

IMPROVING GENOME ANNOTATION WITH
RNA-SEQ DATA

by

Li Song

A dissertation submitted to Johns Hopkins University in conformity with the requirements for
the degree of Doctor of Philosophy

Baltimore, Maryland

September, 2018

© Li Song 2018

All Rights Reserved.

ii

Abstract

With the advent of next generation sequencing, researchers can now investigate genome of

species and individuals in unprecedented detail. Each part of genome has its own function.

Annotation is the process to identify the parts and their functions.

Deep RNA sequencing (RNA-seq) emerged as a revolutionary technology for transcriptome

analysis, now widely used to annotate genes. Our transcript assemblers, CLASS and CLASS2,

were designed to better detect alternative splicing events and to find new transcripts from

RNA-seq data. With sequencing costs dropping, experiments now routinely include multiple

RNA-seq samples, to improve the power of statistical analyses. We took advantage of the

power of multiple samples in the software PsiCLASS. PsiCLASS simultaneously assembles

multiple RNA-seq samples, which significantly improves performance over the traditional

‘assemble-and-merge’ model.

For many alignment and assembly applications, sequencing errors can confound downstream

analyses. We implemented two k-mer-based error correctors, Lighter and Rcorrector, for whole

genome sequencing data and for RNA-seq data, respectively. Lighter was the first k-mer-based

error corrector without counting and is much faster and more memory-efficient than other

error correctors while having comparable accuracy. Rcorrector searches for a path in the De

Bruijn graph that is closest to the current read, using local k-mer thresholds to determine

trusted k-mers. Rcorrector measurably improves de novo assembled transcripts, which is critical

in annotating species without a high-quality reference genome.

iii

A newly assembled genome is typically highly fragmented, which makes it difficult to annotate.

Contiguity information from paired-end RNA-seq reads can be used to connect multiple

disparate pieces of the gene. We implemented this principle in Rascaf, a tool for assembly

scaffolding with RNA-seq read alignments. Rascaf is highly practical, and has improved

sensitivity and precision compared to traditional approaches using de novo assembled

transcripts.

Overall, the collection of algorithms, methods and tools represent a powerful and valuable

resource that can be readily and effectively used in any genome sequencing and annotation

project and for a vast array of transcriptomic analyses.

Thesis committee members:

Dr. Liliana Florea, Johns Hopkins University School of Medicine

Dr. Ben Langmead, Johns Hopkins University

Dr. Sarven Sabunciyan, Johns Hopkins University School of Medicine

iv

Acknowledgements

First and foremost, I would like to thank my advisor Dr. Liliana Florea. She introduced me to the

area of computational biology and helps me on all my research projects. She gave me great

freedom to try different methods and made all kinds of mistakes during research, which were

valuable lessons for me.

I also would like to thank my advisor Steven Seidel (1951-2014) in Michigan Technological

University. From him, I learned how to think like a scientist and this has benefitted me after I

left Michigan Tech.

My researches received help from many professors at Hopkins as well. Dr. Ben Langmead kindly

guide me through one of my proudest projects, Lighter. Dr. Sarven Sabunciyan helped us in the

lasting effort to develop transcriptome assembly methods. I learned many algorithms and

mathematical skills from Dr. Vladimir Braverman, Dr. Jim Fill and Dr. Daniel Naiman. I also

learned a lot from the experience of participating in a big collaborated project mentored by

Jason Miller in J. Craig Venter Institute.

I would love to thank my parents, Jiangqiao Song and Yan Yang. They gave me the best

teachings. And without their support, I could not have focused on my research.

Here, I want to thank my friends. Dr. Daehwan Kim is not only one of my best friends, but has

also helped me a lot in my research. The experience of collaborating on the project Centrifuge

is a treasure to me. Dr. Weilue He was my high-school classmate and roommate in Michigan

v

Tech. I consulted him many times when I met difficulties in life. Qingyu Xu and Congyuan Yang

lead me to have a more colorful life in Hopkins.

Lastly, I need to thank my spirit advisor, Motonari Mouri. His wisdom and resoluteness in

difficulty situations inspire me to keep working.

vi

Table of Contents

Abstract ..ii

Acknowledgements ... iv

Table of Contents .. vi

List of Tables ... viii

List of Figures ... x

Introduction .. 1

Chapter 1 CLASS: accurate and efficient splice variant annotation from RNA-seq reads 6

1.1 Introduction .. 6

1.2 Methods .. 10

1.3 Results ... 23

1.4 Conclusions ... 48

Chapter 2 PsiCLASS: efficient and scalable transcriptome assembly from multiple RNA-seq

samples ... 52

2.1 Introduction .. 52

2.2 Methods .. 54

2.3 Results ... 62

2.4 Conclusions ... 74

vii

Chapter 3 Lighter: fast and memory-efficient error correction without counting 76

3.1 Introduction .. 76

3.2 Methods .. 78

3.3 Results ... 92

3.4 Conclusions ... 106

Chapter 4 Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads 110

4.1 Introduction .. 110

4.2 Methods .. 112

4.3 Results ... 118

4.4 Conclusions ... 128

Chapter 5 Rascaf: Improving Genome Assembly with RNA Sequencing Data 129

5.1 Introduction .. 129

5.2 Methods .. 133

5.3 Results ... 141

5.4 Conclusions ... 157

Bibliography .. 160

Curriculum Vitae ... 179

viii

List of Tables

Table 1-1 Primer sequences for PCR validation .. 23

Table 1-2 Programs performance by transcript abundance class .. 29

Table 1-3 Programs’ performance in capturing alternative splicing events................................. 33

Table 1-4 Performance of programs on the ENCODE IMR90 data ... 42

Table 1-5 Running times of transcript assembly algorithms .. 44

Table 1-6 Annotation of a newly sequenced organism (peach) ... 46

Table 2-1 Performance of methods on experiments with small numbers of samples 73

Table 3-1 Accuracy measures for datasets simulated with Mason with various sequencing

depths and error rates .. 87

Table 3-2 Occupancy (fraction of bits set) for Bloom filters A and B for various coverages 88

Table 3-3 Simulation results with C. elegans genome .. 94

Table 3-4 Alignment statistics for the 75× Escherichia coli dataset ... 100

Table 3-5 De novo assembly statistics for the Escherichia coli dataset 101

Table 3-6 Alignment statistics for the GAGE chromosome 14 dataset 102

Table 3-7 De novo assembly statistics for the GAGE chromosome 14 dataset 103

Table 3-8 Alignment statistics for the Caenorhabditis elegans dataset 104

Table 3-9 De novo assembly statistics for the Caenorhabditis elegans dataset 104

Table 3-10 Memory usage (peak resident memory) and disk usage of error correction tools . 105

Table 4-1 Accuracy of the six error correction methods on the 100 million RNA-seq simulated

reads .. 119

ix

Table 4-2 Accuracy of six error correction methods on 100 million simulated reads, by

expression level of transcripts .. 120

Table 4-3 Summary of datasets included in the evaluation ... 121

Table 4-4 Tophat2 alignments of simulated and real reads ... 123

Table 4-5 Oases assembly of simulated and real reads .. 125

Table 4-6 Bowtie2 alignment of single-cell sequencing reads ... 127

Table 4-7 SPAdes assembly of single-cell sequencing reads .. 127

Table 5-1 Effects of library insert size on program performance, on the simulated data 143

Table 5-2 In silico validation of programs on the Pyrus communis genome by BLAST searches

against the National Center for Biotechnology Information RefSeq mRNA database 145

Table 5-3 Evaluation of Arabidopsis thaliana assemblies for single RNA sequencing (RNA-seq)

data (top) and with 0, 1, …, 11 RNA-seq data sets (bottom), using Quast 149

Table 5-4 Summary of quality indicators for the original (raw) assemblies of the sequenced

Fragaria species ... 152

Table 5-5 In silico evaluation of predicted Rascaf connections in the Fragaria genomes by BLAST

searches against the NCBI RefSeq mRNA database ... 153

Table 5-6 Evaluation of gene content for the five Fragaria assemblies before and after

improvement using RNA sequencing (RNA-seq) data .. 156

x

List of Figures

Figure 1-1 The CLASS2 transcript assembly algorithm ... 11

Figure 1-2 Dynamic programming representation of transcript selection algorithm 19

Figure 1-3 Performance of programs in reconstructing full-length transcripts, on simulated data

... 27

Figure 1-4 Correlation of predicted and sampled (‘truth’) expression values for transcripts 29

Figure 1-5 Performance of programs in capturing alternative splicing events 31

Figure 1-6 Comparison of CLASS2 and Cufflinks in detecting alternative splicing events 32

Figure 1-7 Relative performance of programs on real data ... 37

Figure 1-8 Illustration of program output at the UBR4-CAPZB gene locus (lymphocyte, rRNA-

depleted sample) .. 39

Figure 1-9 PCR validation of CLASS2 output ... 40

Figure 1-10 Refining the peach gene models ... 47

Figure 2-1 Overview of the PsiCLASS algorithm ... 54

Figure 2-2 Performance evaluation of combination methods at the level of meta-annotations on

simulated data .. 63

Figure 2-3 Comparison of transcript assembly methods at the single sample-level, and with

different alignment tools .. 64

Figure 2-4 Performance evaluation of methods on 25 simulated data sets 65

Figure 2-5 Performance evaluation of methods on 25 simulated sets, genes grouped by

abundance .. 66

xi

Figure 2-6 Performance evaluation of methods on 25 GEUVADIS samples (poly-adenylated RNA)

... 68

Figure 2-7 Performance evaluation of methods on 73 liver RNA-seq samples (rRNA-depleted

total RNA) .. 69

Figure 2-8 Performance evaluation of methods on real data .. 70

Figure 2-9 Performance evaluation of methods on 44 hippocampus samples from healthy and

epileptic mice .. 72

Figure 2-10 Performance evaluation of methods on 667 GEUVADIS samples 74

Figure 3-1 The framework of Lighter .. 79

Figure 3-2 An example of the greedy error correction procedure. k-mer CCGATTC does not

appear in Bloom filter B, so we attempt to substitute a different nucleotide for the C shown in

red. We select A since it yields the longest stretch of consecutive k-mers that appear in Bloom

filter B. ... 86

Figure 3-3 The effect of α on the accuracy using the simulated 35× dataset 97

Figure 3-4 The effect of α on occupancy of Bloom filters A and B. The effect of α on occupancy

of Bloom filters A and B using simulated 35×, 70× and 140× datasets. The error rate is 1%. 98

