystems. Finally, in the results and supplemental materials, we provide evidence that
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some of our main conclusions are not sensitive to the choice of threshold within the range of 60 to

120 days.

The cumulative bTTD and FYW can be written in terms of age T and time t as ←−PQ(T, t) and
←−
PQ(T = 90 days, t), respectively. The notation F (t) refers to a time-series of the FYW. Additional

subscript notation describing F (t) over different timescales is shown in Table 2.1. Note all "mean" or

"averaged" values of the FYW are flow-weighted using the equation presented in Section 2.5.2, in

order to capture the FYW for all flux over the time period of interest.

2.3.3 Research questions

The overall goal of this study is to develop and demonstrate a method to analyze the sensitivity

of the FYW to rainfall variability at catchment scale. We apply our methods at two neighboring

experimental catchments in Plynlimon, Wales using a unique, publicly-available data record. We try

to answer three questions.

1. How do changes in the average intensity of rainfall Ji(t) affect Fi(t) over different timescales i?

As discussed above, previous work has established that more rainfall generally yields more young

water, but the functional form of the relationship (i.e., slope, linearity) and its dependence on

the timescale of analysis are unclear.

2. How do changes in the pattern of daily rainfall affect Fi(t) over different timescales i? It is

evident that a change in rainfall pattern alters the FYW over short timescales (e.g., daily), but

what about longer timescales (e.g., yearly)? What kinds of pattern have the biggest effect and

why? Previous research studying the aggregate influence of rainfall pattern on the bTTD over

long periods is scant and equivocal.

3. How might projected changes in rainfall due to climate change affect Fi(t) over different

timescales i? Although many studies have examined potential effects of climate change on

stream discharge (Nohara et al., 2006) and water quality (Whitehead et al., 2009), we are

unaware of prior efforts to isolate the potential influence of climate change on catchment

bTTDs.
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Answering these questions required addressing several common methodological challenges to

catchment-scale transit time modeling (McGuire and McDonnell, 2006). First, to avoid uncertainties

related to short data records, we identified study sites with an unusually long record of environmental

tracer data. Second, to make our results more generalizable, we analyzed two distinct watersheds and

used modeling approaches that could be applied at other sites. Third, to enable sensitivity analysis,

we devised an appropriate means of forward modeling F (t) by coupling three models together: a

rainfall generator (Robinson and Sivapalan, 1997), a rainfall-runoff model (Kirchner, 2009), and the

rank StorAge-Selection (rSAS) transit time model (Harman, 2015). We forced the coupled models

with a range of weather conditions, including projected climate change storylines. Finally, to address

the challenge of parameter uncertainty in transit time modeling, we used the Differential Evolution

Adaptive Metropolis (DREAM) algorithm (Vrugt, 2016) to identify a distribution of probable rSAS

parameter values, using a likelihood function justified by analysis of model residuals. Previous studies

using similar transit time models have either not considered parameter uncertainty (e.g., Harman,

2015; Danesh-Yazdi et al., 2016) or accounted for it based on unspecified assumptions about the

underlying likelihood function (e.g., Benettin et al., 2017).

The remainder of the paper introduces the Plynlimon study sites, describes our coupled modeling

framework, describes the three phases of our sensitivity analysis, and presents the key findings and

conclusions.

2.4 Study site description

Our work is based on data sets from the Lower Hafren (LH) and Tanllwyth (TW) headwater

catchments of the Severn river basin in Plynlimon, Wales (see map in Figure 2.1 and catchment

characteristics in Table 2.2). In addition to being extensively monitored and studied, the sites were

for chosen for having similar climate but distinct physiography, hydrologic responsiveness, and transit

time characteristics (one slower, one faster).

The catchments have been described elsewhere (Neal, 1997). In brief, the relatively large LH

drains 3.5 km2 across a 320 m elevation drop. The soils and vegetation of the upper LH are moorland,

while the lower LH has a mixture of moorland, podzol, and gley soils with mostly Sitka Spruce

vegetation. The TW site drains 0.5 km2 across a 160 m elevation drop. Soils are primarily gley under
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Sitka Spruce vegetation. Both sites are undeveloped but have a history of logging. No major felling

occurred during the primary study period 1999-2008.

Over 30 years of monitoring data have been collected at the sites by the UK Center for Ecology,

including rainfall, discharge, solar fluxes, temperature, and chloride concentration in the rainfall

and discharge outlet (Neal, Kirchner, and Reynolds, 2013). The climate is wet with high annual

rainfall (2857 mm) falling throughout the year and low evapotranspiration, yielding high runoff-ratios

(0.78 in LH, 0.90 in TW). Besides atmospheric deposition and stream discharge, analyses of chloride

hydrochemistry have not identified major sources or sinks for chloride at Plynlimon (Neal and Rosier,

1990) or in forested ecosystems generally (Svensson, Lovett, and Likens, 2012). Numerous studies

have found that chloride acts as a conservative tracer at Plynlimon (e.g., Kirchner, Feng, and Neal,

2000; Benettin et al., 2015), which is the assumption made here. Input chloride concentrations were

adjusted to account for unobserved occult deposition (as described in the next section). Using a

steady-state transit time model calibrated with the chloride measurements, Kirchner, Feng, and Neal

Figure 2.1: Map showing the location of the Lower Hafren and Tanllwyth experimental catchments, with
details about monitoring sites, topography, and the stream network.
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Table 2.2: Characteristics of the study sites. Soils are moorland (M), podzol (P), or gley (G). Catchment
area, soil types, and modeled estimate of the mean transit time (MTT) are from Kirchner, Feng, and Neal
(2001).

Watershed name Area
Soil
Types

Mean
rainfall
[mm/d]

Mean
ET
[mm/d]

Mean
dis-
charge
[mm/d]

Runoff
ratio

MTT
[d]

Lower Hafren (LH) 3.47 M/P/G 7.83 1.72 6.14 0.78 299.3
Tanllwyth (TW) 0.51 G 7.83 0.89 7.01 0.90 131.4

(2001) showed that the mean LH transit time is roughly two times larger than the mean TW transit

time. This is possibly due to the relatively high permeability of LH podzolic soils, which can be

associated with a larger volume of storage actively turning over and generating discharge.

2.4.1 Data description

Except where otherwise noted, daily time series of rainfall J(t), discharge Q(t), and actual evapo-

transpiration ET (t), along with environmental tracer concentrations (chloride in rainwater CJ(t)

and the stream CQ(t)) were gathered from a publicly-available data repository (Neal, Kirchner, and

Reynolds, 2013) for the LH and TW catchments for the period 1993-2008 following methods described

in Harman (2015) and summarized here. Daily bulk J(t) was measured from continuously open

containers at Carren Wen near the edge of the LH watershed. Q(t) for both streams was recorded at

15-minute intervals and averaged daily at gauge locations shown in Figure 2.1. Q(t) data at TW

was provided by the UK National River Flow Archive (O. Swain, personal communication). A small

number of missing TW daily discharge measurements were filled by regressing a linear relationship

with discharge at LH. Potential evapotranspiration (PET (t)) was calculated from gap-filled, hourly

weather station data at Carren Wen and Tanllwyth using the FAO Penman-Monteith equation for

reference crops (Allen et al., 1998). To estimate ET (t), PET (t) was multiplied by a time-varying

reduction factor β:

β(Q) = min

(
1, PRQ(Q)

5

)
(2.1)

where PRQ(Q) is the percentile rank of Q(t) relative to a reference period 1999-2008. The value of

β(Q) begins to decline from 1 to 0 when Q drops below the 5th percentile, indicating the initiation
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of water-limited conditions. The final equation for ET (t) was:

ET (t) = PET (t) ∗ β ∗ kET (2.2)

where kET is an additional fitting parameter (kET = 1.74 at LH, 0.85 at TW) set to obtain water

mass balance over the reference period (i.e., Jat = Qat + ETat). More sophisticated approaches

to ET (t) estimation under normal and dry conditions are possible (e.g., Monteith, 1965) but not

explored here due in part to the limited role of ET (t) in the Plynlimon water budget.

Approximately weekly bulk measurements of CJ were collected from 1993-2008 (n=596). To

facilitate modeling at daily timesteps, these were downscaled by assuming constant concentration

during the bulk sampling period. Long data gaps were filled with the long-term average concentration

for that month. To account for mist droplets and dry deposition missed by the collection, we assumed

that occult chloride deposition from these sources was a fraction D of the total observed chloride in

precipitation, where D was calibrated to achieve long-term chloride mass balance between inputs

and outputs. Previous estimates of D have been on the order of 11-13% for moorland and 33-38%

for forest (Neal and Kirchner, 2000; Wilkinson et al., 1997). Our calibrated value for LH, which is a

combination of moorland and forest, was within the range of estimates for these two land-uses at 29%.

The value for TW, which is mostly forest, was slightly above the range of previous estimates, at 43%.

More complex accounting schemes for chloride inputs across space and time have been developed at

these sites (Page et al., 2007) but are not necessary to obtain useful results (Harman, 2015). Grab

samples of CQ were also collected at approximately weekly intervals from the outlets of LH (n=805)

and TW (n=797) over the same time period.

2.5 Modeling setup

Three different models were coupled, calibrated, and used to simulate the relationship between rainfall

and the FYW: a rainfall-runoff model, a time-varying transit time model, and a rainfall generator.

Each is described below.
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2.5.1 Rainfall-runoff model

A catchment storage anomaly ∆S(t) and discharge Q(t) were simulated using the catchment sensitivity

function as described in Kirchner (2009). The method employs daily estimates of J(t), ET (t), and a

value of Q(t) at some initial time t0 to solve a reformulation of the water balance equation:

d(lnQ(t))
dt

= g(Q)
(
J(t)− ET (t)

Q(t) − 1
)

(2.3)

where g(Q) is the catchment sensitivity function and g(Q) = dQ/dS. The method assumes that

S(t) has a one-to-one non-hysteric relationship with Q(t) (which is not generally true (Beven,

2006b) but was shown to be a reasonable approximation at Plynlimon (Kirchner, 2009)). Using the

parameterization of g(Q) described below, Equation (2.3) was solved using the open source numerical

integration solver "odeint" in SciPy v0.17.1 (Jones, Oliphant, and Peterson, 2014) to estimate Q(t).

The solver took PET (t) as input and converted it to ET (t) using equations (2.1) and (2.2) and the

concurrent estimate of Q(t).

The catchment sensitivity function g(Q) was parameterized using

ln(g) = c1 + c2 ∗ ln(Q) + c3 ∗ (ln(Q))2 (2.4)

with initial estimates of fitting parameters c1, c2, and c3 determined from graphical techniques

described in Kirchner (2009) for the period 1999-2008. These graphical estimates seeded an automated

search algorithm (SciPy v0.17.1) that minimized the root mean square error (RMSE) between

observations and simulations of Q derived from Equation (2.3). After obtaining the final parameters,

an out-of-sample validation was performed for 1993-1998.

In both catchments, the calibrated value of g(Q) was used to calculate ∆S(t), the variation in

catchment storage relative to an arbitrary datum (since the absolute storage is not known):

∆S(t) =
∫ Q(t)

Q(t0)

1
g(Q)dQ− Sref (2.5)

where t0 is the initial condition for time and the parameter Sref was chosen to ensure the mean of

∆S(t) from 1999-2008 was zero.
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2.5.2 rSAS transit time model

The rSAS model was used to estimate the time-varying bTTD and the FYW. The model was first

described and applied by Harman (2015) in the LH watershed, and has since been used in a number

of hydrologic systems (e.g., Kim et al., 2016; Harman, Ward, and Ball, 2016; Danesh-Yazdi et al.,

2016). It is one in the family of StorAge Selection modeling frameworks (Botter, Bertuzzo, and

Rinaldo, 2011; van der Velde et al., 2012; Rinaldo et al., 2015).

Briefly, the rSAS model assumes the catchment can be treated as a single control volume with a

total storage S(t), an influx of precipitation J(t) with a constant spatial distribution, and outfluxes

ET (t) and Q(t). The fluxes are inputs to the model derived from observations or other model

simulations. At any time t the age of water in each outflux and storage can be represented by the

cumulative transit time distributions PQ(T, t) and PET (T, t) and the residence time distribution

PS(T, t). The evolution of these age distributions is described by a reformulation of the "master

equation" of Botter, Bertuzzo, and Rinaldo (2011) expressing continuity of water age and mass at

the catchment scale (Harman, 2015):

∂ST (T, t)
∂t

= J(t)−Q(t)←−PQ(T, t)− ET (t)←−−PET (T, t)− ∂ST (T, t)
∂T

(2.6)

where ST (T,t) is age-ranked storage:

ST (T, t) = S(t)PS(T, t) (2.7)

with all precipitation assumed to have age zero. The terms on the right-hand side of Equation (2.6)

capture the four ways the age of water in storage can change: water can enter as precipitation with

age zero, water can leave as discharge or evapotranspiration with a distribution of ages, or water can

age in place.
←−
PQ(T, t) and←−−PET (T, t) have a complex relationship with the history of fluxes that may be difficult

to parameterize. To address this, it has been found convenient to re-express them as an equivalent

CDF of age-ranked storage ST (T, t) (Harman, 2015):

ΩQ(ST , t) =←−PQ(T, t) (2.8)
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ΩET (ST , t) =←−−PET (T, t) (2.9)

where ΩQ(ST , t) and ΩET (ST , t) are the rSAS functions for the Q(t) and ET (t) fluxes, respectively.

These rSAS functions describe the relationship between the age distribution of age-ranked water in

storage and the age distribution of water in each outflux. This transformation between Ω(ST , t) and
←−
P (T, t) is possible because of the one-to-one mapping between T and ST .

Given time-series of J(t), Q(t), ET (t), ΩQ(ST , t), ΩET (ST , t), and the initial distribution of ages

in storage ST (T, t = 0) (determined here with a six-year warm-up period), the rSAS model uses

Equations 2.6, 2.7, 2.8, and 2.9 to solve for the four unknowns: ST (T, t), Ps(T, t),
←−
PQ(T, t), and

←−−
PET (T, t). The system of equations is solved numerically in Python 2.7 for daily timesteps following

methods described by Harman (2015). The value of F (t) is determined as ←−PQ(T = 90 days, t), and

the flow-weighted mean over different timescales can be calculated using:

Fi(t) =

∑
∀ t∈[ti,ti+1)

Q(t)←−PQ(T = 90 days, t)

∑
∀ t∈[ti,ti+1)

Q(t)
(2.10)

where i is a period of averaging (e.g., yearly) within the interval ti and ti+1.

Finally, the rSAS model can be used to simulate movement of conservative tracers through the

watershed. A spatially uniform concentration of conservative tracer in the rainfall CJ(t) can be

convolved with the PDF of the bTTD (←−pQ(T, t)) to estimate the output concentration in the stream

(Barnes and Bonell, 1996; Rinaldo et al., 2011)

CQ(t) =
∫ ∞

0
CJ(t− τ)←−pQ(τ, t)dτ (2.11)

with an additional adjustment made for the evapoconcentration of chloride (Harman, 2015).

2.5.2.1 Previous rSAS calibration and the inverse storage effect

Harman (2015) used conservative chloride tracer data from 1989-2008 to calibrate an rSAS model

at the LH watershed. That work identified two cases of rSAS functions that did similarly well at

reproducing the chloride stream concentrations. The first case exhibited an "inverse storage effect",
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meaning that when storage was high the rSAS function for discharge shifted to increase the proportion

of water coming from younger age-ranked storage. The second case had no inverse storage effect

(i.e., the rSAS functions were time invariant) and performed just slightly worse than the first case. It

was not clear if the difference between the two cases was significant or due to one or more potential

sources of model uncertainty, including uncertainty in model inputs, the rSAS model structure, or

the rSAS model parameterization.

This ambiguity in the rSAS calibration is problematic because the presence or absence of time-

variability in the rSAS functions could significantly affect the relationship between rainfall pattern

and the young water fraction. Kim et al. (2016) showed that, if the rSAS function ΩQ(ST ) is

time-invariant, the bTTD should be approximately constant in discharge-weighted time. Under

certain conditions, this implies that F (t) will be determined by the volume of discharge or rainfall

over the prior 90 days, irrespective of its pattern. A proof of this (perhaps surprising) point is

provided in Appendix A. By contrast, if the rSAS function is time-varying, the influence of rainfall

pattern on the young water fraction could be more complex.

2.5.2.2 Diagnosing an inverse storage effect

To diagnose an inverse storage effect with more rigor, we parameterized the rSAS functions in a

slightly different way from Harman (2015). The chosen form isolates the storage effect in a simple

parameter λ, whose value distinguishes between the no storage (λ = 0) and inverse storage (λ < 0)

cases.

With the approach applied here, the rSAS model requires estimation of four parameters in each

watershed: α, λ, S0, and SET . The rSAS function for ET is defined as a time-invariant uniform

distribution over a fixed volume SET of the youngest water in storage:

ΩET (ST ) = ST
SET

, ST ∈ [0, SET ]

1, ST > SET (2.12)
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The rSAS function for Q is defined as a storage-dependent gamma distribution with shape parameter

α and scale parameter SQ(t):

ΩQ(ST , t) =
γ(α, ST

SQ(t) )
Γ(α) (2.13)

SQ(t) = max(1mm,S0 + λ ∗∆S(t)) (2.14)

where γ(α, ST

SQ(t) ) is the incomplete gamma function (Abramowitz and Stegun, 1964) and Γ(α) is the

gamma function. According to Equation (2.14), SQ(t) varies with time depending on the catchment

storage anomaly ∆S(t) (derived in Section 2.5.1) and additional fitting parameters S0 and λ. If

λ = 0, the scale parameter SQ is constant and ΩQ(ST , t) is time-invariant (i.e., no storage effect).

When λ < 0 then ΩQ(ST , t) is time-varying and, as ∆S(t) increases, the median and other quintiles

of the distribution shift left to increase the fraction of discharge from smaller ST (i.e., an inverse

storage effect). The parameters of the gamma distribution must be positive, so SQ(t) was not allowed

to drop below 1mm.

In order to test the hypothesis that λ < 0 in each watershed, a probabilistic distribution of likely

parameter combinations in each of the two watersheds was found using the Differential Evolution

Adaptive Metropolis (DREAM) algorithm (Vrugt, 2016). DREAM applied a Markov chain Monte

Carlo (MCMC) simulation to estimate the posterior probability of rSAS parameter combinations for

the period 1999-2008, following a six year model warm-up. An iterative analysis of model residuals

following Schoups and Vrugt (2010) was used to select a likelihood function. This approach has

performed well for parameter identification in at least some cases (Schoups and Vrugt, 2010). It

assumes, however, that model error is aleatory and does not account for epistemic uncertainty, which

can result in overconfidence in parameter estimation (Beven, 2016; Vrugt, 2016).

The likelihood function used in the final analysis assumed residuals between simulated and

observed CQ(t) follow a heteroskedastic, Gaussian, first-order autoregressive process (see details in

the supporting information (SI)). The standard deviation of errors was found to be a linear function of

stream chloride concentration. The autoregressive process was needed to account for autocorrelation

in the residuals, which was unsurprising given the dependence of CQ(t) on the history of model

inputs. In addition to generating a most likely parameter set, DREAM was used to generate a 95th

percentile confidence interval of parameter sets, which provided a measure of parameter uncertainty
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in our simulation results. The MCMC simulation was run in MATLAB on the Maryland Advanced

Super Computing Center. All chains converged after 12,800 parameter trials, and an additional 3,200

chain links were run to reveal the distribution of likely parameter values.

2.5.3 Rainfall generator

To be able to study the FYW under a range of hypothetical rainfall scenarios, a rainfall generator

was used to create daily rainfall time-series with statistical properties that matched or systematically

differed from historic rainfall. Previous work has demonstrated the usefulness of rainfall generators

for studying rainfall-response in the Plynlimon watershed (Cameron et al., 1999; Cameron et al.,

2000). In this study, the rainfall patterns were used to force the coupled rainfall-runoff model and

transit time model, as will be described in the methods section 2.6.2.

The rainfall generator algorithm described in Robinson and Sivapalan (1997) was chosen for its

ability to isolate and adjust specific aspects of rainfall variability at both the seasonal and event

scale. In brief, the model constructs a record of daily rainfall intensities in three steps. First, a series

of alternating "storm" and "interstorm" durations are generated over the desired time period. The

duration of each storm and interstorm is randomly sampled from a shifted exponential distribution

with a seasonally varying mean. Second, the average intensity of each storm period is determined by

sampling from a gamma distribution, with the expected value and coefficient of variation defined as

power functions of the storm duration. Third, the normalized mass curve for each storm period –

which determines the within-storm rainfall distribution – is randomly generated from repeat sampling

of a beta PDF. In all three steps, the rainfall generator parameters were optimized using automated

routines to match the statistical properties of daily rainfall observed at the study site from 1983-2008.

Unlike rain generators such as Cameron et al. (1999), the generator used here was not specifically

designed to simulate extreme rainfall events, which could significantly bias young water estimates.

To check the potential influence of extreme events on our simulations of water age, we generated an

ensemble of 100 synthetic rainfall time-series with the same duration (16 years) as rainfall observed

during the historic period 1993-2008 and used them to force the calibrated rainfall-runoff model

and rSAS model. ET was kept constant at rates observed during the historic period. CDFs of key

indicators (i.e., rainfall intensity, discharge, young water fraction) for different periods (i.e., all time,
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all winters, all summers) were derived using data from both the historic period and the ensemble

of synthetic rainfall records. The results were compared, with the expectation that CDFs from the

historic period would lie within the 95th percentile interval of CDFs from the synthetic ensemble.

2.6 Sensitivity analysis methods

Using the data and models described above, we conducted three phases of sensitivity analysis and

virtual experimentation at our study sites.

2.6.1 Phase 1 methods: historic analysis

The goal of phase 1 was to hindcast the FYW from 1999-2008 and explore the influence of mean

rainfall intensity on the FYW over different timescales. The rainfall-runoff model was used to estimate

daily values of ∆S(t) with Equation (2.5) and the observed Q(t). Daily observations of J(t), Q(t),

and ET (t) were fed into the rSAS transport model to simulate daily estimates of F (t). The models

were spun up for six years (1993-1998) prior to the period of analysis. Fi(t) was estimated with

Equation (2.10) and compared with Ji(t) over daily, monthly, quarterly, and yearly timescales. Note

that this phase did not use the rainfall generator, and the rainfall-runoff model was only used to

estimate ∆S(t) from the observed Q(t); it was not used to simulate Q(t).

2.6.2 Phase 2 methods: pattern analysis

The goal of phase 2 was to test how changes in daily rainfall pattern influence the FYW over different

timescales, when the long-term mean rainfall intensity does not change. The analysis was split into

three virtual experiments, described below. To isolate the effect of rainfall pattern, only rainfall and

discharge were simulated (i.e., ET (t) was assumed to be zero).

The first experiment compared simulations of the FYW with and without intra-annual variability

in the rainfall. The rainfall-runoff and rSAS models were forced with (1) the observed daily rainfall

record from 1993-2008 and (2) the observed rainfall with daily rainfall replaced by the average yearly

rainfall Jy(t) for that year (see Figure 2.2a). The effect of changes in Jy(t) on Fy(t) was compared

27



Chapter 2. Influence of rainfall on transit times

for the two cases during the years 1999-2008. Any differences could be attributed to intra-annual

rainfall variability.

The second experiment compared simulations with identical mean rainfall intensity but increasing

modes of rainfall variability, to isolate which kinds of variability have the greatest influence on the

long-term mean FYW. To this end, we used the rainfall generator to create the set of 100-year

rainfall patterns shown in Figure 2.2b. The base pattern has no variability; subsequent patterns add

individual storm events, between-storm variability, within-storm variability, and finally seasonality.

This final pattern represents the full range of rainfall variability at our study site. The synthetic

rainfall patterns were used to force the runoff model to estimate daily Q(t) and ∆S(t), which were in

Figure 2.2: Rainfall scenarios used in the sensitivity analysis. Panel a shows the observed rainfall from
1999 to 2008 (top sub-panel) and the yearly average rainfall (bottom sub-panel). Panel b shows synthetic
rainfall patterns with incrementally increasing variability. A representative 360 day period is shown. To show
seasonal trends, the insets depict the average simulated rainfall for each day of the year, averaged over 300
years. The bottom sub-panel represents the full variability of the observed rainfall in our study sites. Panel
c shows the rainfall change factors derived from the UKCP09 model (Murphy et al., 2007) downloaded at
http://ukclimateprojections.metoffice.gov.uk for each of the four climate change storylines described in the
text. The gray shading shows the 90th percentile range of change factor values.
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turn used to force the rSAS model to estimate and compare the mean FYW for the entire period

(Fat), winter only (Faw), and summer only (Fas).

The third experiment explored the effect of daily rainfall patterns on the long-term FYW in

a more controlled manner. Several hypothetical series of repeating 10-day rainfall patterns were

created to test the effect of changes in (1) storm breaks, (2) within-storm variation, (3) between-storm

variation, and (4) seasonal variation on Fat. The patterns are presented in Section 2.7.3. Each

repeating 10-day pattern was used to force the runoff model and rSAS model calibrated for the LH

watershed. When F (t) reached periodic steady state, Fat was calculated and compared across runs.

The rSAS model time step was reduced from 24 to 0.5 hours to capture sub-daily behavior.

2.6.3 Phase 3 methods: climate change analysis

Phase 3 explored how plausible changes in rainfall and evapotranspiration due to climate change

might alter the long-term mean FYW during different times of year. The coupled modeling framework

was run under a baseline storyline and three plausible future climatic storylines (shown in Figure

2.2c), developed as follows. The "baseline" (BL) storyline used J(t) and PET (t) from data observed

in 1993-2008 and applied in the phase 1 analysis (see Section 2.6.1).

The three future storylines were developed using the "delta change" downscaling method described

in Hay, Markstrom, and Ward-Garrison (2011). This method applies change factors to the data

observed in 1993-2008 to produce a new climatic record representative of the period 2080-2095. Prob-

ability distributions of change factors for temperature, solar flux, relative humidity, and precipitation

generated by the UKCP09 models (Murphy et al., 2007) were downloaded from the UK climate

projections website (http: //ukclimateprojections. metoffice. gov. uk/) for the overlying 1 km2

grid cell for each month of the year. The probabilistic climate projections were based on a family

of climate models from the Met Office Hadley Centre and other climate centers. The projections

assume the high-emissions A1F1 development scenario with rapid, fossil fuel intensive economic

growth (Nakicenovic et al., 2000). Figure 2.2c shows the precipitation change factors that were used

to develop the three future storylines, described below.

The first future storyline simulated a median change in evapotranspiration (MCET), with no

change in rainfall from baseline. The median projected monthly change factors for temperature, solar
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radiation, and relative flux were applied to data from 1993-2008 to re-estimate PET (t) using the

approach described in Section 2.4.1. Although projections for change in windspeed were not available,

sensitivity analysis justified using the historic values (analysis not shown). Due to projected increases

in temperature and other factors, the annual mean PET (t) increased 27%, with the largest increase

(48%) in August.

The second future storyline simulated the same median change in evapotranspiration plus an

additional median change in rainfall (MCET+MCR). To project J(t), the median projected monthly

rainfall change factors were applied to the baseline rainfall, with an up to 49% increase in monthly

rainfall in winter and 43% decrease in monthly rainfall in summer.

The third future storyline simulated the median change in evapotranspiration plus an extreme

change in rainfall (MCET+ECR). The extreme change in rainfall was calculated using the outer

5th percentile of change factor projections including an up to 130% increase and 77% decrease in

monthly rainfall in winter and summer, respectively.

For each storyline, the projected values of J(t) and PET (t) were used to force the rainfall-runoff

model and rSAS model with parameters calibrated from the historic period, yielding future projections

for Q(t) and F (t). These were used to estimate and compare the values of Fat, Faw, and Fas.

2.7 Results

2.7.1 Model calibration results

The calibration results for the rainfall-runoff model, the rSAS model, and the rainfall generator are

discussed in turn.

2.7.1.1 Rainfall-runoff model calibration results

The calibrated rainfall-runoff model parameters and performance are given in Table 2.3. In both

watersheds, the Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) for Q(t) and log(Q(t))

exceeded 0.82 during both calibration and validation time periods (see time-series comparison in

Figure A1). The parameterized g(Q) was used to calculate the storage-discharge relationship in each

watershed with Equation (2.5), which yielded results that were reasonable based on expectations
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Table 2.3: Results from the calibration of the rainfall-runoff model.

Optimal parameters Calibration (1999-2008) Validation (1999-2008)
c1 c2 c3 NSE Q NSE logQ NSE Q NSE logQ

LH -4.29 2.04 -0.15 0.86 0.85 0.82 0.86
TW -3.70 1.56 0.05 0.86 0.88 0.83 0.85

(see additional discussion in Section 2.8.3). During drier conditions (∆S < 0) the discharge from

LH tends to be higher than TW, which is consistent with LH having deeper soils contributing more

to baseflow. Conversely, under wetter conditions (∆S > 0) LH discharge tends to be lower than

TW, which is consistent with TW having more impermeable soils that promote the formation of fast

surficial flow pathways.

Figure 2.3: Calibration results for the rSAS model in both catchments. Panel a shows the histogram
of parameter values and the most likely values (black triangles) given by DREAM. Panel b shows the
parameterized shape of the rSAS function under 5th percentile (dry), 50th percentile (normal), and 95th
percentile (wet) storage anomaly conditions. The lines bounded by color show the rSAS function based on
the most likely parameter values, and the shaded areas show the 95th percentile confidence interval due to
parameter uncertainty. The dotted lines illustrate the range of median ST values in each watershed.
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Table 2.4: Results from the calibration of the rSAS model with 95th percentile confidence intervals in
brackets.

Calibration

rSAS parameters
(1999-
2008)

α[-] λ[-] S0[mm] SET[mm] NSE
LH 0.55 -155.3 8,472 1,101 0.69

[0.50, 0.59] [-228.0, -119.0] [6,585, 12,202] [664, 2,087]
TW 0.92 -32.7 1,234 48 0.78

[0.85, 1.01] [-42.7,-23.5] [953, 1,503] [7, 326]

2.7.1.2 rSAS model calibration results

DREAM estimated the posterior distribution of rSAS parameters for the two watersheds (see Table

2.4, Figure 2.3a, and Figures A2-A5). The most likely parameter set in each watershed did well at

predicting stream chloride concentrations over the ten year period (NSE = 0.69/0.78 in the LH/TW

for the period 1999-2008, see Figures A6-A7). The model residuals for the most likely parameter set

exhibited the characteristics (i.e., heteroskedastic, Gaussian, first-order autoregressive) that would be

expected given our choice of likelihood function (see Figures A8-A9).

The results reject the hypothesis that either catchment has a time-invariant rSAS function. In

both watersheds, the entire confidence interval of λ values is negative (see Table 2.4), indicating an

inverse storage effect. Figure 2.3b shows the time-variability of the rSAS function at the 5th percentile

storage anomaly (i.e., dry condition), the median, and the 95th percentile (i.e., wet condition).

The final parameters of ΩQ(ST , t) show that discharge at LH generally comes from older age-rank

storage than at TW, especially under dry conditions. At the median ∆S (i.e., moderate wetness

conditions) the median ST for the ΩQ(ST , t) distribution at LH is 2000 mm, meaning that 50% of

discharge originates from the youngest 2000 mm of storage. By contrast, the median ST at TW is

less than half at 700 mm. The difference between the two watersheds is consistent with previous

work showing longer transit times in LH compared to TW (Kirchner, Feng, and Neal, 2001). Under

wet conditions, the median ST is 760 mm and 280 mm for the LH and TW distributions, respectively,

with a 480 mm gap. By contrast, the median ST under dry conditions is 4400 mm and 1200 mm,

with a much larger 3200 mm gap, suggesting that the LH is accessing a much larger storage volume

when the watershed is dry.
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Table 2.5: Results from the calibration of the rainfall generator. Parameters with the a superscript are
adjusted an additional +19% to -51% depending on the season. Parameters are defined in Robinson and
Sivapalan (1997) and in the SI.

Parameter name Value Unit Description
δr 2.70 days mean storm duration
αr -0.74 days amplitude of seasonal storm shift
τr 74.10 days phase of seasonal shift
δb 3.92 days mean break duration
αb 0.42 days amplitude of seasonal break shift
τb 43.80 days phase of seasonal break shift
a1 12.80a mm coefficient 1 for expected storm intensity
b1 0.23a - coefficient 2 for expected storm intensity
a2 0.63 - coefficient 1 for expected storm variability
b2 -0.83 - coefficient 2 for expected storm variability
β1, β2 3.00 - coefficient for within-storm variability
seasonality 1 - with/without seasonality boolean
pdrizzle 0.31 - probability of drizzle event
J̄ 7.83 mm/day long-term mean rainfall

Finally, the parameter SET , which defines the uniform distribution ΩET (ST ), indicates that

actual evapotranspiration is randomly sampled from the youngest 1,100 mm of storage at LH and 49

mm at TW. Although the 95% confidence intervals are relatively large, all results are lower than the

median ST in ΩQ(ST , t) under moderate wetness conditions in each watershed. This indicates that

evapotranspiration is sampled from generally younger age-rank storage than discharge.

2.7.1.3 Rainfall generator calibration results

The parameters of the rainfall generator model, shown in Table 2.5, were calibrated to reproduce

observed rainfall variability (see calibration results in Figures A10-A12). These parameters were

modified to produce the patterns shown in Figure 2.2b. The coupled model evaluation found that

simulations using the ensemble of 100 synthetic rainfall patterns and a simulation using the observed

rainfall gave comparable results in terms of the distribution of rainfall intensity, discharge, and young

water fraction (see Figures A13-A14). These results demonstrate that the statistical properties of

rainfall produced by the generator are reasonably similar to those of the historic period.
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Figure 2.4: Values of key model inputs, outputs, and internal state variables for the coupled modeling
framework for a representative 2-year period in the LH (left) and TW (right). Panels a-b, c-d, and e-f show
J(t), ET (t), and Q(t), respectively. Panels g-h show the storage anomaly ∆S(t) derived from the rainfall
runoff model. Panels i-j show the observed concentration of chloride tracer in rainfall CJ(t) and the stream
CQ(t), overlaid with the stream concentration simulated by rSAS with the most likely parameter set. Panels
k-l show the median ST of ΩQ(ST , t). The shaded area captures the 95th percentile confidence interval due
to parameter uncertainty. Panels m-n show the simulated fraction of water younger than 1 day, 30 days, 90
days, 1 year, and 5 years assuming the most likely parameter set.
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2.7.2 Phase 1 results: historic analysis

Figure 2.4 illustrates the coupled model inputs and outputs for two years (2002-2003) of the historic

period. Precipitation is measured at the same station and therefore identical in both watersheds

(Figure 2.4a-b). Rainfall is higher in winter and lower in summer. The ET peaks in summer and

is higher in LH than TW due to differences in the fitting parameter kET , though the absolute

values are still small compared to total rainfall (Figure 2.4c-d). The hydrograph and ∆S(t) values

appear slightly flashier in TW (Figure 2.4e-h), which is evidence of its steeper storage-discharge

relationship. The chloride stream concentration at TW appears slightly more responsive to spikes in

rainfall concentration (Figure 2.4i-j), which is evidence of having an rSAS function that selects more

younger water from storage into discharge. As a result, F (t) is somewhat higher in TW than LH (see

Figure 2.4m-n). The time-variability of F (t) is a consequence of both the changing composition of

age-ranked storage and the changing shape of the rSAS functions. The F (t) seems highly correlated

with other age fractions including the fraction of extremely young water (<1 day old) and fractions

including much older water (e.g., < 5 years old) (see Figure 2.4m-n).

Based on a sampling of the last 3,200 chains of the DREAM simulation, the median Fat for

LH and TW are 39% and 55%, respectively. We define a young water fraction anomaly ∆Fi(t) for

timescale i as the difference between Fi(t) and Fat. This metric can be directly compared between

parameter sets (which each have a different Fat) and used to construct 90% confidence intervals. At

the daily timescale, ∆Fd(t) tends to increase with Jd(t) (see Figure 2.5a), though there is substantial

parameter uncertainty and scatter, presumably due to the influence of prior rainfall. At the monthly,

quarterly, and yearly scales the correlation gets progressively stronger and less uncertain, culminating

in a strong linear relationship (R2 > 0.90) between mean yearly rainfall Jy(t) and the yearly young

water storage anomaly ∆Fy(t) in both catchments (see Figure 2.5d). The value of ∆Fy(t) increases by

13.0 and 16.8 percentage points from the driest to the wettest years in the LH and TW, respectively.

Perhaps surprisingly, the marginal effect of higher rainfall on Fy(t) (i.e., ∂Fy/∂Jy) is roughly constant

and nearly the same in both watersheds: a 1 mm/day increase in Jy(t) results in a 3.1 and 4.0

percentage point increase in the Fy(t) in the LH and TW watershed, respectively.
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2.7.3 Phase 2 results: pattern analysis

Our first analysis of rainfall pattern is shown in Figure 2.6, which compares the relationship between

mean yearly rainfall Jy(t) and mean yearly FYW Fy(t) under conditions of (1) full rainfall variability

and (2) no within-year rainfall variability. In the case of full rainfall variability in the LH watershed,

Jy(t) varies from roughly 6 to 10 mm/day and Fy(t) varies from 32% − 45%. When within-year

rainfall variability is removed, the value of Fy(t) drops by 4.4− 8.6 percentage points in all years. At

the same time, the marginal sensitivity of Fy(t) to changes in Jy(t) (i.e., ∂Fy/∂Jy) remains roughly

constant. This is evident by the fact that the "full variability" and "no within-year variability" curves

run parallel in Figure 2.6. The same trends are evident in TW. These results suggest that within-year

rainfall variability tends to increase Fy(t), but that changes in Fy(t) from one year to the next are

driven by differences in the mean intensity of rainfall, not the pattern.

To better understand which kinds of rainfall pattern increase the long-term mean FYW, our second

Figure 2.5: Relationship between the young water fraction anomaly ∆Fi(t) (defined in Section 2.7.2) and
mean rainfall averaged over four timescales i: daily (panel a), monthly (panel b), seasonally (panel c), and
yearly (panel d). The dashed line shows a line of best fit. The error bars show the 90th percentile confidence
interval. The right-most panels indicate the slope s of the line of best fit and the median Fat for all parameter
sets. The gray triangular regions are described in Section 2.8.2.
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analysis forced the coupled models with 100-year synthetic rainfall records exhibiting increasing

levels of rainfall variability (see results in Figure 2.7a-c). In both watersheds, rising variability in

rainfall tended to increase both Fat and the variability of Fy(t) among years (indicated with the

error bars). The largest increases occurred with the addition of storm breaks, followed by between-

and within-storm variability. Although the addition of seasonality has a relatively small effect on

Fat, it is the single most important factor affecting the long-term mean for winter Faw and summer

Fas (see Figures 2.7b-c). This is likely due to the redistribution of rainfall among the seasons, with

higher amounts in winter and lower amounts in summer. Overall, the sensitivity to rainfall pattern

was slightly greater in the LH.

Figure 2.6: Panel a reproduces from Figure 2.2a the observed rainfall record marked "full variability" (blue
line) and the yearly mean rainfall marked "no within-yr variability" (black line). Panel b shows the relationship
between mean annual precipitation Jy(t) and modeled Fy(t) in LH and TW with (1) full variability (closed
circles) and (2) no within-year rainfall variability (open circles). Note that rainfall variability increases Fy(t),
but changes in Jy(t) have roughly the same marginal effect on Fy(t) with or without within-year variability.
The cases with no variability follow the steady-state solution (dashed line) described in Section 2.8.2.
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Lastly, the influence of different rainfall patterns on the long-term mean FYW is demonstrated

using repeating 10-day rainfall patterns shown in Figure 2.8. The series of three patterns in Figure

2.8a show that Fat increases significantly from 39% to 56% when the pattern transitions from having

no storm variability to having storm breaks. The three patterns illustrate how large discharge events

have a higher proportion of young water than smaller discharge events. This is evidence of the

inverse storage effect, since discharge and storage (shown on the right y-axes in Figure 2.8) were

assumed to be monotonically related. Similarly, panels 2.8b and 2.8c show how the Fat increases when

between-storm and within-storm variability is introduced. Interestingly, the sequence of variability

Figure 2.7: The top row shows the effect of different modes of rainfall variability on the long-term mean
FYW for all time (column a), all winters (panel b), and all summers (column c) in 100-year simulations. The
error bars show the standard deviation of Fy(t). The bottom two rows (panels a1-a4) show the calculated
storage-based and discharge-based young water indices versus estimates of Fat taken from panel a. Each
point represents one of the five scenarios, as labeled in panel a1. Increases in both indices are associated with
increases in Fat, especially in LH. The light gray lines show Fat (right y-axis) for scenarios re-run with no
inverse storage effect (i.e., λ = 0), as discussed in Sections 2.8.3 and 2.8.5.
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Figure 2.8: The interplay between different storm patterns, model parameters, and Fat in the LH. The first
seven days of repeating ten day rainfall patterns are shown (solid gray lines) along with simulated discharge
(dashed line) split into young (pink) and old (blue) components. No rain fell during the last three days
of the repeating patterns, which are not shown. The mean young water fraction and SBYW are given for
each pattern. Note that discharge has a one-to-one non-linear relationship with ∆S(t), shown on the right
y-axis. The panels show a tendency for Fat to increase when storms get more clustered (panel a), storms are
negatively skewed (panel b-c), and storms are less than 3 days apart (panel d). Panels also show how both
Q(t) and F (t) increase sharply when ∆S(t) > 35mm. This value is both ηQ and ηΩ as labeled in the lower
right sub-panels and defined in Section 2.8.3. The last panels show how changes in the storage-discharge
relationship (panel e) and inverse storage effect (panel f) affect Fat.
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is important. Small storms followed by large storms raise the Fat more than large storms followed

by small storms, all else equal (see panel 2.8b). Similarly, negatively skewed storms – that is, those

with the highest rainfall occurring at the end of the event – release more young water than positively

skewed storms (see panel 2.8c). Finally, the influence of one storm on the next depends on the length

of the break between them. Panels 2.8d shows that Fat begins to rise when storms are less than 3

days apart.

2.7.4 Phase 3 results: climate change analysis

Figure 2.9a-c shows the influence of different climate change storylines on the long-term mean FYW.

The BL and MCET storylines yielded almost the same Fat. The only difference in these scenarios is

a projected increase in PET (t), indicating that Fat is relatively insensitive to projected increases in

PET (t) at these sites. In the other climate storylines featuring changes in rainfall, however, there is

a significant increase in both Fat and Faw. In the LH, for example, the Fat increases from 41% in

the BL storyline to 60% under the MCET+ECR storyline. In contrast to the annual and winter

trend, the summer shows a large drop in the Fas from 26(36)% in LH(TW) in the BL storyline to

12(15)% in the MCET+ECR storyline, presumably due to the large simulated decrease in summer

precipitation. For both Faw and Fas, the values at the two sites begin to overlap in the MCET+ECR

storylines.

In addition to the young water fraction, we can also examine changes in the young water flux and

total discharge. Figure 2.9d-f shows mean monthly discharge from the watersheds based on three

projected storylines along with the mean monthly old water and young water fraction. The large

increase in flux in the winter months in the MCET+MCR and MCET+ECR storylines is almost

entirely young water. At the same time, the plot highlights a dramatic drop in young water during

the summer months to near zero levels. The flux of water older than 90 days is relatively steady

between the three storylines, suggesting that the old water fraction (presumably including baseflow)

is more resilient to climatic shifts.
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Figure 2.9: Results from the climate change simulations. Panels a-c show the simulated long term mean
FYW averaged over three different time periods (i.e., all time Fat, all winter Faw, and all summer Fas) for
each climate change storyline. Storyline acronyms are baseline (BL), median change in evapotranspiration
(MCET), median change in rainfall (MCR), and extreme change in rainfall (ECR), as described in Section
2.6.3. The error bars show the 80th percentile range for Fy(t) over each 10 year modeling period. The bottom
panels show the average monthly volume and age composition of water in discharge from the LH and TW for
three of the four storylines.
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2.8 Discussion

We discuss the relevance of our results to our research questions: how sensitive is the mean FYW to

changes in the average intensity of rainfall over different timescales (subsections 2.8.1-2.8.2), how

important is rainfall pattern (subsections 2.8.3-2.8.5), and what might be the effect of projected

changes in rainfall due to climate change (subsection 2.8.6).

2.8.1 Diagnosis of the inverse storage effect and its implications

The positive diagnosis of an inverse storage effect at LH and TW provides useful insight into how

these catchments respond to rainfall variability. First, it implies that flow through different flow

pathways is rearranged and repartitioned during rain events and not simply accelerated (Kim et al.,

2016), which informs our conceptual model of catchment processes. Second, as discussed in more

detail below, it suggests that the time-averaged bTTD will be particularly sensitive to the pattern of

rainfall. Third, it allows us to evaluate the performance of other models of these catchments based

on their ability to simulate an inverse storage effect under different rainfall conditions. This may

provide a stronger test of realism than solely fitting to the catchment hydrograph (McDonnell and

Beven, 2014).

The inverse storage effect has been observed in a number of other hydrologic systems, but its

global prevalence remains uncertain. Kim et al. (2016) used the rSAS model to identify an inverse

storage effect in the bTTD of a soil lysimeter, and other groups have reported phenomena similar to

an inverse storage effect in other catchments (Birkel et al., 2012; Soulsby et al., 2015; Hrachowitz

et al., 2015; Benettin et al., 2017). The effect, however, does not seem to be universal. Several

studies have measured catchment or hillslope bTTDs that are time-invariant in flow-weighted time

(Roth et al., 1991; Rodhe, Nyberg, and Bishop, 1996), which is uncharacteristic of an inverse storage

effect (Kim et al., 2016). Other studies have observed more event water discharged from storms

following dry conditions (Klaus and McDonnell, 2013); if the catchment had an inverse storage effect,

one would expect the opposite.

This work demonstrates a promising detection method that could be applied at other sites to

test whether an inverse storage effect is the rule or the exception. A similar method was recently

used by Benettin et al. (2017) to positively diagnose an inverse storage effect, albeit with a different
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StorAge Selection function and parameterization. Although the rSAS functions at our study sites

were best fit with gamma distributions, the approach of using Bayesian parameter identification to

test whether λ = 0 is more general and can be applied with any distribution having a parameter that

scales the mean (e.g., exponential, weibull). An issue with Bayesian model identification, however, is

the challenges raised in the ongoing debate on how to choose a likelihood function (Beven and Binley,

2014). Although our likelihood function is derived from first-order statistical principles based on a

transparent analysis of model residuals, it cannot account for epistemic uncertainty and may be prone

to over-conditioning of the likelihood surface (Vrugt, 2016; Beven, 2016), which could compromise

conclusions about the value of λ. More sophisticated approaches to rSAS parameter estimation are

being explored.

2.8.2 Variation in young water fraction explained by mean rainfall

From 1999-2008, the estimated mean FYW at LH and TW was very sensitive to changes in mean

rainfall over various timescales. It was unsurprising to see this behavior over short timescales (<

1 week), where young water discharge may be limited by supply. This sensitivity to mean rainfall

Figure 2.10: Illustration of thresholds in the relationship between storage anomaly and discharge (solid
line, left axis) and storage anomaly and the fraction of water in discharge from the youngest 350 mm of
catchment storage (dashed line, right axis). Both rise more sharply at high storage, indicating mobilization
of both large volumes of water and large fraction of the youngest age-ranked water in storage. The dashed
lines indicate the approximate, overlapping location of ηQ and ηΩ for LH and TW.
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persisted, however, over long time periods (≥1 year), and explained much of the year-to-year variation

in the mean FYW (see Figure 2.5). This does not imply that the FYW is insensitive to rainfall

pattern, only that between-year variations in the total amount of rainfall had a larger effect on the

FYW than between-year variations in rainfall pattern.

The catchments’ sensitivity to mean rainfall should be considered when taking measurements of

the young water fraction and, more generally, the bTTD. Many studies have used relatively short

periods of observation (≤ 2 years) to measure a "steady-state" bTTD (e.g., see review in McGuire

and McDonnell, 2006). Our results suggest these measurements could have been substantially

different if collected under other rainfall conditions. This source of variability is predictable but

rarely acknowledged or quantified (though for exceptions see Hrachowitz et al. (2009) and Heidbüchel,

Troch, and Lyon (2013)). This may partly explain the difficulty hydrologic scientists have had in

finding catchment characteristics that predict observed transit times.

The highly linear relationship between annual rainfall and annual mean FYW (Figure 2.5) is a

potentially useful hydrologic signature for model calibration and evaluation. The relationship can be

plotted for any watershed with sufficient data, and is likely to lie between two conceptual end-members

(shown as the area between the top and bottom of the gray triangles in Figure 2.5d). The bottom

end-member (the horizontal base of the triangle) is the case where the bTTD is time-invariant and,

for each year, all "base" rainfall (defined as the rainfall volume in the driest year) and "surplus"

rainfall (defined as the rainfall volumes in excess of the base rainfall) is discharged with the same

age fraction (chosen in Figure 2.5d as that of the driest year). The top end-member is the case

where base rainfall still has the age fraction of the driest year, but all surplus rainfall is assumed

to discharge as young water. The actual LH and TW curves lie between these two end-members,

capturing the fact that surplus rainfall is more likely to discharge as young water but also continues

to contribute to old water, even in the wettest years.

Finally, we observed that model runs without within-year rainfall variability had roughly the same

sensitivity to changes in mean rainfall as runs with the full variability (see Figure 2.6). The results

without within-year rainfall variability are comparable to steady-state solutions to Equation (2.6)

(see equation 15 in Harman, 2015) assuming constant rainfall J0 and discharge Q0 (with J0 = Q0) set

equal to mean annual rainfall Jy. This is illustrated in Figure 2.6, where the set of quasi-steady-state
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solutions for each year (derived from simple numerical integration) are shown to overlap our modeled

solutions. These results point to a practical method for estimating the sensitivity of the mean annual

young water fraction to changes in mean annual rainfall (i.e., ∂Fy/∂Jy) based on the shape of the

rSAS function alone. Conversely, if this sensitivity were determined experimentally, it could be used

to constrain the shape of an unknown rSAS function.

To test the sensitivity of the results to the choice of a 90 day threshold used to define the FYW,

we repeated the historic analyses shown in Figure 2.5 for the fraction of water less than 60 days

and less than 120 days (see Figures A18 and A20). The overall trends were very similar, with a 1

mm/day increase in Jy(t) resulting in a 3-4 percentage point increase in the Fy(t) in both watersheds.

A survey of other thresholds showed that, overall, the sensitivity of the yearly age fraction to changes

in yearly rainfall seemed greatest for the middle age thresholds (30-120 days), and smallest for the

very young (1 day) and very old (5 year) age thresholds (see Figures A15-A22).

2.8.3 Interplay between rainfall pattern and the inverse storage effect

Why do some rainfall patterns seem to produce more young water than others? In both catchments,

rainfall pattern had a persistent influence on the mean fraction of young water in discharge, above

and beyond the influence of rainfall amount. In particular, clustered rainfall produced more young

water than steady rainfall (Figures 2.7 and 2.8a), and negatively skewed storms produced more young

water than positively skewed storms (Figure 2.8c).

Sensitivity to rainfall pattern emerged from interactions between two catchment characteristics:

(1) a dramatic rise in catchment discharge when storage anomaly exceeded some threshold ηQ and

(2) a dramatic rise in the fraction of discharge from the youngest water in storage when storage

anomaly exceeded some other threshold ηΩ. These rise points are evident in Figure 2.8 and are

further explored in Figure 2.10, which shows the storage-discharge relationship for each watershed as

derived from Equation (2.5). These curves show a sharp increase in Q over a ∆S threshold of ηQ ≈

35 mm in LH and ηΩ ≈ 15 mm in TW. The same figure shows the relationship between ∆S and

the fraction of discharge coming from the youngest 350 mm of storage (i.e., ΩQ(ST = 350mm,∆S),

based on the most likely rSAS parameters listed in Table 2.4 and graphed in Figure 2.3. A ST of 350

mm (equivalent to approximately 45 days of mean rainfall) was chosen to illustrate the behavior of
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a volume of age-ranked storage that is likely to contain mostly young water. The positive slope of

the ∆S versus ΩQ curve is a manifestation of the inverse storage effect. In addition, the curve is

concave up, with an acceleration in the fraction of water from the youngest 350 mm in storage above

a threshold of ηΩ ≈ 35 mm in LH and (less distinctly) ηΩ ≈ 15 mm in TW. While there is no rigor

to this analysis, it is curious that in both watersheds ηQ ≈ ηΩ. This may be considered unsurprising

since the processes that control catchment celerity (and thus ηQ) are inextricably linked to the those

that control velocity (and thus ηΩ). Although an investigation of the hydrologic processes responsible

for these non-linear dynamics is beyond the scope of this work, threshold behavior and storage effects

have been widely observed (McDonnell, 2003) and explained by many mechanisms (e.g., Tromp-van

Meerveld and McDonnell, 2006).

Due to the apparent threshold-like storage dependence of both discharge and the fraction of

discharge from young storage, rainfall patterns with heavy rain during high storage periods induce

"hot moments" with a disproportionately large and young volume of discharge at our study sites.

Given steady rainfall (e.g., Figure 2.8a), ∆S remains relatively low and the thresholds ηQ and ηΩ are

not exceeded. Given more clustered rainfall, ∆S crosses the thresholds and large volumes of water

from the youngest volumes of storage are discharged (see the thresholds marked with the dashed line

in the bottom sub-panels of Figure 2.8a). When a rainfall cluster is negatively skewed (Figure 2.8c),

∆S approaches the threshold in advance of the storm peak, so the storm peak more quickly exceeds

it, yielding larger volumes of young water.

To test the sensitivity of our results to this threshold behavior, we tried adjusting the model

parameters to reduce the non-linear dynamics. When the catchment celerity was decreased by halving

the catchment sensitivity function (see Figure 2.8e compared with Figure 2.8d), the hydrograph

flattened, reducing opportunities to exceed storage thresholds. Likewise, when the inverse storage

effect was tempered by halving the λ parameter (see Figure 2.8f compared with Figure 2.8a), the

sensitivity to pattern nearly disappeared, and the old water fraction represented a much more

significant portion of the storm peak. Using the more realistic synthetic rainfall patterns, we

eliminated the inverse storage effect by setting λ to zero. With no inverse storage effect, changes in

rainfall variability had no clear effect on Fat (see flat gray lines in Figure 2.7a1-a4, discussed further

in Section 2.8.5). This result is consistent with the fact that, assuming idealized conditions and a
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time-invariant rSAS function, F (t) should only depend on the average intensity and not the pattern

of rainfall over the past 90 days (see proof in Appendix A).

Our results suggest that time-variability in the rSAS function (referred to here as "internal

variability" as defined in Kim et al. (2016)) is an important control on if and how rainfall pattern

affects the FYW in catchment discharge. At our sites, the internal variability resembles a non-linear

inverse storage effect. At other sites, the rSAS modeling framework could identify other kinds

of internal variability that interact differently with rainfall pattern. For example, as mentioned

previously, several studies have observed large young water fractions following dry conditions (Klaus

and McDonnell, 2013), which could be characterized by another, as yet undiscovered from of internal

variability.

2.8.4 Seasonality and timescale of the inverse storage effect

The addition of seasonality into the rainfall pattern had little influence on the long-term mean young

water fraction (Figure 2.7a). This was unexpected given that the addition of seasonality causes

significant changes including making the mean duration of winter storms (3.4 days) longer than

summer storms (2.0 days), the mean break between winter storms (3.5 days) shorter than summer

storms (4.3 days), and the overall intensity of winter storms higher than summer storms (see Table

2.5). Given the importance of rainfall pattern discussed in the previous section, why would the

long-term mean young water fraction be so insensitive to the seasonal distribution of the size and

timing of storms?

The reason likely hinges on the transience of the inverse storage effect at our study sites. During

storm events, catchment storage surpasses the thresholds ηQ and ηΩ such that both discharge and

the fraction of discharge from the youngest storage quickly increase, as discussed in the previous

section. After storms, these "hot moments" persist until the storage anomaly drops below ηQ and ηΩ,

taking some timescale ψ to do so. Given that storage is monotonically related to discharge, the value

of ψ may be on the order of the timescale of hydrograph recession. If we define ψ as the time for

discharge to drop by a factor of e evaluated at the mean catchment discharge Q̄, which is equivalent

to g(Q̄)−1 (see derivation in SI), then ψ equals 2.9 days in LH and 1.7 days in TW.
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It follows that seasonality had little effect on the long-term mean FYW because the timescale

representing the persistence of hot moments after storms (≈ 1.7− 2.9 days) is shorter than the

average break between storms in both winter and summer (3.5− 4.3 days). From the perspective

of the internal variability of the rSAS function, each storm acts roughly independently of the last.

Even with the larger and more frequent winter storms, they are still sufficiently far apart for the

inverse storage effect to relax to a baseline state before the next storm. This is illustrated in Figure

2.8d, where reducing the break between storms from 5 days to 3 days has almost no effect on the

long-term average FYW; Fat does not increase until the storm break drops below 3 days.

An understanding of the timescale of a catchment’s internal variability can help explain and

predict how the young water fraction may respond to different rainfall patterns. At Plynlimon

the timescale is tied to a fast hydrograph recession, but in other watersheds the drivers of internal

variability may be more persistent and/or decoupled from discharge (e.g., Danesh-Yazdi et al., 2016),

in which case changes in rainfall pattern due to seasonality could take on added importance.

2.8.5 Evaluation of rainfall pattern using a young water index

Is there a practical way to predict if changes in the pattern of daily rainfall will yield a higher Fat,

holding mean rainfall equal? In this section we propose a storage-based young water (SBYW) and

discharge-based young water (QBYW) index that measure the tendency for a rainfall pattern to

yield more or less young water.

As reasoned in Section 2.8.3, our modeling suggests that rainfall variability tends to increase Fat

when heavy rainfall coincides with high catchment storage. This phenomenon can be quantified in a

storage-based young water index as the average storage anomaly weighted by precipitation:

SBYW =
∑
∀ t ∆S(t)J(t)∑
∀ t J(t) (2.15)

This weighted average can be expanded into two terms:

SBYW = cov(∆S, J)
E[J ] + E[∆S] (2.16)

where E[ ] is the expected value and cov() is the covariance. The first term on the right-hand side
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will be larger when periods of high rainfall coincide with high storage. The second term will be larger

for rainfall patterns that raise the average storage anomaly. Due to the assumed relationship between

∆S and Q in these watersheds, we can construct an analogous discharge-based young water index:

QBYW = cov(Q, J)
E[J ] + E[Q] (2.17)

If the mean rainfall and discharge are constant and we are only interested in relative changes, this

can be simplified:

QBYW = cov(Q, J) (2.18)

such that the QBYW index is simply the covariance between rainfall and discharge.

The SBYW and QBYW indices were calculated for each 100-year run described in Section 2.6.2

using the rainfall patterns shown in Figure 2.2b. Figure 2.7a1-a4 shows a linear relationship in

the two watersheds between both indices and the long-term mean young water fraction Fat. The

absolute value of the index, however, was watershed specific, suggesting that comparisons are only

meaningful within the same watershed. When the inverse storage effect is removed (gray points in

Figure 2.7a1-a4), Fat becomes independent of rainfall pattern and the indices have no meaning. The

indices were also calculated for each of the periodic rainfall patterns in Figure 2.8 (values written in

the plots). Again, higher index values were associated with higher average fraction of young water.

To the extent that other watersheds have an inverse storage effect, the SBYW index could be

used to estimate the effect of a change in rainfall pattern on the age of water in discharge, even when

specific information about the rSAS function is not available. To the extent the inverse storage effect

is a function of discharge (as at our study sites), the QBYW may be a practical alternative when

estimates of catchment storage are unavailable. For example, the SBYW or QBYW index could be

calculated for rainfall patterns derived from different downscaling methods, in order to assess which

(if any) is likely to elicit a significantly higher young water fraction.

2.8.6 Water quality simulation under a changing climate

The projected changes in the amount and fraction of young water under projected climate storylines

(see Figure 2.9) could significantly shift water chemistry at the study sites. Kirchner (2015b) found
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that stream concentrations of NO−3 , Ca2+, and Al3+ had strong correlations with the young water

fraction at both LH and TW. The association with nitrate may be especially important, since nitrogen

is an essential and sometimes limited nutrient in stream ecosystems. Under the MCET+ECR climate

storyline, for example, the simulated summer mean young water fraction Fas dropped from 26% to

12% in the LH. Based on the positive correlation between NO−3 and the FYW presented in Figure 18

of Kirchner (2015a), this shift in young water would be associated with a 31% drop in mean stream

nitrate concentration, from 0.28 mg-N/L to 0.19 mg-N/L. The ecological effect of summer declines

in concentration could be exacerbated by the summer declines in discharge shown in Figure 2.9d-f.

Drops in both discharge and concentration could significantly reduce the NO−3 mass flux. Conversely,

during winter the nitrate concentration and flow rate would be expected to increase, which might

shift the ecological balance in the other direction.

The question could be raised: how sensitive are our results to the choice of climate downscaling

technique? Although we used the relatively simple delta-change method, many methods are possible.

The modeling framework presented here could be used to directly compare simulations of the young

water fraction given different downscaling algorithms. Although such a comparison is beyond the

scope of this work, our sensitivity analyses suggest that the long-term average young water fraction

will be most sensitive to the mean intensity of downscaled rainfall and to the representation of storm

breaks. Finer details such as the representation of within-storm variability may be of secondary

importance, especially in the TW watershed.

2.8.7 Study limitations

While our results provide new insight into the relationship between rainfall variability and transit

times, we highlight here some important limitations. For the Phase 1 analysis of historic trends,

the rSAS model was calibrated to weekly chloride grab samples but used to simulate daily behavior.

While this is a potential source of error, Harman (2015) showed that similar modeling in the LH did

reasonably well at simulating daily chloride observations collected from 1994-1997. For the Phase 2

and 3 analyses, the coupled modeling framework was extrapolated to timescales (e.g., sub-daily) and

climatic conditions (e.g., the extreme change in rainfall storyline) that were outside the calibration

conditions and thus not directly tested. In this light, these simulation results should be viewed
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as evidence-based hypotheses – developed using current theories describing observed behavior –

which require further evaluation as new information becomes available. Finally, several simplifying

assumptions were used to estimate catchment inputs (e.g., ET, chloride deposition) which yielded

good fits to data but could nonetheless be important sources of modeling error.

2.9 Conclusions

Motivated by prior work and using novel approaches developed for the purpose, this study used a

long record of hydrometric and environmental tracer data from neighboring headwater catchments in

Plynlimon, Wales to answer three questions about the effect of rainfall variability on the FYW in

discharge.

The first question was: what has been the historic relationship between rainfall and the FYW

over different timescales? At the daily time scale, the correlation between mean rainfall intensity and

the FYW was relatively weak, presumably due to the influence of antecedent rainfall. At longer time

scales, however, rainfall intensity explained almost all of the variability in the FYW; a 1 mm/day

increase in annual mean rainfall was associated with a 3.1 to 4.0 percentage point increase in the

annual mean FYW. The sensitivity was roughly the same in both watersheds, despite the fact that

the FYW was overall higher in TW (with less permeable soils and shallow flow paths) than LH (with

more permeable soils and both shallow and deep flow paths).

The second question was: what is the influence of rainfall pattern on the FYW over long timescales?