Figure 3-5 The effect of k -mer length k on accuracy. .. 99

Figure 3-6 Error correctors' running times. The running times for Quake, Musket and Lighter on

70× simulated dataset with increasing number of threads. ... 106

Figure 4-1 Path extension in Rcorrector ... 114

Figure 4-2 Variation coefficient (α) for the 4 data sets .. 122

xii

Figure 4-3 Transcripts assembled from the original and error-corrected reads at the MTMR11

gene locus ... 126

Figure 5-1 Overall framework of the Rascaf algorithm .. 134

Figure 5-2 Methods – finding contig connections (rascaf) ... 136

Figure 5-3 Methods – scaffolding (rascaf-join) ... 140

Figure 5-4 Performance evaluation of programs on simulated data ... 143

Figure 5-5 Examples of in silico validation of contig connections detected in the Pyrus communis

genome. .. 146

Figure 5-6 Gene content evaluation of the improved Arabidopsis thaliana assemblies using 0,

1, … 11 RNA sequencing data sets .. 151

Figure 5-7 Gene content evaluation of the Fragaria species assemblies before and after

improvement with RNA-seq data ... 155

1

Introduction

DNA is the blue print for life. It encodes the proteins that represent the building blocks for an

organism. DNA does not generate the proteins directly but through an intermediate, messenger

RNA (mRNA). mRNA molecules are transcribed from the DNA, and many of the mRNAs will then

be translated into proteins. We call the transcribed portion of the DNA a gene. In eukaryotes,

such as human, the sequence for the matured mRNA is not contiguous on the DNA, with some

portions of the gene being spliced out from the transcribed pre-mRNA sequence. The removed

parts are called ‘introns’ and the remaining parts are ‘exons’. Furthermore, due to alternative

splicing, pre-mRNAs can splice out different combinations of introns. As a result, a gene has the

potential to generate different RNAs, which we will refer as ‘transcripts’, ‘splice variants’ or

‘isoforms’. Alternative splicing occurs in more than 90% of the genes in human and at similar

levels in other eukaryotes. This mechanism makes it possible to produce millions of different

proteins from only about 25,000 genes. The process of inferring the function for each piece of

the DNA is called genome annotation. In this thesis, we introduce tools that improve on the

genome annotation process.

RNA-seq is the next generation sequencing of RNA transcripts. Despite advances in sequencing,

a transcript is still much longer than the read length, which is typically 50-150 bp. Therefore,

the huge number of short reads need to be pieced together to form the full-length transcripts.

Downstream analysis can then be applied to determine their function, expression levels and to

compare the sets of transcripts, collectively called the transcriptome, between different

2

conditions. Reconstructing the full-length transcripts, or ‘transcriptome assembly’, is a difficult

computational problem owing to the short read lengths, biases in the RNA-seq data, and the

complexity of splicing. For example, due to alternative splicing two identical reads from the

same gene can originate from different transcripts.

There are two general strategies for transcriptome assembly. Reference-based transcriptome

assembly uses the alignments of RNA-seq reads on the reference genome. De novo

transcriptome assembly directly stitching reads into transcripts, guided by their sequence

similarity. For a low-expression transcript, there is little overlap between reads and thus such a

transcript is more difficult to reconstruct de novo. Both strategies are active areas of research.

This thesis will focus on the problem of reference-based transcriptome assembly. We present

the CLASS series of reference-based transcriptome assemblers. CLASS is based on the

SET_COVER model, which seeks a minimal number of sets (transcripts) to explain all the

elements (read alignments). CLASS uses a compact graph data structure to represent a gene

and its splice variants, and proposes an efficient dynamic programming algorithm to select a set

of likely transcripts from the splice graph or the subexon graph.

As sequencing costs decrease, using multiple RNA-seq samples becomes routine for many

biological studies. Multiple RNA-seq samples give more statistical power, for instance for

differential expression and differential splicing analyses. Such differential studies use a global

annotation (meta-assembly), comprising the expressed genes and transcripts as inferred from

the RNA-seq reads. To produce the meta-assembly, the current paradigm is to reconstruct the

transcripts for each sample individually, using a single-sample transcriptome assembler, and

3

then merge the resulting transcript sets across all samples. However, in this approach, each

sample is assembled individually, and the merged result conflates the errors, often leading to

low accuracy. PsiCLASS proposes an alternative model, in which samples are analyzed

simultaneously and gene information is used across the samples to improve both completeness

(sensitivity) and reliability (precision). PsiCLASS builds a global subexon graph by merging the

sample-wise subexon graphs, filtered to remove likely exon and intron artifacts, and selects a

set of transcripts for each sample based on the global splice graph. A unified set of meta-

annotations is then obtained from the full set of transcripts by voting. Since the transcripts for

each sample are selected from the same underlying global data structure, they are more

consistent among samples, as well as with the resulting meta-assembly.

Sequencing errors can affect the performance of tools operating on the raw sequencing data,

including alignment tools and the genome assemblers based on De Bruijn graph. This limitation

has motivated the development of sequencing error correctors. The most widely used approach

for error correction of next generation sequencing data is by leveraging the multiplicity of k-

mers. A k-mer is a substring of size k; a read of length r will then contain r-k+1 overlapping k-

mers. If a k-mer is error-free (‘solid’), it will appear many times in the data set and will have

high multiplicity. If a k-mer contains a sequencing error (‘weak’), given that the errors are rare

and random, it will only occur a small number of times and will have low multiplicity. The error

correction consists of turning the weak k-mers into solid k-mers by changing the bases of the

read. The tradition approach counts the multiplicity of the k-mers, a process that is slow and

memory-consuming. Our tool Lighter is an error corrector based on k-mers without counting.

We designed a two-pass streaming algorithm in Lighter to obtain the solid k-mers. The only

4

sizable data structures in Lighter are two Bloom filters. A Bloom filter is a memory-efficient data

structure that can answer the question of whether an element is in a set or not with a small

false positive rate. As a result, Lighter is both much faster and much more space-efficient than

other error correctors. Furthermore, Lighter consumes constant memory when the sequencing

depth for a species increases.

Unlike with whole genome sequencing (DNA) data, where read coverage is expected to be

uniform, due to different expression levels of the transcripts in an RNA-seq sample one cannot

distinguish solid from weak k-mers with a global multiplicity threshold. For example, a k-mer

with low multiplicity can originate from a transcript with low expression level, or can contain an

error. Rcorrector adopts a local threshold to distinguish between solid and weak k-mers at k-

mer level, and also at read level. To correct a read, Rcorrector searches paths in the De Bruijn

graph of read sequences. It then chooses the path whose corresponding sequence has the

minimum edit distance to the original read, such that each k-mer’s multiplicity in the path

exceeds its own local threshold. Thorough evaluation of Rcorrector showed that correcting the

errors directly improves the quality of the de novo assembled transcripts.

For genomes assembled from short next generation sequencing reads, in particular Illumina

reads, the newly assembled sequence is usually highly fragmented into contigs and/or

scaffolds. A contig is a portion of the genome that the assembler reconstructed with no gaps. A

contig typically terminates at a repeat boundary, when the read or k-mer is not able to resolve

the repeat. A mate pair is produced by sequencing the two ends of the same DNA fragment.

The two reads are then close on the genome and have well defined position and orientation

relative to one another. The difference between the mates’ locations on the fragment and on

5

the (original) genome is called insert size. If the insert size is longer than the factor terminating

the contig, such as the repeat size, the mate pair that spans two contigs can be used to connect

the two contigs together, with a gap between them. This structure is called a ‘scaffold’. A

scaffold can contain multiple contigs with specified order and orientation.

Because they contain introns, eukatyotic genes can span thousands of bases and are very likely

to be split across different scaffolds. This makes the downstream annotation process difficult.

RNA-seq reads are sampled from the gene regions and may ‘jump’ over the introns, regardless

of the insert size, and therefore provide the contiguity information that can be used to connect

different pieces of the gene and their underlying contigs and/or scaffolds. While genome

sequencing projects have occasionally used de novo assembled transcripts to lay out the

scaffolds, this process is time-consuming and error-prone, as misassemblies in the transcripts

can transfer onto the resulting scaffold. State-of-the-art short RNA-seq read aligners, such as

HISAT [1] and STAR [2], can align the short reads on the raw assembly fast and efficiently.

Therefore, we developed Rascaf to directly use the alignments of short mate-pair RNA-seq

reads to guide scaffolding. Compared with L_RNA_Scaffolder, based on the de novo assembled

transcripts, Rascaf showed higher sensitivity and significantly better precision.

The rest of the thesis is organized as follows: Chapter 1 presents the reference-based

transcriptome assemblers CLASS and CLASS2. Chapter 2 describes PsiCLASS, which extends

CLASS2 to simultaneously handle multiple RNA-seq samples. Chapter 3 and Chapter 4 introduce

the error correctors Lighter and Rcorrector, for whole genome sequencing and for RNA-seq

data, respectively. Lastly, Chapter 5 presents Rascaf, a scaffolder based on RNA-seq alignments.

6

Chapter 1

CLASS: accurate and efficient splice variant

annotation from RNA-seq reads

1.1 Introduction

Alternative splicing is an inherent property of eukaryotic genes, with important roles in

increasing functional diversity and in disease [3, 4, 5]. More than 90% of the human genes are

alternatively spliced [6, 7], with similar levels reported in other eukaryotes. Each gene can

produce from one to potentially thousands of splice variants under different cellular conditions,

and gene splice isoforms can have similar, independent and even antagonistic functions.

Identifying the genes and their transcript variants is therefore a critical first step in answering a

broad range of biological questions. Over the past years, next generation sequencing of cellular

RNA (RNA-seq) has enabled the discovery of thousands of novel non-coding RNAs and has

significantly expanded our catalog of splice variants. However, despite significant progress,

extracting gene expression estimates and identifying splice variants in the vast amounts of

short read data remains challenging, demanding bioinformatics tools that are fast, accurate and

efficient.

The primary goal of a typical RNA-seq analysis is to comprehensively determine the precise

exon–intron boundaries on the genome for all transcripts and to estimate their expression

7

levels in the samples. Before this can be accomplished, reads must be mapped to the genome

with a fast spliced alignment program that accounts for introns and sequencing errors [8].