Although changes in average rainfall intensity seemed to dominate between-year differences in the

mean annual FYW, the pattern of rainfall variability was also important. In particular, synthetic

rainfall scenarios showed that precipitation patterns with heavy rainfall during periods of high storage

(e.g., clustered rainfall events, negatively skewed rainfall events) resulted in a higher long-term mean

FYW. The importance of different rainfall patterns was a consequence of non-linear interactions

between catchment storage, discharge, and the fraction of discharge from the youngest part of storage.

We showed that a storage-based or discharge-based young water index can be used to assess which

rainfall patterns are likely to produce the highest long-term FYW. These indexes could be helpful in

evaluating watershed models that simulate both celerity and velocity.
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The third question was: how might changes in rainfall due to climate change affect the long-term

FYW? Downscaled climate models were used to identify three plausible future storylines for rainfall,

ranging from no change to a relatively extreme change. The most extreme rainfall storyline would

see an increase in the long-term mean FYW of nearly 19 percentage points in the LH watershed and

15 percentage points in the TW watershed. In both watersheds, the increase would be especially

pronounced in the winter season, whereas the mean young water fraction would decrease sharply in

the summer period. The results from these catchments demonstrate how changes in rainfall due to

climate change could significantly alter catchment velocities and stream water quality.

Looking forward, our methods can be adapted to other sites to understand the link between

rainfall variability and transit times in a range of environments, using the young water fraction or

whatever age fraction is most appropriate. The trends that emerge can be used to improve the

development and evaluation of watershed models. At the same time, efforts to link these trends (e.g.,

the inverse storage effect) to physical processes in the catchment are ongoing (e.g., Kim et al., 2016;

Pangle et al., 2017) and should continue. Finally, more attention should be paid to the effect of

rainfall shifts on catchment velocities in climate change impact assessment and planning.

2.10 Appendix A: Flux pattern independence in an idealized

system

We show here that under idealized conditions the F (t) of a catchment with a time-invariant rSAS

function ΩQ(ST ) will only depend on the total volume of discharge over the past 90 days, irrespective

of its pattern.

First, consider a catchment as a simple control volume with input rainfall J(t) equal to output

discharge Q(t), and a time-invariant ΩQ(ST ). Kim et al. (2016) showed that such a system should

exhibit steady-state flow pathways and storage. As such, the bTTD in flow-weighted time will be

time-invariant (Niemi, 1977; Rodhe, Nyberg, and Bishop, 1996), and the real time ←−PQ(T, t) will be

equal to (Kim et al., 2016, equation 8):

←−
PQ(t− ti, t) =

←−
P ∗Q(τQ − τJ) (2.19)

52



Chapter 2. Influence of rainfall on transit times

where ti is injection time with T = t− ti,
←−
P ∗Q is the time-invariant bTTD in flow-weighted time, and

τQ and τJ are the discharge-weighted and rainfall-weighted time, respectively, defined here with the

same normalizing constant Qat as:

τQ(t) = 1
Qat

∫ t

t0

Q(τ)dτ (2.20)

τJ(ti) = 1
Qat

∫ ti

t0

J(τ)dτ (2.21)

Combining and rearranging Equations (2.19), (2.20), and (2.21) gives:

←−
P ∗Q(τQ − τJ) =

←−
P ∗Q

(
1
Qat

∫ t

ti

Q(τ)dτ + 1
Qat

∫ ti

t0

Q(τ)dτ − 1
Qat

∫ ti

t0

J(τ)dτ
)

(2.22)

When J(t) and Q(t) are equal, the last two terms in Equation (2.22) cancel. We can rearrange

Equations (2.19) and (2.22) to get:

←−
PQ(T, t) =

←−
P ∗Q

(
1
Qat

∫ t

t−T
Q(τ)dτ

)
(2.23)

With T = 90 days, the left-hand-side is the definition of F (t). From the integral on the right-hand-

side, it is clear the time-variability of the young water fraction only depends on changes in the total

volume of water discharged over the past 90 days.

Although the conditions described here are violated in real watersheds, the approximation of

a time-invariant ←−P ∗Q has been effective at simulating tracer dynamics in a number of settings (Ali,

Fiori, and Russo, 2014).
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Towards better understanding and calibration of baseflow

transit times in an integrated surface-subsurface watershed

model.1

3.1 Highlights

• ParFlow-CLM catchment model calibrated to discharge and water age.

• Use of age-based calibration criteria reduced parameter equifinality.

• Hydrologic controls on baseflow transit times poorly represented by steady-state model.

3.2 Summary

There is growing recognition that watershed models should be evaluated against both catchment

celerities (i.e., the hydrograph) and catchment velocities (i.e., tracer-derived transit times). This is

increasingly common with conceptual watershed models, but still rare with computationally expensive,

spatially-distributed surface-groundwater models. The goal of this work was to (1) demonstrate a

practical approach to calibrating a surface-groundwater model to both discharge and tracer data and

(2) characterize the sensitivity of discharge and baseflow stream water age to changes in porosity,

hydrologic conductivity, and other critical zone parameters. Virtual experiments were run with
1This chapter will be submitted for publication in a peer-reviewed journal. Ciaran Harman and Bill Ball were

involved in hypothesis development, study design, and results interpretation. Reed Maxwell provided technical
assistance with ParFlow-CLM and SLIM-FAST simulations. Anthony Buda provided data and interpretation of data
from the study site. Dano Wilusz participated actively in all of the above and also produced the first draft of text and
all figures and tables were created by Dano Wilusz.
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the fully-distributed surface-groundwater model ParFlow-CLM with SLIM-FAST particle tracking.

The ParFlow-CLM simulation was configured and forced with extensive field intelligence from the

USDA’s Mahantango Creek experimental catchment in PA, USA. We describe a novel calibration

processing chain considering roughly 20,000 model realizations with plausible parameter sets in a 2D

cross-section of the catchment. Model realizations were used to perform global sensitivity analyses

(i.e., Monte Carlo filtering and boosted regression trees). The calibration identified behavioral

parameter sets that reasonably simulated observed daily discharge (Kling-Gupta efficiency > 0.5), as

well as tracer-derived median baseflow age (240-300 days) and groundwater age (> 3 years). The

inclusion of age-related calibration criteria is shown to reduce parameter equifinality. Longer baseflow

transit times were associated with (1) higher porosities and (2) a non-linear interaction between high

lateral conductivity in the upper soil layer and low lateral conductivity in the underlying fractured

bedrock. Overall, the results suggest that the age of baseflow may be significantly influenced by

upper soil properties due to dynamic partitioning between recharge and overland flow, which is not

captured in commonly used steady-state simulations. The findings are of significance for efforts to

model water and non-point source pollution transport at catchment scale.

3.3 Introduction

Integrated surface/subsurface hydrologic models (ISSHMs) are evolving into a powerful and accessible

tool for studying and simulating catchment-scale flow and transport processes (Paniconi and Putti,

2015). For purposes here, ISSHMs are defined as hydrology models that (1) are physically-based,

continuum-based, and spatially-distributed (using terms defined in Hrachowitz and Clark (2017)) and

(2) explicitly couple variably-saturated groundwater with surface water systems (e.g., ParFlow (Kollet

and Maxwell, 2006), HydroGeoSphere (Brunner and Simmons, 2012), CATHY (Camporese et al.,

2010)). Many ISSHMs simulate additional processes including land-surface energy and dynamic

vegetation. An inter-comparison project evaluated eleven ISSHMs and found similar qualitative

performance in benchmark experiments (Maxwell et al., 2014; Kollet et al., 2017), indicating progress

towards technological maturity. However, although ISSHMS have the theoretical potential to make

predictions about flow and transport without calibration data, actual applications have shown that

calibration is generally required (Paniconi and Putti, 2015).
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Although ISSHMs have many applications (see Table 1 in Maxwell et al. (2014)), this work

focuses on the simulation of rainfall-runoff generation. The ability to accurately model runoff

supports hydrologic decision making including water resources planning, flood protection, and

contaminant transport (Beven, 2011). ISSHMs faithfully reproduce runoff related field processes

including complex interactions between spatially-varying hydroclimatic forcing, topography, land

cover, surface roughness, subsurface permeability and porosity, and other landscape features. Multiple

interacting runoff mechanisms are simulated including Hortonian and Dunnian overland flow (Horton,

1933; Dunne and Black, 1970), subsurface stormflow, and groundwater flow.

A growing number of studies have used ISSHMs to simulate and describe runoff generation

mechanisms. Model complexity ranges from idealized, single-event simulations in sloping slabs (e.g.,

Camporese et al., 2009; Meyerhoff and Maxwell, 2011; Delfs et al., 2013) to more realistic, multi-year

simulations at catchment scale (e.g., Qu and Duffy, 2007; Li et al., 2008; Ebel et al., 2008; Heppner,

Loague, and VanderKwaak, 2007; Mirus et al., 2009; Srivastava et al., 2014; Maxwell et al., 2015;

Cornelissen, Diekkrüger, and Bogena, 2016; Bisht et al., 2017; Maier, Breuer, and Kraft, 2017). In

addition to providing proof-of-concept of ISSHM capabilities, these studies use model forensics and

local sensitivity analysis to explore factors affecting runoff generation. For example, early studies

described the combined influence of Dunnian and Hortonian runoff on catchment discharge and the

importance of antecedent soil moisture on the runoff response (VanderKwaak and Loague, 2001;

Loague et al., 2005). Subsequent controlled studies in idealized domains showed how stochastic

heterogeneity in hydrologic conductivity promotes localized overland flow and faster runoff response

to rainfall events (Kollet and Maxwell, 2006; Maxwell and Kollet, 2008; Gilbert et al., 2016). Other

research has begun to explore the relationship between runoff generation and various catchment

characteristics, such as the soil-water retention curve (Morita and Yen, 2002), subsurface geologic

representation (Gauthier et al., 2009), and the amount of evapotranspiration (ET) (Camporese et al.,

2014), as well as issues related to model grid resolution (Maxwell and Kollet, 2008; Sulis, Paniconi,

and Camporese, 2011) and spin-up (Seck, Welty, and Maxwell, 2015). The trajectory of studies

suggest that ISSHMs will have an important role in the development of process-based solutions to

the closure problem, the "holy grail" of scientific hydrology (Beven, 2006b).

An open question about the application of ISSHMs in runoff studies is when and how to perform
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parameter calibration. Compared to conceptual models, ISSHMs have a large number of unknown or

uncertain parameters. In a few highly-instrumented catchments, ISSHM parameters populated with

commensurate field observations seem to reasonably reproduce runoff behavior, with no calibration

needed (e.g., Mirus et al., 2009). In many cases, however, it remains desirable to calibrate ISSHMs

against available field information. This may be a challenge for two reasons. First, ISSHMs are

generally too computationally expensive to do a comprehensive search of the parameter space. As a

result, most ISSHM calibrations are done manually, as is the case for many of the studies cited above.

In this regard, however, computational speeds continue to improve and modelers are beginning to

apply automated approaches (e.g., Haahti et al., 2015). Second, most ISSHM calibrations tune model

parameters to fit catchment celerities (i.e., discharge at the outlet) (Sebben et al., 2013; Paniconi and

Putti, 2015). Several studies have shown that a good model fit to outlet discharge does not guarantee

a good fit to other model output including upstream discharge and distributed soil moisture (Ebel

et al., 2008; Camporese et al., 2009).

It is reasonable to assume the calibration of ISSHMs can be improved by considering model

fit to tracer-derived estimates of travel times of water through the watershed, hereafter referred

to as catchment transit times. Previous studies using ISSHMs have not incorporated catchment

transit times into the calibration objective function (though a few have used transit times to evaluate

uncalibrated models (e.g., Maxwell et al., 2015)). As argued by McDonnell and Beven (2014),

hydrologic models should be calibrated against both volumetric water discharge and catchment

transit times because they are the observable consequences of fundamentally different integrated

catchment properties (i.e., catchment celerities and flow velocities, respectively). Studies using more

conceptual models have demonstrated the value of calibrating against both discharge and transit

time data (Birkel and Soulsby, 2015). The same may not be true, however, for ISSHMs, for the

following reason. In more conceptual models, the parameters that control catchment discharge (e.g.,

active storage, porosity) are often distinct from those that control travel times (e.g., passive storage,

effective porosity) (e.g., Birkel and Soulsby, 2016). By contrast, in ISSHMs the parameters controlling

discharge and transit times are unitary; they are the physical features of the catchment including

topography, permeability, and porosity. Given this fundamental difference, more ISSHM-specific

studies are needed to understand the extent to which travel time data helps constrains ISSHM
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parameter values.

Efficient calibration of ISSHMs to discharge and travel times requires a good understanding of

parameter sensitivity. Global sensitivity analysis investigates how changes in the plausible range

of model parameters maps onto changes in model outputs. Sensitivity analysis helps reveal the

inner working of complex models, the linear and non-linear interactions between parameters, and the

most important parameters and associated hydrologic processes (Pianosi et al., 2016). In the first

and perhaps only application of global sensitivity analysis in a catchment-scale ISSHM, Srivastava

et al. (2014) analyzed the sensitivity of total streamflow, groundwater flow, and ET to 33 different

parameters in simulations of a 3700km2 catchment in Florida, USA. The analysis showed that peak

streamflow was most sensitive to the hydrologic conductivity of the confining unit of the upper basin.

The representation of runoff processes, however, was limited by the low lateral resolution of model

grid cells (1500m). In a higher resolution study, Gilbert et al. (2016) explored the global sensitivity of

runoff to variation in the subsurface permeability field, but in an idealized catchment that neglected

the influence of topography, ET, and different geologic units on runoff. In both studies, transit times

were not considered.

This paper has three objectives, all of which contribute toward the overall goal of developing

methods for using ISSHMs to better understand and simulate runoff generation mechanisms at

catchment scale. The first objective was to demonstrate a practical approach to computer-assisted

calibration of a catchment-scale ISSHM to both discharge and transit time data. This requires novel,

computationally efficient techniques, including the use of a 2D emulator and a periodic steady-state

baseflow travel time estimator. The second objective was to quantify the benefit in terms of model

performance of calibrating a catchment-scale ISSHM to both discharge and transit times. The results

were intended to inform approaches to calibration in future studies. The third objective was to

use a global sensitivity analyses (1) to understand how individual model parameters affect stream

discharge and transit times and (2) to make inferences about dominant catchment processes affecting

catchment celerities and velocities. Parameter sensitivity and process controls were assessed using

Monte-Carlo filtering and boosted regression trees. We developed and applied the methods described

here in the USDA Mahantango Experimental catchment using the ParFlow-CLM model. Both are

described in the next two sections in more detail.
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3.4 Site Description

3.4.1 Physiography

An ISSHM model was built and calibrated for the FD-36 subcatchment of the USDA Mahantango

Creek experimental watershed near Harrisburg PA, USA (see Figure 3.1). FD-36 is a small (0.4 km2)

agricultural headwater basin in the Valley and Ridge physiographic province, underlain by shales,

siltstones and sandstones (Urban, 1977). The basin drains to a single stream in the southwest quadrant

of the intensively-studied, 7.8km2 WE-38 experimental catchment, which is itself a subcatchment

of the 420km2 Mahantango Creek watershed and the larger Susquehanna River basin. Land use

is approximately 50% cropland, 20% pasture, and 30% woodland (Needelman et al., 2004; Bryant

et al., 2011). Previous research suggests that surface and subsurface flow leaves the catchment at the

gauged outlet and does not cross other catchment boundaries (Gburek and Folmar, 1999).

Based on SSURGO soil surveys and other synoptic field measurements, the geology can be
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Figure 3.1: Map of the study site in the FD36 sub-catchment of the USDA Mahantango experimental
catchment. (a) Location of the catchment in central PA, USA. (b) Satellite image of the catchment showing
the rectangular region modeled in ParFlow and the FD36 catchment boundary. (c) 3D rendering of the
rectangular area modeled by ParFlow, the catchment boundary, the location of the streambed and subsurface
fragipan, the location of the stream outlet and CFC sampling well, and the transect A-A’ used for the 2D
calibration and shown in Figure 3.2.
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classified into four hydrogeologic units (see Figures 3.1c and 3.2): well-drained soil, a poorly-drained

fragipan horizon, streambed upper sediments, and fractured bedrock. Except for near the riparian

area, the upper 1.4m consists of residual, fine-loamy, well-draining soils (Needelman et al., 2004).

In the riparian zone, there is a lower layer (0.6m-1.4m) of poorly draining, colluvial fragipan with

relatively high clay content (Needelman et al., 2004). The streambed is underlain by alluvial sediments.

The location of the fragipan and streambed are shown in Figures 3.1 and 3.2. These layers are

underlain by a fractured bedrock layer up to 60m thick, with relatively low porosity and a roughly

exponential decline with depth in hydrologic conductivity (Gburek and Folmar, 1999).

3.4.2 Hydrographic and age tracer data

The hourly hydrology and meteorology of FD-36 and nearby catchments is well-studied and extensively

monitored, which facilitated our modeling. Discharge was measured by a flume located at the

catchment outlet as shown in Figure 3.1. Hourly rainfall was measured at a Fisher-Porter rain

gauge designated RE-37 (Buda et al., 2011) and located approximately 0.8 km southeast of the

A

A’11m

570m

Soil 
• 𝐾𝑥𝑦,𝑠𝑜𝑖𝑙
• Φ𝑠𝑜𝑖𝑙

Fragipan 
• 𝐾𝑧,𝑓𝑟𝑎𝑔

Streambed 
• 𝐾𝑧,𝑠𝑡𝑟𝑒𝑎𝑚
• Φ𝑠𝑡𝑟𝑒𝑎𝑚

Frac. rock 
• 𝐾𝑥𝑦,𝑟𝑜𝑐𝑘
• Φ𝑟𝑜𝑐𝑘

• 𝐹𝑟𝑜𝑐𝑘

Grid cells:
30m x 0.2m

Calibration 
parameters

Figure 3.2: Schematic of the 2D catchment transect modeled used in calibration, including the location of
the four hydrogeologic units (soil, fragipan, streambed, and fractured rock) and the calibrated parameters (as
defined in Section 3.6).
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catchment outlet. Hourly temperature, wind speed, wind direction, downward solar radiation, relative

humidity, and saturated vapor pressure were measured at a monitoring station operated by the

Natural Resource Conservation Service approximately 5 miles west. Downward longwave radiation

and atmospheric pressure were obtained from the North American Land Data Assimilation System

(NLDAS) for the overlaying 0.125 degree grid cell.

Several studies have used tracer data to estimate the age of water in catchment storage and

discharge in the greater WE-38 catchment. Burton et al. (2002) used chlorofluorocarbon and

tritium/helium-3 data to model groundwater age at a range of depths (3-20m) at a stream transect

close to FD-36. The modeled mean age estimates were highly scattered but averaged around 10

years. The groundwater age estimates on the northern hillslope were somewhat older than the

southern hillslope, which was attributed to anisotropic fracture geometry. In a separate study,

McGuire, DeWalle, and Gburek (2002) used oxygen-18 isotopes to stream water travel times at

another subwatershed of WE-38 in the south east corner, and found a mean age of stream baseflow

of approximately 9.5 months.

3.5 ParFlow-CLM description

The FD-36 catchment was modeled using ParFlow-CLM (Ashby and Falgout, 1996; Jones and

Woodward, 2001; Maxwell and Miller, 2005; Kollet and Maxwell, 2006; Maxwell, 2013) with SLIM-

FAST particle tracking (Maxwell and Tompson, 2006). ParFlow is an open-source hydrology modeling

simulation platform designed for parallel computing. It has been coupled to the Common Land

Model (CLM) to simulate tree canopy processes (e.g., interception), atmospheric forcing (e.g., rain,

snow) and land surface processes (e.g., latent heat flux, sensible heat flux). Model processes and

equations related to rainfall runoff are described briefly. More details are available in the ParFlow

User’s Manual (Maxwell et al., 2016).

ParFlow-CLM uses a cell-centered finite difference scheme to solve the 3D Richard’s Equation

(see Equation 3.1) (Richards, 1931) for subsurface flows, and a coupled 2D kinematic wave equation

for surface flows, which is only active when the ponded depth at the surface is greater than zero

(Equation 3.2). To improve computational efficiency, ParFlow-CLM can represent topography using a

terrain-following transform (Maxwell, 2013), where each grid cell indexed in the x, y, and z directions
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is re-indexed by i, j, and k and assigned a local slope θi,j . The flow-depth discharge relationship is

based on Manning’s equation (Equation 3.3).

SsSw(h)∂h
∂t

+ φ
∂Sw(h)
∂t

= ∇ · −Ks(x)kr(h)[∇(h+ z) cos(θ) + sin(θ)] + qs(x) (3.1)

(−k ·Ks(x)kr(h)∇(h+ z)) = ∂||h, 0||
∂t

−∇ · ||h, 0||vsw − qr(x) (3.2)

vswx =
√

tan θx
m

h2/3 vswy =
√

tan θy
m

h2/3 (3.3)

In these expressions, Ss is the specific storage [L−1]; Sw is the relative saturation [-]; h is the

pressure head [L]; φ is the porosity [-]; Ks(x) is the saturated hydraulic conductivity tensor [LT−1]; x

is the location vector [L]; kr is the relative permeability [-]; z is the elevation with the z-axis upward

[L]; θ is the local angle of slope [-]; qr represents infiltration to soil after accounting for processes

including wet evaporation, throughfall, and snowmelt [LT−1]; qs is a general source/sink term [LT−1];

k is the vertical unit vector; vsw is the depth-averaged surface water velocity vector [LT−1]; and m is

Manning’s coefficient [TL−1/3]. The expression ||h, 0|| equals the greater value of the two quantities.

The relationship between Sw, kr, and h is parameterized by the van Genuchten model (Genuchten,

1980) with parameters α [L−1] and n.

The source/sink term qs(x) in the subsurface mass balance equation (Equation 3.1) is defined as

qs(x) = Etr(Sw, froot(z),mrs) + Eg (3.4)

where Etr is total plant transpiration from the root zone [LT−1] depending on the fraction of

roots froot at depth z and the slope of the conductance to photosynthesis relationship mrs; and Eg

is the evaporative flux from the soil surface [LT−1]. In addition to the variables listed, the terms are

functions of other model parameters and hourly atmospheric variables, as described in Dai (2003)

and Maxwell and Tompson (2006).

Simulation results from ParFlow-CLM can be used with the Lagrangian particle tracking scheme

SLIM-FAST (Maxwell and Tompson, 2006) to simulate flow paths and catchment travel times through
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the catchment. For each timestep, ParFlow-CLM simulates both a subsurface and surface velocity

flow field, which can be numerically integrated to define the pathlines that water particles follow

through the catchment:

v = dx
dt

(3.5)

where v is the instantaneous velocity vector, x(t) is the pathline, and t is time.

3.6 Methods

3.6.1 Model structure and initial parameters

A ParFlow-CLM model was constructed for the FD-36 watershed in a rectangular surface domain,

1230m east-west by 870m north-south. The model domain extends at least 100m beyond the edges

of FD-36, such that the catchment boundary and stream location emerge naturally from the flow

simulation. Rock cores extracted in a nearby subcatchment of the WE-38 site showed extensive

fracturing down to approximately 15m (Gburek and Urban, 1990), which was used as the bottom

of the model domain. Selection of the model grid size required a trade-off between better model

fidelity at high resolution, and faster solver convergence at low resolution. After initial tests, a model

grid size of 30m in the x and y direction and 0.2m in the z direction yielded reasonable performance

and run times, giving a grid cell count of 41 by 29 by 55, or a total of 65395 grid cells. The local

slopes θx and θy at each grid cell was estimated by resampling 0.5m LIDAR data to 30m. Following

procedures recommended in Maxwell et al. (2016) to accelerate solver convergence, the local slope

θx or θy with the smallest absolute value was set to zero (i.e., diagonal lateral flow was neglected).

Based on catchment characteristics discussed in Section 3.5, each grid cell was assigned one of the

four hydrogeologic units: soil, fragipan, streambed, or fractured bedrock. The top 0.6m was either

soil or streambed; from 0.6m to 1.4m was assigned soil, fragipan, or streambed; and from 1.4m to

15m was assigned fractured bedrock, as shown in Figures 3.1 and 3.2.

Several of the ParFlow-CLM parameters were fixed using field data and literature values for each

hydrogeologic units (see Table 3.1). The Manning’s roughness m was set to 5.52× 10−6 hr m−1/3

(0.20 s m−1/3), a recommended value for bare cropland (Schall, Richardson, and Morris, 2008). The
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Table 3.1: List of fixed (i.e., not calibrated) model parameters.

Param Zone Value Units Ref. Description
K a 0.062 m/hr Troch et al. (1993) saturated conductivity
n a 1.29 - Troch et al. (1993) van Genuchten parameter
α a 2.32 m−1 Troch et al. (1993) van Genuchten parameter
m a 5.52× 10−6 hr/m

1
3 Maxwell et al. (2016) mannings roughness

r a 13 − manually adjusted slope for conductance to pho-
tosynthesis relationship

Zone abbreviations: 1: all zones

van Genuchten parameters n and α for soil were set to 1.29 and 2.32 m−1, respectively, based on

typical values in soil sampling from the greater WE-38 catchment (Troch et al., 1993). In the absence

of better data, the same values were assigned to the rest of the domain. The saturated hydraulic

conductivity tensor Ks(x) was assigned a base value of 0.062 m/hr for the entire domain, based on

an areal average of soil sampling from the greater WE-38 catchment (Troch et al., 1993) and results

from interval packer tests (Gburek, Folmar, and Urban, 1999).

Eight parameters - which were poorly constrained by the data and literature - were assigned

a range of plausible values for subsequent calibration (see Table 3.2). Multiplicative factors were

applied to Ks(x) in the lateral x and y and the vertical z directions. Specifically, to account

for potentially faster lateral flow due to macropores and other subsurface heterogeneity (Uchida,

Tromp-Van Meerveld, and McDonnell, 2005; Lin, 2006; Fang et al., 2015), lateral multiplicative

factors for soil (Kxy,soil) and bedrock (Kxy,rock) were set to the range [10,200] (i.e., from 1 to 200

inclusive) and [1,100], respectively. To account for the impermeable nature of the clay-rich fragipan

layer (Buda et al., 2009), the vertical multiplicative factor the for fragipan (Kz,fragipan) was set to

[10−8,10−3]. To account for the potential for high connectivity between the fractured bedrock and

stream, the vertical multiplicative factor for the streambed was set to [1,100]. Results from packer

tests in Gburek, Folmar, and Urban (1999) suggest that the hydrologic conductivity Ks(x) in the

fractured bedrock declines exponentially with depth. The value of Ks(x) was assigned an e-folding

depth Frock [m] in the range [0.35,0.95]. The soil porosity was constrained to [0.27,0.54] based on the

range of values reported in the field study by Lindeburg (2011). The fractured bedrock porosity was

given the range [0.01,0.03] based on published tracer-aided MODFLOW modeling results (Gburek,

Folmar, and Urban, 1999). Finally, the porosity of the streambed (φstream) was constrained to the
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Table 3.2: List of parameters calibrated using GLUE, and the range of values that was explored.

Param Zone Range Units Ref. Description
Kxy,soil s 1 - 200 - - lateral K multiplier of soil
Kxy,rock r 1 - 100 - - lateral K multiplier of rock

Kz,fragipan f 10−8-10−3 - -
vertical K multiplier of fragi-
pan

Kz,streambed b 1 - 100 - - vertical K multiplier of stream

Frock r 0.35-0.95 m−1 4
length scale of exponential de-
cline in K of rock

φsoil s,f 0.27 - 0.54 - 2 porosity of soil
φstreambed b 0.01 - 0.54 - 1,3 porosity of streambed
φrock s,f 0.01 - 0.03 - 3 porosity of rock
Reference numbers: 1: Troch et al. 1993, 2: Lindeburg 2011,
3: Burton et al. 2002, 4: Gburek et al. 1999
Zone abbreviations: s: soil, f: fragipan, b: streambed, r: rock

full range of values of potential bedrock and soil porosity, [0.01, 0.54].

3.6.2 GLUE calibration

The 8 unknown parameters were calibrated using a variant of Generalized Likelihood Uncertainty

Estimation (GLUE) (Beven and Binley, 1992; Beven and Binley, 2014) with an informal likelihood

function. Figure 3.3 has a flow chart of the calibration process, with repeat Monte Carlo (MC)

sampling of parameter sets, up to a target of at least 20000 sets. Each parameter set was run in

parallel on one of 400 processors on the Maryland Super Computing Cluster (MARCC). To be

computationally tractable, the calibration was run on a representative 2D slice of the full catchment

(see Figures 3.1 and 3.2), with dimensions 570m long by 15m deep and a total of 1045 grid cells.

Although this "2D emulator" lacks the complexity of the full 3D catchment, it approximates the

first-order lateral interactions driven by topography, geology, and climate.

For each parameter set, the value of each parameter was randomly selected from the ranges

described in Section 3.6.1 and shown in Table 3.2, according to either a uniform or - for parameters

spanning several orders of magnitude - log-uniform probability distribution. The parameters were

used to run the ParFlow-CLM model in three stages of increasing complexity: steady-state, periodic

steady-state, and fully transient. The steady-state run was used to spin up the model and estimate

the steady-state median transit time in the stream and groundwater. The periodic steady-state
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was used to approximate the median baseflow transit time. The fully transient model was used to

simulate one-year of hydrology. The results were used in post-processing to evaluate parameter sets

according to the GLUE limits of acceptability approach (Beven, 2006a). These three stages and

model evaluation are described below.

3.6.2.1 Stage 1: Steady-state simulation

A steady-state simulation was run to spin up the model and to estimate steady-state transit times.

"Steady-state" refers to the fact the model forcing (i.e., rainfall) was set constant and the model ran

until the catchment achieved equilibrium (i.e., rainfall inputs equal discharge outputs). The steady

rainfall rate was set equal to the long term average observed discharge (Q̄). CLM was disabled such

that ET and other land-atmosphere processes were not simulated. A model run time of 2×105 hours

(23 years) was found sufficient to achieve stasis. The final hydraulic pressure field, water table, and

soil saturation levels were used as the initial condition for the periodic steady-state and fully transient

stages.

For each parameter set, the steady-state result was used with SLIM-FAST particle tracking to

estimate steady-state median transit time (MTTss) of discharge. First, Nss=1000 particles were

injected into the 2D surface and tracked forward. Each particle i was assigned a water volume Vss,i

equal to its share of infiltration Q̄∆t/Nss where ∆t is the timestep of injection. The path and travel

time of particles were tracked until they (a) left the domain by flowing out the outlet or (b) reached

Figure 3.3: Flow chart showing steps in the model calibration process.
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the surface (at which point they were assumed to flow out the outlet in a negligible amount of time).

The particle transit times were used to estimate the forward transit time probability distribution

(TTD) function −−−→PQ,ss(T ), defined as the distribution of transit times T taken by rainfall to travel to

the outlet (Niemi, 1977; Rinaldo et al., 2011). In the steady-state case, this is equal to the backward

travel time distribution ←−−−PQ,ss(T ), defined as the distribution of transit times T of water in the stream

since injection. The transit time of each particle was used to numerically estimate the forward and

backward TTD in CDF form as:

←−−−
PQ,ss(T ) = −−−→PQ,ss(T ) =

∑Nss

i=1 Vss,iH(T − Ti)∑Nss

i=1 Vss,i
(3.6)

where H is the Heaviside step function, T is the time since particle injection, and Ti is the total transit

time from injection to exit for particle i. The median transit time MTTss satisfies the equation
←−−−
PQ,ss(MTTss) = 0.5.

3.6.2.2 Stage 2: Periodic steady-state simulation

A periodic steady-state simulation was run to estimate the median transit time of water in baseflow

and groundwater. For each parameter set, the model was forced with a repeating rainfall pattern with

1 day (24 hours) of uniform precipitation and 13 days (312 hours) with no rainfall. The pattern was

chosen to approximate a typical interval between large rainfall events at our study site. The mean

simulated rainfall was set equal to long term average observed rainfall (J̄). CLM was disabled and

ET was not simulated. Note that the overall flux through the periodic steady-state simulation (J̄)

was higher than the steady-state simulation (Q̄) and can be seen as more typical of the winter period

when ET is negligible. The model was assigned initial conditions from the steady-state simulation

and run for a time sufficient to achieve an approximate periodic steady-state (33 cycles). Using

the approach described below, the model results were used to estimate the median travel time of

discharge on the last day of the periodic cycle (i.e., the 13th day of recession), which was used to

approximate the median transit time of baseflow (MTTbf ). Compared to the value of MTTss, the

value of MTTbf captures the effect of transient processes on the baseflow age and was the value

adopted for subsequent model calibration.

67



Chapter 3. Calibration and sensitivity of transit times in an integrated model

A variation of the PERTH method (Harman and Kim, 2014) was used to estimate MTTbf from

the periodic steady-state simulation results. First, the hydraulic pressure field from the last 14 days of

the periodic steady-state simulation was looped for 100 cycles (3.8 years) and used as input pressure

field for SLIM-FAST particle tracking. For the first day in the first cycle, a swarm of Nps=10000

particles with volume Vps = J̄∆t/Nps were introduced just below the land surface and tracked

forward toward the catchment outlet. The transit time for each particle was used to calculate the

cumulative forward travel time distribution −−−→PQ,ps(T, t = 1 day) in the manner of Equation 3.6. The

value of −−−→PQ,ps(T, t) on the remaining 13 days of the cycle was undefined (due to zero rainfall inputs),

and the value of −−−→PQ,ps(T, t) for all other times was determined by assuming periodic steady-state:

−−−→
PQ,ps(T, t) = −−−→PQ,ps(T, t±∆n) for all positive integers n (3.7)

where ∆ is the period of the system (14 days). The PDF form of the backward TTD ←−−−pQ,ps(T, t) was

calculated with a rearranged version of Niemi’s theorem for a system with a single inflow and outflow

(Niemi, 1977):
←−−−pQ,ps(T, t) = −−−→pQ,ps(T, t− T )J(t− T )

Q(t) (3.8)

where −−−→pQ,ps(T, t) is the PDF form of the forward TTD, and J(t) and Q(t) were obtained from

the last cycle of the ParFlow simulation and extended using the assumption of periodic steady-

state as in Equation 3.7. The MTTbf was calculated from the CDF of the backward TTD (i.e.,
←−−−
PQ,ps(MTTbf , 14 days) = 0.5). For comparison purposes, values of ←−−−pQ,ps(T, t) and Q(t) were also

used to calculate the median flow-weighted transit time MTTfw (Peters, Burns, and Aulenbach,

2014).

Finally, the median age of groundwater MTTgw was estimated by backward tracking a swarm

of particles from a groundwater grid cell to the catchment surface, using the periodic steady-state

pressure field. The grid cell was located 5m below the stream surface, where comparable data was

available for calibration. Note that the maximum identifiable median transit time was the duration

of the particle tracking simulation (3.8 years).
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3.6.2.3 Stage 4: Fully transient simulation

A fully transient simulation was run to simulate catchment hydrology for the year 2014 including

discharge at the catchment outlet. For each parameter set, ParFlow-CLM was run at hourly timesteps

for one full year using observed hydroclimatic data as described in section 3.5. The hourly data

was aggregated to produce daily estimates of Q. The steady-state simulation was used as the initial

condition. Initial tests suggested that an additional 1 year transient spin up did not substantially

affect simulated discharge, so no spin up was applied. Transit times were not simulated in the fully

transient simulation, due to computational limitations.

3.6.2.4 Model evaluation

The simulation results from each parameter set were compared to observations and designated as

"behavioral" or "non-behavioral" based on the limits of acceptability approach (Beven, 2006a). The

parameter set was considered behavioral if it passed evaluation criteria related to (1) discharge, (2)

baseflow transit time, and (3) groundwater transit time. For discharge, the criteria was a Kling-

Gupta-Efficiency (KGE) performance metric greater than 0.5, with the KGE defined in Kling, Fuchs,

and Paulin (2012) as:

KGE = 1−

√
(r − 1)2 + (µs

µo
− 1)2 + (CVs

CVo
− 1)2 (3.9)

where r [−] is the correlation coefficient between simulated and daily observed discharge, µ [m/hr]

is mean runoff, CV [−] is the coefficient of variation, and the subscripts s and o refer to simulated

and observed data, respectively. Higher KGE values signal a better match between observations and

simulations, and a KGE of 1 indicates perfect agreement. The KGE threshold of 0.5 was chosen

because a similar threshold has been recommended for a closely related metric of watershed model

performance, the Nash-Sutcliffe efficiency (Moriasi, Arnold, and Liew, 2007). For baseflow transit

time, the criteria was an MTTbf within the range of 240-300 days, which encompasses the value of 9.5

months estimated in the field (described in Section 3.4). For groundwater transit times, the criteria

was a MTTgw greater the maximum identifiable transit time of 3.8 years, which is at the lower end of

tracer-based groundwater age estimates (also described in Section 3.4). The three criteria were used
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to identify an ensemble of behavioral parameter sets. The ensemble was analyzed to investigate the

plausible range of parameter values and to generate probabilistic model projections with uncertainty

bounds, following the standard GLUE methodology (Beven, 1982; Beven, 2011).

3.6.3 Sensitivity analysis

The calibration produced simulations of discharge and transit times for a targeted 20,000 different

parameter sets. The ensemble of parameter sets were subjected to global sensitivity analysis to

understand how different model parameters affect model performance and to make inferences about

the role of different hydrologic processes. The sensitivity analysis focused on three themes that were

motivated in Section 3.3: (1) the sensitivity of the calibration results to the choice of calibration

criteria, (2) the sensitivity of discharge to parameter selection, and (3) the sensitivity of transit times

to parameter selection. The two main analytical tools for the sensitivity analysis were Monte Carlo

filtering and boosted regression trees.

3.6.3.1 Monte Carlo filtering

Monte Carlo (MC) filtering was done to identify which parameters were most important for model

calibration, following methods first explored in Spear and Hornberger (1980). For each parameter,

the marginal cumulative CDFs of the set of behavioral and non-behavioral parameter values were

over-plotted. The greater the difference between the two CDFs, the more that particular parameter

was constrained by the calibration, and the greater the suggested influence of the parameter on the

calibration outcome. Note, however, that the absence of any difference in the CDFs is a necessary

but not sufficient condition for screening out parameters (i.e., identifying parameters with negligible

influence) due to the possibility of confounding parameter interactions (Pianosi et al., 2016).

The MC filtering analysis was repeated using different definitions for behavioral and non-behavioral.

The greater the change in the CDFs when a calibration criterion was removed, the greater the suggested

influence of that criterion on the calibration result. In this manner, MC filtering was used to evaluate

the value of incorporating age-based criteria into the model calibration.
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3.6.3.2 Boosted regression trees

Boosted regression trees (BRTs) were used to explore the relationship between model parameters

and informative scaler representations of discharge and transit times extracted from the simulation

results. The BRT model was chosen for its ability to simulate non-parametric interactions. The

simulation quantities of interest (i.e., the response variables) were the high flow condition Q5 exceeded

on 5% of days, the low flow condition Q95 exceeded on 95% of days, and the median transit time

measured under steady-state MTTss, under baseflow conditions MTTbf , and as the flow-weighted

average MTTfw. The values of Q5 and Q95 were derived from an empirical flow duration curve

(FDC) constructed from each parameter set based on the Weibull plotting position, which provides

an unbiased estimate of the exceedance probability (Blum, Vogel, and Archfield, 2016; Vogel and

Fennessey, 1994):

FDC(q) = iq
N + 1 (3.10)

where q is daily streamflow, i is the cardinal rank of q relative to all days, and N is the length of

record (365 days).

The BRT model is an advanced form of regression described in Elith, Leathwick, and Hastie

(2008) and briefly summarized here. For each response variable, the targeted 20,000 parameter runs

were separated into a training group (80%) and a testing group (20%). A randomly selected subset of

the training data was used to construct a decision tree. Each decision tree uses a series of thresholds

to partition the parameter space into regions associated with a prediction, and thresholds are set

to minimize residual errors between observations and predictions. Next, another randomly selected

subset of data is used to construct another decision tree that predicts the residuals of the first, with

special focus on observations that are hardest to predict. The second decision tree is shrunk according

to a parameterized learning rate and added to the first. The process is repeated 100 times, generating

100 decision trees, each predicting the residual of the previous. The final BRT is a kind of regression

model where each term is an individual tree. The final model performance is tested using the test

data. The model was run using the Scikit-learn package (Pedregosa et al., 2011) in Python 2.7.

The BRT allows us to visualize the effect of varying model parameters on the response variables

using one- and two-factor partial dependency plots (Friedman, 2001). Partial dependency plots

illustrate how varying the value of one or two parameters affects a response variable after "averaging
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out" the influence of all other model parameters. For more linear systems, the partial dependency

plots should be lines or planes with slopes that mimic linear regression model parameters. For more

complex models (such as non-linear hydrologic systems), the partial dependency plots can reveal

non-linear and threshold behavior. Note, however, that partial dependency plots can mask strong

parameter interactions and should be interpreted with care (as discussed further in Section 3.8).

3.7 Results

3.7.1 GLUE calibration results

The calibration routine shown in Figure 3.3 was started and stopped shortly after surpassing 20000

realizations. A total of 380 out of 22886 parameter sets were designated behavioral based on their

ability to simulate observed discharge and transit times, as described in Section 3.6.2.4.

The behavioral parameter sets did reasonably well at capturing key trends in the hydrograph. A

time-series comparison of the simulated and observed hydrograph shows reasonably good agreement,

with a KGE for the 50th percentile simulation of discharge and log discharge of 0.52 and 0.59,

respectively (see Figure 3.4). The calibrated model reproduced the fast response and recession
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Figure 3.4: (a) The 2014 daily rainfall in the FD36 catchment and (b) the observed and simulated discharge.
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following rainfall events, the suppressed rainfall-runoff response in January and February presumably

due to snow accumulation, the higher baseflow in the winter, and the lower baseflow due to ET and

low rainfall in the summer. Apparent deficiencies of the model include a tendency to overestimate

the runoff response to small storms and underestimate the response to large storms. In addition,

the model misses some large peaks in the hydrograph during the late winter and early spring, in a

manner that suggests that the celerity of snowmelt is too slow.

The behavioral parameters also did well at capturing key trends in the flow duration curve

including a steep rise in discharge at low exceedance probabilities and a steep drop in discharge at

high exceedance probabilities (see Figure 3.5(a)). In general, behavioral simulations tended to have

higher high flows and lower low flows than the non-behavioral models. Overall, however, none of

the simulations were able to achieve the high peak flows and low baseflows observed in the data.

Furthermore, in the middle ranges, the simulated FDC is flatter than the observed FDC. This

suggests that simulated recessions are too steep, whereas the observed recessions are smoother over

a range of discharge. Interestingly, the FDC curve does not vary much between parameter sets,

suggesting that the basic shape of the FDC may be strongly influenced by other factors such as

climate and topography.

The median baseflow transit time MTTbf for the behavioral simulations was 251 days, which is

within the calibration criteria of 240-300 days. The range of MTTbf for non-behavioral simulation

was much larger, from 100-550 days (see Figure 3.5(b)). Thus, although all parameter sets were

drawn from evidence-based prior distributions, many could be excluded based solely on the transit

time criteria. Figure 3.5(b) also shows that for any given parameter set the steady-state median

transit time MTTss was significantly lower than MTTbf , with almost all points falling below the 1:1

line. Almost all of the parameter sets simulated groundwater ages greater than 3 years.

3.7.2 Monte Carlo filtering results

Monte Carlo filtering was used to help determine which parameters had the largest influence on

variability in model performance, based on differences in the frequency of parameter values between

behavioral and non-behavioral parameter sets. One of the biggest differences was seen in the upper soil

layer φsoil. The top panel in Figure 3.6(a) shows that the marginal CDF for φsoil in non-behavioral
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Table 3.3: List of GLUE calibration results including the 5th and 95th percentile of the prior and posterior
distribution, and the median of the prior and posterior distribution.

Param Prior range Posterior range
Prior
median

Posterior
median Units

Kxy,soil 1.3 - 153.5 40.5 - 192.7 44.6 104.0 -
Kxy,rock 1.3 - 79.4 1.0 - 2.31 10.0 1.4 -
Kz,fragipan 1.5 · 10−8 - 4.5 · 10−4 1.8 ·10−8 - 5.6 ·10−4 2.6 · 10−6 2.4 · 10−6 -
Kz,streambed 1.3 - 79.4 1.2 - 80.4 10.0 10.4 -
Frock 0.38 - 0.92 0.41 - 0.93 0.65 0.71 m−1

φsoil 0.28 - 0.53 0.27 - 0.38 0.40 0.30 -
φstreambed 0.03 - 0.51 0.03 - 0.51 0.28 0.28 -
φrock 0.01 - 0.03 0.01 - 0.03 0.02 0.02 -

parameter sets is a straight line (i.e., the same as the prior distribution), whereas the behavioral

parameter has a strong preference for lower porosity. This tendency for behavioral parameter sets to

contain lower porosities is also reflected in Table 3.3, which shows that the median φsoil shifted from

0.40 before calibration to 0.30 after calibration.

Two other important parameters for achieving a behavioral calibration were the lateral hydrologic

conductivity in soil Kxy,soil and fractured rock Kxy,soil (see Figure 3.6(c,d)). The behavioral

parameter sets tended to have higher values of Kxy,soil (from a median of 44.6 before calibration to
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Figure 3.5: (a) The observed and simulated flow duration curve and (b) comparison between ages using
different estimation techniques.
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104.0 after calibration) and lower values of Kxy,rock (from 10.0 to 1.4). The other five calibration

parameters had nearly identical marginal CDFs and median values in the behavioral and non-

behavioral sets. This was either because changes in these parameters had negligible influence on the

calibration criteria, or because their influence was masked by interactions with other parameters.

The Monte Carlo filtering analysis also showed that considering transit times in the calibration

had a significant effect on the outcome. The top panel of Figure 3.6(c) shows that including the

transit time criterion resulting in higher values of Kxy,soil in the behavioral parameter sets. For

the other parameters, however, including the transit time criterion did not significantly alter the

distribution of behavioral parameters. For example, for both φsoil and Kxy,rock, the distribution of

behavioral parameters was roughly the same with or without considering transit times.

The Monte Carlo filtering suggests that the most important parameters were porosity and lateral

hydrologic conductivity, such that these will be the focus of subsequent analysis.

3.7.3 BRT sensitivity analysis - single parameter

The BRT models were trained to predict response variables using 80% of the 22886 model runs,

and then tested with the remaining runs. Model performance using the other 20% test data was

satisfactory based on graphical analysis of scatter plots and performance statistics. For example,

the Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970) ranged was 0.96 for the prediction of Q5,

0.99 for the prediction of Q95, 0.98 for prediction of MTTss, and 0.70 for the prediction of MTTbf .

The BRT model for MTTbf performed the worst, consistent with the complex controls on transient

transit time dynamics. The trained BRT models were used to generate the single parameter partial

dependency plots for Q5, Q95, and MTTbf , shown in the lower three panels of Figure 3.6(a-e).

The partial dependency plots show that soil porosity φsoil has a large, linear influence on Q5, Q95,

and MTTbf (Figure 3.6(a)). An increase in φsoil was associated with a steady decrease in peak flows

Q5, and a steady increase in low flows Q95 and baseflow transit times. An increase in the fractured

rock porosity had a similar influence on discharge and transit times, though to a lesser degree (Figure

3.6(b)). These results make sense in that increases in porosity tend to increase catchment storage,

which could in turn decrease the generation of overland flow that contributes to Q5, increase the

supply of baseflow for Q95, and increase flushing time leading to higher MTTbf .
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Figure 3.6: Results of the global sensitivity analysis for the five most sensitive parameters. Each panel
has four subpanels containing the Monte Carlo filtering results (top panel) and the single-parameter partial
dependency plots (lower three panels). Each point in the blue cloud is the response from one of the 22886
parameter sets evaluated.
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Compared to porosity, changes in the lateral soil hydrologic conductivity Kxy,soil over an order of

magnitude had a relatively small global effect on the response variables (Figure 3.6(e)). A 20-fold

increase in lateral hydrologic conductivity tended to neither increase high flows Q5, decrease low flows

Q95, or lower median baseflow transit times MTTbf . In fact, increases in Kxy,soil were associated

with a small but counterintuitive increase in the median transit time for baseflow to reach the stream.

Related to this, there was an abrupt transition when log(Kxy,soil) increased above 1.5 in the number

of parameter sets with MTTbf greater than 300 days (see blue point cloud in bottom panel of Figure

3.6(e)). This is indicative of possible threshold-like interactions with other parameters.

Finally, varying the lateral fractured rock hydrologic conductivity Kxy,rock induced the most

complex and non-linear response in the model (Figure 3.6(d)). The peak flows Q5 had local maxima

at both the extreme low end (i.e., slower draining fractured rock) and high end (i.e., faster draining

fractured rock) of the assigned range of Kxy,rock. Thus, increases in Kxy,rock tended to both increase

and decrease peak flows, depending on whether log(Kxy,rock) was above or below a threshold around

1.0. Low flows Q95 had a similar v-shaped partial dependency on Kxy,rock, though in the opposite

direction. Finally, when log(Kxy,rock) was below a threshold of approximately 1.0, increases in

Kxy,rock were associated with decreases in MTTbf . Above this threshold, however, the value of

MTTbf had no partial dependency on Kxy,rock over a 10-fold increase.

3.7.4 BRT sensitivity analysis - Parameter interactions

The results from the single-parameter partial dependency plots indicate that potentially significant,

non-linear parameter interaction may explain some variability in the response variables. BRT allows

us to explore non-linear parameter interaction through two-parameter partial dependency plots.

Several examples are shown in Figure 3.7 and 3.8.

Beginning with porosity in Figure 3.7(a,c,e), the results show very little interaction between

φsoil and φrock across all response variables. The surfaces are planer, indicating that (1) the partial

dependency of the response variable on each parameter is linear (as also seen in the single-parameter

plots) and (2) the influence of one parameter on the response variable is not modulated by the value

of the other.
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Figure 3.7: The two-parameter partial dependency plots for the porosity parameters (left columns) and
the log of lateral hydrologic conductivity parameters (right columns). The response variables are high flows
(upper row), low flows (middle row), and median baseflow age (bottom row).
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By contrast, Figures 3.7(b,d,f) shows a strong interaction between the lateral hydrologic con-

ductivity multiplier for upper soil layer (Kxy,soil) and lower rock layer (Kxy,rock). High flow Q05 is

greatest, low flow Q95 is lowest, and median travel time MTTbf is highest when Kxy,soil is at its

upper limit and Kxy,rock at its lower limit. In addition, the response variables are most sensitive to

changes in Kxy,soil when Kxy,rock is low. Some possible physical explanations for these interactions

are discussed in Section 3.8.

The interaction between Kxy,rock and Kxy,soil had an especially dramatic influence on the median

baseflow transit time MTTbf (Figures 3.7(f)). Further investigations suggest that the strength of

their interaction is at least partly related to (1) the focus on baseflow and (2) the transience of the

system. Figure 3.8 compared the influence of Kxy,rock and Kxy,soil on three different representations

of catchment transit time: the median baseflow transit time MTTbf , the median flow-weighted transit

time MTTfw, and the median steady-state transit time MTTss. Compared to MTTbf , the overall

interaction was much smaller for MTTfw (Figure 3.8d)), suggesting that that the interaction is less

important in other stages of the hydrograph (e.g., peak flow). Furthermore, there was almost no

interaction affecting MTTss (Figure 3.8(f)), suggesting that the conditions leading to the interaction

were related to the intermittency of rainfall.

3.7.5 2D versus 3D performance

Recalling that a goal of the calibration was to parameterize the 3D catchment model, one of the

behavioral parameter sets from our 2D emulator was used to simulate the full 3D catchment hydrology

(shown in Figure 3.1). Overall, simulated daily discharge in the 3D catchment and 2D emulator were

nearly identical with a KGE of 0.96 (Figure 3.9). The 2D model slightly overpredicted low flows.

The simulated values of MTTbf were more different but also relatively similar at 251 days for the

2D emulator and 321 days for the fully 3D model. The differences may be due to longer, indirect

groundwater and interflow pathways in the 3D model that run both parallel and perpendicular to

the stream channel, and larger contributing areas away from the stream due to convergence. Despite

some differences, the results suggest that the 2D emulator was a reasonable approach to calibration

under the given constraints. The 3D simulation is described in more detail in Chapter 4.
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Figure 3.8: The two-parameter partial dependency plots for the porosity parameters (left columns) and
the log of lateral hydrologic conductivity parameters (right columns). The response variables are median
baseflow travel times (upper row), median flow-weighted travel times (middle row), and median steady state
travel times (bottom row)
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3.8 Discussion and Conclusions

The results are discussed in the context of the three main research objectives: to demonstrate an

efficient approach to calibrating an ISSHM to discharge and age data, to assess the advantages of

including transit times in the calibration criteria, and to investigate the global sensitivity of discharge

and transit times to model parameters and what it suggests about catchment processes.

3.8.1 Implications for ISSHM calibration

This work demonstrates a computationally efficient technique to calibrate a 3D ISSHM model using

several novel techniques. First, the full 3D catchment was represented with a 2D emulator. A

post-calibration analysis showed that the 2D emulator faithfully reproduced the hydrograph of

the 3D model, but moderately underestimated the 3D median baseflow age. The approach may

prove appropriate for other catchments with similar topography. Second, a periodic steady-state

simulation was shown to make efficient estimates of the median transit time distribution of baseflow

for over 20,000 model realizations. A simple approach to simulating baseflow transit times under

transient conditions may be especially useful for modeling field data, because studies of stream

transit times have traditionally focused on baseflow measurements. Third, the study illustrates how
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Figure 3.9: Comparison of 2D emulator and full 3D catchment simulation.
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GLUE calibration can be applied to a highly parameterized ISSHM to fit both discharge and transit

time data. Overall model performance for discharge was consistent with the small number of other

studies using ISSHMs over multiple seasons at catchment scale. Further, this is the only study to

our knowledge to simulate the contributions of deep fractured rock to streamflow in a non-snowmelt

dominated system. No direct comparison can be made related to the performance of the model

to simulate observed catchment transit times, which has not considered in other catchment-scale,

transient ISSHM simulations. Finally, we used for the first time Monte Carlo filtering and boosted

regression trees with a large ensemble of ISSHM model realizations to understand the global sensitivity

of model parameters, which is discussed in the next sections. Overall, our approach to calibration

and sensitivity analysis can be generalized and applied to other ISSHMs and in other settings.

3.8.2 Controls on catchment discharge

For our modeling conditions and among the parameter ranges evaluated, catchment discharge was

most sensitive to porosity in the upper soil and lateral hydrologic conductivity. The influence of these

parameters on low flows and high flow and potential mechanistic explanations are discussed below.

These results give insight into catchment processes and can help inform the manual calibration and

interpretation of other ISSHM models.

Higher peak flows were associated with lower porosities, presumably due to faster pore velocities

and more frequent overland flow. The relationship between peak flow and the lateral fractured

hydrologic conductivity of bedrock Kxy,rock was highly non-linear. Peak flows were relatively high

when Kxy,rock was high, presumably due to higher pore velocities. However, peak flows were also high

when Kxy,rock was low, potentially due to limited infiltration causing saturation excess overland flow.

When Kxy,rock was between these extreme, peak flow was lowest, potentially because lateral flow

through bedrock was too fast to promote surface saturation but too slow to concentrate stormflow at

the outlet. Finally, when Kxy,rock was high, peak flow was relatively insensitive to changes in the

lateral hydrologic conductivity of the upper soil Kxy,soil, presumably because most flow through

the upper soil layer was vertical infiltration. When Kxy,rock was low and infiltration was minimal,

however, increases in Kxy,soil were associated with increased in peak flow, perhaps due to increased

perching and faster lateral flow through the upper soils. In general, combinations of parameters
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that promoted higher peak flows also promoted lower baseflow, and vice versa, according to the

mechanisms already described (but from the perspective of low flows). Note, however, that the

change in the absolute value of Q95 was much smaller.

Neither the discharge nor the transit times (discussed below) were very sensitive to the other

calibrated parameters including: the porosity of the fractured bedrock, the vertical hydrologic

conductivity of the streambed and fragipan, and the e-folding depth of the fractured bedrock

hydrologic conductivity. It is important to note, however, that the parameters included and the

ranges considered were based on an a priori literature review and assessment, which was itself

subject to considerable uncertainty. Also, the sensitivity analyses were global and did not consider

interactions between three parameters or more. Therefore, the actual local sensitivity may vary at

any specific parameter set.

3.8.3 Controls on baseflow transit times

High median baseflow transit times were associated with the combination of relatively high lateral

hydrologic conductivity in the upper soil Kxy,soil and low hydrologic conductivity in the lower

fractured bedrock Kxy,rock. This may be driven by three phenomena. First, low values of Kxy,rock

promote perched aquifers that move water laterally through the upper soil later. Second, high values

of Kxy,soil promote rapid lateral flows in the upper soil that drain too quickly to contribute to

baseflow. Third, the relatively small amount of water that does infiltrate takes a long to reach the

outlet due to the low Kxy,rock. The results of our transient simulations suggest that the hydrologic

properties of the upper soil can have a large influence of the age of baseflow. By contrast, our analysis

using the steady-state median transit times shows that the hydrologic conductivity of the upper

soil has almost no effect on the median transit time. Although steady-state transit time modeling

is common practice, this apparent tendency of the steady-state assumption to misrepresent the

importance of upper soil hydrologic conductivity is not well appreciated in the relevant literature

reviews (e.g., McGuire and McDonnell, 2006; McDonnell et al., 2010; Hrachowitz et al., 2016).
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3.8.4 Interactions between celerity and velocity

Recent papers have called for the combined evaluation of watershed models against catchment

celerities (i.e., the hydrograph based on volumetric water discharge) and velocities (e.g., the travel

time distribution based on tracer movement) (McDonnell and Beven, 2014). The idea that water-

shed models can simulate hydrology correctly but travel times poorly is largely based on virtual

experimentation using lumped parameter models. This work provides insight into the importance of

evaluating both celerities and velocities using process-based ISSHMs. Specifically, we found that the

inclusion of travel times in the calibration criteria significantly changed the composition of behavioral

parameter sets. Although a larger range of Kxy,soil values could reproduce the discharge data, only

relatively high values of Kxy,soil were able to generate the transit times inferred from the data. It is

worth noting, however, that no parameter emerged as especially sensitive "knobs" to turn for isolated

tuning of either discharge or travel times: rather, the most sensitive parameters were associated with

changes in both.

3.8.5 Limitations and future work

The scope of our analysis was necessarily limited by the complexity of conducting integrated surface

subsurface hydrologic modeling. Limitations that might be addressed in future work include a higher

modeling spatial resolution especially in the upper soil layer and near the streambed, consideration

of a wider range of parameter values and additional parameters, inclusion of heterogeneity in the

hydraulic field, evaluation of the full transit time distribution, and calibration of other model state

variables against data including water table level and soil moisture. Notwithstanding the potential

for further improvements, the calibrated model shows promise for simulation of non-point source

pollution transport at catchment scale.
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Using flowpath decomposition to understand time-varying

transit time distributions and storage selection with an

integrated surface-groundwater model of a small watershed. 1

4.1 Highlights

• Shape of catchment transit time distributions explained by examining constituent flowpaths in

integrated hydrology model.

• Catchment "inverse storage effect" driven by increases in overland flow, which itself showed

direct storage effect.

• Stream TTs exhibited middle-aged depression not captured by typical fitting distributions.

4.2 Summary

Catchment studies make inferences about flowpaths using tracer-derived estimates of transit time

distributions (TTDs) and, more recently, using StorAge Selection (SAS) functions at the largest

(most integrated) scale of study. These inferences may be highly uncertain, because few studies

have rigorously examined the mapping between flowpaths and age-based distributions in a realistic

testbed. Here we use the physically-based, fully coupled surface-groundwater model ParFlow-CLM
1This chapter will be submitted for publication in a peer-reviewed journal. Ciaran Harman and Bill Ball were

involved in hypothesis development, study design, and results interpretation. Reed Maxwell provided technical
assistance with ParFlow-CLM and SLIM-FAST simulations. Anthony Buda provided data and interpretation of data
from the study site. Dano Wilusz participated in all of the above and also produced the first draft of text and all
figures.
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with a modified SLIM-FAST particle tracking scheme to study how different flowpaths contribute to

the time-varying catchment TTD and SAS functions of discharge (Q) and evapotranspiration (ET ).

The model was parameterized and forced with one year of field data from the USDA’s Mahantango

Creek experimental catchment in PA, USA. Model evaluation showed reasonable consistency with

observed daily discharge (KGE = 0.62) and available tracer-derived water ages. We find that

the time-variability of the TTD for ET results from seasonally varying contributions of ground

evaporation and transpiration drawn from constant distributions of age-ranked storage, which can

be analytically derived. The time-variability of the TTD for Q is more complex and evolves from

shifting contributions of five flowpaths: direct rainfall, overland flow, interflow, and shallow and deep

groundwater. The transit times for different flowpaths overlap substantially, suggesting that age

alone cannot uniquely identify flowpath. As observed elsewhere, Q contains more of the youngest

water in storage when catchment storage is high (an "inverse storage effect"). This occurs due to

a non-linear increase in relatively young overland flow when the catchment is wet, and despite the

fact that overland flow and other pathways tend to become older when storage is high (a "direct

storage effect"). The TTD and SAS function exhibit a bimodal distribution of younger and older

water, resulting in a "middle-aged depression" that cannot be captured with common unimodal fitting

distributions (e.g., gamma, beta). We develop a taxonomy of TTD shapes that occur during a typical

recession, each with a distinct composition of flowpaths. Finally, we discuss the implications of our

results on the conceptualization of lumped parameter models, the physical origins of SAS functions

and their variability, and the origins of different C-Q relationships.

4.3 Introduction

Despite ongoing progress in the hydrologic sciences (e.g., Hrachowitz and Savenije, 2013), we still have

a poor understanding of the pathways and velocities of water moving through catchments (McDonnell

and Beven, 2014), to the detriment of effective water resources management (Hrachowitz et al.,

2016). The catchment transit time distribution (TTD) has proven to be a useful, spatially-integrated

measure of catchment velocities that gives insight into catchment flowpaths (McGuire and McDonnell,

2006; McDonnell et al., 2010). The TTD is the time-varying distribution of water ages at a catchment

outflux, where water age is defined as the time since entry into the catchment. Research to describe
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and predict catchment TTDs has been advancing in two parallel tracks related to (a) integrated

surface/subsurface hydrology modeling (ISSHMs) and (b) StorAge Selection (SAS) function theory.

One research track focuses on the simulation of TTDs using ISSHMs, which are physically-based,

spatially-distributed watershed models with growing capability to realistically simulate catchment

processes at catchment scale (Maxwell et al., 2014; Kollet et al., 2017). ISSHMs are numerical, mesh

or grid-based models designed to simulate major hydrologic processes including groundwater flow,

overland flow, and their interaction (i.e., infiltration and exfiltration). ISSHMs can be coupled with

land-atmosphere models to simulate snowfall and snowmelt, canopy process, and spatially-varying

evapotranspiration. ISSHMs including ParFlow (Kollet and Maxwell, 2006), CATHY (Camporese

et al., 2010), and HydroGeoSphere (Brunner and Simmons, 2012) have been used in a host of

applications (Paniconi and Putti, 2015; Fatichi et al., 2016), and can be integrated with particle

tracking algorithms to map flow paths and velocities through the critical zone and calculate TTDs.