Alignments are then pieced together to form gene and transcript models. Virtually all genome-

guided transcript assemblers build a graph that represents a gene and its splice variants, and

then traverse it to select a subset of transcripts that are likely represented in the sample.

Among current programs, Cufflinks [9] connects overlapping reads into overlap graphs,

Scripture [10] and IsoLasso [11] build connectivity graphs, and iReckon [12], Scripture and SLIDE

[13] generate splice or subexon graphs [14]. Although there are some differences among the

exons and introns predicted by each program, these representations more or less encode

equivalent sets of candidate transcripts. Therefore, the strategy for selecting transcripts from

among the many encoded possibilities in the graph is important for the program's accuracy as

well as for the number of variants identified. Parsimony-based methods such as Cufflinks’

minimum partition algorithm select a mathematically minimum number of transcripts. They can

usually identify the genes and most major isoforms relatively accurately, but are less apt at

identifying low abundance splicing events. ‘Best fit’ methods, which include IsoLasso, SLIDE and

iReckon, choose a subset of transcripts such as to optimize an objective function, using either

an integer programming or an expectation maximization formulation. The main problem with

these approaches is over-fitting, where programs tend to report a large number of spurious

transcripts based on low abundance reads. In yet another category, programs such as

SpliceGrapher [15] simply omit enumerating transcripts altogether, or otherwise exhaustively

enumerate all splice variants encoded in the graph (Scripture). While they can generally capture

a larger portion of the true splicing variation, these methods are too imprecise to allow

8

meaningful downstream analyses. Lastly, programs differ in their use of known annotations to

inform their predictions. Annotation-guided methods, such as iReckon and SLIDE, rely on an

existing set of gene annotations to build their gene models. For species for which there is

already an extensive set of gene annotations these methods generally produce more variants,

but are also more prone to reporting spurious isoforms and cannot be used to identify novel

genes. In contrast, de novo programs including Cufflinks, Scripture and IsoCEM, build gene and

transcript models from RNA-seq reads alone, without any prior knowledge of gene structure,

and therefore are more suited to annotate newly sequenced or less studied organisms. Overall,

while many tools already exist to determine the expressed genes and loci in an RNA-seq

sample, there is an unmet need for methods that specifically target alternative splicing.

We developed CLASS and its successor CLASS2 (Constraint-based Local Assembly and Selection

of Splice variants), to bridge this gap and detect low abundance splice variation with high

accuracy. At its core is the concept of the splice graph, a data structure that we have previously

employed in splice variant annotation using both conventional Sanger (EST) [16] and next

generation sequencing [17]. A splice graph compactly represents a gene with its exons as nodes

and introns as edges; splice variants can be read as maximal paths in the graph. CLASS2 uses a

linear programming method to predict exons, and then connects them into splice graphs via

introns detected from spliced alignments. Since the splice graph may encode many biologically

unfeasible combinations, CLASS2 uses an efficient dynamic programming optimization

algorithm to select candidate transcripts. CLASS2 builds upon its predecessor CLASS [17], but

brings several critical algorithmic and performance improvements, including a new formulation

for transcript scoring and selection as an optimization problem, novel and scalable dynamic

9

programming transcript selection algorithms, and a new model for ‘intronic’ noise due to reads

from unspliced RNA. This chapter will focus on CLASS2. When compared to reference programs,

CLASS2 captured significantly more splicing variation, both fully reconstructed transcripts and

partial splicing events, with high precision. Most importantly, it was the only program tested

that produced consistently well formed and easy to interpret annotations for all applications

and sequencing strategies. More specifically, our comparative analyses have shown that:

1. CLASS2 offers the best tradeoff between sensitivity and precision in reconstructing full

transcripts. In its default setting, CLASS2 detects 10–70% more transcripts than

Cufflinks, which is the most popular and most precise of these programs, with higher or

comparable precision. In its sensitive settings, CLASS2 detects up to twice as many

transcripts as Cufflinks for a relatively small drop in precision.

2. It is the best suited to capture local alternative splicing variation. In particular, it can

detect up to twice as many alternative splicing events as Cufflinks, with high precision.

CLASS2 finds slightly fewer events than Scripture, which is the most sensitive of the

programs, but its precision is considerably (70–80%) higher.

3. It employs a combined gene-level and genome-level model of intronic ‘noise’ that allows

more accurate detection of intron retention events.

4. The amount of novel alternative splicing variation detected by CLASS2 increases with

increasingly large data sets.

5. CLASS2 is multi-threaded and scales well with the amount of data, requiring <3GB RAM

for all of our tests, and can complete most regular tasks in a few hours.

10

6. Lastly, since CLASS2 can produce annotations from RNA-seq data alone, without

requiring an existing set of gene annotations, it is very well suited for the annotation of

newly sequenced organisms.

We present the overall strategy below, followed by more details about the individual

algorithms in the corresponding Methods sections. We then comparatively evaluate CLASS2

and several popular programs, including both de novo and annotation-dependent transcript

assemblers, on both control and real RNA-seq sets, in the Results section.

1.2 Methods

1.2.1 Overview

CLASS2 determines a set of transcripts in three stages (Figure 1-1). First, it infers a set of exons

from read coverage levels and splice sites using a linear programming technique. Then, it

connects the exons into a splice graph via introns extracted from spliced reads. Once the graph

is constructed, CLASS2 selects a subset of transcripts from among those encoded in the graph

using an efficient splice graph-based dynamic programming algorithm.

11

Figure 1-1 The CLASS2 transcript assembly algorithm

(Step 1 (A) Exon and introns. Infer exons from the read coverage levels, using linear
programming, and introns from spliced alignments. Step 2 (B) Splice graph. Build a splice graph
to represent the gene, connecting exons by introns. Shown is a section from a splice graph, with
a skipped exon event and a 2-intron retention event, encoding two possible paths (transcripts).

Step 3 (C) Constraints. Cluster reads into classes (constraints) by their splicing and interval
patterns. Step 4 (D) Transcript selection. Build and solve the bipartite constraint graph and

associated transcript selection problem, shown here for three read pairs c1, c2 and c3, and three
transcripts t1, t2 and t3.)

1.2.2 Building the exons

Exons are key to the transcript assembly process, because incorrectly reconstructing exons can

miss important gene variations or can create false ones. Since current RNA-seq reads are too

short to cover many exons end-to-end, CLASS2 uses read coverage levels along the genome and

splice junctions from spliced read alignments to find exons (Figure 1-1A). CLASS2 employs a

two-step procedure to determine a set of exons: first, it enumerates all combinations of exons

12

that can explain the splice site patterns and paired-end reads. Second, for each such

combination it formulates and solves a linear program expressing several types of constraints.

Intuitively, the read coverage levels for all alternative exons over a common interval should

cumulatively add up to the observed read coverage levels. Additionally, we assume read

coverage levels are locally uniform, and therefore the coverage of adjacent portions of the

same exon should be similar. Each exon combination is scored by the linear program, and the

combination with the minimum objective function value is chosen in the end.

1.2.3 Modeling intronic ‘noise’

Intronic RNA, produced by unspliced pre-mRNA transcripts that are either residual or part of

the experiment, is a common artifact with real RNA-seq samples. Such intronic ‘noise’ can

confound the detection of mature mRNA resulting from intron retention and alternative

transcription start and termination events [18]. Distinguishing between ‘signal’ and ‘noise’ is

therefore critical for creating a full and accurate set of exons. CLASS2 introduces a new method

to identify intronic mRNA, by modeling intronic read levels across genomic intervals, both

within a gene locus and along the genome. The gene-level ‘noise’ is modeled as a Poisson

distribution of the individual intronic positions, retaining the introns whose average coverage

ranks at the top of the distribution (P-value = 10e−5). For the genome-wide ‘noise’, we consider

the coverage distribution of intronless regions (‘islands’), modeled as a normal distribution, and

retain only those introns with Z-score > 6. In the end, only introns that pass both filters are

deemed as likely retained introns or alternative gene ends, and are then incorporated into the

exon finding procedure.

13

1.2.4 Transcript enumeration and selection

Once a set of exons is determined, CLASS2 generates a splice graph by connecting the exons

(nodes) via introns (edges) extracted from spliced read alignments. Candidate transcripts are

encoded in the graph as maximal paths from a node with no incoming edges (source) to a node

with no outgoing edges (sink) (Figure 1-1B). Since the splice graph generally encodes a much

larger number of transcripts than is biologically possible, CLASS2 uses a selection procedure to

identify a subset of candidates that can explain all contiguity constraints from spliced reads and

paired-reads. In practical terms, a constraint is a cluster of reads or read pairs that share the

same set of exons or exon fragments and therefore can be assembled into the same transcript

(Figure 1-1C).

Conceptually, we model the problem as a graph with two types of nodes (bipartite), transcripts

and constraints, where each transcript node is connected by edges to the constraints it

satisfies, and we must select a subset of transcripts that collectively satisfy all constraints

(Figure 1-1D). In early work, we implemented a simple greedy SET_COVER approximation

algorithm [17] that aimed to minimize the number of transcripts that could explain all the read

patterns, or constraints, without regard to the number of supporting reads. Here, we report an

improved algorithm that additionally takes into account the read coverage (abundance)

information for each transcript and constraint, modeled as a dynamic programming

optimization problem. It selects a subset of candidate transcripts while simultaneously

assigning a set of compatible reads, and it does so efficiently by exploiting the compactness of

the splice graph data structure. The algorithm iteratively grows a set of transcripts by selecting,

at each step, the transcript that maximizes a scoring function which takes into account both the

14

number of constraints not covered by the current set and their abundance. As a new transcript

is selected, reads are simultaneously assigned to it as determined by its set of constraints, and

the algorithm is reiterated with the updated sets of constraints and transcripts.

Since the algorithm favors abundant isoforms, transcripts are being selected largely in the order

of their abundance, from the most highly expressed to the least expressed. This allows the

selection procedure to be terminated whenever the abundance reaches a user-specified cutoff

(parameter ‘-F’), with the most trusted isoforms being reported first. To further improve the

algorithm's efficiency for genes with complex structures, rather than enumerating all

transcripts at each step in the algorithm, CLASS2 implements an efficient splice-graph based

dynamic programming transcript selection procedure, described below. This method

considerably reduces both memory and run time, and allows the program to be run on very

large data sets without sacrificing sensitivity.