To date, however, relatively few studies have used ISSHMs to simulate catchment TTDs. A review of

previous studies and key findings is in Chapter 2. Among these studies, most are in idealized and/or

steady-state domains, and catchment-scale studies with time-varying forcing are extremely rare.

Limitations of ISSHMs include large data requirements, high computational expense, potentially

significant model structure uncertainties, and a steep learning curve for users (Clark et al., 2017).

The other TTD-related research track focuses on simulation of TTDs using SAS functions in

a lumped modeling framework, where SAS function parameters are inferred from tracer data and

catchment characteristics (Rinaldo et al., 2015). Broadly speaking, a SAS function describes the

relative proportion of younger and older storage that contributes to the outflux of a control volume

in a lumped modeling framework. Because the age of storage in each control volume can be tracked

over time, the SAS function can be used to estimate the TTD of outflux. Notwithstanding the

growing number of catchment-scale studies using SAS functions to simulate catchment TTDs (e.g.,

van der Velde et al., 2014; Harman, 2015; Benettin et al., 2017; Wilusz, Harman, and Ball, 2017;

Rodriguez, McGuire, and Klaus, 2018), the physical origins of SAS functions are poorly understood,

and most studies rely on inverse modeling with tracer data to infer their shape. Although SAS

function behavior can be explained in laboratory experiments (Kim et al., 2016; Pangle et al., 2017),

more work is needed to identify factors controlling the shape and time-variability at catchment
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scale (Rinaldo et al., 2015). While previous research has tried with limited success to isolate factors

affecting TTD functions (e.g. McGuire and McDonnell, 2006), SAS functions may be less sensitive to

"external variability" from unsteady flows (Kim et al., 2016) and thus easier to parameterize. To the

extent that the time-varying shape of SAS functions can be explained and predicted, they may be an

efficient way to simulate catchment TTDs in data-scarce regions.

Although these two research tracks have a common purpose, they are not in competition. Rather,

previous work has recognized a deep synergy between the development of ISSHMs and SAS function

theory. On one hand, ISSHMs can be used to interrogate the relationship between catchment

characteristics and SAS functional form in controlled modeling experiments. For example, Kim et al.

(2016) used the ISSHM CATHY to describe the physical origins of SAS functions estimated in a

lab-scale lysimeter tracer experiment. Danesh-Yazdi et al. (2018) used the ISSHM ParFlow to show

how that heterogeneity in hydrologic conductivity added significant variability and bias to the shape

of the SAS function. On the other hand, SAS functions can facilitate synthesis and visualization of

potentially copious ISSHM output (e.g., Yang et al., 2018). In addition, SAS functions derived from

available data could be a useful signature for ISSHM model calibration and evaluation, just as flow

duration curves are a useful signature for calibrating the catchment hydrograph (e.g., Jothityangkoon,

Sivapalan, and Farmer, 2001). Following the arc of previous work, this paper presents complementary

advances related to both ISSHMs and SAS function theory.

The first goal of this study was to use an ISSHM to describe event-scale catchment TTDs in a

hydrologically complex watershed with year-round precipitation, significant snowfall, high summer

evapotranspiration (ET), and a heterogeneous geology including a shallow riparian fragipan and

deep fractured bedrock. Our study site is the extensively studied FD-36 subcatchment of the U.S.

Department of Agriculture (USDA) Mahantango Creek experimental catchment near Harrisburg,

PA, USA (Bryant et al., 2011). The catchment hydrology was simulated for calendar year 2014

using the open-source ISSHM ParFlow-CLM with SLIM-FAST particle tracking. The particle

code was enhanced to support sub-daily tracking of both discharge Q and ET , as well as flowpath

characterization (discussed below). The model was parameterized using field data and calibration to

daily discharge and available tracer-derived water ages, which is detailed in Chapter 3. To interpret

our results, model outputs were visualized as TTDs, SAS functions, and the recently proposed
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age-rank storage-discharge relationship [Harman, submitted ]. Our modeling approach has similarities

with two recent publications (Yang et al., 2018; Remondi et al., 2018), but in a significantly different

hydrological setting and using an open-source ISSHM that is well-documented with a large user base

(Maxwell et al., 2016).

To better understand the simulated TTDs and SAS functions, we applied a novel approach to

deconstructing the Q and ET outfluxes and analyzing their constituent sub-components (hereafter

labeled "flowpaths"). This approach is premised on the idea that each outflux (e.g., Q) is comprised of

several constituent flowpaths (e.g., overland flow, interflow, groundwater flow), and the TTD and SAS

function of each flowpath may have a unique shape, time-variability, and relationship with catchment

characteristics. While the behavior of the aggregated outflux TTD and SAS function may seem

chaotic, the behavior of individual flowpaths may be easier to interpret. Compared to the analysis

of complete flowlines through the catchment - which is also feasible using ISSHMs - the analysis

of flowpaths is simpler to operationalize and (looking forward) potentially more comparable across

watersheds. Another advantage of analyzing flowpaths is that modeled TTD and SAS functions may

be usefully commensurate with certain field measurements, including estimates of soil water age (e.g.,

McGuire, DeWalle, and Gburek, 2002) and groundwater age (e.g., Lindsey et al., 2003). Although

this is the first flowpath-based analysis using ISSHMs, the approach is inspired by the common

practice of partitioning discharge into flowpaths in end-member mixing analysis (e.g., Buttle, 1994;

Hooper, Christophersen, and Peters, 1990) and lumped parameter models (e.g., Dunn, McDonnell,

and Vaché, 2007; Birkel, Soulsby, and Tetzlaff, 2011; Hrachowitz et al., 2013; Benettin et al., 2015),

which has been shown to improve model performance (e.g., McMillan et al., 2012).

The second goal of this study was to use our ISSHM modeling framework to explore two particular

questions about the physical origins of SAS functions. For the first question, we explore why some

catchments seem to route more of the youngest water in storage to discharge when the catchment is

wet, a phenomenon dubbed the "inverse storage effect" (Harman, 2015). The inverse storage effect is

associated with a particular kind of SAS function, which has been observed in many catchments (e.g.,

Harman, 2015; Wilusz, Harman, and Ball, 2017; Rodriguez, McGuire, and Klaus, 2018). Studies

have attributed the inverse storage effect to the activation of fast flowpaths when storage is high

(e.g., Kim et al., 2016; Soulsby et al., 2015), but the precise mechanism has not been modeled or
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observed. We use our ISSHM to determine whether the SAS function in our study site indicates

an inverse storage effect and, if so, how it arises from the flowpaths of discharge. For the second

question, we examine an assumption that is sometimes implicit in the interpretation of TTD and

SAS functions: that there is a one-to-one relationship between the apparent mean age of water in

outflux and the flowpath that produced it. Perceptual models (e.g., Sanford and Pope, 2013) and

steady-state 2D analytical solutions to the catchment flow field (e.g., Małoszewski and Zuber, 1982)

tend to show a very clear, one-to-one relationship between the age of water and how it contributes to

stream discharge (i.e., younger water arrives from overland flow, middle-aged water from interflow,

and older water from groundwater). Here we use the ISSHM modeling framework to describe and

benchmark the nature of this mapping between water age and flowpath in a 3D model with complex

topographies, unsteady flows, and interacting processes. In addition to informing the interpretation

of TTD and SAS functions in other catchments, the analysis is a step towards relating water age to

flow pathways, which could inform transport modeling based on source exposure and contact time

(e.g., Benettin et al., 2015).

Based on these two goals, the objectives of the study can be summarized as (a) to use a physically-

based hydrology model to calculate and explain the TTD of Q and ET and their respective flowpaths

in a small experimental catchment, (b) to test whether analysis of flowpaths can elucidate the physical

origins of age-based distributions for Q and ET, including any storage effect, and (c) to examine the

null hypothesis that there is a one-to-one mapping between the age of outfluxes and the flowpath

that produced it.

The remainder of the paper is organized as follows. Section 4.4 provides background theory.

Section 4.5 introduces the methods including the study site, the model setup and calibration, the

particle tracking routines, and the TTD and SAS function calculation. Section 4.6 describes the

results, and Section 4.7 has discussion and conclusions including the implications of our results on the

hydrologic behavior of our study site, the interpretation of TTD and SAS functions at other sites, the

conceptualization of lumped parameter models, and the origins of different concentration-discharge

relationships.
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4.4 Background theory: age-based distributions

This section gives a brief comparative description of the TTD, the SAS function, and the age-ranked

storage discharge function relationship, collectively called "age-based distributions". In addition to

providing essential background, the section shows how the distributions can be deconstructed into

their constituent pathways. Then, the remainder of the paper applies this deconstruction to answer

questions about the nature of age-based distributions at our study site.

4.4.1 Transit time distributions (TTDs)

We begin by conceptualizing water moving through the watershed as a collection of discreet water

parcels or particles. Each particle represents a mass and volume of water moving from injection

(e.g., as rainfall) to some outflux (e.g., as Q or ET ). The flowpath and velocity of the particles

can be described by two types of transit time distributions. The forward transit time distributions

(TTDs) −→PQ(T, ti) and −−→PET (T, ti) are the cumulative probability distribution functions (CDFs) of

transit times (or, equivalently, exit ages) of all particles entering the catchment at time ti and exiting

after time T as Q and ET , respectively. The backward TTDs ←−PQ(T, t) and ←−−PET (T, t) are the CDFs

of transit times T of particles exiting the catchment at time t.

TTDs are described as a master variable linking catchment hydrology and contaminant transport

(Hrachowitz et al., 2016), which can be estimated from tracer experiments and numerical models.

As summarized in review papers including McGuire and McDonnell (2006) and McDonnell et al.

(2010), the TTD provides an integrated window into transport through the subsurface, which cannot

be observed directly. In addition, the backward TTD can be convolved with hydrochemical inputs

to simulate contaminant transport (Barnes and Bonell, 1996). In natural systems, however, the

backward TTD is highly dynamic and sensitive to the history of inputs (e.g., Wilusz, Harman, and

Ball, 2017), making it more difficult to characterize and predict.

To better understand the shape and time-variability of the TTD, we propose its disaggregation

into component parts. Consider the case where total discharge Q is composed of n different flowpaths

labeled i:

Q(t) =
n∑
i=1

Qi(t) (4.1)
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We can define the quantity age-ranked discharge QT = QT (T, t) as the flux in discharge with age less

than or equal to T . If follows from the definition of the backward TTD that:

QT (T, t) = Q(t)←−PQ(T, t) (4.2)

The conservation of age and mass requires that the flux of total discharge younger than age T must

equal the total contribution younger than age T from each pathway:

QT (T, t) =
n∑
i=1

QT,i(T, t) (4.3)

Combining Equations 4.1-4.3 and rearranging to solve for ←−PQ(T, t) gives:

←−
PQ(T, t) =

∑n
i=1Qi(t)

←−−
PQ,i(T, t)

Q(t)) (4.4)

Equation 4.4 shows how information about fluxes and backward TTDs of individual pathways can be

used to understand the emergent behavior of the backward TTD of total discharge. Specifically, the

backward TTD for total discharge is simply the flow-weighted average of the backward TTD of its

component pathways. The derivation can be generalized to any outflux including ET .

4.4.2 Storage Selection (SAS) functions

The aforementioned complexity and time-variability of catchment backward TTDs may make them

difficult to analyze and model. The SAS function is a transformed representation of the backward

TTD that reflects the dynamic ages of water in storage, and may be easier to interpret and model.

SAS function theory was developed in a series of papers (Botter, Bertuzzo, and Rinaldo, 2011; van

der Velde et al., 2012; Harman, 2015), are is synthesized in Rinaldo et al. (2015), and reviewed here

briefly.

We define the age-rank storage ST (T, t) as the amount of water in catchment storage with age

younger than or equal to T at time t:

ST (T, t) = S(t)PS(T, t) (4.5)
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where S(t) is total catchment storage and PS(T, t) is the cumulative residence time distribution,

defined as the cumulative fraction of water in catchment storage with age younger than T at time

t. Note that, in the case study presented, S(t) is determined by our modeling. Typically, however,

S(t) is not known and must be set relative to some reference state. As long as discontinuities are

appropriately addressed (e.g., Harman, 2015), then the relationship between ST and T is invertible

and one maps onto the other. As a result, the backwards TTD for Q can be re-expressed as a

distribution called the SAS function:

ΩQ(ST , t) =←−PQ(T, t) (4.6)

where the SAS function ΩQ(ST , t) is the cumulative distribution of age-ranked storage contributing

to discharge Q. As with the backward TTD, the SAS function is the flow-weighted average of the

SAS functions of its constituent pathways:

ΩQ(ST , t) =
∑n
i=1Qi(t)ΩQ,i(ST , t)∑n

i=1Qi(t)
(4.7)

which follows by substituting 4.6 into 4.4. The SAS function for ET denoted ΩET (ST , t) can be

similarly defined.

4.4.3 Age-rank storage-flux (rSF) functions

Harman [submitted] introduced a new approach for describing and analyzing the time-varying transit

time dynamics of catchments, referred to here as age-rank Storage-Flux (rSF) functions. For any

flux exiting a catchment (e.g., discharge, ET), the rSF function describes which volume of age-rank

storage contributes to the youngest flux, the oldest flux, and all ages of flux in between. The rSF

function is similar to the SAS function, but it is not a probability distribution (i.e., there is no

normalization to total flux) and the axes are transformed, such that the rSF function can be plotted

alongside (and indeed encompasses) the canonical storage-discharge relationship. The plotting of the

rSF function may be useful for several reasons, which are elaborated upon below.

We begin by describing the rSF function for total discharge Q, which is easily generalized to other

fluxes including ET . The rSF function fT,Q is the age-rank discharge complement QT as a function
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of the age-rank storage complement ST :

fT,Q(ST , t) = QT (ST , t) (4.8)

where:

ST (T, t) = S(t)− ST (T, t) (4.9)

QT (T, t) = Q(t)−QT (T, t) (4.10)

and ST and QT are defined in Equations 4.2 and 4.5. The age-ranked storage complement ST (T, t)

has units of [L] and represents the amount of water in storage that is older than age T at time t.

QT (T, t) has units of [L/T] and represents the flux in discharge that is older that age T at time t.

Both ST and QT are mathematical complements of ST and QT in the sense that they sum to total

storage S and total discharge Q, respectively. Equations 4.2, 4.6, 4.8, and 4.9 can be combined to

give:

fT,Q(ST , t) = Q(t)
(
1− ΩQ(S(t)− ST , t)

)
(4.11)

which shows that the rSF function is the product of discharge and the cumulative exceedance

probability of discharge expressed in terms of age-ranked storage complement. To give an example, a

rSF function value of fT,Q(ST = 300 mm, t = 100 days) = 1.0 mm/d indicates that the oldest 300

mm of storage contributed to the oldest 1.0 mm/d of discharge on day 100.

The rSF function for each pathway i of Q can be derived in a similar fashion and denoted

fT,Q,i(ST , t). Following the logic used to derive Equation 4.3, the rSF function for discharge Q is

simply the sum of the rSF function for each of its constituent pathways:

fT,Q(ST , t) =
n∑
i=1

fT,Q,i(ST , t) (4.12)

The rSF function for ET denoted fT,ET (ST , t) and its constituent pathways fT,ET,i(ST , t) can be

derived in an analogous manner.

The rSF function has several advantages over SAS functions for visualizing and interpreting

age-related catchment dynamics. First, unlike the TTD and SAS function, the rSF function for the

total flux is the simple arithmetic sum of its constituent pathways. Thus, simple visual inspection can
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give insight into the relative flux and age contributions of each pathway to the total fluxes. Second,

the use of age-ranked storage complement ST means that increases in S(t) due to influxes of new

water will not necessarily shift the plotting position of older ST values on the x-axis. As a result,

the rSF is a better tool for analyzing the relationship between the age of water in outfluxes and the

oldest volumes of water in storage. Finally, the rSF function explicitly shows the storage-discharge

relationship, which is a reflection of catchment celerities, plotted alongside a representation of the

SAS function, which is a reflection of catchment velocities. As a result, the rSF functions are a

promising approach to describing and parameterizing catchment celerity and velocity in a unified,

lumped modeling framework.

4.5 Materials and methods

4.5.1 Study site

Our study site was the FD-36 subcatchment of the USDA Mahantango Creek experimental catchment

near in central PA, USA (see Figure 4.1). The 0.4km2 agricultural headwater basin is situated

within the larger 7.8km2 WE-38 experimental catchment, which drains to the Susquehanna River

and discharges into the Chesapeake Bay estuary. Regional runoff contributes a significant load of

nutrients and sediment to the bay, which impairs coastal water quality and has been targeted for

management action (Linker et al., 2013a). The most pertinent catchment details are summarized

below, and described in more detail in Chapter 3 and the references therein.

FD-36 is situated in the Valley and Ridge physiographic province, underlain by shale, siltstones,

and sandstones (Urban, 1977). The climate is humid and temperate with mean annual rainfall of

1080mm, of which roughly 10% falls as snow and 50% leaves as evapotranspiration (Bryant et al.,

2011). Landuse is 70% cropland and pasture and 30% wooded (Needelman et al., 2004; Bryant et al.,

2011). Previous research suggests that catchment boundaries are well-defined by surface topography

(i.e., interbasin groundwater exchange is minimal) (Gburek, 1977). A combination of SSURGO

soil surveys and synoptic field measurements (Needelman et al., 2004) suggest the geology can be

classified into three major units (see Figure 4.1 and 4.2). Except for near the riparian area, the

upper 1-2 meters is well-draining, residual, fine-loamy soil. The lower 1m of soil in the riparian zone
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is a confining layer of poorly draining, clay-rich, colluvial fragipan. Finally, beneath the soil and

fragipan is up to 60m of fractured bedrock, with low porosity and exponential decline in hydrologic

conductivity (Gburek and Folmar, 1999).

The site is well-instrumented and extensively studied, which facilitated our 1-year simulation of

2014 conditions. Unless otherwise noted, data was provided by USDA staff [Anthony Buda, personal

communication]. Discharge was measured by a flume at the outlet (see location in Figure 4.1) and

hourly rainfall was measured at a rain gauge approximately 0.8km southeast of the catchment outlet

(Buda et al., 2011). Hourly temperature, wind velocity, downward solar radiation, relative humidity,

and pressure were measured by the Natural Resource Conservation Service approximately 8km west

of the study site. Several studies have used tracer data to estimate catchment transit times. McGuire,

DeWalle, and Gburek (2002) analyzed 18O variations in rain and streamflow and obtained a mean

residence time of 9.5 months for a nearby, hydrologically similar catchment. Burton et al. (2002)

used various tracers to model groundwater age at a stream transect less than 1km from FD-36, and
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Figure 4.1: Map of the study site in the FD36 sub-catchment of the USDA Mahantango experimental
catchment. (a) Location of the catchment in central PA, USA. (b) Satellite image of the catchment showing
the rectangular region modeled in ParFlow and the FD36 catchment boundary. (c) 3D rendering of the
rectangular area modeled by ParFlow, the catchment boundary, the location of the streambed and subsurface
fragipan, the location of the stream outlet and CFC sampling well, and the transect A-A’ used for the 2D
calibration and shown in Figure 4.2.
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obtained highly scattered estimates of mean transit time ranging averaging near 10 years.

4.5.2 ParFlow-CLM Modeling

FD-36 critical zone hydrology was simulated using ParFlow-CLM (Ashby and Falgout, 1996; Jones

and Woodward, 2001; Maxwell and Miller, 2005; Kollet and Maxwell, 2006; Maxwell, 2013) with

SLIM-FAST particle tracking (Maxwell and Tompson, 2006). A detailed model description appears

in the references listed and the ParFlow User’s Guide (Maxwell et al., 2016), with the most pertinent

details summarized here. ParFlow-CLM (Parallel Flow - Common Land Model) is an open-source,

fully-distributed simulation platform designed for parallel computing. ParFlow simultaneously solves

the 3D Richards equation for subsurface flow (Richards, 1931) and - in surfaces with a ponded depth

greater than zero - the 2D kinematic wave equation for surface flows using a cell-centered finite

difference scheme and terrain-following transform (Maxwell, 2013). ParFlow is fully coupled with

CLM, which simulates land-atmosphere processes including atmospheric forcing (e.g., rain, snow),

tree canopy processes (e.g., interception), and land surface processes (e.g., latent and sensible heat

flux). The model simulated the FD-36 watershed at hourly timesteps using hydrometeorological

forcing from 2014. Prior to the model simulation, the model was spun up to a steady-state equilibrium

with constant inflow of average precipitation to get the water table close to accurate, and then run

for one full year.

4.5.2.1 Model Structure

The model structure, parameterization, and calibration is described in a Chapter 3 and summarized

here. The ParFlow-CLM model was constructed for the FD-36 watershed using a rectangular domain,

1230m east-west by 870m north-south by 15m top to bottom. The domain surface extends at least

100m beyond the edges of FD-36, allowing catchment boundaries to emerge naturally from the flow

simulation. Initial tests suggested that a grid size of 30m in the x and y direction and 0.2m in the z

direction yielded a reasonable balance between performance and run times, resulting in a cell count

of 41 by 29 by 55, or 65395. High resolution LIDAR data was used to assign a local slope to each cell

in the cardinal direction of steepest decent (i.e., a D4 flow algorithm). Each cell was parameterized

as one of three different geology types described earlier: soil, fragipan, and fractured bedrock. In
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Table 4.1: List of key ParFlow-CLM model parameters.

Param Zone Value Units Ref. Description
K a 0.062 m/hr 1 saturated conductivity
Kxy,soil s 35.2 - GC lateral K multiplier of soil
Kxy,rock r 1.0 - 2,GC lateral K multiplier of rock
Kz,fragipan f 2.2e− 5 - GC vertical K multiplier of fragipan
Kz,streambed b 37.4 - GC vertical K multiplier of stream
Frock r 0.79 m−1 2,GC length scale of exponential de-

cline in K of rock
Φsoil s,f 0.29 - 3,GC porosity of soil
Φstreambed b 0.18 - 1,4,GC porosity of streambed
Φrock s,f 0.02 - 4,GC porosity of rock
n a 1.29 - 1 van Genuchten parameter
α a 2.32 m−1 1 van Genuchten parameter
m a 5.52e-6 hr/m

1
3 5 mannings roughness

r a 13 − MC slope for conductance to photo-
synthesis relationship

Zone legend: 1: all zones; s: soil; f: fragipan; b: streambed; r: rock
Reference legend: 1: Troch et al. 1993; 2: Gburek et al. 1999; 3: Lindeburg 2011;
4: Burton et al. 2002; 6: Maxwell et al. 2016; GC: GLUE calibration;
MC: Manual calibration to achieve water balance

addition, the streambed and underlying soil was parameterized separately to account for physical

changes due to alluvial sediment transport and hyporheic processes. The location of the 4 geologic

units are shown in plane view (Figure 4.1) and cross-section (Figure 4.2).

4.5.2.2 Model Parameters and Calibration

Model parameters were set using a combination of field data, literature values, and automated

calibration. Table 4.1 lists key model parameters and their source data. The mean annual ET was

manually adjusted to get annual water balance (e.g., ET = J − Q) using a fitting parameter r

that describes the efficiency of photosynthesis. The soil water retention curve was parameterized

using the van Genuchten model (Genuchten, 1980) with values reported in the literature for the

watershed (Troch et al., 1993). A baseline hydrologic conductivity value was assumed to be the areal

average of soil samples for the region (Troch et al., 1993). Model results were relatively insensitive

to changes in Mannings n (results not shown), so it was assigned the default value (Maxwell et al.,

2016). A total of eight other parameters were calibrated, including anisotropy in the hydrologic
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conductivity, the rate of exponential decline of hydrologic conductivity in the fractured bedrock,

and the porosity of upper layers and the lower bedrock. The calibration process worked as follows.

Each parameter was assigned a uniform prior distribution of values informed from literature. A

total of 22886 simulations were run for the 2D cross-section shown in Figure 4.2 using parameter

combinations randomly selected from prior distributions obtained from the literature. Parameters

sets that met the following performance criteria were considered "behavioral": Kling-Gupta Efficiency

(Gupta et al., 2009) between simulated and observed daily discharge greater than 0.5, simulated

baseflow water age between 8 and 10 months, and simulated groundwater age older than 3 years.

Out of 342 behavioral parameter sets, one representative set was selected for the full 3D model run.

Due to long simulation times for the full 3D simulation, it was not feasible to use the entire ensemble

of behavioral parameters for uncertainty analysis.
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Frac. rock 
• 𝐾𝑥𝑦,𝑟𝑜𝑐𝑘
• Φ𝑟𝑜𝑐𝑘

• 𝐹𝑟𝑜𝑐𝑘

Grid cells:
30m x 30m x 0.2m

Calibrated 
parameters

DIR

OVL

INT

SGW

DGW

Figure 4.2: Cross-section of the modeled domain across the transect A-A’ (see Figure 4.1), including the
location of the four geologic zones (soil, fragipan, streambed, and fractured rock), the calibrated model
parameters, and the five modeled flow pathways into the stream: direct rainfall (DIR), overland flow (OVR),
interflow (INT), shallow groundwater (SGW), and deep groundwater (DGW). Section 4.5.2.4 gives the
operational definition for flow pathway classification.
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4.5.2.3 Particle tracking: Q and ET

A modified version of the Lagrangian particle tracking module SLIM-FAST (Maxwell and Tompson,

2006) was used to estimate the time-varying TTD, SAS function, and rSF function for ET , Q, and

their seven constituent pathways. At the start of each hourly timestep, for each surface grid cell

inside the catchment receiving infiltration, a fixed number of particles (n=10) were injected into the

top 1 mm of the grid cell. There were 492 surface grid cells inside the catchment, meaning up to

4920 particles were injected for each of the 912 hours with non-zero soil infiltration. Each particle

was assigned an initial mass equivalent to an equal share (1/10th) of the mass of infiltrating water.

The density of water was assumed constant throughout the domain. The particles were moved at

hourly timesteps through the domain according to the advective flux driven by pressure differences

between cells (i.e., dispersion was assumed to be negligible) using the approach of Pollock (1988).

ET was accounted for in particle tracking by removing mass from particles as they traversed

through grid cells from which ET was being removed. Specifically, ET was assumed to be uniformly

selected from each grid cell:

∆mj = mj

mk
ETk (4.13)

where ∆mj was the mass removed from particle j, mj was the mass of particle j at the start of the

timestep, mk was the mass of water in grid cell k at the start of the timestep (determined from

grid cell saturation and porosity), and ETk was the total flux removed from grid cell k during the

timestep.

The age of each particle (i.e., the time since infiltration) was tracked, such that the age of all

water mass routed to ET and Q could be tabulated. This accounting was used to calculate the

forward TTDs −→PQ(T, t) and −−→PET (T, t) that describe the distribution of transit times T that water

infiltrating at time t takes to exit the catchment as Q and ET , respectively. The forward TTDs

were upscaled from hourly to daily. Note that, while the mass of each particle was needed to weight

contributions to the age distributions, the mass had no influence on the pathline of motion. The

mass of particles contributing to ET and Q was compared to the mass of ET and Q simulated by

ParFlow-CLM to ensure consistency.

Each particle was tracked for 3 years into the future (i.e., max(T )=1095 days) by repeating the

1 year flow field simulation 3 times. Watershed conditions were assumed to be a loop of the 2014
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model simulation such that:

u(t) = u(t±∆n) for all positive integers n (4.14)

where u(t) represents any model variable (e.g., rainfall, soil infiltration discharge, grid cell pressure)

and ∆ is the period of the system (1 year). Equation 4.14 equates any model variable at any time to

its value at the same time of the simulation year 2014. The assumption of periodic state is useful

for estimating the first-order characteristics of catchment TTDs including the effect of seasonality,

though longer simulations would be needed to better understand between-year variability. Note

that 3 years was found to be sufficient to recover greater than > 90% of particles from injection to

discharge.

4.5.2.4 Particle tracking: constituent pathways

The particle tracking results were analyzed to estimate the forward TTDs −−→PQ,i(T, t) and −−−→PET,i(T, t)

for each constituent flowpath i. Beginning with ET , the total flux was disaggregated into two

flowpaths: ground evaporation (ETG) and transpiration (ETT ). In ParFlow-CLM code, the ETG

and ETT are calculated and extracted separately from each grid cell in the model domain, as

described in Dai (2003). ETG represents evaporation from the land surface and depends on radiative

forcing, wind, humidity, and surface moisture; it is only extracted from the top model cell. ETT

represents water transpired by plants and depends on plant physiology, atmospheric conditions,

and soil moisture; it is extracted from the five model grid cells in the top 1m of soil, according to

a parameterized distribution of plant roots. Root fraction and other parameters controlling ET

processes were assigned the default ParFlow-CLM values for cropland. Because the different ET

fluxes were explicitly calculated by the model, the mass of ET removed from each grid cell at each

timestep could be directly attributed to either ETG or ETT and used to make separate estimates of
−−−−−−→
PET,ETG(T, t) and −−−−−−→PET,ETT (T, t).

The time-series of −−→PQ,i(T, t) were calculated in a post-processing analysis of the path that each

particle traversed through the watershed. Unlike the flowpaths of ET , the flowpaths of Q were not

individually modeled by ParFlow-CLM. Instead, a simple classification scheme was developed and

applied to each particle based on its residence time in different parts of the catchment. The following
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is a description of each flowpath and classification criterion, along with comments about the potential

for misclassification.

• Direct runoff (DIR): rainfall falling directly into the stream. Particles directly injected into

grid cells designated as streambed were classified as DIR. This approach is likely to overestimate

direct runoff due to the low spatial resolution of the grid cell (30m) compared to the actual

width of streams in the catchment (1-2m). Also, the method assumes the location of the

streambed is fixed (e.g., not ephemeral), which was a reasonable assumption at the FD-36

study site.

• Overland flow (OVR): infiltration and saturation excess overland flow into the stream. Particles

that traveled as overland flow before reaching the streambed were classified as OVR. Particles

reaching the catchment surface were assumed to flow to the catchment outlet in less than 1 day.

• Shallow Groundwater (SGW): groundwater flow from the upper part of the fractured bedrock.

Particle that travel through the upper 2m of the bedrock (but no deeper) including the area

just beneath the streambed were classified as SGW.

• Deep Groundwater (DGW): groundwater flow through the lower fractured bedrock. Particles

that meet the requirements of SGW but traverse more than 2m deep into the fractured bedrock

were classified as DGW.

• Interflow (INT): flow that enters from the streambed laterally, including through the perched

aquifer just above the fragipan. Particles that do not satisfy any other classification were

classified as INT.

These criteria were used to classify the pathway taken by each particle. Then the forward TTD

for each flowpath could be calculated using the particles assigned to that flowpath, yielding values

of −−−−−→PQ,DIR(T, t), −−−−−→PQ,OV R(T, t), −−−−−→PQ,INT (T, t), −−−−−→PQ,SGW (T, t), and −−−−−→PQ,DGW (T, t). A note on notation:

because the subscripts in −−−−−→PQ,DIR(T, t) are redundant, they will be shortened to −−−→PDIR(T, t), and

likewise for the other pathways.
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4.5.2.5 Age-based distributions calculation

The simulation results and estimates of the forward TTDs were used to calculate the backward TTD,

the age-rank SAS functions, and the age-rank storage-flux (rSF) functions.