1.2.5 Exon reconstruction algorithm

To determine a set of exons, CLASS2 uses a protocol similar to CLASS (15), modified to exclude

intervals that contain intronic ‘noise’. More specifically, it analyzes regions of the genome

covered by reads, which represent exons or combinations of exons, using splice sites to split

each region into intervals. Each interval can belong to more than one exon; the portion of an

exon corresponding to an interval is called subexon. To determine the most likely combination

of exons within a region, CLASS2 enumerates all feasible exon sets, i.e. that are necessary and

sufficient to explain all splice sites and all reads. For each such set it formulates and solves a

15

linear program (LP), which is used to score the combination. The combination with the best LP

score is chosen as the representative set of exons. The linear program is formalized below.

1.2.6 The LP-based scoring system for exon combinations

More formally, consider a region R = r1…rN, where N is the number of intervals. Let Lj = |rj| be

the length of interval rj, and L = ∑j=1
N Lj the length of the region. Denote S = {X1, …, XM} the set

of possible exons, represented as vectors: Xi=(xi,j)∊{0,1}N, with xi,j = 1 if and only if Xi contains

interval rj, and 0 otherwise. Hence, Xi will contain all 0s except for a run of 1s, starting at

interval bi and ending at interval ei. Given a candidate set of exons S’ ⊆ S, CLASS2 assigns each

subexon an (unknown) read coverage level, ci,j, defined as the average number of reads per

base of subexon i,j. Let Cj be the (observed) read coverage on interval j. We write a linear

system with the following constraints:

(i) additivity - for each interval rj, j = 1,…,N, the cumulative coverage levels of subexons

within the interval should be roughly equal to the observed coverage level:

|∑ 𝑥𝑖,𝑗𝑐𝑖,𝑗 − 𝐶𝑗

𝑖

| ≤ 𝜖𝑗

(ii) continuity - for each exon Xi ∊ S’, the coverage of adjacent subexons should be

roughly equal:

|𝑐𝑖,𝑗 − 𝑐𝑖,𝑗−1| ≤ 𝜖𝑖,𝑗 for each 𝑗 = 𝑏𝑖 + 1, … , 𝑒𝑖

(iii) conservation - the total coverage of all exons should be roughly equal to the total

coverage of the region:

16

|∑ ∑ 𝑐𝑖,𝑗𝐿𝑗 −

𝑗𝑖

∑ 𝐶𝑗𝐿𝑗

𝑗

| ≤ 𝜖

(iv) non-negativity - all (sub)exons of exons should be expressed:

𝑐𝑖,𝑗 ≥ 1, 𝑖𝑓 𝑥𝑖,𝑗 = 1; 𝑐𝑖,𝑗 = 0 𝑖𝑓 𝑥𝑖,𝑗 = 0

The objective function minimizes the total error:

𝑚𝑖𝑛𝑖,𝑗(∑ 𝜖𝑗

𝑗

+ ∑ 𝜖𝑖,𝑗

𝑖,𝑗

+ 𝜖)

For single-end reads, this value is used explicitly to score the combination. For paired-end

reads, deviations from the observed fragment length distribution are included as penalties to

more finely differentiate among likely exon sets, as described in [17]. In the end, the exon

combination with the smallest score (‘error’) is chosen.

Here is an example illustrating the algorithm. Consider the region in Figure 1-1A, we have:

(i) Additivity: | c1,a+c4,a –Ca |  a ,| c4,b – Cb |  b, | c2,c+c4,c-Cc |  c, | c4,d-Cd |  d, |

c3,e+c4,e-Ce |  e

(ii) Continuity: | c4,a-c4,b |  4,a, | c4,b-c4,c |  4,b, | c4,c-c4,d |  4,c

(iii) Conservation:

| (c1,a+c4,a) La + c4,b Lb + (c2,c+c4,c) Lc + c4,d Ld + (c3,e+c4,e) Le

– (CaLa+CbLb+CcLc+CdLd+CeLe) |  

(iv) Non-negativity: c1,a1, c4,a1, c4,b1, c2,c1, c4,c1, c4,d1, c3,e1, c5,e1

 Optimization function: min (j{a-e}j + i=1,4; j{a-e}i,j +)

17

Once determined, exons are connected into a splice graph via introns extracted from spliced

alignments, and candidate transcripts are enumerated as maximal paths in this graph. The

candidate transcript set is typically much larger than the true set of transcripts. CLASS2

implements several algorithms to select a subset of transcripts that are the most likely to be

represented in the sample.

1.2.7 Transcript selection algorithms

The goal is to select a subset of the transcripts encoded in the splice graph that can collectively

explain all the reads, which we formulate as a dynamic programming optimization problem. We

implement an iterative procedure that simultaneously selects the next transcript and assigns

reads to it, thus estimating its abundance in the process. To start, we mark the boundaries of

the exons along the genomes and divide the gene into intervals, as described above. To reduce

space, we group reads (or read pairs) that cover the same set of intervals into classes, called

constraints. For each constraint ci, we define its abundance ai as the number of reads (or read

pairs) for that constraint divided by the number of possible start positions of the reads within

the intervals. Each constraint can be included (satisfied) into one or more candidate transcripts,

ci ∼ tj; conversely, a transcript can be viewed as the set of constraints it satisfies: tj = {c1, …,cn1}.

We then denote the abundance of a transcript, Aj, as the minimum abundance of its set of

constraints: Aj = min{ai | ci~tj} Let G be a graph with n transcripts T = {t1, …, tn} and m

constraints C = {c1, …, cm}. We give a basic enumeration and selection algorithm for relatively

simple graphs, and then an efficient splice-graph based implementation that can efficiently

handle complex graphs, below.

18

1.2.8 Basic algorithm

For a small graph, it is feasible to enumerate and assess all candidate transcripts t1, …, tn

encoded in the graph. At each step, the algorithm evaluates all remaining transcripts and

selects the new transcript, ti, that maximizes the score function Vi = ni/(2-Ai /max A), where ni is

the current number of constraints that transcript ti is compatible with, Ai is the abundance of

transcript ti, and max A is the maximum abundance over all transcripts of the gene. Once a

transcript ti is selected, its abundance is subtracted from those of the constraints it satisfies: cj =

cj - Ai. If for any constraint the abundance becomes 0, it is removed from the set. The algorithm

is reiterated until there are no non-empty constraints.

1.2.9 An efficient splice graph-based algorithm

For complex genes that can generate a large number of transcripts, it may not be efficient or

even feasible to enumerate and assess all transcripts at each step. Instead, we take advantage

of the compactness of the splice graph representation and the locality of the constraints to

design a memory and time efficient dynamic programming algorithm. We start by giving an

algorithm to iteratively find the next transcript ti that satisfies the maximum number of

constraints ni, by traversing the graph while calculating an optimal path, and then modify it to

take into account the abundance, or read numbers.

Let L be a subpath (subtranscript) in the splice graph and L’ the minimum subpath immediately

following L such that the constraints partially compatible with L cannot end after L’ (‘memory’).

We enumerate all the paths L’ and recursively calculate the maximum number of constraints

f(L) of subtranscripts starting with subpath L:

19

f(L)=max{ f(L′)+c(L,L′), if L′ exists; c(L), if L′ does not exist},

where c(L,L′) is the number of constraints partially compatible with L (start within L) and

compatible with the concatenated subpath L.L′, and c(L) is the number of constraints covered

by subtranscript L. The algorithm starts with considering every 5’ exon as a subpath. Along with

the maximum number of constraints covered, the algorithm can also track the corresponding

optimal transcript. Note that, while iterating over subpaths of the splice graph does not change

the theoretical exponential complexity of the algorithm, due to the limited fragment size the

number of possible sub-paths is drastically reduced, leading to significant savings in both

memory and run time in practice. An example illustrating the procedure is given in

Figure 1-2 Dynamic programming representation of transcript selection algorithm

(Starting from a 5’ end, the algorithm calculates for each subpath L the maximum number of
constraints for transcripts starting with L and ending at a 3’ end: f(L) = max { f(L’) + c(L,L’) },

where L’ is the minimum subpath such that all constraints starting in L cannot end past L’ (i.e., L’
is used as ‘look-ahead’). On the figure, c1 and c2 are constraints compatible with and used in the

calculation of f(L). c3, c4 and c5 are not used in this stage, however, c3 and c4 had been used in
the calculation of f(L’).)

To incorporate abundance information into the optimization process, we modify the algorithm

as follows. When processing L and L’, we exclude subpaths that cover constraints with

abundance less than or equal to some fixed value x. Hence, the algorithm reports the transcript

20

covering the most constraints among those whose abundance is larger than x. We call such a

transcript an x-abundance transcript. This variation helps determine, at each step, the

transcript t* with maxi Vi = maxi ni /(2-(Ai /max A)). We first calculate the 0-abundance

transcript; suppose its abundance is x1. We then calculate the x1-abundance transcript, and so

on, until we cannot find any xm-abundance transcript, where xm = max A, in the (m+1)-st

iteration. Then the following Theorem establishes that transcript t* is among the transcripts

computed.

Theorem: The optimal transcript t* is among the 0-abundance, x1-abundance, …, xm-1-

abundance transcripts.

Proof: Suppose n*, V*, A* corresponds to the number of covered constraints, score and

abundance for the optimal transcript t*. Let x0 = 0, then the following two properties hold from

the definitions above: (i) 0 = x0 < x1 < … < xm; and (ii) n0 ≥ n1 ≥ … ≥ nm. Then A* is between x0

and xm, and suppose that xi < A* ≤ xi+1, where 0 ≤ i< m. Denote the xi-abundance transcript by

ti. Then Vi ≤ V*, by virtue of the fact that t* is the optimal transcript. We only need to prove

that Vi = V*.

Suppose Vi < V*, and we already know that ni ≥ n* because the dynamic programming always

returns the transcript covering the most constraints (property (2) above). According to the

definitions of Vi and V*, then it is necessary that Ai < A* in order to make Vi < V*. But, Ai = xi+1

based on the definition. Therefore, A* > Ai = xi+1, which contradicts the fact that A* is in the

interval (xi, xi+1]. Hence, the assumption that Vi<V* is false and we must have Vi = V* and hence

t* = ti (i.e. the xi+1-abundance transcript), which concludes the proof.

21

1.2.10 Materials and sequences

For our analyses on simulated data, we generated RNA-seq reads with the software

FluxSimulator [19], starting from the GENCODE v.17 gene annotations and choosing the options

‘RNA fragmentation’ and 200 million clusters. In total, 15 062 genes and 22 544 GENCODE

transcripts were represented by the 200 million 75 bp paired-end reads in the sample.