To estimate the backward TTDs for Q and ET , Niemi’s theorem (Niemi, 1977) was rearranged

and applied with the periodic steady state assumption (Equation 4.14) to solve for the PDF form of

the backward TTD for each day of 2014 for ages up to 3 years:

←−pQ(T, t) = −→pQ(T, t− T )Jinf (t− T )θQ(t− T )
Q(t) (4.15)

←−−pET (T, t) = −−→pET (T, t− T )Jinf (t− T )θET (t− T )
ET (t) (4.16)

where ←−p and −→p are the PDF form of the backward and forward TTD, θ(t− T ) is the fraction of

total infiltration at time t− T that exited from pathway i over the 3 year tracking period, and the

subscripts Q and ET refer to the relevant flux. The PDFs were converted to CDFs for subsequent

analysis. The values of Qi(t), ETi(t), and the partition functions θQ(t) and θET (t) were determined

from the particle tracking partitioning described in the previous section. The partition functions

θQ(t−T ) and θET (t−T ) are the fraction of infiltration Jinf (t−T ) that eventually exits the catchment

as Q and ET , respectively (Botter, Bertuzzo, and Rinaldo, 2010). As states earlier, greater than

90% of the particles took less than the three year tracking period to exit the catchment. Similar

equations were used to estimate the backward transit time of each constituent flowpath:

←−−pQ,i(T, t) = −−→pQ,i(T, t− T )Jinf (t− T )θQ,i(t− T )
Qi(t)

(4.17)

←−−−pET,i(T, t) = −−−→pET,i(T, t− T )Jinf (t− T )θET,i(t− T )
ETi(t)

(4.18)

where the partition function θQ,i(t−T ) refers to the fraction of infiltration at time Jinf (t−T ) exiting

as discharge that exits as flowpath i, and likewise for θET,i(t− T ).

Next, the backward TTDs and results from the particle tracking were used to calculate the SAS

functions for Q and ET , which was defined in Section 4.5. A novel approach was used to estimate

the age-rank storage ST (T, t) using the forward TTD without direct estimation of the residence time
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distribution. Given that our 3 years of forward particle tracking accounted for nearly all contributions

to Q and ET , we could approximate ST (T, t) as follows (see derivation in Appendix 4.8, adapted

from (Rinaldo et al., 2011)):

ST (T, t) =
i=N∑
i=0

Jinf (t− i∆t)∆t
(

1−−→PQ(τ, t− i∆t)θQ(t− i∆t)−−−→PET (τ, t− i∆t)θET (t− i∆t)
)

(4.19)

where N is the number of timesteps (N=1095) and ∆t is the timestep duration (1 day). For Q, the

value of ST from Equation 4.19 and ←−−PQ,i(T, t) from Equation 4.15 were used to calculate the SAS

function ΩQ(ST , t) from Equation 4.6. The SAS functions for ET and the constituent pathways were

estimated in a similar manner.

Lastly, we used our modeling results to calculate the rSF functions presented in Section 4.4.3.

The rSF function for discharge fT,Q(ST , t) was calculated using Equation 4.11 with the value of ST

given by Equation 4.19, the value of ST given by Equation 4.9, the value of Q(t) estimated from

the particle tracking, and total storage S(t) extracted from the ParFlow-CLM simulation. A similar

method was used to estimate the rSF functions for ET and the constituent flowpaths.

4.5.2.6 Comparative analysis

The model results were compared and decomposed in quantitative and qualitative ways to answer

the main research questions described in the introduction (Section 4.3). The analysis focused on the

extent to which the emergent shape and time-variability of the age-based distributions of Q and ET

could be explained by the behavior of their constituent pathways.

4.6 Results

4.6.1 Model performance overview

The model simulated major aspects of the catchment hydrology and its seasonal behavior. Figure

4.3(a) shows the observed input rainfall to the catchment Jprec and - after simulating surface-

atmosphere processes including canopy interception, snowpack, and snowmelt - the infiltration to

the catchment land surface Jinf . Total rainfall Jprec was 1078 mm with several large events in
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the spring and summer time, of which 983 mm infiltrated as Jinf . Although Jprec and Jinf were

closely synchronized (r2=0.86), they differ most in winter when Jprec falls as snow and does not

produce Jinf until snowmelt. This behavior is also seen in the streamflow data, in that some large

precipitation events in the winter elicit a negligible increase in discharge (e.g., the 30mm rainfall

events on 2/1/2014). Total annual catchment ET was 522 mm with high values peaking in the

summer and near zero values in the winter (Figure 4.3(b)). Total catchment storage varied between

519 and 646 mm with a peak during spring showers and snowmelt, and a trough following a long

period of high ET in the summer.

The calibrated model captured key aspects of observed discharge and water ages. The fit between

daily observed and simulated Q and log(Q) had a KGE of 0.60 and 0.65, respectively (see Figure

4.3(c) including inset). The simulation did well at capturing the general timing and size of storm

events as well as the large drop in baseflow during the summer. The model showed less skill at

capturing the peak flows during a snowmelt event in late March, possibly because the model did not

simulate the influence of freezing temperatures on soil hydrology.

The median backward transit time for Q (MTTQ) shown in Figure 4.3(d) dips significantly during

rain events, but quickly relaxes to baseflow values that coincide with and sometimes exceed the

tracer-derived calibration target of 240− 300 days. The simulated median backward transit time

of groundwater at 5 m depth in the subsurface was found to be greater than 3 years (results not

shown), which is consistent with previous groundwater age-dating studies (Burton et al., 2002).

The pattern of MTTQ and MTTET (Figure 4.3(e-f)) have a complex relationship with catchment

storage and hydrological characteristics. The time-average MTTQ is 264 days with a large interdecile

range of 16-465 days (see Table 4.2). Although catchment storage has been shown to be an important

control on transit times in other catchments (van der Velde et al., 2012; Harman, 2015; Wilusz,

Harman, and Ball, 2017), the correlation between S(t) and MTTQ is very weak (r2 = 0.05). The

time-average MTTET is much lower than discharge, at 18 days with an interdecile range of 5-137

that skews heavily toward younger ages. The MTTET drops after large influxes of Jinf and slowly

rises between large events.
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Figure 4.3: Important ParFlow-CLM model inputs, outputs, and performance for the FD-36 catchment.
Panel (a) shows total precipitation Jprec and total infiltration to the land surface after accounting for
above-surface processes including snow accumulation, snowmelt, and canopy interception and evaporation
Jinf . Panel (b) and (c) shows surface ET and Q simulated by the ParFlow-CLM model (black) and by
particle tracking (gray). Panel (c) also shows observed daily discharge against time (red circles) and against
simulations in log-log space (see inset). Panel (d) shows total water storage in the catchment over time.
Panels (e) and (f) show the time-series of median transit time (MTT) for ET and Q (black lines) with the
10-90th percentile ages shaded gray. The red strip shows the tracer-derived age of baseflow in a nearby
stream (McGuire, DeWalle, and Gburek, 2002).
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4.6.2 Pathway partitioning

The particle tracking methodology was used to determine the partition functions θ for the two

pathways contributing to ET (i.e., ETG, ETT) and five pathways contributing to Q (i.e., DIR, OVR,

INT, SGW, DGW). Figure 4.4(a) shows how the influx from each infiltration event is partitioned

by the fraction θi to each flowpath i. The largest fraction of Jinf is partitioned to ETT (49%),

predominantly in the summer months. The second largest is OVR (16%), followed by INT (12%).

Notwithstanding the significant day-to-day variability in infiltrating rainfall, the changes in θi occur

over longer, seasonal timescales. In other words, variability in the partitioning of influxes seems to

be driven by the season, and not by the size of any particular influx event. The average daily sum of

θi for all pathways is close to unity (0.97), reflecting the fact that nearly all influx was discharged

from the catchment over the 3-year particle tracking period.

While the destination pathways of infiltrating rainfall changed on the seasonal timescale, the

source pathways of discharge showed much more day-to-day variation. Figure 4.4(b) shows the

fraction of each pathway contributing to Q for each day of 2014. Table 4.3 shows the time-average

median contribution from each: 48% from INT , 18% from OV R, and 16% from SGW , and less

than 10% from DGW and DIR. The drivers of variability in outflux composition is explored in the

next section.

An initial comparison of the MTTi of each flow pathway i shows a wide spread both between

pathways and between days of the year. As shown in Figure 4.4(c) and described in Table 4.2, DGW

is significantly older than other pathways with a MTT of 474 days that remains steady throughout

the year. At the other extreme, the MTTs of ETG, ETT , and DIR are the youngest pathways with

MTTs below 30 days that also remain relatively steady during the year. Between these end members

are pathways with the most dynamically intermingled ages: OVR (MTTOV R = 22 days), INT (216

days), and SGW (251 days). In the spring, the MTT of OV R and INT intersect, and, later in the

year, the MTT of INT and SGW also intersect. These results suggest a complex many-to-many

mapping between age and pathway, depending on the pathway type and time of year. The following

sections try to unpack this complexity by analyzing the flux and age-based distributions of each

pathway in more detail.
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4.6.3 Partition flux

Section 4.4 showed that the age distributions of Q and ET are driven by (1) the total flux of each

constituent pathway and (2) the age-based distribution of each constituent pathway. We investigate

the total flux in this section, and the age distribution in the next. For ET , the flux of ETG is

relatively small and roughly constant throughout the year. By contract, the flux of ETT is highly

seasonal and contributes the majority ET in the summer (results not shown). The average flux of

ETT is 6.5 times greater than ETG (see Table 4.2).

For Q, the contribution from different pathways is shown in Table 4.2. INT had the highest
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Figure 4.4: The partitioning of rainfall into different flow pathways. Panel (a) shows the fraction of Jinf
exiting to different flow pathways for daily rainfall during the 1-year simulation. The white column breaks
indicate periods with zero infiltration. Panel (b) shows the fraction of each flow pathway contributing to
daily Q. Panel (c) shows the median transit time for each flow pathways contributing to Q and ET . All
flowpath acronyms are defined in the text.
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Figure 4.5: Time-series of simulated Q for each flowpath and comparisons to S, Jprec, and Q. The first
column shows total flux from DIR, OVR, INT, SQW, and DGW. Note the changing y-axis range. The second
column plots simulated storage against discharge. The last column plots simulate discharge against Jprec
(panel a3) and total Q (panel b3). For each scatter plot, lines of best fit are shown in red.

median flux (0.36 mm/d), suggesting that the TTD and SAS function of INT has the largest

influence on the emergent TTD and SAS function of Q. By contrast, DGW contributed the least

(0.07 mm/d), suggesting that DGW has a relatively small influence.

The time-variability of fluxes in each pathway contributing to Q had two distinct patterns. The

fluxes DIR and OV R shared a relatively flashy pattern with a correlation of r2=0.67. The fluxes

INT , SGW , and DGW shared a smoother and more seasonal pattern that dropped low in summer,

with pair-wise correlations all greater than r2=0.50. The fact that the pair-wise correction between
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the two groupings is relatively low (r2<0.10) suggests that variability in the two groups is driven by

different hydrologic processes.

To help understand what drives the time-variability of pathway fluxes, Figure 4.5(a2-e2) shows

the relationship between total catchment storage S and pathway flux. The subsurface pathways

INT , SGW , and DGW all have a strong linear relationship with S (r2=0.91-0.95). By contract,

the pathway OV R has a relatively non-linear (r2=0.23) but monotonically increasing (spearman’s

ρ2=0.62) relationship with S that resembles a typical non-linear storage discharge relationship, and

Figure 4.5(b3) shows that OV R is highly correlated with total Q (r2=0.92). Finally, the flow pathway

DIR has the weakest relationship with S (r2=0.23, ρ2=0.02), but is strongly correlated with Jobs

(r2=0.87).

4.6.4 Age-based distribution analysis: ET

We begin by analyzing the TTD, SAS function, and rSF function of ET , to understand the time-

variability of the ages of ET and its two constituent pathways. The case of ET is relatively simple

and provides a good introduction to the analysis before applying it to Q, which has five flowpaths

and greater conceptual complexity.

The TTD for ET and its flowpaths show significant time-variability, with the distribution of ages

younger when catchment storage is high. The median of MTTET over the course of the year (and the

interdecile age) was 18 (5-137) days. ETT was slightly older at 23 (5-145) days and ETG younger at

11 (4-45) days (see Figure 4.6(abg). All three distributions are skewed left but with a small fraction

of relatively old water. In general, the TTD for ET is more like the TTD for ETT than ETG.

While the TTDs vary with time and storage, the SAS functions for ETG and ETT tend to

collapse into a single distribution with no clear storage relationship and small day-to-day variability

(see Figure 4.6(eh)). For example, for the ETG pathway, the coefficient of variation (CV) drops from

0.62 for the median age T of the TTD distribution to 0.24 for the median age-ranked storage ST of

the SAS distribution. The results show that the time-variability in the SAS function for ET results

from the supposition ETT and ETG with roughly time-invariant SAS functions. It is interesting to

note that, even though the TTDs for ET tend to get younger at higher storage, the SAS functions

show no inverse storage effect.
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The SAS functions for ETG and ETT are very close to the distribution we would expect based

on the ParFlow-CLM model assumptions. In ParFlow-CLM, ETG is uniformly selected from the top

model grid cell which had an average storage volume of S0=47 mm (determined as the product of

relative saturation, porosity, and cell depth averaged across the top catchment cells for the entire

model simulation). This is equivalent to a well mixed system with storage of 47 mm, which has a

uniform SAS function (Harman, 2015):

ΩETG(ST ) = ST
47mm, ST ∈ [0, 47mm]

1, ST > 47mm (4.20)
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Figure 4.6: Analysis of age, storage, and outflow for ET (top row) and its constituent flowpaths ETG
and ETT (bottom two rows) during the 1-year simulation. The left column shows the median backward
transit-time distribution ←−P (T ) at four different ranges of catchment storage: very dry (lower 10th percentile
storage, lightest blue line), moderately dry (10-50th percentile, lighter blue line), moderately wet (50-90th
percentile, darker blue line) and very wet (greater than 90th percentile, darkest line). The light red shading
shows the 80th percentile daily range of ←−P (T ). The middle column is similar but shows the SAS functions
and the approximate analytic solutions derived in the text (red dashed lines, panels (e) and (h)). The last
column shows the rSF functions.
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Similarly, an approximate analytical solution can be derived for ETT , for which a fraction ηk is

uniformly selected from the top k=5 cells, where ηk is the parameterized root fraction distribution.

By consideration of the value of ηk and the average saturation, porosity, and cell depth, a 1D solution

was derived for ETT .

The analytically-derived 1D SAS functions for ETG and ETT show very close agreement to

the SAS functions derived from the particle tracking (see Figure 4.6), but also a telling area of

disagreement. The good agreement indicates that the 1D approximation is a good representation of

mixing in the upper cells, and that lateral transfers are minimal. The major difference is a small but

significant volume of older age-rank storage contributing to ET not anticipated by the 1D theory.

This fraction is likely driven by the upwelling and evaporation of old water in the upper cells of the

streambed.

The rSF functions (Figure 4.6(cfi)) show how different parts of the age-rank storage complement

ST contribute to the ET and its pathways. For example, the fT,ET (ST , t) function for the lowest

storage scenarios (<10th percentile) shown in Figure 4.6(c) indicates that the maximum ET was

approximately 2 mm/d and the maximum total storage S was 525 mm. The sharp initial drop in

this curve (from right to left) indicates that 1 mm/d of ET comes from the oldest 500 to 525m mm

of storage, which is equivalent to the youngest 25 mm of storage. The remaining 1 mm/d of ET

comes from the oldest 300 mm to 500 mm of storage. Almost none of the ET is selected from the

oldest 300 mm of storage. Other curves in Figure 4.6(cfi) can be interpreted in the same manner.

Given that fT,ET is the linear supposition of fT,ETG and fT,ETT , the curves in Figure 4.6(c) are

roughly equivalent to the sum of Figure 4.6(f) and (i).

Inspection of the fT,ET functions gives several insights into what drives the distribution of ages

in ET . First, comparison of Figures 4.6(b) and (c) show that the flux of ETT can be an order of

magnitude larger than the flux of ETG, and during these times it will dominate the shape of the

ET age-based distributions. At times when the fluxes are nearly the same, they will both influence

of the shape of ET age-based distributions. Second, almost none of the ET is selected from the

oldest 300mm of storage. Third, there is no clear correlation between catchment storage and ET .

The period with highest storage has a very moderate ET . This likely reflects the fact that ETT is

very sensitive to the pattern of solar radiation throughout the year.
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4.6.5 Age-based distribution analysis: Q

The TTD of Q has time-variable behavior and a distinct bimodal shape (see Figure 4.7(a)). The

median transit time of discharge MTTQ varies widely from <1 to 346 days. The period with the

highest decile of storage has a somewhat younger distribution of water compared with the other

storage scenarios. In these lower storage scenarios, the TTD shows a relatively large fraction of

relatively young water (0-50 days) and older water (200-500 days) and a "middle-aged depression" in

between with no contribution aged 50-200 days (marked by the middle plateau in the CDF).

The time-variability and shape of Q can be explained in part by inspection of its constituent

pathways (see Figure 4.7(d-p)). Nearly all of the time-variability seems to be explained by the OV R

pathway as well as the intermittent DIR pathway. The other pathways INT , SGW , and DGW are

relatively time-invariant. While MTTINT showed large oscillations in our initial analysis in Figure

4.4(c), this seems to be at least in part an artifact of the bimodal shape of the distribution, where

small shifts cause the median to toggle from one mode to the other. The portion of younger water in

the distribution is from DIR and OV R, while the older water is from SGW and DGW . INT is the

only flowpath to contribute both older and younger water. Although Q tends to get younger when

storage is very high, this is not true for any of the constituent flowpaths.

The shape and time-variability of the SAS function of Q in Figure 4.7(b) is similar to that of

the TTD. The day-to-day median ST varies from 2 to 258 mm with a similar bi-modal distribution.

When catchment storage is in the highest decile, the median ST drops to 126 mm (compared to 244

mm at other storage times). This is indicative of the inverse storage effect.

Unlike the SAS functions for ET pathways, the SAS functions for Q pathways exhibit significant

time-variability (shown in Figure 4.5e,h,k,n,q). As with the TTD function, the greatest time-variability

is in the OV R pathway and the intermittent DIR pathway. Surprisingly, the INT , SGW , and

DGW SAS functions also vary in time, and in all three pathways the shift is strongly correlated with

storage. For example, the correlation coefficients between median ST and catchment storage in INT ,

SGW , and DGW are 0.31, 0.82, and 0.89 respectively. Interestingly, although the Q SAS function

has an inverse storage effect, each individual pathway has the opposite relationship with storage: a

direct storage effect. When storage increases, so does the volume of ST selected into storage.

This apparent paradox - that many pathways with a direct storage effect produce an emergent Q
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Figure 4.7: Analysis of age, storage, and outflow for Q (top row) and its constituent flowpaths DIR, OVR,
INT, SGW, and DGW (bottom five rows) during the 1-year simulation. The left column shows the median
backward transit-time distribution ←−P (T ) at four different ranges of catchment storage: very dry (lower 10th
percentile storage, lightest blue line), moderately dry (10-50th percentile, lighter blue line), moderately wet
(50-90th percentile, darker blue line) and very wet (>90th percentile, darkest line). The light red shading
shows the 80th percentile daily range of ←−P (T ). The middle column shows the SAS functions. The insets
in panels (d) and (e) zoom into the youngest portion of the DIR flowpath. The last column shows the rSF
functions. Note that DIR and OVL are intermittent (see activity in Table 4.2), and only days with rainfall
are used to construct the distributions.
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Table 4.2: Characteristics of pathway partitions for ET and Q.

Flux Partition Active Flow TTD rSAS
% [mm/d] [d] [mm]

ET TOT 100 0.83 18 33
( 0.1 - 3.94) ( 5 - 137) ( 6 - 142)

ETG 100 0.11 11 19
( 0.04 - 0.22) ( 4 - 45) ( 3 - 60)

ETT 100 0.7 23 39
( 0.04 - 3.71) ( 5 - 145) ( 7 - 149)

Q TOT 100 0.76 264 220
( 0.17 - 2.33) ( 16 - 465) ( 34 - 293)

DIR 46 0.13 0 1
( 0.0 - 0.79) ( 0 - 0) ( 0 - 3)

OV R 96 0.14 22 44
( 0.01 - 1.27) ( 3 - 111) ( 3 - 121)

INT 100 0.36 243 216
( 0.1 - 0.51) ( 34 - 464) ( 53 - 294)

SGW 100 0.11 312 251
( 0.03 - 0.22) ( 278 - 371) ( 233 - 273)

DGW 100 0.07 474 297
( 0.02 - 0.1) ( 362 - 777) ( 270 - 330)

Active: percent time flow path is non-zero;
TTD: Transit time distribution showing median age and 80th percentile range;
rSAS: rank StorAge Selection function showing median age-rank storage
and 80th percentile range.

with an inverse storage effect - can be resolved by analyzing the fT functions in the last column of

Figure 4.7. Under high storage conditions, OV R contributes significantly more flux than any other

pathway. Even though OV R is selected from older ST when storage is high, it is still younger than

all other flowpaths except DIR. Thus, even though individual flowpaths get older when storage

is high, their combined distribution is younger because of disproportionate growth of the youngest

flowpaths.

The fT functions also elucidate the different nature of the direct storage effect in each flowpath.

For example, Figure 4.7(n) shows that the SGW pathway is selected from a relatively wide 130

mm interval of ST , from approximately the youngest 190 mm of storage to the youngest 320 mm of

storage. On the other hand, Figure 4.7(o) shows that that SGW is selected from a relatively narrow

25 mm interval of ST , from the oldest 375 mm of storage to the oldest 400 mm. Thus, SGW is

selected from a narrow range of the oldest water in the catchment, irrespective of how much younger
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water is present.

4.6.6 TTD Taxonomy

The previous analysis shows there is a many-to-many mapping between the source age or age-rank

storage of discharge and its flowpath. For example, throughout the course of the simulation, the

range of OV R ages overlaps with the ages of INT (see Table 4.2). In this section, we broaden the

question to investigate the mapping between the shape of the age distribution and its constituent

flowpaths. In other words, to what extent can the shape of the age-based distribution at a point in

time be associated with a particular set of pathways?

The daily TTDs were analyzed to create a taxonomy of four characteristic TTD types. To do this,

a K-mean clustering algorithm was applied to the quintiles of the simulated daily TTD distributions.

Figure 4.8(a) shows the four types, ranging from the youngest distributions (type i) with a median

MTT of 1 day to oldest distribution (iv) with a median MTT of 299 days (see Table 4.3). Figure

4.8(b) shows that type i occurs in isolated episodes on the fewest number of days in the yearlong

simulation (n=30), type ii is more common (n=59), and type iii and iv are the most common (n=107,

169). The shape of TTD often, but not always, cascades in time from type i to type iv in series.

Figure 4.8(c-n) shows archetype age-based distributions for each of the types, and Table 4.3 shows

various characteristics of each. In general, the transition from type i to type iv is characterized by

decreasing fractions of DIR and OVR and increasing fractions of INT, SGW, and DGW. The type

i age distributions tend to coincide with heavy rainfall and higher discharge, though the mapping

between type and discharge is not one-to-one. For example, Figure 4.8(k) and (j) show two fT curves

with similar total Q but very different profiles. Interestingly, there is no clear relationship between

total storage S and type.

Given information about the shape of the age-based distributions, the source pathway can be

easier to infer, especially for younger parts of the distribution. When the distribution is type i,

younger water is mostly likely a mix of DIR and OVR pathways. In type ii distributions, younger

water is likely to come from OVR. In type iii and iv, younger water is likely to come from INT.
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Figure 4.8: A taxonomy of transit time distributions and their constituent flow paths. Panel (a) shows the
K-means clustering of daily ←−PQ(T ) into four categorical shapes: type i, type ii, type iii, and type iv. Panel
(b) shows the hydrograph, the occurrence of each type during the 1 year simulation (upper color bands), and
the date of four archetypes (colored diamonds) explored in the four columns below. Each column contains
the backward TTD ←−PQ(T ) (upper row), the SAS function Ω(ST ) (middle row), and the rSF function (lower
row). The distributions are filled in with colors to show the contribution from each flow pathway to the
overall distribution.
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Table 4.3: Characteristics of the four types of transit time distributions (first four columns) and all types
combined (last column).

Type i Type ii Type iii Type iv All
n 30 59 107 169 365
←−
PQ(0.5) 1 37 205 299 265

(1− 1) (1− 114) (78− 297) (268− 329) (2− 323)
Ω(0.5) 11 68 210 240 220

(8− 23) (9− 150) (105− 237) (215− 252) (21− 247)
J 17.6 4.0 0.0 0.0 0.0

(10.1− 38.4) (0.1− 8.2) (0.0− 3.3) (0.0− 0.1) (0.0− 7.7)
Q 2.6 1.7 0.8 0.6 0.8

(1.2− 7.6) (0.7− 3.3) (0.4− 1.5) (0.1− 0.9) (0.2− 2.3)
S 593 608 596 584 591

(541− 627) (561− 638) (567− 627) (541− 606) (548− 626)
DIR 33 14 0 0 0

(18− 67) (0− 34) (0− 19) (0− 0) (0− 27)
OV R 51 46 23 6 18

(20− 65) (16− 63) (8− 46) (0− 25) (2− 55)
INT 10 24 44 56 48

(4− 19) (16− 36) (30− 64) (43− 66) (18− 64)
SGW 4 9 14 21 16

(1− 6) (6− 14) (10− 21) (14− 28) (7− 26)
DGW 2 5 8 12 9

(1− 4) (3− 8) (6− 14) (9− 16) (4− 15)
The top row n shows the number of days for each type of TTD during the 1-year simulation.
Subsequent rows show the median value and the 80th percentile range in parentheses.

4.7 Discussion and conclusions

4.7.1 Drivers of shape and transience

The age-distributions for ET and Q had very different shapes and time dependence. Both are

described in turn.

4.7.1.1 ET

The shape and temporal variability of the TTD for ET were well explained by examining its

constituent flowpaths, ETG and ETT, and estimating the TTD and SAS function for each. While

the TTD and SAS function for all ET were time-varying, the SAS functions for ETG and ETT

were nearly time-invariant, and their shape was derived using the model governing equations, the
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physically-based parameters, and a 1D approximation. The results conclusively show that the

time-variability in the TTD results from a combination of variability in soil infiltration (i.e., external

variability causing flowpath acceleration as defined in (Kim et al., 2016)) and shifting contributions

from the ETG and ETT pathways from winter to summer (i.e., internal variability causing flowpath

activation). The analytical approach could be used in ParFlow-CLM and similar models to estimate

ET age distributions using model parameters instead of computationally-intensive particle tracking.

The simulation results have at least two implications for our understanding of ET age distributions.

First, the good agreement between model results and the 1D analytical solution suggest that the

lateral movement of water can be neglected when estimating ET ages, with the exception of the

riparian zone where upwelling groundwater is evapotranspired. The relative unimportance of lateral

flow probably reflects the fact that transport in the vadose zone is mostly vertical. Second, the

finding that the MTT of ET (18 days) was significantly younger than Q (264 days) informs the

current debate on the "two water worlds" hypothesis, which posits that the water transpired by plants

is generally older than water delivered to streams (McDonnell, 2014). In fact, our results suggest

the water transpired is actually younger than water delivered to streams. The representation of ET ,

however, is relatively simple in ParFlow-CLM and important ecohydrologic processes causing the

two water worlds phenomena may be missing.

4.7.1.2 Q

The behavior of the TTD for Q can be explained in part by the activation and deactivation of the

five flowpaths considered, which had distinct but overlapping age distributions. The younger water

was routed by DIR and OVR, the older water by SGW and DGW, and a combination of old and

young routed by INT. Different combinations of flowpaths occurred throughout the year, which could

be statistically clustered into four different TTD types. The overall shape was driven by the largest

fluxes, with DIR more likely to dominate during large rain events, OVR during high storage periods

with no rainfall, and INT otherwise. Our results are consistent with the small number of other

studies looking at the relationship between discharge flowpaths and age distributions. For example,

Yang et al. (2018) analyzed results from an ISSHM and found that shallow flowpaths contribute

young water and deeper groundwater contributes older water.
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Unlike the case for ET , the behavior of the TTD for Q was also driven by the time-variability of

the SAS functions for individual pathways. The SAS function for OV R was particularly sensitive

and changed shape to select more older storage when storage increased; this is likely due to the

exfiltration of deeper groundwater flowpaths contributing to saturation excess overland flow. The

SAS functions for INT, SGW, and DGW were also time-dependent and shifted with total storage in

the catchment.

4.7.2 Driver of Inverse Storage Effect

In our study catchment, for ET there was no systematic relationship between catchment storage and

the preference of the SAS function for young age-rank storage. In other words, ET did not exhibit

the inverse storage effect. While the distribution of ET ages does get younger during high storage

conditions, the distribution of age-rank storage ST remains the same.

For Q, our model results show that the inverse storage effect can be explained by (1) the dramatic

increase of overland flow when storage is high and (2) the fact that overland flow is selected from

relatively young age-rank storage. This is, to our knowledge, the first demonstration of the effect in

a fully coupled surface groundwater model at catchment scale. It is interesting to note, however,

that overland flow and other flowpaths do not themselves demonstrate and ISE. That is, under high

storage conditions, all the flowpaths except direct runoff select from older age-rank storage, and thus

exhibit a direct storage event.

4.7.3 Implications of "age-equifinality" in catchments

Our analysis rejects the null hypothesis of a time-invariant, one-to-one mapping between the age of a

parcel of water exiting a catchment and the flowpath that it traversed. To the contrary, the mapping

seemed to be dynamic and many-to-many. It is instructive to see where and how the mapping

failed. For ET , the ground evaporation was almost entirely young (<45 days) water. By contrast,

the transpiration included young and older water (5-145 days). Therefore, only older ET could be

mapped to a single pathway. Without additional information, the source pathway of the younger

ET is ambiguous. The mapping between the age (or age-rank storage) and source pathway was

more complex for the five pathways contributing to Q. The oldest water in discharge ( >400 days
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old) could be definitely mapped to deep groundwater. No other one-to-one mapping was possible;

moderately old water ( 300-400) could be either shallow groundwater, interflow, or overland flow,

and the youngest water ( <100 days old) could be either interflow, overland flow, or direct runoff.

Equifinality is the principle that an end state can be reached by multiple possible means. In

hydrology, the principle is most commonly associated with model selection and parameterization

(Beven, 2006a). This work shows that another kind of equifinality exists where water of a certain

age or age-ranked storage in the outflux can originate from multiple possible flowpaths. This "age-

equifinality" may complicate the interpretation of TTDs and SAS functions. Taxonomy schemes such

as the one presented show potential for mitigating age-equifinality and strengthening the ability to

make inferences about flowpaths from stream ages. For example, in general the youngest discharge

can be either direct runoff or overland flow, but if the overall shape of transit time distribution is

type ii, it is more likely to be overland flow.

4.7.4 Implications of a "middle-aged depression" in TTDs

The age-based distributions for Q exhibited a bimodal distribution with a selection of the youngest

water and oldest water, and a "middle aged depression" in between with no contribution. This

depression occurs around 150-250 days in the TTDs, around 150-200 mm of the youngest storage in

the SAS functions, and around 425-450 mm of the oldest storage in the fT functions. While a full

investigation of its origin is outside the present scope, the depression is an interesting phenomena for

at least two reasons. The first reason is that previous age measurements using calibrated, lumped

parameter models have suggested that age distributions have a bimodal distribution (e.g., Benettin

et al., 2015), with an old contribution from groundwater that contains no young water (e.g., Georgek

et al., 2017). Our results demonstrate, for the first time, that this bimodal distribution could emerge

from the processes simulates in a fully-distributed, time-varying catchment model. The second reason

is that studies typically fit age-based distributions to unimodal distributions (e.g.,. gamma, beta)

(van der Velde et al., 2014). Future work may try to fit SAS functions to bimodal distributions, as

has been done using binary exponential piston flow models in Morgenstern et al. (2015).
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4.7.5 Implications for lumped parameter models

The present analysis offers insight into the consistency of two complementary approaches to hydrologic

modeling: fully distributed and lumped parameter. While this analysis is based on fully distributed

modeling, the outfluxes were divided into flowpaths that are commonly used in lumped parameter

modeling. This has two useful aspects. First, it suggests that the very complex fully-distributed

model might be reasonably emulated by a lumped parameter model that captures the basic trends

presented here. Second, the features of our model can be compared with those of a lumped parameter

model. The presence of inconsistencies may indicate model structural errors to be addressed in future

work. For example, our results suggest that ages from groundwater flowpaths should be relatively

constant, and that the overland flow path should deliver water with a relatively broad range of

catchment transit times, especially under high storage conditions.

4.7.6 Implications for C-Q relationships

The relationship between concentration of solutes (C) and discharge Q varies significantly between

river systems (e.g. Zhang, 2018). As Q increases, C can either increase (i.e., concentration), decrease

(i.e., dilution), or stay the same (i.e., chemostasis). In some watersheds there is a strong, consistent

C-Q relationships; in others it may be highly scattered and time-varying. As discussed in Section

4.3, the concentration of hydrochemicals in water reaching the stream is sometimes believed to be

linked to its transit times and pathway, which is in turn is often assumed to be closely related to

storage and discharge level. Yet, our results show how storage and discharge are imperfect proxies

for transit times of discharge and its component flowpaths. For example, Figure 4.7 (k) and (l) have

roughly equal discharge but different age distributions and constituent flowpaths. The fact that

similar discharge can have different component flowpaths could be a significant source of variability

in the C-Q relationship, which could be modeled and explained using the approaches described here.

4.7.7 Limitations and future work

The ParFlow-CLM modeling had a number of limitations that were discussed in the conclusion

of Chapter 3. In addition, a limitation of this work was the inability to evaluate the simulated

age-based distributions against significant field data, especially at the level of individual flow pathways.
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Notwithstanding the limited evaluation data, the hypotheses generated here can be tested in the

field and used in turn to improve future watershed models, along the lines of the iterative dialogue

between modeler and field experimentalist proposed by Weiler and McDonnell (2004). In additional,

the methods can be repeated in other types of watersheds (e.g., semi-arid, high relief) to better

understand the influence of catchment characteristics on watershed transit times.

4.8 Appendix A - Estimating ST using forward TTDs

This appendix derives an equation for calculating the age-rank storage ST from the forward TTD of

Q and ET . The derivation assumes the system is a simple control volume with influx J (with age

zero) and outfluxes Q and ET . As shown by Rinaldo et al. (2011) using somewhat different notation,

total catchment storage can be expressed as:

S(t) =
∫ T=∞

T=0
J(t− T )PEX(T, t− T )dT (4.21)

where the exceedance probability PEX(T, t− T ) is the probability that water entering the catchment

at time t− T exits with age greater than T (and is thus still in storage at time t). The upper limit

of integration of Equation 4.21 can be truncated at T to get the volume in storage with age less than

or equal to T , which is the age-rank storage:

ST (T, t) =
∫ τ=T

τ=0
J(t− τ)PEX(τ, t− τ)dτ (4.22)

where τ is a dummy variable of integration. The exceedance probability can be written as:

PEX(T, t− T ) = 1−−→PQ(T, t− T )θQ(t− T )−−−→PET (T, t− T )θET (t− T ) (4.23)

which equates the probability of a parcel of water that enters at time t− T leaving after time t (the

LHS) with the complement of the probability of a parcel of water that enters at time t− T exiting as

either Q or ET before time t (the RHS). Combining Equations 4.22 and 4.23 gives Equation 4.19 in

the main body of the text.
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Improved simulation of groundwater transit times in SWAT

using StorAge Selection functions.1

5.1 Highlights

• The SWAT model was enhanced using StorAge Selection (SAS) functions to better simulate

groundwater transit times (TTs).

• The prototype SWAT-SAS model was able to estimate and calibrate TTs to reference data at a

small study catchment.

• The approach could improve representation of nitrate lag times in many watershed management

models.

5.2 Summary

Intensive agriculture and atmospheric deposition add nitrogen to the landscape, which leaches as

nitrate into groundwater aquifers. Depending in part on local groundwater transit times, nitrate can

be stored and released over years to decades, which must be anticipated in watershed management

plans. A commonly-used, open-source model for nitrate transport is the Soil and Water Assessment

Tool (SWAT). The ability of SWAT to simulate nitrate transport is limited because (1) SWAT
1This chapter will be submitted for publication in a peer-reviewed journal. Ciaran Harman was involved in hypothesis

development, study design, and results interpretation. Christina Cho and Shuyu Shang provided background research
on the SWAT model. Daniel Fuka initialized and ran the SWAT model. Portions of the introduction were adapted
from a report written by Dano Wilusz and submitted in partial fulfillment of the requirements for course EN.570.647
and used with permission of the instructor. The SWAT-SAS code and runs, the first draft of text, and all figures and
tables were created by Dano Wilusz.
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assumes that groundwater is well-mixed, which could be a poor assumption in many watersheds, and

(2) SWAT does not explicitly calculate transit times, which precludes calibration against available

data. To overcome these limitations, we demonstrate proof-of-concept of a modified version of SWAT

that (1) allows the user to relax the well-mixed groundwater assumption using the recently developed

theory of StorAge Selection (SAS) functions, and (2) calculates and outputs groundwater travel times

to facilitate interpretation and evaluation. The resultant SWAT-SAS concept is described and applied

at a small watershed in the Eastern Shore, MD, USA. Compared with original SWAT, we show that

SWAT-SAS can simulate transit times that are much more consistent with available calibration data.

We conclude that SAS functions show promise for improving simulation of groundwater transit times

in SWAT and could be useful in other lumped-parameter watershed management models.

5.3 Introduction

Since the 18th century, the rate of anthropogenic nitrogen (N) loading to the surface of the earth

has increased 10-fold to 150 Tg N per year (Gruber and Galloway, 2008). Sources of the increase

include N fertilization, fossil fuel combustion, biological fixation by crops, and deforestation and

other losses of long term N storage pools (Breuer et al., 2008). The increase has upset the delicate

balance of N-availability in many watershed systems and caused environmental and human health

problems including biodiversity loss, increases in nitrophile species, eutrophication, and drinking

water contamination (Galloway and Cowling, 2002). As a result many jurisdictions in the U.S. and

elsewhere are implementing watershed management action plans with the goal of reducing the delivery

of excess N to sensitive surface waters (e.g., Linker et al., 2013b).

A significant portion of surface water N loading originates from one particular species and

flowpath: nitrate-N (NO3−-N) in groundwater recharge to streams. Unlike other relatively reactive

nitrogen species (e.g., ammonia-N), nitrate-N is relatively stable in groundwater with potentially long

residence times, especially in carbon-depleted and/or aerobic environments. Under these conditions,

a significant portion of nitrogen transport through the landscape can occur as dissolved nitrate. In

the Chesapeake Bay Watershed, for example, an estimated 50% of the annual nitrogen load to the

bay derives from nitrate-N in groundwater recharge (STAC, 2013).
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The movement of nitrate through watersheds can exhibit large "lag times" that should be

anticipated in nitrate control strategies (Meals, Dressing, and Davenport, 2010). For purposes here,

we define the nitrate lag time as the time between (1) a change in nitrate inputs to the landscape

and (2) a corresponding change in nitrate outputs to surface waters. Large nitrate lag times can be

associated with the accumulation of large stores of "legacy nitrate" in watersheds as nitrate slowly

travels from injection to discharge. Recent work suggests that large lag times and legacy nitrate stores

are a feature of agricultural catchments around the world (Meter et al., 2016). The presence of nitrate

lag times can delay the watershed response to best management practices and, if not considered in

planning, jeopardize the achievement of watershed restoration goals (Van Meter, Van Cappellen, and

Basu, 2018). Many factors can contribute to the emergent lag time of nitrate including nitrogen

cycling and - to the extent that water acts as the mobile phase for dissolved nitrate transport - the

transit times of water through different watershed flowpaths.

To the extent that water acts as the mobile phase for dissolved nitrate, nitrate lag times can

be heavily influenced by groundwater transit times through shallow aquifers (Sanford and Pope,

2013). Over the past 20 years, our understanding of groundwater transit time distributions (TTDs)

has significantly improved due to a combination of inverse modeling with tracer data and particle

tracking through physically-based models. For this work, we define the groundwater TTD ←−−−PGW (T, t)

as the distribution of ages T of baseflow discharged from the groundwater aquifer to the stream at

time t. The age T is equivalent to the transit time of water from injection to baseflow, since all water

is assumed to be injected at age zero. Studies using time-series of environmental tracer inputs and

outputs typically infer TTDs with medians on the order of days to decades.

The Soil and Water Assessment Tool (SWAT) is a widely used watershed model developed to

help simulate the fate and transport of water and its solutes, including nitrate (Neitsch et al., 2011).

SWAT is a daily time-step, semi-distributed, process-based river basin model built on algorithms

first developed by the U.S. Department of Agriculture in the 1970s (Krysanova and Arnold, 2008).

SWAT is designed for modeling mesoscale catchments, defined by Breuer et al. (2008) as ranging in

size from 10 km2 to 10,000 km2. Extensive documentation and a GIS-based user interface makes

SWAT relatively user friendly. Perhaps as a result, SWAT is one of the most commonly applied

watershed model by researchers and practitioners worldwide. At the time of the 2014 International
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SWAT Conference, over 1700 peer-reviewed articles in at least six different languages were published

and cataloged into an online database. Approximately 10% of these were related to the fate and

transport of nitrate.

Despite the popularity of SWAT, the current version has at least two major limitations for

simulation and calibration of realistic groundwater transit times, which can be critical for modeling

overall nitrate transport and lags. First, SWAT does not explicitly simulate groundwater transit

times. The model does not report groundwater travel times, which precludes the possibility of

directly calibrating SWAT modeling results to increasingly-common groundwater transit time data.

Second, SWAT imposes that all discharge from the shallow groundwater aquifer be uniformly selected

from total aquifer storage. This "uniform selection" assumption is computationally efficient, but not

supported by significant field data.

StorAge Selection (SAS) functions are a promising new approach for explicitly simulating and

calibrating dynamic TTDs in lumped parameter models. The SAS function of flow exiting a control

volume describes the distribution of storage, from youngest to oldest, that contributes to that outflow.

SAS functions have been used to describe the transit time dynamics in different hydrologic systems

including experimental lysimeters (Kim et al., 2016), the hyperhheic zones of streams (Harman, Ward,

and Ball, 2016), small experimental catchments (Harman, 2015), and large regional river basins

(Danesh-Yazdi et al., 2016). SAS functions are applied to an entire control volume and therefore

compatible with lumped or semi-lumped (i.e., semi-distributed) modeling frameworks. Unlike TTDs,

the shape of SAS functions may be roughly independent of hydrometeorological inputs (Kim et al.,

2016), and work is ongoing to link its shape to catchment characteristics.

The goal of this short technical note is to (1) describe how SWAT and SAS functions could be

coupled in a new modeling framework called SWAT-SAS to better simulate and calibrate groundwater

TDDs in mesoscale catchments and (2) demonstrate proof-of-concept for SWAT-SAS in a case study

site in the Eastern Shore, MD, USA. The remainder of the note is organized as follows. Section 5.4

describes how SWAT currently models groundwater transit times, and how SWAT and SAS could be

coupled to improve on current capabilities. Section 5.5 described how SWAT-SAS was developed

and tested at a realistic modeling testbed. Finally, Section 5.6 discuss the implications, limitations,

next steps, and opportunities to extend the approach to other lumped-parameter, semi-distributed
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watershed models.

5.4 SWAT-SAS theory

The SWAT model is based on a network of conceptual storage volumes that receive and discharge

water and hydrochemicals according to a multitude of parameterized governing equations represent-

ing different hydrologic and biogeochemical processes. The aim of SWAT-SAS is to improve the

representation of groundwater transit times through the shallow aquifer control volume, which has

an important control on the transport of nitrate. Due to the compartmentalized model structure, the

changes required to implement SWAT-SAS are isolated to equations governing the shallow aquifer

control volume and a few connecting flowpaths. We begin with an overview of how SWAT models

nitrate transport, and then focus on processes in the shallow aquifer.

SWAT simulates nitrate transport to the edge of stream in three basic steps, as detailed in Neitsch

et al. (2011). First, the watershed is delineated into Hydrological Response Units (HRUs). HRUs

are land areas that are most alike based on average surface slope, soil type, and land use. HRUs

are not necessarily conterminous and can be distributed throughout the landscape. Each HRU has

a unique set of model parameters, state variables, and flux contributions to the edge of stream.

Second, the daily hydrology is simulated through each HRU. In general, input requirements include

rainfall and other hydrometeorological data. Rainfall onto the catchment is partitioned into either

ET, surface water runoff, or infiltration. Infiltration moves through the soil zone and a portion is

uptaken by plants. The remainder flows laterally to surface waters or leaches down into the vadose

zone, where it percolates into the shallow aquifer. From there, governing equations determine the

amount and timing of flow to each of three destinations: the deep aquifer as deep recharge (where it

does not contribute to the stream), back up to the vadose zone as "revap", and out to the stream as

groundwater discharge. Third, the fate and transport of nitrate is simulated through the catchment

domain. The sources of N inputs into the model include atmospheric deposition, fertilizer application,

nitrogen fixation, and initial stores in the soil. The N species move through the upper soil undergoing

while biogeochemical processes including decomposition, immobilization, mineralization, nitrification,

and denitrification. Nitrogen is transported out of the HRU as either sediment-bound organic N or

dissolved nitrate. Some of the dissolved nitrate seeps as recharge into the shallow aquifer, where
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additional denitrification may occur. The next section describes how nitrate moves though the

shallow aquifer in SWAT and the proposed SWAT-SAS.

∞
S,CS

QRCHRG,CRCHRG

QGW,CGW
QDEEP,CDEEP
QREVAPCREVAP

(a) Conventional Conceptualization for
SWAT Shallow Aquifer (after Arnold 2009).

(b) Proposed conceptualization with
StorAge Selection (SAS) Function theory (after Harman 2015).

QRCHRG,CRCHRG

QGW,CGWQDEEP,CDEEP
QREVAPCREVAP

CS(Ti)
CS(Ti-1)
CS(Ti-2)
CS(Ti-3)
CS(Ti-4)…
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Figure 5.1: Conceptualizing of SWAT and proposed changes. Panel (a) shows how nitrate transport is
conceptualized in SWAT as a uniform selection from a control volume. Panel (b) shows the proposed approach
using SAS functions to different proportions select age-ranked storage. The SAS functions are shown in the
PDF form ω(ST ), and the shape is indicative of uniform selection.
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5.4.1 Age and nitrate modeling in SWAT

The current conceptualization of the shallow aquifer nitrate transport module in SWAT is shown in

Figure 5.1. The flux of water through the shallow aquifer in SWAT is constrained by a numerical

solution to the water balance equation:

dS
dt = Jrchrg −Qgw −Qdeep −Qrevap (5.1)

where S is the storage in mm of water in the shallow aquifer, Jrchrg is the flux in mm/day of recharge

entering the shallow aquifer, Qgw is the flux in mm/day into the main channel (i.e., groundwater

baseflow), Qdeep is the flux in mm/day of water entering the deep aquifer (where it leaves the

simulation), and Qrevap is the flux in mm/day of water moving back up into the soil zone in response

to water deficiencies.

The concentration of nitrate in fluxes leaving the shallow aquifer is determined by assuming that

the concentrations of outflows are equal to the concentration in storage (see conceptualization in

Figure 5.1). Thus:

CS = Cgw = Cdeep = Crevap (5.2)

where CS , Cgw, Cdeep, and Crevap are the concentration of nitrate in mg/l in S, Qgw, Qdeep, and

Qrevap, respectively. After the hydrology is simulated, the concentrations of outfluxes can be

determined by combining Equation 5.2 with the nitrate mass balance equation:

d(CSS)
dt = CrchrgJrchrg − CgwQgw − CdeepQdeep − CrevapQrevap (5.3)

Where Crchrg is the concentration of Jrchrg in mm/day determined by the SWAT model for the

upper soil zone. An initial value of S and CS must be assumed. SWAT also models groundwater

pumping and first order nitrate decay due to denitrification, which are relatively simple to include by

extension.

It is important to note SWAT does not make any explicit calculation of transit times through the

shallow aquifer. However, Equation 5.3 is derived from two implicit assumptions: (1) that fluxes out

of the shallow aquifer are uniformly sampled from shallow aquifer storage and (2) that nitrate moves
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with the water. Given these assumptions, the TTD for groundwater in PDF form (←−−pgw(T, t)) and

other outfluxes under steady-state has the well-known solution of an exponential distribution with

mean age T = S0/Q0 (Małoszewski and Zuber, 1982):

←−−pgw(T, t) = Q0

S0
e−

T Q0
S0 (5.4)

where Q0 is the steady-state flow through the shallow aquifer (which may be partitioned between the

multiple outfluxes) and S0 is the steady-state storage. The solution to the TTD shown in Equation

5.4, however, is not valid for unsteady flows simulated in SWAT. While Equation 5.3 does not have

simple analytical solution for the non-steady case, numerical solutions can be derived (e.g., Ali, Fiori,

and Russo, 2014).

This uniform-sampling approach to nitrate transport modeling has several attractive features for

lumped parameter watershed modeling. First, the approach is computationally efficient and only

requires state variable values for the current and previous timestep. Second, the equations ensure

conservation of the mass and age of water moving through the system. Third, the approach seems

to capture important first-order behaviors, including faster transit times when fluxes through the

system are high or when total storage is low, and a general spreading of ages that might occur as

water moves through multiple pathways. Finally, the approach is consistent with physically-based

(but highly idealized) groundwater transport theory, which also suggests that sampling should be

uniform with an exponential distribution (Haitjema and Mitchell-Bruker, 2005).

In many situations, however, the uniform-sampling approach may be overly simplistic. First,

processors are becoming more powerful, so computational efficiency is less important. Second, water

age estimates derived from tracers (e.g., McGuire and McDonnell, 2006) and particle tracking (e.g.,

Rooij, Graham, and Maxwell, 2013) is increasingly common, so tools are needed to calculate and

report model water ages for calibration and validation. Third, recent studies are showing a range

of groundwater age distributions that do not seem consistent with uniform sampling, including

distributions with a bimodal peak (e.g., Morgenstern et al., 2015) or significant time-variability

(Peters, Burns, and Aulenbach, 2014). The exact nature of the groundwater age distribution is still

poorly understood, which seems to call for a flexible approach to defining distributions.
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5.4.2 Proposed age and nitrate modeling in SWAT-SAS

In this section we propose a more transparent and flexible approach to simulating age distributions

and nitrate fluxes in the SWAT shallow aquifer. The approach replaces the uniform sampling

assumption with a StorAge Selection (SAS) function, which can be parameterized to represent

whatever sampling is most appropriate. The theory of SAS functions has been developed in a series

of papers including Botter, Bertuzzo, and Rinaldo (2011), van der Velde et al. (2012), and Harman

(2015) and is summarized in a review paper by (Rinaldo et al., 2015). There are several different

formulations of SAS functions in the literature. This work most closely follows the formulation

presented in Harman (2015).

The proposed conceptualization is shown in Figure 5.1(b). In the shallow aquifer of SWAT-SAS,

the distribution of ages of water in storage is explicitly tracked using a new state variable called

age-ranked storage ST (T, t) which varies as a function of age T and time t:

ST (T, t) = PS(T, t)S(t) (5.5)

where PS(T, t) is the cumulative residence time distribution of ages T in storage at time t. The

age-rank storage ST (T, t) has units of length (i.e., mm) and is the volume of water in storage with

age less than or equal to T at time t. Water entering the storage volume as Jrchrg is assumed to have

age T=0. For example, a value of ST (T = 3 days, t = 50 days) = 8 mm indicates that the volume of

storage in the shallow aquifer with an age of 3 days or less on the day 50 of the simulation is equal

to 8 mm.

In addition to calculating ST , SWAT-SAS also defines a new probability distribution for each

outflow called the SAS function Ω(ST , t). As illustrated in Figure 5.1(b), the SAS function defines

the probability of selecting water from different age-ranked storages. For example, the value

Ωgw(ST = 8 mm, t = 50 days) = 0.10 indicates that the fraction of Qgw coming from the youngest

8 mm of storage on the 50th day is equal to 10%. The distribution of age-ranked storage that

contributes to an outflow can be used to directly calculate the TTD of outflows. Building on the

previous example, if the youngest 8mm of rain in storage originated from a recharge event 3 days

prior, then the youngest 10% of Qgw must be 3 days old. If, on the other hand, there has been a
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drought and the youngest 8mm of water in storage is 100 days old, then the same SAS function

would indicate that the youngest 10% of Qgw is 100 days. In this manner, the invertible relationship

between ST and T can be exploited to transform values of Ω(ST , t) to values of ←−P (T, t). Further,

time-invariant SAS functions can yield time-varying transit times that respond to changing inputs.

SAS functions can exactly reproduce the original SWAT conceptualization of uniform sampling,

but can also represent other kinds of sampling. The SAS functions in Figure 5.1(b) (in PDF form) are

a constant value that uniformly sample from all age-ranked water in storage. These SAS functions

embody the implicit assumption made in SWAT that water flowing out of the shallow aquifers is

uniformly sampled from the water in storage. Alternatively, SAS functions could be constructed to

represent other forms of selection, including the ideas that (1) Qrevap originates from the upper layer

of the aquifer and is therefore more likely to be sampled from younger age-ranked storage and (2)

Qdeep originates from the deepest part of the aquifer and is more likely to be sampled from older

age-ranked storage.

The SWAT-SAS framework is based on an expression of conservation of mass for each age of

water. A "master equation" (Botter, Bertuzzo, and Rinaldo, 2011; Harman, 2015) describes the

evolution of age-ranked storage and TTDs in time:

∂ST (T, t)
∂t

= Jrchrg(t)−
(
Qgw(t)←−−Pgw(T, t)+Qdeep(t)

←−−−
Pdeep(T, t)+Qrevap(t)

←−−−−
Prevap(T, t)

)
−∂ST
∂T

(5.6)

Equation 5.6 expresses that the rate of change of shallow aquifer storage younger than age T (the

LHS) is equal to the rate of recharge (assumed to have age zero), minus the rate of all discharge

leaving the storage with age less than T , minus the rate of water in storage becoming older than T

(the RHS). As described above, the TTD for each flux, which is expressed as a distribution of T , can

be transformed into a distribution of ST :

←−
Pi(T, t) = Ωi(ST , t) for i ∈ gw, deep, revap (5.7)

Given the time-series of each flux, the SAS functions, and an initial condition for ST (T, t = 0),

Equations 5.6 and 5.7 can be solved numerically to determine ST (T, t) and ←−P (T, t) for each outflow.

Finally, the time-series of nitrate inputs Crchrg(t) and the groundwater TTD ←−−Pgw(T, t) can be
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used to estimate the groundwater nitrate concentration Cgw(t). Conceptually, this is done by linking

each age of water in storage with its injection concentration, as illustrated in Figure 5.1. In this way,

knowing the distribution of ages in Qgw is sufficient to calculate the groundwater concentration. This

is calculated as the convolution of the input concentration with the pdf form of the TTD (Barnes

and Bonell, 1996):

Cgw(t) =
∫ ∞

0

←−−pgw(τ, t)Crchrg(t− τ)e−λτdτ (5.8)

where λ could represent a first order removal of nitrate due to denitrification. Similar equations can

be derived for Qdeep and Qrevap.

5.5 SWAT-SAS case study

A simple SWAT model was built, modified, and tested to demonstrate proof-of-concept for the

SWAT-SAS approach to estimating groundwater transit times. Although the model set-up used

observation-based meteorological forcing and catchment characteristics, it was not calibrated and

was not designed to accurately simulate most aspects of hydrology. Rather, the case study model

was used here as a testbed to develop the SWAT-SAS software architecture and demonstrate its

capabilities in a catchment-scale SWAT model with realistic features. Nitrate concentrations were

not examined directly, but the effect of changes in TTDs on nitrate transport is discussed in light of

Equation 5.8.

5.5.1 Study site and SWAT model setup

The SWAT-SAS testbed was built for the Chesterville watershed on the Delmarva Peninsula in

Maryland, MD (see map in Figure 5.2(a)). The catchment feeds into the Chester River, which drains

into the Chesapeake Bay. The landscape is highly agricultural, which contributes to high legacy

nitrates in groundwater storage and high nitrate concentrations in streams (e.g., Denver, 1995). A

deep, sandy unconfined aquifer supplies stream baseflow, which accounts for roughly 80% of discharge

and 30% of total nitrate load. The watershed has been studied extensively by the U.S. Geological

Survey (USGS) (Hyer et al., 2016), which maintains a stream gauge at the outlet and regularly

collects hydrochemical samples. Although the present study is focused more on model development
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than site-specific discovery, the Chesterville Branch was chosen because it is data-rich and has high

nitrate concentrations with potentially long lag times, making it a good candidate for future work.

The ArcSWAT application (Winchell et al., 2010) was used to delineate the watershed into 128

HRUs using soil type, land use, slope, and topographic index. Soil type was obtained from a 30m

resolution STATSGO soil map (Sheshukov et al., 2011), and land-use / land-cover was obtained from

1

km

(a) Catchment Overview

Catchment
border
Stream
5m contour
Outlet

(b) HRUs

ID

1
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(c) Winter Recharge
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Figure 5.2: Map of the case study site and hydrology including the catchment site (Panel a), the distribution
of HRUs (Panel b), and the amount and distribution of winter recharge (Panel c) and summer recharge
(Panel d).
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the 2011 National Land Cover Database (Homer et al., 2015) with 10m resolution. A 10m resolution

USGS DEM was used to calculate slope and topographic index. Based on these four characteristics,

the watershed was delineated into 128 HRUs with similar characteristics, shown in Figure 5.2(b).

Note that topographic index is not typically used in SWAT to delineate HRUs, but was applied here

using the "TopoSWAT" modifications detailed in Fuka et al. (2016) and Easton et al. (2008). The use

of the topographic index helps to correctly demarcate and parameterize HRUs that are most likely

to contribute saturation excess overland flow. The model was forced with hourly meteorological data

(e.g., rainfall, solar radiation, relatively humidity) from the SWAT weather generator, which draws

from locally available observations. The parameters for each HRU were assigned the default values,

which were set based on the range of reasonable values in the literature.

The model was run for the 30-year period 1984-2014 and state variables relevant to the shallow

aquifer were extracted from the output: Qrchrg, S, Qgw, Qdeep, Qrevap, and the recharge nitrite load

Mrchrg = QrchrgCrchrg and Mgw = QrchrgCrchrg. The results for a representative HRU are shown

in Figure 5.3. The values of the inflows, storage, and outflows are dynamic with different magnitudes

and seasonal patterns that must be accounted for in any transit time modeling framework. For

example, Qrchrg has high recharge in winter and low recharge in summer, which drives a similar

seasonal pattern in S. Of the fluxes leaving the shallow aquifer, Qgw is roughly an order of magnitude

larger than Qdeep and Qrevap. The seasonal recharge seems to drive S, Qgw, and Qdeep to peak in

the winter. The Qrevap, however, has the opposite pattern and peaks in the summer, presumably

due to ET-driven soil moisture deficits in the upper soil layers. The nitrate load entering in recharge

Mrchrg is relatively flashy, while the load exiting in Mgw is more dispersed. As shown in Equation

5.8, the translation of nitrate inputs to groundwater outputs are a function of the groundwater

TTD ←−−Pgw(T, t), even though the TTD is not explicitly calculated. The SWAT simulation also shows

significant spatial variability across HRUs. The maps in Figure 5.2(c-d) show that, regardless of

season, recharge is generally higher in the riparian areas and generally lower further from the streams.

5.5.2 SWAT-SAS implementation

The results from the SWAT model were reanalyzed using the SWAT-SAS conceptualization described

in Section 5.4. The SWAT output were imported into Python scripts (v2.7) that run SAS using
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Figure 5.3: Time-series of inputs and outputs for a representative HRU using the default parameterization.
The results demonstrate that SWAT-SAS can successfully reproduce SWAT simulations.
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Python 2.7 This "soft-coupling" between SWAT and SAS was simpler to develop than a more

integrated "hard-coupling". The capabilities of the SWAT-SAS model were demonstrated in three

phases of increasing complexity. First, the groundwater TTDs were estimated and visualized using

the default parameters. Second, the groundwater TTDs were calibrated to a reference groundwater

TTD using identical SAS parameters in all HRUs (i.e., ignoring spatial heterogeneity). Third, the

groundwater TTD was calibrated separately to different regions of the catchment (i.e., incorporating

spatial heterogeneity).

5.5.2.1 Default parameterization

SWAT-SAS was used to replicate the nitrate transport in regular SWAT by using a uniform SAS

function for each outflow. The SAS function for Qgw was described by:

Ωgw(ST , t) = ST
S(t) , ST ∈ [0, S(t)]

1, ST > S(t) (5.9)

with similar definitions for Qdeep and Qrevap. Note that combining Equations 5.5, 5.7, and 5.9 shows

that, for the uniform sampling case, the residence time distribution PS(T, t) is equal to the backward

TTD ←−−Pgw(T, t).

The results from SWAT-SAS and regular SWAT using default parameters show very good

agreement (see Figure 5.3). The models used different numerical schemes to solve the governing

hydrology and transport equations, but the results are nearly identical (Figure 5.3(a-e)). Similarly,

the models used different approaches to simulating uniform selection but estimate the same nitrate

concentration in the outflux (see Figure 5.3(g)).

SWAT-SAS was used to estimate the groundwater TTD for each HRU in the model. The overall

median age of Qgw was 2.3 years, with an interquartile range of 0.9 years to 5.1 years with high

spatial and temporal variability. Figure 5.4 shows an illustrative example for the agricultural HRU

number 99. In this particular HRU, the median daily age is 1.4 years with an interquartile range of

1.1-1.7 years. The year 1994 illustrates how wetter periods result in with faster flushing and younger

outflows. Conversely, the year 2003 shows how dryer periods result in older outflows.
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The spatial distribution of the median groundwater age across all HRUs is shown in Figure

5.5(b). Because the default parameters in the shallow aquifer are identical across HRUs, the spatial

variability is entirely driven by differences in Qrchrg, which are shown in Figure 5.2(c-d).

5.5.2.2 Uniform calibration

SWAT-SAS revealed that the median groundwater TTD using the default parameterization was 2.3

years. Is this a reasonable value, and if not, how could it be calibrated to data? Recent studies

show that - even in models that fit the hydrograph - the simulation of transit times can be poorly

constrained because of the difference between catchment celerity and velocity (McDonnell and Beven,

2014). In fact, in the Chesterville catchment, evidence suggests that baseflow ages should be much

older than values obtained from the default parameters. Due to its flat terrain and deep, sandy

aquifers, groundwater ages in this region may be decades or even centuries (Sanford et al., 2012).

The SWAT-SAS model was calibrated to match a set of reference ages extracted from a recent

USGS report (Sanford et al., 2012). In the report, a MODFLOW groundwater model was built using

local hydrogeologic data and used to track the transit time of particles through the shallow aquifer.
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Figure 5.4: SWAT-SAS simulations of recharge (Panel a) and median transit time distribution (panel b)
for a representative HRU using the default parameterization.
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The results from the report were digitized, georeferenced, and used to construct the empirical CDF

shown in Figure 5.5(a). The reference ages provide an example of the kind of age data to which the

SWAT-SAS data might be calibrated. The shape of the backward TTD is similar to the shape of a

CDF of an exponential distribution, with a median age of 69.2 years and an interquartile distribution

of 28.7 - 138.4 years. The long transit times required the SAS modeling to be run for 300 years,
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Figure 5.5: Map of spatially distributed groundwater ages including the reference age distribution taken
from Sanford et al. (2012) (Panel a), along with the SWAT-SAS simulated ages using the default parameters
(Panel b), the uniform calibration parameters (Panel c), and the spatially distributed calibration (Panel d).
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which necessitated (1) extending the SWAT hydrology output by looping the 30-year simulation 10

times and (2) increasing the timestep from 1 day to 1 month to accelerate runtimes.