Directional mRNA and rRNA-depleted sequencing libraries were prepared from peripheral

blood lymphocyte (PBL) samples from the same individual, collected as part of a

neuropsychiatric study in twins, and were subjected to paired end sequencing. The sequencing

produced 183 million and 317 million 100 bp paired-end reads, respectively. Lastly, for our

analyses on very deep sequencing data sets, RNA-seq reads from long RNAs in whole-cell,

cytosol and nucleus (two biological replicates each) of IMR90 lung fibroblast cells were

downloaded from the ENCODE project's website at UCSC (http://genome.ucsc.edu/ENCODE).

All reads were mapped to the human genome hg19 using the software Tophat2 [20] using a

combined non-redundant set of GENCODE and RefSeq transcripts as reference annotations and

all other default parameters.

1.2.11 Analysis of alternative splicing events

To evaluate the programs for their ability to capture individual types of alternative splicing

events, we generated a reference set of events (exon skipping, intron retention and alternative

exon ends) from the simulated data. We used ASprofile [21] to extract events from the

transcripts sampled by FluxSimulator, and then filtered them to retain only those actually

supported by the reads in the sample. We processed each program's GTF output in a similar

manner and compared against the reference sets. To characterize the sources of errors, we

22

searched the set of false positive predictions from each program against the set of events

extracted from the full GENCODE data set, which determine artifacts due to paralogs and splice

variants present in the annotation. The remaining false positive events were searched for

spurious introns and for class-specific patterns. For intron retention, these include mis-

classification of 5’ and 3’ terminal exons and of reads from alternative exons overlapping the

intron, whereas for alternative exon ends they include spurious chimeric combinations of exon

start and ends.

1.2.12 Evaluation measures

We used conventional measures, as introduced in [11], to assess program performance at the

transcript, exon, intron and alternative splicing event levels: Recall (sensitivity) = TP/(TP+FN),

Precision = TP/(TP+FP) and F-value = 2*Recall*Precision/(Recall+Precision).

1.2.13 PCR validation of predicted intron retention events

PCR validation of predicted IR events was performed by Dr. Sarven Sabunciyan, Department of

Pediatrics, JHU. Human Blood (Clonetech CAT#:636592) and human genomic DNA (Promega

Madison, WI CAT#:G1471) were purchased from the suppliers. One microgram of total RNA was

converted into cDNA using the SuperScript First-Strand Synthesis kit (Life Technologies

CAT#:11904018) following the manufacturers recommended protocol. Q5 High Fidelity DNA

polymerase (NEB Cat#:M0491S) was used to generate amplicons in gDNA and cDNA. The

primers were ordered from Integrated DNA Technologies (Corlaville, IA, USA); primer

sequences are listed in Table 1-1.

23

Table 1-1 Primer sequences for PCR validation

PCR Primer Name Sequence

CACNA2D4-1
CACNA2D4_A1For_94 GGGTCCTGCTTCTTGTGTTT

CACNA2D4_A1Rev_336 GACAGTGGGGATAGGTGACC

CACNA2D4-2
CACNA2D4_A2For_57 CACGAACACGGGGTACTCC

CACNA2D4_A2Rev_175 TGCCACCATGTTTTCCTGTG

KLRF1-1
KLRF1_A1For_165 GGAGTTCTGCCCAAACATCTC

KLRF1_A1Rev_354 ACTGTGGAGTGTACTAATAGAGC

KLRF1-2
KLRF1_A2For_172 TGCCCAAACATCTCAACTTACA

KLRF1_A2Rev_421 CCGTATTAGACTGTATGCCACT

Fifty microliters of PCR reactions were performed containing 1x Reaction buffer, 0.5 μM of each

primer, 1 unit of Taq and 200 μM of each dNTP. Each PCR reaction also contained

approximately one-tenth of the cDNA synthesis reaction or 75 ng of genomic DNA. Using an

annealing temperature of 65°C, the PCR reactions were amplified for 35 cycles. The resulting

amplicons were cloned into the Topo 2.1 cloning vector (Life Technologies) and individual

clones were sequenced at the Johns Hopkins Sequencing and Synthesis Core Facility.

1.3 Results

1.3.1 Comparative evaluation on control data

We evaluated CLASS2 and several state-of-the-art programs for their ability to reconstruct full

transcripts and to capture partial splice variation. We included in our tests four de novo

assemblers, namely CLASS2 (v. 2.1.2), Cufflinks (v. 2.1.1; [9]), IsoCEM (v. 0.9.1; [11]) and

24

Scripture (v. beta2; [10]), and two annotation-based methods, SLIDE (May 7, 2012 download;

[13]) and iReckon (v. 1.0.7; [12]). We ran CLASS2 in two different modes, stringent (default; ‘-F

0.05’) and sensitive (‘-F 0.01’); the latter allows the program to report more minor isoforms. For

the annotation-based programs we provided GENCODE v.17 [22] gene annotations as guides.

To generate test data, we simulated 200 million 75 bp paired end reads using FluxSimulator

[19] and starting from GENCODE v17 gene annotations as models. Reads were then mapped to

the human genome hg19 using the program Tophat2 [20] and assembled with each program.

Performance of programs in detecting full-length transcripts

To evaluate the performance and also to identify potential limitations and biases of each

program we performed two types of analyses. In the first analysis we compared the transcripts

produced by each program against the set of transcripts sampled by FluxSimulator, to obtain an

unbiased assessment. We then also compared the predictions against a comprehensive set of

non-redundant GENCODE and RefSeq transcript models, to identify biases and artifacts due to

annotated paralogs and splice variants representing alternative combinations of the same

exons. These classes of artifacts are impossible to tease apart on real data, where the ground

truth is not known, and will be erroneously counted as true matches, thus over-estimating the

program's performance. When evaluated against the set of true annotations (Figure 1-3A),

most programs detect a majority (63–78%) of the exons and introns (‘set of parts’) of the

sampled transcripts, with the notable exception of iReckon, which only finds roughly 52% of the

features in each category. SLIDE is the most sensitive among the programs but has very low

precision, and Cufflinks and CLASS2 are the most precise. CLASS2 and CLASS2_F0.01 have the

best overall performance, detecting a large fraction of both exons and introns with remarkably

25

high precision, >90% for exons and >97% for introns. Programs rank similarly for reconstructing

full-length transcripts. CLASS2 and CLASS2_F0.01 again have the best overall performance as

measured by the F-value, a combined measure of sensitivity and precision, and are able to

reconstruct 9% and 16% more full-length transcripts compared to Cufflinks, the next and close

runner up.

26

27

Figure 1-3 Performance of programs in reconstructing full-length transcripts, on simulated data

(Observed performance values when measured (A) against the set of FluxSimulator-sampled
transcripts (‘truth’), and (B) against the full set of GENCODE reference annotations. Recall =

TP/(TP+FN), Precision = TP/(TP+FP) and F = 2*Recall*Precision/(Recall+Precision). (C)
Performance ‘inflation’, or the difference between performance measured on the full GENCODE
set and the subset of GENCODE transcripts actually represented in the sample. The additional

matches are from spurious paralogs and variants not present in the sample. PCI =
(Match_GENCODE/Match_sim) -1, where Match_sim refers to the subset of transcripts actually

present in the simulated sample.)

In our second analysis, evaluating the programs against the full set of GENCODE and RefSeq

gene annotations revealed several types of biases and errors (Figure 1-3B,C). All programs now

seemingly detect the ‘parts’ equally well (∼20% sensitivity and 88–100% precision), indicating

that many of the false predictions in the earlier comparison come from paralogs of the genes in

the sample. Unsurprisingly, programs also seemingly detect more of the reference transcripts,

artificially increasing programs’ performance. In particular, the two annotation-based methods

show the largest inflation, with SLIDE more than doubling (120% increase) the number of

annotation matches and iReckon adding 64% more matches, by virtue of their use of known

annotations to scaffold gene models. When we traced these additional matches, most were

variants of the sampled genes (53–92%), and the rest were paralogs, except for iReckon where

the variants and paralogs each accounted for roughly half of the false matches. A large portion

of the artifacts, between 15% and 67% of the total (with the exception of SLIDE, which had very

few), were single exon transcripts. However, even when restricting our analysis to multi-exon

transcripts only, SLIDE had very high inflation (128%), followed by iReckon (25%) and Scripture

(22%). CLASS2 (both variations) and Cufflinks had the lowest inflation by far, between 5–7%.

Thus, these two programs are the most trusted to produce measurable results on real data.

28

Performance of programs by transcript abundance

We further assessed the performance of programs as a function of the abundance level of

transcripts. Simulated transcripts were divided into high-, medium- and low-abundance groups

based on their relative expression level assigned by FluxSimulator (FPKM ≤ 5e−7, low; 5e−7 <

FPKM ≤ 0.0001, medium, FPKM > 0.0001, high). Because the programs do not classify their

output into classes, true precision values cannot be computed. However, we calculate a

measure of precision based on the full set of predicted transcripts. Programs’ performance was

more varied across the three ranges, with SLIDE being the most sensitive and CLASS2 a close

second for the high and medium abundance transcripts, whereas the precision was 4-fold

higher for CLASS2. The two annotation-based programs iReckon and SLIDE were best suited for

the low-abundance class (Table 1-2). All programs, especially de novo assemblers, had difficulty

reconstructing low-abundance transcripts, many of which did not have sufficient reads to cover

their entire length. Overall, CLASS2 exhibited the best overall performance for the medium- and

high-abundance transcripts, and performance comparable to de novo assemblers for the low-

coverage transcripts. Lastly, while CLASS2 does not explicitly address the problem of transcript

quantification, there is a high correlation between the abundance values of full-length

reconstructed transcripts estimated with CLASS2 and the FluxSimulator generated expression

levels (R2 = 0.972), surpassed only by IsoCEM (R2 = 0.977) (Figure 1-4 Correlation of predicted

and sampled (‘truth’) expression values for transcripts). Overall, CLASS2 can reconstruct most

high and medium expression isoforms of a gene, where it is the best or comparable overall

program, as well as some of the rare isoforms.