The SAS functions were assumed to select a uniform distribution of age-ranked storage, as they

were for the default parameterization:

Ωgw(ST , t) = ST
S(t) + Sp

, ST ∈ [0, S(t) + Sp]

1, ST > S(t) + Sp (5.10)

with similar definitions for Qdeep and Qrevap. The key difference with the default parameterization is

that the range of age-ranked storage that contributed to discharge was increased to S(t) + Sp where

S(t) can be called "active storage" and Sp the "passive storage" (with the caveat noted below). In

the hydrologic literature on lumped parameter models, "active storage" is the storage that controls

the magnitude of discharge; by contrast, passive storage is additional storage that influences the

velocity of water traveling through the control volume. For example, active storage is sometimes

conceptualized as the water flowing through fractured rock, and passive storage as water captured

between the fractures. The passive storage exchanges water with the active storage, but does not

contribute to the connectivity of discharge.

The SWAT-SAS parameter Sp was manually adjusted to visually fit the shape of the reference

TTD. Figure 5.6(a) shows that the uniformly calibrated CDF matches the reference distribution. The

spatial distribution of the median TTD is shown in Figure 5.5(c). The spatial variability is driven by

differences in recharge and does not reproduce the spatial variability of the reference pattern shown

in Figure 5.5(a).

We note that original SWAT can also be parameterized to uniformly select a combination of

active and passive storage. In each HRU, the parameters aqshth,gw and aqshth,revap are the minimum

amount of storage needed for Qgw and Qrevap to occur, respectively. A uniform increase in these two

parameters causes S(t) to increase by the same amount and creates an equal amount of new passive

storage. These thresholds can be adjusted to incorporate a certain amount of passive storage into the

value of S(t) simulated by SWAT-SAS. This implicit passive storage will be equal to the minimum

of aqshth,gw and aqshth,revap. To ensure that Sp represents the true passive storage, at least one of

these parameters should be set to zero.
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Our results demonstrate how SWAT-SAS can be used to calibrate the parameters of all HRUs

against a reference TTD distribution. A major limitation is that the spatial variability of the reference

TTD is poorly represented. Another limitation is that the uniform SAS function can only simulate

TTDs with a long-term average exponential shape; other types of SAS functions are needed for other

distributions. We will address both these limitations in the next phase of calibration.

5.5.2.3 Spatial calibration

This section demonstrates how SAS functions for different HRUs can be given unique parameterizations

to represent spatial variabilty. We observed that the reference distribution of groundwater ages is

much older in the eastern zone than the western zone (Figure 5.5(a)). This may be important to

capture in the SWAT-SAS model, especially when exploring the influence of beneficial management

practices (BMPs) in different regions of the watershed. The HRUs, however, were not assigned on

the basis on groundwater TTDs, such that HRUs can be located in regions with both old and young

transit times (Figure 5.2(b). To overcome this, the reference map was used to split the region into

zones with the lowest 50% of transit times (the "west zone") and the highest 50% of transit times

(the "east zone"). An empirical probability distribution was plotted for each zone (Figure 5.6(d))
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Figure 5.6: Comparison of reference TTD with default parameters and spatially uniform parameterization
(Panel a), along with the spatially distributed parameterization (Panel b).
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with a median transit time of 18.7 y and 136.9 y for the east and west zone, respectively. The zones

were used as an additional criteria for HRU selection, which nearly doubled their number.

The SAS functions were parameterized using a different distribution for each zone. For the younger

west zone, the distribution looks approximately exponential (see Figure 5.6(b)) so the uniform SAS

function was applied at each western HRU:

Ωgw,W (ST , t) = ST
S(t) + Sp,W

, ST ∈ [0, S(t) + Sp,W ]

1, ST > S(t) + Sp,W (5.11)

with similar definitions for Qdeep and Qrevap, where the subscript W is used for the western zone.

Although the form of the SAS function is identical to Equation 5.10, the passive storage parameter

Sp,W should be significantly different to reflect the younger transit times of the system. For the older

east zone, the youngest water reaching the stream is nearly 75 years old. This suggests that the

youngest age-rank storage should not contribute to discharge. To account for this, a "piston-uniform"

SAS function was applied at each eastern HRU:

0, ST ≤ Smin

Ωgw,E(ST , t) = ST − Smin,E
S(t) + Sp,E − Smin,E

, ST ∈ [0, S(t) + Sp,E + Smin,E ]

1, ST > S(t) + Sp,E + Smin,E (5.12)

with similar definitions for Qdeep and Qrevap, where Smin,E is the youngest age-rank storage that

contributes to discharge in the east zone. Thus, only the age-ranked storage between the volumes

Smin,E and Smin,E + S(t) + Sp,E is uniformly selected into discharge.

The parameters Sp,W , Sp,E , and Smin,E were manually tuned to fit the reference groundwater

TTDs to the SWAT-SAS simulations (see figure 5.6(b). For the west zone, a value of Sp,W of 7000

mm gave overall good agreement. For the east zone, values for Smin,E and Sp,E of 20000 mm and

34000 mm respectively fit the data reasonably well. Note that the parameter Smin,E was tuned to

fit the minimum age of the discharge (i.e., 75 years) while Sp,E was tuned to fit the shape of the

distribution. The spatial pattern of median groundwater age from each HRU is shown in Figure

5.5(d). The new SWAT-SAS configuration and calibration captures the disparity between the east
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and west sides. There are other features, however, that are still not captured from the reference map,

such as the north-south divide in the eastern zone. This could have been handled, for example, by

using three zones to re-allocate the HRUs instead of two.

5.6 Discussion and conclusions

This paper has demonstrated a novel approach to simulating time-varying groundwater TTDs using

the SWAT-SAS framework. An illustrative case study used SWAT-SAS to visualize and calibrate

the simulated TTDs without and with spatial fidelity. The proposed SWAT-SAS has two main

advantages over the current SWAT model. First, it permits direct calculation of the time-varying

TTD in each HRU and their total TTD reaching the edge of stream. The modeled TTDs can be

directly evaluated against available data. Second, the approach allows the selection of water for each

outflux to be parameterized according to the data.

SWAT-SAS is intended to support more realistic simulation of groundwater TTDs and nitrate lag

times for historic analysis as well as "what-if" scenario development for decision support. Although

not used here, the baseline SWAT model simulates a range of beneficial management processes

(BMP). The relationship between groundwater TTDs and lag times for each BMP might be different.

For example, the lag time of BMPs that reduce nitrate near the point of entry into the aquifer (e.g.,

cover crops) might be heavily influenced by groundwater TTDs, whereas the lag time of BMPs that

reduce nitrate at the point of egress (e.g., riparian buffers) might be independent of groundwater

TTDs. These differences could be explored and quantified using SWAT-SAS.

5.6.1 Comparison with steady-state approximation

We compare SWAT-SAS with other methods to simulate groundwater TTDs and nitrate lag times in

the SWAT framework. A status quo approach is to use the baseline SWAT and rely on steady-state

approximations to estimate groundwater TTDs. As suggested in Equation 5.4, the mean residence

time through the shallow aquifer can be approximated as the ratio of the mean storage to the mean

recharge. In our case study, the steady-state approximation and SWAT-SAS simulation are likely

to give reasonably similar values for the spatially-averaged TTD. The steady-state approximation

does not, however, provide information about the time-variability of the TTD (e.g., Figure 5.3) and
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is not valid when selection is not uniform (e.g., the piston-uniform selection used in the east zone).

Notwithstanding the limitations, the steady-state approximation is a practical approach that might

be useful in many settings where more comprehensive methods are not feasible.

5.6.2 Limitations and future work

A major limitation is data availability for calibrating groundwater TTDs. Even where data is available,

is it often incomplete in time and space relative to the simulations of SWAT-SAS. In our case study,

for example, the reference data did not provide any information about the time-variability. As data

becomes more available, we believe the ability to estimate the TTD distributions in space and time

will be increasingly important. In the interim, SWAT-SAS can still be useful for order-of-magnitude

corrections. For example, even if our reference groundwater TTD were highly uncertain, we can have

relative confidence that the TTDs simulated by the default parameters were much younger than

actual field conditions. A second limitation is computational efficiency. The approach described here

required additional HRUs to simulate the spatially distributed HRUs. In addition, the retention

of the age-ranked storage variable in each HRU is memory intensive and could increase simulation

times significantly. Future work should streamline the code to reduce computational burden.
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Chapter 6

Conclusion 1

This dissertation has explored the central hypothesis that recent advances in time-varying transit time

modeling approaches can improve our understanding of the hydrologic transport at watershed scale.

The first part of this final chapter is a synthesis of the key dissertation findings. The second part is

an illustrative discussion of the implications of key findings on an important environmental issue:

groundwater nitrate transport in the Chesapeake Bay Watershed. The short case study highlights

conceptual links between this work and ongoing efforts to control nitrate transport as well as potential

work areas for future exploration.

6.1 Summary of key findings

The combined scientific contribution of the fours studies presented in Chapters 2-5 fall into three

categories: applied, methodological, and fundamental. The applied contribution includes two

site-specific analyses using recent advances in time-varying transit time modeling to show how

hydrometerological forcing influences catchment transit times, and how this influence might exert non-

stationarity in catchment transit times under a changing climate. The methodological contribution is

the articulation and demonstration of advanced approaches to modeling catchment transit times and

quantifying their sensitivity to climate and catchment characteristics, with a conscious focus on open

source modeling tools. The fundamental contribution is better understanding of how catchment-scale

transport (as represented by the catchment transit time distribution) is driven by various hydrologic

processes including natural rainfall variability and surface - groundwater interactions.
1A portion of the background information on the Chesapeake Bay watershed was adapted from a report written by

Dano Wilusz and submitted in partial fulfillment of the requirements for course AS.270.641 and used with permission
of the instructor.
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The first study described in Chapter 2 uses catchment-scale lumped parameter models to

decompose the relationship between rainfall variability and the time-varying fraction of young water

(<90 days old) in streams. A coupled rainfall-runoff model and rank StorAge Selection transit-time

model were calibrated to hydrometric and environmental tracer data from neighboring headwater

catchments in Plynlimon, Wales from 1999-2008. At both sites, the mean annual young water fraction

increased significantly from the driest to the wettest year. Yearly mean rainfall explained most

between-year variation, but certain signatures of rainfall pattern were also associated with higher

young water fraction. These signatures were symptomatic of an "inverse storage effect" that may be

common among watersheds. The last phase of the study found that projected changes in climate due

to global warming could seasonally alter the ages of water in streams at these sites, with concomitant

impacts on water quality.

The second study described in Chapter 3 introduced a novel approach to calibrating a surface-

groundwater model to both discharge and tracer data, and used the calibrated model to characterize

the sensitivity of discharge and baseflow stream water age to changes in porosity, hydrologic con-

ductivity, and other critical zone parameters under transient forcing conditions. The model used

the fully-distributed surface-groundwater model ParFlow-CLM with SLIM-FAST particle tracking.

The ParFlow-CLM simulation was configured and forced with extensive field data from the USDA’s

Mahantango Creek experimental catchment in PA, USA. The inclusion of age-related calibration

criteria was shown to reduce parameter equifinality. Longer baseflow transit times were associated

with higher porosities and a non-linear interaction between high lateral conductivity in the upper

soil layer and low lateral conductivity in the underlying fractured bedrock. Overall, the results

suggest that the age of baseflow may be significantly influenced by upper soil properties due to

dynamic partitioning between recharge and overland flow, which is not captured in commonly used

steady-state simulations.

The fourth study (Chapter 4) used the model calibrated in Chapter 3 to study how different

flowpaths though the watershed contribute to the time-varying catchment transport. We found

that the shape and time-variability of transit time distribution for evapotranspiration was readily

explained by existing theory, though this may be a consequence of its simplified representation

in the model. The shape and time-variability of discharge was more complex and evolved from
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shifting contributions of five flowpaths: direct rainfall, overland flow, interflow, and shallow and deep

groundwater. The transit times for different flowpaths overlapped substantially, suggestion that age

alone cannot uniquely identify flowpath. The modeling demonstrated a mechanistic explanation for an

inverse storage effect which was observed in Chapter 2 and many other studies. The chapter developed

a taxonomy of TTD shapes that occur during a typical recession, each with a distinct composition of

flowpaths. The results have implications for the conceptualization of lumped parameter models, the

physical origins of SAS functions and their variability, and the origins of different C-Q relationships.

The final study (Chapter 5) is a technical note demonstrating proof-of-concept for a modified

version of the commonly-used Soil and Water Assessment Tool (SWAT) that (1) allows the user

to relax the well-mixed groundwater assumption using the recently developed theory of StorAge

Selection (SAS) functions, and (2) calculates and outputs groundwater travel times to facilitate

interpretation and evaluation. The resultant SWAT-SAS concept was applied at a small watershed

in the Eastern Shore, MD, USA. Compared with original SWAT, the results show that SWAT-SAS

can simulate transit times that are much more consistent with available calibration data. The study

concludes that SAS functions show promise for improving simulation of groundwater transit times in

SWAT and could be useful in other lumped-parameter watershed management models.

6.1.1 Application to the Chesapeake Bay watershed

Like watersheds, this dissertation was shaped by its environment. It was written in an office

overlooking the waters of the Chesapeake Bay, in the confines of the Chesapeake Bay watershed

on the mid-Atlantic coast, USA (see Figure 6.1). Although the ideas explored here have a broad

scientific audience, they were inspired by regional environmental imperatives. This final section

briefly discusses how the dissertation findings might inform efforts to maintain and improve local

water quality, with a focus on nitrate groundwater transport in the Chesapeake Bay watershed, along

with potential avenues for future research.

6.1.1.1 Chesapeake Bay watershed overview

The watershed of the Chesapeake Bay is one of the most economically important and ecologically

diverse natural systems in the eastern United States (Committee on the Evaluation of Chesapeake
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Bay Program Implementation for Nutrient Reduction to Improve Water Quality, 2011). The vast

basin covers 166000 km2 including all or part of six states (New York, Pennsylvania, Delaware, West

Virginia, Maryland, Virginia) and the District of Columbia (see Figure 1). Approximately 20 million

people live, work, and farm in the Chesapeake Bay Watershed, which provided an estimated $3.4

billion per year in ecosystem goods and services to Delaware alone (Kauffman et al., 2011). The

watershed’s development has contributed to several major regional water quality challenges, including

the runoff of nutrients that increase eutrophication of the Chesapeake Bay, the nation’s largest estuary

(Kemp et al., 2005). In response, the seven local governments along with the U.S. Environmental

Protection Agency (EPA) and other federal partners founded the Chesapeake Bay Program (CBP)

to restore and conserve the Chesapeake water system. An important part of this effort has been the

establishment of county-level Watershed Implementation Plans that reduce pollution diets to levels

deemed necessary to meet bay restoration goals by 2025 (Batiuk, Linker, and Cerco, 2013).

Figure 6.1: Location of the Chesapeake Bay watershed and median groundwater age estimates. The
physiographic provinces of the CBW are shown in shades of gray and the bay in white. The orange shading
shows the median groundwater ages for sub-watersheds of the upper Potomac (western side) and eastern
shore (eastern side), which were extracted from MODPATH modeling results provided by USGS.
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Nitrate pollution due to groundwater leaching from surficial fertilizer application and atmospheric

deposition is an important water quality concern. Municipal and industrial wastewater account

for only 19% of nitrogen loading to the estuary (Committee on the Evaluation of Chesapeake Bay

Program Implementation for Nutrient Reduction to Improve Water Quality, 2011). The remainder is

transported as non-point pollution from landscape sources (e.g. fertilizer, atmospheric deposition)

to receiving surface. Many streams and portions of the estuary within the Chesapeake Bay water

system do not meet federal water quality standards due in part to the high nitrate levels, and an

estimated 50% of all nitrate delivered to the bay is leached from groundwater (STAC, 2013).

6.1.1.2 Implications for nitrate lag times

In the Chesapeake Bay watershed, nitrate lag times are a poorly understood but significant impediment

to bay restoration efforts. As defined in Chapter 5, nitrate lag times are the delay between the

implementation of beneficial management practices and the achievement of intended nitrate reductions

in surface water quality. One of the important drivers of groundwater lag times in the Chesapeake

Bay watershed is groundwater transit times. A USGS report estimated median groundwater transit

times of 7-11 years across the physiographic provinces of the watershed (Lindsey et al., 2003), though

more localized estimates have ranged from weeks to centuries (see for example the data in Figure 6.1).

The Chesapeake Bay Program has identified poor understanding of transit times as an important

impediment to their ability to monitor progress and maintain political will for restoration efforts

(STAC, 2013). The influence of transit times and climate on nitrate transport is likely, however, to

vary across the watershed, which spans five different physiographic provinces.

This dissertation makes advances related to modeling and prediction of groundwater transit

times driving lag times in the landscape. Chapter 2 introduces a novel, parsimonious lumped

parameter model that simulates and predicts groundwater transit times under different climatic

conditions. Chapter 5 shows how the commonly used Soil and Water Assessment Tool (SWAT)

can be enhanced to calculate and more flexibly simulate groundwater transit times. While these

models require a priori information about catchment transit times, Chapter 4 and 5 demonstrate

new physically-based modeling approaches that do not, in principle, require prior transit time data.

All three chapters provide guidance for modelers in the Chesapeake Bay watershed on when and how

to consider groundwater transit times in model formulation. In addition, a sensitivity analysis in
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Chapter 4 points to how watershed characteristics (e.g., porosity, lateral hydrologic conductivity)

might eventually be used to make first-order predictions about transit times in other parts of the

Chesapeake Bay watershed. The sensitivity analysis also showed that groundwater transit times

are heavily influenced by the time-variability of rainfall inputs. This suggests that Chesapeake

Bay groundwater transit time studies, which typically make steady-state assumptions (e.g., Gburek

and Folmar, 1999), should also consider transient conditions and surface groundwater interactions.

Finally, these modeling improvements provide opportunities for "what if" scenario development that

account for lag times, which can help stakeholders understand the benefits of different management

actions (e.g., Sanford and Pope, 2013).

6.1.1.3 Implications for climate change

The climate of the Chesapeake Bay watershed is likely to become less stationary under global change.

General circulation models (GCMs) show with high certainty that increasing CO2 concentrations in

the atmosphere will change weather patterns in the northeast U.S., resulting in higher temperatures,

which could increase evapotranspiration and potentially slow hydrologic transport. GCMs also predict

(with lower certainty) wetter winters and more extreme precipitation events throughout the year,

which could accelerate transport (Walsh et al. 2014). Changes in climate could have a detrimental

effect on efforts to restore Chesapeake Bay water quality (Najjar et al., 2010), and multiple technical

working groups and research programs have been established to assess the ways in which climate

change (e.g., regional warming, sea level rise) could affect the economic and environmental health

of the region (e.g., Pyke et al., 2008). Although studies are limited, climate variability across the

Chesapeake Bay watershed could have significant effects on transit time distributions and associated

transport. For example, heavy rainfall from tropical storms have occasionally made landfall with

disproportionately large impacts on water quality (Schubel and Hirschberg, 1978).

This dissertation offers new tools for modeling transit times under a changing climate and

benchmarks, for the first time, the potential effect of climate change on catchment transit times. As

just described above, the transit time models used and improved here were specifically formulated to

handle the kind of changing climate conditions projected in the Chesapeake Bay watershed. Their

development was partly motivated by a desire to more accurately capture the effect of climate

change on the phenology of nutrient loading to the bay, which can alter the amount and timing of
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bay eutrophication (Kemp et al., 2005). There is local demand for this modeling capability. For

example, this author worked with collaborators to incorporate many of the modifications made

in SWAT in Chapter 5 into the watershed model used investigate the effect of climate change on

the achievement of regional water quality goals. In addition, the modeling results from Chapter 2

showed that projected climate change would cause a significant, seasonal shift in the fraction of young

water in a small seasonal stream in Wales, UK. The approach from that study could be used in the

Chesapeake Bay watershed to help understand the effect of climate change on regional groundwater

transit times. This would be a potentially valuable paradigm shift in the practice of climate change

impact assessment for water resources, which tends to look at how climate change will affect many

individual hydrochemicals (e.g., particulate phosphorus, dissolved nitrate) without understanding

the underlying effect on hydrologic transit times.
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Supplemental Information: Chapter 2

This supporting information provides additional detail on the setup and calibration of the coupled

modeling framework used to simulate the influence of rainfall variability on the fraction of young

water (FYW) at two neighboring catchments in Plynlimon, Wales (sections S1 and S2). There is

also a summary of tests run to check the sensitivity of our results to the choice of the FYW as our

summary statistic of the full TTD (section S3). The last section derives the formula used to estimate

the timescale of hydrograph recession (section S4).

S1. Bayesian parameter estimation

This section provides more detail on the Bayesian parameter estimation applied to the rSAS transit

time model. The parameter estimation was done with a MATLAB toolbox of the DiffeRential

Evolution Adaptive Metropolis (DREAM) algorithm developed by Vrugt et al. (Vrugt, 2016). The

DREAM run files associated with this manuscript are available upon request.

In order to perform the required Markov chain Monte Carlo (MCMC) simulation, a likelihood

function was selected that quantifies the similarity between model simulations and observations. The

likelihood function assumes that the error between simulations and observations (i.e., residuals) are

Gaussian, heteroskedastic, and first-order autoregressive. It is described by the equation (Vrugt,

2016):

L (x|Ỹ, φ, σ̂2) = −n2 log(2π)+1
2 log(1−φ2)−1

2(1−φ2)σ̂−2
1 e1(x)2−

n∑
t=2

log(σ̂t)−
1
2

n∑
t=2

(et(x)− φet−1(x)
σ̂t

)2

(A.1)

where L is the log likelihood, x is a vector of model parameters, Ỹ is the vector of observed data

(i.e., stream chloride CQ(t)), n is the number of observed data points, et(x) is the vector of error
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residuals, φ is the first-order autoregressive coefficient, and σ̂ = {σ̂1, ...σ̂n} is the vector of the

standard deviation of error residuals. The error residuals are assumed to take on an AR-1 process:

et(x) = φ ∗ et−1(x) + ηt (A.2)

V ar[et(x)] = σ̂2
t

1− φ2 (A.3)

with ηt
D∼ N (0, σ̂2

t ). The heteroskedastic standard deviation can be expressed as a linear function of

model predictions Y:

σ̂ = aσ + bσ ∗Y (A.4)

with fitting parameters aσ and bσ. Thus, in addition to the four parameters of the rSAS model, the

DREAM algorithm also estimates the value of the three nuisance parameters φ, aσ, and bσ. The

distribution of likely values for all seven parameters are shown in Figure A.2 for LH and A.3 for TW.

Note that all parameters were assumed to have uninformative priors.

An analysis of the model residuals using the most likely parameter set was performed to help justify

the choice of likelihood function. Figures A.8 and A.9 show that the assumptions of heteroskedastic

residuals (lower left panel), normally distributed residuals (lower center panel), and first-order

auto-correlated residuals (lower right panel) are qualitatively consistent with the actual residuals

produced by the model.

S2. Weather generator calibration

This section describes the calibration of the weather generator in more detail. First, all of the

parameters listed in Table 5 of the main paper, except the ones noted below, were calibrated following

the methods in Robinson and Sivapalan (1997). Second, the value of four seasonal factors for

parameter a1 (one for each season, final values = 1.02 in winter, 0.94 in summer, 1.05 in spring, 1.12

in summer) and four seasonal factors for b1 (1.19, 0.49, 0.57, 0.89) were optimized to get a better

match between observed and simulated monthly average rainfall. These factors were multiplied by the

values of a1 and b1 based on the time of year. This was needed because the original weather generator

algorithm could not account for the highly seasonal rainfall at Plynlimon based on seasonal variations

in storm length alone. Finally, a set of parameters were calibrated that determine the probability

and size of small rainfall events (<4mm) on each day between storms based on the 1983-2008 record.
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The parameters were: a probability pdrizzle of having a small one-day rainfall event on days between

storms (found to be 0.31), a maximum small rainfall event size (assumed to be 4mm), and a random

scaling factor between 0 and 1 (found by drawing from a beta distribution with shape factors 1.5

and 0.7) that scaled the maximum small rainfall event size to get the actual small rainfall event size.

The final rainfall pattern was scaled to have the same mean rainfall recorded during the 1999-2008

time period.

The performance of all the final parameters was tested following methods in Robinson and

Sivapalan (1997), and the results are shown in Figures A.10, A.11, and A.12. The performance was

also tested in the coupled model evaluation shown in Figures A.13 and A.14.

S3. Sensitivity to choice of age fraction

The manuscript focuses on the influence of rainfall variability on the sensitivity of the FYW (i.e.,

fraction of water less than 90 days in discharge). To see if a subset of our results were sensitivity to

the 90 day threshold, we reproduced the calculations used to produce Figure 5 using a threshold of 1,

3, 30, 60, 90, 120, 365, and 1825 days (see Figure A.15-A.22).

S4. Derivation of the timescale of hydrograph recession

We derive here an approximate solution to the time needed for discharge Q(t) to recess from the

mean discharge Q̄(t) by a factor of e . The derivation assumes that the catchment sensitivity function

g(Q) (Kirchner, 2009) is known, and can be defined as:

g(Q) = dQ

dS
= dQ

dt

dt

dS
(A.5)

which can be rearranged to give:

g(Q)dS
dt

= dQ

dt
(A.6)

If we assume P and ET are negligible, the water balance is:

dS

dt
= −Q (A.7)

Substituting equation A.7 into equation A.6 and rearranging yields:

− dQ

Q
= g(Q̄)dt (A.8)
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where g(Q) is evaluated at the mean discharge Q̄. Integrating both sides of equation A.8 from t = 0

to t gives:

t = − 1
g(Q̄)

ln
(Q(t)
Q(0)

)
(A.9)

If the initial discharge recesses by a factor of e, equation A.9 simplifies to:

t = 1
g(Q̄)

(A.10)
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Figure A.1: Comparison between the discharge observed and the discharge simulated by the rainfall-runoff
model at LH (top panels) and TW (lower panels). The Nash-Sutcliff efficiency (NSE) for the calibration
period (1999-2008) and validation period (1993-1998) are written in the left panels. The right scatter plots
show good agreement between observed and simulated data.
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Figure A.2: PDF of the seven rSAS model parameters at LH, including the three nuisance parameters aσ
("a coef"), bσ ("b coef") and φ ("autoreg") described in the text of this Supplemental Information. Values
were determined from the last 3,200 parameter sets in the MCMC simulation performed by DREAM.
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Figure A.3: Same as Figure A.2 but for TW.
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Figure A.4: Scatter plot matrix for the four rSAS parameters shown in Figure A.2 for the LH watershed.
Each dot represents one of the final 3,200 parameter sets in the MCMC simulation run by DREAM. Note,
for example, that S0 and λ have an especially strong negative correlation.
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Figure A.5: Same as Figure A.4 but for TW.
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Figure A.6: Plot of observed stream chloride concentrations CQ (red dots) and the range of simulated
values using the distribution of likely parameter sets identified by DREAM. At daily timesteps, each of the
last 3,200 parameters sets in the MCMC simulation provided an estimate of CQ, with the 90th percentile
range of these estimates shown in green. The gray region shows the total uncertainty taking into account the
90th percentile of the variance of the residuals from Equation (A.3). Note that most of the observations fall
within the total uncertainty range.
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Figure A.7: Same as Figure A.6 but for TW.
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Figure A.8: Analysis of residuals of the most likely rSAS parameter set at LH, following the graphical
analysis of Vrugt et al. (2009). The upper plot compares observations (blue line) with simulates (red dots)
of stream chloride concentration. The lower left plot illustrates the presence of heteroskedasticity in the
residuals. As the simulated chloride concentration (x-axis) increases, the spread in residuals also tends
to increase (y-axis). The lower center plot shows the PDF of residuals (red dots) and the average of all
residual PDFs that would be expected from each simulated data point given the heteroskedastic standard
deviation described by Equation (A.3). The observed and expected distribution overlap reasonably well. The
lower right panel shows the autocorrelation of the error et(x) from the full residuals (light blue line) and
the autocorrelation of the error ηt from the partial residuals (dark blue) after accounting for a first-order
autoregressive process. The partial residuals are better constrained within the natural scatter of the data,
represented here as a 90th percentile interval (upper and lower red lines).
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Figure A.9: Same as Figure A.8 but for TW.
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Figure A.10: Plot illustrates the performance of the parameters in the rainfall generator model that control
the mean, phase, and seasonal amplitude shift for storm duration (upper plot) and break duration (lower
plot). The bars in the upper plot show the monthly average storm duration at Plynlimon from 1983-2008.
The red lines shows the analytically derived monthly average storm duration after calibration of the mean δr,
αr, and τr. The bars in the bottom plot show the monthly average interval between storms at Plynlimon
from 1983-2008. The red lines shows the analytically derived monthly average storm break after calibration
of the mean δb, αb, and τb. Plots follow analysis from Robinson and Sivapalan (1997).
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Figure A.11: Plot illustrates the performance of the parameters in the rainfall generator model that
control the average storm intensity as a function of storm length (i.e., a1, b1, and their seasonal factors)
and the coefficient of variability as a function of storm length (CV)(i.e., a2, b2). The top (first) plot shows
the expected storm intensity observed from 1983-2008 (black line) and analytically derived for the rainfall
generator (red dashed line). The lower plots make the same comparison for the CV of storm intensity
(second plot), the expected value of the product of storm intensity and storm duration (third plot), and the
correlation coefficient for the intensity and duration (fourth plot). Plots and analytic calculations follow
Robinson and Sivapalan (1997).
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Figure A.12: Plot illustrates the performance of the parameters in the rainfall generator that control
within-storm variability of rainfall (i.e., parameters β1 and β2, which are set equal). The 10th, 50th, and 90th
percentile mass curves for all storms from 1983-2008 are given by the dashed lines. The mass curves from a
representative simulation are shown by the solid lines. The overlap suggests the weather generator is able to
simulate the observed within-storm variability. Plots follow approach of Robinson and Sivapalan (1997).
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Figure A.13: Results from the coupled-model evaluation at LH. The solid black lines show the CDF of
observed rainfall (column a) and observed discharge (column b). The dashed black lines show the CDF of
simulated discharge based on observed rainfall (column b) and simulated fraction of young water (F ) based
on observed rainfall and discharge with the most likely rSAS parameter set (column c). The red area is the
95th percentile of 100 CDFs generated from 100 16-year simulations of rainfall (column a), from 100 16–year
simulations of discharge based on the simulated rainfall (column b), and from 100 16-year simulations of
the fraction of young water based on the simulated rainfall and discharge (column c). The black curves fall
within the red regions, indicating the observed and simulated values have similar probability distributions for
the all time (upper row), winter only (middle row), and summer only (lower row) cases.
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Figure A.14: Same as Figure S13 but for TW.
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Figure A.15: Same as Figure 5 in the manuscript, except the age fraction anomaly for water less than 1
day old is shown on the y axes instead of the age fraction anomaly of water less than 90 days old. The x axes
show the mean rainfall averaged over four timescales i: daily (panel a), monthly (panel b), seasonally (panel
c), and yearly (panel d). The dashed line shows a line of best fit. The error bars show the 90th percentile
confidence interval. The right-most panels indicate the slope s of the line of best fit and the median Fat for
all parameter sets.
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Figure A.16: Same as Figure A.15 with the age fraction threshold for discharge set to water less than 3
days.
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Figure A.17: Same as Figure A.15 with the age fraction threshold for discharge set to water less than 30
days.
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Figure A.18: Same as Figure A.15 with the age fraction threshold for discharge set to water less than 60
days.
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Figure A.19: Same as Figure A.15 with the age fraction threshold for discharge set to water less than 90
days. Note these results are identical to the results shown in Figure 5 of the manuscript.
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Figure A.20: Same as Figure A.15 with the age fraction threshold for discharge set to water less than 120
days.
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Figure A.21: Same as Figure A.15 with the age fraction threshold for discharge set to water less than 365
days.
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Figure A.22: Same as Figure A.15 with the age fraction threshold for discharge set to water less than 1825
days.
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