29

Table 1-2 Programs performance by transcript abundance class

High

(2402
transcripts)

Medium
(13 464

transcripts)

Low
(6658

transcripts)

Program Transcripts R P R P R P

CLASS2 16 790 0.824 0.118 0.672 0.539 0.048 0.019

CLASS2_F0.01 18 946 0.827 0.105 0.704 0.501 0.055 0.019

Cufflinks 16 163 0.788 0.118 0.630 0.527 0.069 0.029

IsoCEM 21 906 0.597 0.066 0.525 0.325 0.017 0.005

Scripture 38 484 0.551 0.035 0.553 0.196 0.033 0.006

iReckon 30 180 0.591 0.052 0.611 0.290 0.262 0.061

SLIDE 72 867 0.841 0.028 0.787 0.148 0.243 0.023

(Simulated transcripts were divided into high-, medium- and low-abundance classes based on
their FluxSimulator-generated abundance. R = TP/(TP+FN) values were calculated within each

class, and P = TP/#Transcripts values were based on the full set of transcripts.)

Figure 1-4 Correlation of predicted and sampled (‘truth’) expression values for transcripts

(Left: Scatterplot of FluxSimulator-generated expression levels (‘truth’) and abundance values
estimated by CLASS2. Right: Correlations between sampled expression levels and abundance
estimates by each of the tested programs. Fully-reconstructed transcripts by each program,

which could be unambiguously associated with sampled (reference) transcripts were included.
R2 = Pearson correlation.)

Program R2

cufflinks 0.804

isoCEM 0.977

iReckon 0.708

SLIDE 0.878

Scripture 0.674

CLASS2 0.972

CLASS2_F0.01 0.972

30

Performance of programs in detecting alternative splicing events

Even with the best data, predicting full-length splice variant transcripts from short RNA-seq

reads aligned to the genome is prone to assembly errors. Alternative splicing events, which can

be determined from the local structure of transcripts or reads, can be detected with more

accuracy and are frequently used in studies [23, 24, 25]. We therefore analyze the ability of the

programs to capture primitive classes of alternative splicing events, including exon skipping,

intron retention and alternative exon ends. Since most programs do not specifically predict

alternative transcription start and termination, we did not include them in the analysis. We

compared events detected from transcripts generated by each of the programs to the set of

events represented in the simulation data.

As Figure 1-5 indicates, CLASS2_F0.01 and Scripture are the best overall performers as indicated

by their F-values, albeit the two programs have strikingly different behavior. Scripture captures

the largest number of events in each category, but it does so at the expense of reporting a very

large number of false positives, which can severely impact the significance of downstream

analyses. CLASS2 and CLASS2_F0.01 find a large portion of the events in each category,

balancing sensitivity with high accuracy and achieving the best tradeoff. More specifically,

CLASS2 finds 25–36% more events in each category compared to Cufflinks, which is the leading

reference annotation tool and is also the most precise of the programs, at higher or comparable

precision. Moreover, CLASS2_F0.01 finds roughly twice as many events as Cufflinks in each

category with only a relatively small drop in precision (4–17%). Like CLASS2, Cufflinks allows

users to vary the stringency of the program. We therefore separately compared the

performance when varying the parameter range of both CLASS2 and Cufflinks to control the

31

number of isoforms reported (‘-F f’, with f = 0.01, 0.02, 0.03, 0.05, 0.1, 0.1, 0.15). Cufflinks’

performance dropped sharply from its default settings, whereas CLASS2 showed a consistent

performance (Figure 1-6). CLASS2 extended the sensitivity range and, for the same sensitivity

level, it delivered significantly higher precision. Therefore, using CLASS2 in its various settings

has the highest potential for applications that involve studies of alternative splicing variation.

Figure 1-5 Performance of programs in capturing alternative splicing events

(Exon skipping (SKIP), intron retention (IR) and alternative exon ends (AE))

32

Figure 1-6 Comparison of CLASS2 and Cufflinks in detecting alternative splicing events

(Recall (R, horizontal axis) and precision (P, vertical axis) of CLASS2 (light grey) and Cufflinks
(dark grey) are shown for various stringency settings (‘-F f’, with f=0.01, 0.02, 0.03, 0.05, 0.1 and

0.2; right-to-left in the plots). The parameter ‘F’ controls the expression range of isoforms
reported, as a fraction of the expression level of the most abundant isoform for the gene. Both

programs have high specificity for stringent settings, but CLASS2 can detect more events overall
and, for the same sensitivity (recall) level, has significantly higher precision than Cufflinks.)

We next analyzed the errors made by these programs to evaluate their capacity to capture

alternative splicing information. Programs detected exon skipping events with varying degrees

of sensitivity (19–79%) and precision (10–94%). Notably, a majority of the false positives for all

programs (67–86%; except for SLIDE, 23%) were matches to gene paralogs (Table 1-3), and only

a small fraction were due to other alignment artifacts. This is most clearly illustrated by iReckon

and IsoCEM, which predicted large numbers of splicing events, the majority of which were false

positives. In contrast, most of the errors for SLIDE were due to spurious introns. The

performance of all programs was significantly lower for intron retention events, with 10–52%

sensitivity and only 2–29% precision. In most cases, false intron retention predictions resulted

from mis-classification of 5’ and 3’ alternative gene starts and ends, as well as from cases in

which a splice variant contained an exon that overlapped an intron in the corresponding gene

(53–82% of false positives, except for Scripture, 23%). Lastly, programs in general were slightly

33

less accurate in capturing alternative exon ends compared to exon skipping, finding 15–76% of

the true variations with 9–80% precision. The errors here were more evenly split between

paralogs and variants present in the annotation but not sampled by the data (53–69%; except

for iReckon 33%) and from spurious combinations of exon ends. CLASS2 had both a very low

number and a very small percentage of false positives, matched only by Cufflinks, while

detecting 30% more features (>90% more when CLASS2_F0.01 is used). These analyses also

suggest that a simple way in which performance of most programs can be improved is by better

distinguishing between true matches and paralogs, and that further improvements can come

from better distinguishing between intron retention and other types of variation. Note that the

simulated data does not model intronic reads resulted from unprocessed transcripts; the

following sections provide a more realistic, albeit empirical, assessment on real data sets.

Table 1-3 Programs’ performance in capturing alternative splicing events

Program Predicted Correct Recall Precision
F-

value
Artifacts

Exon skipping (SKIP)

Variants+

Paralogs

Spurious intron(s)

CLASS 586 537 0.405 0.916 0.561 33 6

CLASS_F0.01 897 783 0.590 0.873 0.704 92 9

Cufflinks 432 406 0.306 0.940 0.462 20 2

Cufflinks_F0.01 1142 782 0.589 0.685 0.634 311 32

IsoCEM 940 496 0.374 0.528 0.438 380 33

Scripture 1724 1045 0.787 0.606 0.685 558 74

iReckon 1186 251 0.189 0.212 0.200 781 49

34

SLIDE 3022 311 0.234 0.103 0.143 618 2083

Intron retention (IR)

Variants+

Paralogs

Spurious

intron(s)

Mis-

classified

CLASS 176 51 0.276 0.290 0.283 17 12 52+41

CLASS_F0.01 331 80 0.432 0.242 0.310 44 57 83+63

Cufflinks 150 38 0.205 0.253 0.227 19 13 43+50

Cufflinks_F0.01 319 68 0.368 0.213 0.270 50 41 89+61

IsoCEM 205 18 0.097 0.088 0.092 25 61 48+51

Scripture 388 97 0.524 0.250 0.339 104 119 49+18

iReckon 818 18 0.097 0.022 0.036 116 56 392+204

SLIDE 0 0 0 0 0 0 0 0

Alternative exon ends (AE)

Variants+

Paralogs

Spurious

intron(s)

Spurious

combin.

CLASS 496 369 0.363 0.744 0.488 62 4 61

CLASS_F0.01 831 551 0.542 0.663 0.597 169 11 100

Cufflinks 367 293 0.288 0.798 0.424 39 5 30

Cufflinks_F0.01 977 488 0.480 0.499 0.490 326 35 123

IsoCEM 761 223 0.219 0.293 0.251 372 40 126

Scripture 3,196 767 0.755 0.240 0.364 1656 197 576

iReckon 1,721 150 0.148 0.087 0.110 512 50 1009

SLIDE 0 0 0 0 0 0 0 0

(Programs were evaluated for their ability to detect 1327 exon skipping (SKIP), 185 intron
retention (IR) and 1016 alternative exon end (AE) events present in the simulated data. Incorrect
predictions were analyzed to determine classes of artifacts. Artifacts due to paralogs and splice

35

variants of the genes and transcripts in the sample were determined by comparison against
events extracted from the full set of GENCODE annotations. The remaining events were

searched for spurious introns and for class-specific error patterns, due to mis-classification of
alternative first and terminal exons, or of reads from overlapping exons within the same or a

different gene (IR), and to spurious combinations of exon start and exon end (AE).)

1.3.2 Comparative evaluation on real data for different sequencing strategies

To assess the performance of programs on real data, we applied them to two large RNA-seq

data sets. A lymphocyte sample from an individual free of neuropsychiatric disease was

sequenced using two different library preparation strategies, as part of a twin study. In the first

method, polyA-selected RNA was sequenced on an Illumina HiSeq2000 instrument to produce

roughly 183 million 100 bp paired-end reads. This data set provides a good illustration of a

typical RNA-seq analysis experiment, for which most programs are currently optimized. The

second library was generated from the same lymphocyte sample by rRNA-depleting the total

RNA, and sequenced to generate 317 million paired-end reads. Mapping all reads to the

genome with Tophat2 produced roughly 170 million and 240 million read alignments,

respectively, but comparatively a larger fraction (46% versus 7%) in the latter sample was in

intronic reads.

Comparison on the polyA-selected data set

Because the current human genome annotation is inherently incomplete, while also including

genes and isoforms not expressed in the sample, it is not possible to determine the true

sensitivity and precision of any analysis tool on real data. Nevertheless, we deem consistency

with the reference annotation, in particular for sensitivity, as a good indicator of a program's

performance. Using a non-redundant set of GENCODE and RefSeq transcript models as

reference, we compare the output of the six programs against the reference annotations.

36

Filtering out single exon assemblies, most of which are biological or computational artifacts,

significantly increased the precision of Cufflinks and IsoCEM, whereas there was very little

effect on the other programs.

Programs detected between 25–38% of the reference exons and 25–42% of the reference

introns, but could only fully reconstruct a small fraction (4–9%; 7000–16 000) of the annotated

transcripts. This is not unexpected, since only a subset of the reference annotations will be

present in any given sample, but the small numbers make it difficult to differentiate among

programs and determine the significance. To better assess the relative performance, we

designate one method as reference and determine for each of the others the relative change in

the number of transcripts found (Figure 1-7A, top). We chose Cufflinks as reference, because in

our earlier testing on simulated data it was the most accurate among the reference programs.

37

Figure 1-7 Relative performance of programs on real data

(All values are relative to Cufflinks. (A) Performance on two real RNA-seq data sets from
lymphocytes from the same individual: a polyA-selected data set (top), and an rRNA-depleted
data set (bottom). (B) Performance with very deep sequencing data sets: the ENCODE IMR90

cell line, cytosol sample (top); same cell line, nucleus sample. For a program P, the relative
performance improvement for recall is Delta_recall(P) = [TP(P) – TP(Cufflinks)]/TP(Cufflinks)],

and similarly for precision. The value for Cufflinks (reference) is 0.)

With the exception of isoCEM, programs find 21–48% more transcripts than Cufflinks, with

iReckon and CLASS2_F0.01 reconstructing the largest numbers of reference transcripts.

Cufflinks has the best precision again, followed very closely by iReckon and CLASS2. (Note that

true ‘precision’ is impossible to assess, as ‘false positives’ could in fact represent true splice

isoforms, not found in the reference annotation.) Overall, CLASS2 and CLASS2_F0.01 perform

the best among de novo assemblers and offer the best tradeoff between sensitivity and

precision, as measured by the F-value. When all programs are considered, iReckon appears to

38

perform the best; however, its performance is likely biased by the fact that it used as input the

very set of gene annotations we now use for evaluation. When adjusting for paralog and

spurious splice variant inflation, CLASS2 and CLASS2_F0.01 are the only two programs to exhibit

positive cumulative gains in combined sensitivity and ‘precision’ (26% and 41%, respectively,

more reference transcripts found compared to Cufflinks, at comparable or slightly lower

precision). In conclusion, while Cufflinks appears to be the most precise of the programs for this

type of data, CLASS2 is just as precise while more sensitive, and both CLASS2 and CLASS2_F0.01

offer more accuracy in combined sensitivity and precision.

Comparison on the rRNA-depleted data set

We repeated the analysis on the rRNA-depleted RNA sample. Surprisingly, both Cufflinks and

IsoCEM performed very poorly, finding only a small subset of reference features; we suspect

the reason is that both employ a local intronic ‘noise’ filter at the individual intron level,

whereas other programs characterize ‘noise’ at gene (iReckon, CLASS2) and/or genome level

(Scripture, CLASS2). Rankings for other programs were similar to those for the polyA+ data

(Figure 1-7A, bottom). Although this data set does not fit the characteristics of the simulated

data, which was modeled after the polyA-selected RNA sample preparation, we again

conjecture that a large portion of iReckon's performance is in fact due to over-counting of

paralogs and alternative exon combinations toward the true matches. CLASS2 and

CLASS2_F0.01 are robust with the intronic noise levels and produce reliable gene models,

having the best accuracy among de novo assemblers. In particular, they can reconstruct 2.5

times as many transcripts as Cufflinks. An example illustrating the programs’ performance at

the UBR4-CAPZB locus is shown in Figure 1-8.

39

Figure 1-8 Illustration of program output at the UBR4-CAPZB gene locus (lymphocyte, rRNA-
depleted sample)

(IsoCEM and Cufflinks fail to identify full-length transcripts models, and are confounded by
intronic noise (red circle).)

Validation of predicted intron retention events

Intron retention has recently been shown to play a part as a regulatory mechanism in cellular

differentiation and tumor-suppressor inactivation [26, 27]. Yet, intron retention events are

difficult to identify from RNA-seq data and are likely under-represented in the gene annotation

databases. To illustrate the ability of CLASS2 to identify novel alternative splicing events, we

performed PCR validation on two intron retention events detected from the PBL RNA-seq data

by CLASS2 and were not found by any of the other programs: the 304 bp chr12:1 908 861–1 909

166 intron at the CACNA2D4 (Calcium channel voltage-dependent Alpha 2/Delta subunit 4)

gene locus, and the 888 bp chr12:9 985 010–9 985 899 intron within the KLRF1 (Killer cell lectin-

Like receptor subfamily F, member 1) gene. Human blood cDNA and genomic DNA were

amplified with primer sets targeting intron retention events in the two genes (Figure 1-9). The

primers were designed to span a nearby exon–intron junction to demonstrate the intron

retention event occurred in a spliced mRNA transcript. Strong PCR products of the expected

40

size were observed in cDNA but not genomic DNA. The cDNA PCR product was then cloned and

sequenced to demonstrate the retention of the intron. Integration with other data sets in the

UCSC Genome Browser shows supporting evidence from one mRNA (accession: BX537436) for

CACNA2D4, but no evidence was previously available for KLRF1, therefore demonstrating the

power of the approach.

Figure 1-9 PCR validation of CLASS2 output

((A) PCR validation strategy: blue squares represent annotated exons, the red rectangle
represents the identified intron retention event, and the blue lines with arrowheads represent

introns. Green arrows denote the location of the PCR primers. Human blood cDNA and genomic

41

DNA were amplified with primer sets targeting intron retention events in (B) CACNA2D4 and (D)
KLRF1 genes. For each primer set, a strong PCR product of the expected size was observed in
cDNA but not genomic DNA. The sequences of the PCR reactions for (C) CACNA2D4 and (E)

KLRF1, labeled ‘YourSeq’ in the figure, were aligned against the human genome using the UCSC
Genome Browser.)

Performance of programs on very deep sequencing data sets

The fast and cost-effective RNA-seq technology has led to a steady increase in the data size and

depth of sequencing, enabling detailed alternative splicing studies. To tackle very large data

sets, some programs focus on determining the major isoforms and therefore provide a limited

view of the splicing repertoire in a sample, whereas others simply cannot handle the

combinatorial explosion. To assess the potential for discovering splicing variation from deep

sequencing data sets, we applied all programs to two very large data sets produced by the

ENCODE project [28, 29]. The IMR90 lung fibroblast cell line was sequenced at great depth in

three separate surveys, of the whole cell, the cytosolic and the nuclear fractions. Two replicates

were run for each fraction, which can be used in our evaluation to assess the accuracy of the

predicted features by testing their reproducibility in multiple samples. To reduce the run time,

below we restricted our accuracy analyses to chromosome 1. Even so, SLIDE was prohibitively

slow and was excluded from the analysis. Summary results of programs are listed separately

(Table 1-4).

With >300 million reads, the ENCODE IMR90 data sets are among the most deeply sequenced

to date and are expected to sample RNA biotypes not found in the reference annotations.

Therefore, true accuracy (especially precision) is not possible to assess since novel splice

variants will be counted as false positives. Nevertheless, we again judge concordance with

annotated features (introns and full transcripts) as indicative of sensitivity and leverage the

42

reproducibility of features across the six samples to better estimate the programs’

performance.

When considering the goal of reconstructing full transcripts, iReckon has seemingly the best

performance, as it identified the largest number of transcripts present in the existing

annotations (Figure 1-7B). Again, however, these results should be considered with caution

given the large inflation from variants and paralogs observed with simulated data. Excluding

iReckon, both CLASS2 and CLASS2_F0.01 reconstruct the largest number of annotated

transcripts in both the cytosol and the nucleus samples, 60–90% (77–103% nucleus) more than

Cufflinks and 15–43% (30–49% nucleus) more than the best of the programs, while also having

higher or comparable ‘precision’.

We separately evaluated the programs’ accuracy in capturing deeper splicing variation, in

particular novel variation, using splice junctions (introns) as surrogates (Table 1-4). CLASS2 and

CLASS2_F0.01 find by far the most known introns, 8% and 11% more than the best of the other

programs on the cytosolic sample, and 22% and 37% more on the nucleus sample. When

including in the reference those novel introns that are reproducible in at least two data sets,

CLASS2_F0.01 remained the most sensitive, followed by CLASS2 and Scripture, at very high

precision (>97% for cytosol and >95% for nucleus).

Table 1-4 Performance of programs on the ENCODE IMR90 data

Program Transcripts Introns

Predicted

Match

R P

Predicted

Match R P

Cytosol

43

CLASS2 3029 1053 0.068 0.348 12 662
12 557

(11
996)

0.378
(0.361)

0.968
(0.947)

CLASS2_F0.01 3836 1183 0.076 0.308 13 413
13 253

(12
327)

0.399
(0.371)

0.988
(0.919)

Cufflinks 2508 621 0.040 0.248 10 420
10 372

(10
109)

0.312
(0.304)

0.995
(0.970)

Cufflinks_F0.0
1

3458 719 0.046 0.208 11 725
11 564

(10
779)

0.348
(0.325)

0.986
(0.919)

IsoCEM 2479 722 0.047 0.291 11 483
11 297

(10
617)

0.340
(0.320)

0.984
(0.925)

Scripture 14 621 971 0.063 0.066 13 820
12 751

(11
149)

0.384
(0.336)

0.923
(0.807)

iReckon 4512 1730 0.112 0.383 11 724
11 477

(10
552)

0.346
(0.318)

0.979
(0.900)

Nucleus

CLASS2 6084 992 0.064 0.163 16 391
15 765

(12
862)

0.475
(0.418)

0.962
(0.846)

CLASS2_F0.01 10 216 1141 0.074 0.11 18 610
17 699

(14
539)

0.532
(0.438)

0.950
(0.781)

Cufflinks 2714 561 0.036 0.207 11 255
11 079

(10
576)

0.334
(0.319)

0.984
(0.940)

Cufflinks_F0.0
1

6085 789 0.051 0.13 16 884
16 064

(13
568)

0.484
(0.409)

0.951
(0.804)

IsoCEM 2236 277 0.018 0.124 9604
8737

(7576)

0.263
(0.228)

0.910
(0.789)

Scripture 45 247 764 0.049 0.017 18 048
13 910

(10
188)

0.419
(0.307)

0.771
(0.564)

iReckon 5769 1539
0.099

0.267

10 162

9474
(8232)

0.285
(0.248)

0.932
(0.810)

44

(Features (full-transcripts and introns) matching known and/or high-confidence novel
annotations. GENCODE v.17 chromosome 1 annotation contains 15 493 transcripts and 33 202

introns. R = (recall) = Match/Annotations, P = (precision) = Match/Predicted.)

Lastly, CLASS2 completed the task in roughly 30 min for the chromosome 1 of the cytosol

sample and was comparable in speed with the fastest of the programs (Table 1-5). As a practical

matter, for increased efficiency CLASS2_F0.01 can be run first to report a comprehensive set of

transcripts, and the output can be filtered using various ‘-F’ parameters (minimum fraction of

reported isoforms’ abundance from that of the most expressed isoform) to produce

increasingly more precise subsets, at the cost of finding fewer transcripts. Therefore, results for

CLASS2 with multiple settings can be obtained in roughly the same time as a single run.

Table 1-5 Running times of transcript assembly algorithms

Program/

Data set

Time (wall clock)

Sim

PBL
polyA+

PBL
rRNA-

IMR90
Cytosol
(chr1)

IMR90
Nucleus
(chr1)

CLASS2 390m 296m 244m 31m 747m

Cufflinks 488m 1679m 4245m 84m 548m

isoCEM 168m 169m 225m 18m 67m

iReckon 6097m 5696m 17481m Na Na

SLIDE ~1.5 weeks Na Na Na Na

Scripture 1039m 1262m 1574m 27m 75m

(Run times for CLASS2 and CLASS2_F0.01 are largely the same, since the algorithm first detects
a comprehensive set of transcripts and then applies the expression cutoff to select a subset. Run

times for iReckon included the time for internally re-mapping the reads to the genome with
bwa, and were excluded. All times measured on a Unix machine with 512 GB RAM and 2100

MHz CPU, single-threaded. Memory usage for CLASS2 for all tasks was <3 GB RAM. PBL =
Peripheral Blood Lymphocytes.)

45

De novo annotation of a newly sequenced organism

Next generation sequencing has significantly accelerated the pace at which new genomes are

being produced. Annotation projects for these genomes are increasingly relying on fast and low

cost RNA-seq resources. The choice of RNA-seq transcript assembler here is critical; for

instance, since annotation-based programs are not designed to identify novel genes, de novo

methods are the most productive. To illustrate CLASS2's ability to annotate new genomes, we

apply it to enhance the annotation of the peach genome. With its 226.6 MB of sequence

assembled in 365 scaffolds, the Prunus persica (peach) genome is a good model for future plant

species annotation projects. We use CLASS2 to analyze four RNA-seq data sets sampled from

embryo and cotyledon, fruit, root and leaf of peach tree (PRJNA34817), totaling 164.1 million

75 bp paired-end reads. Preliminary gene annotations are also available, and we use them to

identify novel transcript variants that could be used to enhance the existing annotation.

Following read mapping and assembly, CLASS2 produced between 15 000–27 500 transcript

fragments (transfrags) per sample (Table 1-6). When compared across the four samples, these

amounted to roughly 19 500 transfrags corresponding to existing annotations, but also more

than 1000 new loci, each present in at least two of the samples, and 27 161 novel transcripts of

known genes, representing new splice variants or extensions of the annotated transcripts. In

one example at the ppa023343m gene locus (Figure 1-10A), transfrags assembled from short

reads extended the existing gene model by 10–11 exons and revealed several novel splice

variations. The extended gene encodes a 1016 aa protein that has similarity over its entire

length to importin-11 and importin-11-like proteins in other species (Prunus mume, Vitis

vinifera, Citrus simensis, Fragaria vesca, Theobroma cacao and Glycine max). In another

46

example at the ppa023750 gene locus, transfrags assembled from the four RNA-seq samples

point to additional splice variants, including a novel skipping event of a 39 bp exon located at

scaffold_1:4613746–4613784, and a potential retention of an 84 bp intron

(scaffold_1:4621242–4621327; Figure 1-10B), manifested only in the embryo and cotyledon

sample. The landscape for this gene is also significantly reconfigured, by merging two previously

adjacent genes and by a further extension of its 5’ end. The gene has extensive and close

similarity to predicted proteins in apple, Japanese apricot, orange, and cacao. Lastly, a new

gene locus, located between genes ppa026188m and ppa005862m, and several putative splice

variants discovered with CLASS2 can be seen in Figure 1-10C. Blast searches of the two novel

putative gene sequences found distant homologs elsewhere in the genome, as well as matches

to cytochrome C oxidase subunit 6b protein and to predicted FLX-like proteins in several

Rosaceae species. Both sequences contain long open reading frames (762 bp out of 1347 bp,

and 234 bp out of the 366 bp sequences, respectively) and are strong candidates for novel, not

yet annotated genes.

Table 1-6 Annotation of a newly sequenced organism (peach)

Set Reads Mapped Genes Transcripts Genes Transcripts

 (CLASS2) (CLASS2) (CLASS2_F0.01) (CLASS2_F0.01)

SRR531862 42394368 4E+07 17320 22617 17,322 27,442

SRR531863 41589898 3E+07 16313 20799 16,313 24,614

SRR531864 42341754 3E+07 16320 18,397 16,321 19,816

SRR531865 38883238 2E+07 12083 13,752 12,083 14,935

(Summary of mapping and assembly results are shown for the four RNA-seq samples
(SRR531862 – embryos and cotyledons, SRR531863 – root, SRR531864 – fruit and SRR531865 –
leaf). ‘Mapped’ represents the number of reads mapped with 10 or fewer matches on the peach
genome. The last two columns give the numbers of loci (‘genes’) and transcripts assembled with

CLASS2, using the default and the sensitive (‘-F 0.01’) settings.)

47

Figure 1-10 Refining the peach gene models

48

(CLASS2 transcript predictions for four peach RNA-seq data sets (BioProject ID: PRJNA34817) are
shown in blue, and reference annotations in gold. (A) RNA-seq reads assembled with CLASS2

extend the ppa023342m gene model by 10–11 exons and suggest additional splice variants. The
extended gene model is supported by data in all of the four samples. (B) An extended gene

model and several novel splice variants at the ppa023750m gene locus. The intron bridging the
two existing gene annotations has (18,7,9,8) supporting reads, respectively, in the four samples,

and the last intron is supported by (8,15,6,9) reads. Further, the 39 bp novel exon at
scaffold_1:4613746–4613784 in the SRR531862 sample is alternatively skipped in the reference

annotation, and there is ample intronic read support for a putative 84 bp frame-preserving
intron retention event at scaffold_1: 4621242–4621327. (C) CLASS2 finds novel genes and splice

variants in the intergenic region between annotations ppa026188m and ppa005862m.)

1.4 Conclusions

A wealth of RNA-seq data, from small individual projects to very large-scale systematic

experiments, is making it possible for the first time to catalog alternative splicing variation in

detail in different organisms, tissues, at various developmental stages and stress or disease

states, and in individual cell types. Many computational methods have already been developed

to translate the data into knowledge at the level of genes and transcripts. However, they are

still far from being able to assemble full transcript models with high accuracy [30] and have

limited ability to capture even local splicing variation, including canonical alternative splicing

events. Some classes of events are especially difficult to detect due to artifacts that occur

during data generation and mapping (Figure 1-5), and have not been systematically pursued by

current programs.

We developed a novel splice graph-based algorithm and software tool, CLASS2, with the goal to

assemble likely models of full-length transcripts while capturing local splicing variations with

high accuracy, to allow genome and system-wide alternative splicing analyses. CLASS2 employs

intronic reads and splice junction ‘noise’ models to accurately determine the set of parts,

namely exons and introns, and a novel time and memory efficient dynamic programming

49

algorithm to select a subset of probable transcripts that retain most of the splicing variation in

the sample.

CLASS2 differs technically from existing approaches while promoting alternative splicing

discovery in several ways: (i) it uses an LP-based system to locally predict exon variations, such

as alternative 5’ and 3’ exon ends; (ii) it incorporates a combined gene- and genome-level

model of intronic ‘noise’, to distinguish retained introns; (iii) it models alternative first and last

exons, including the cases when they occur at internal exons; and (iv) it uses an iterative

algorithm and a complex scoring system to select a minimal subset of transcripts that

collectively retain as much splicing variation as possible while explaining all the reads.

CLASS2 also implements several memory and time saving strategies that are critical to its

performance and allow it to run on very deep sequencing data sets without sacrificing accuracy.

These include a smaller LP system formulated on gene regions rather than along the entire

gene, which is both faster and more accurate to solve; clustering reads into classes

(‘constraints’); employing a compact and scalable splice graph representation of genes; and,

last but not least, implementing a new dynamic programming transcript selection algorithm

that avoids enumerating transcripts in complicated graphs, and is memory and space efficient.

As a result, a typical run on an Illumina-generated 200 million paired-end read set requires less

than 3 GB RAM and, when run with multiple threads, takes only a few hours and therefore can

be run on most desktop computers.

In our comparative evaluation of CLASS2 and several state-of-the-art programs, we found

CLASS2 to be significantly more sensitive in capturing alternative splicing variations, at both the

50

level of full transcripts and for local alternative splicing events, at precision higher or

comparable with that of the best program. In particular, it detected almost twice as much

variation as Cufflinks, the most precise of the programs, with only a small decrease in precision.

The evaluation also afforded us a unique view of the strengths and limitations of the different

approaches. For instance, annotation based approaches as employed by SLIDE and iReckon can

detect a larger number of the reference annotations, but are also prone to reporting paralogs

and splice variants not actually present in the sample. This is particularly problematic when

interpreting the programs’ output on real data, where they would be incorrectly labeled as true

matches. The quantity and quality of data can create significant challenges, while library sample

preparation can further introduce biases and significantly alter the characteristics of the data

[31]. In general, we found Cufflinks to be the most precise of the programs but missing

important splice variations, and Scripture to be the most sensitive but imprecise. However,

while different programs may score best by various criteria and for different types of

applications, CLASS2 delivered a consistently good performance for a wide variety of

applications and sequencing strategies. These included surveys of polyA-selected (spliced) RNA,

which are the most frequent among RNA-seq applications, as well as of ribosomal depleted

total RNA, and very deep sequencing experiments to characterize splicing variation, low

expression forms, and novel and cellular fraction-specific RNA biospecies, in great depth.

While the boundary between true and noisy splice variation [32] continues to remain

undefined, making it ever more difficult to determine the extent of splicing variation and

number of isoforms for any given gene, some strategies could help improve the outcome.

Better methods are needed to characterize the various types of artifacts that confound classes

51

of variations, such as alternative polyadenylation or alternative promoter usage and retained

introns. These can entail implementing sequence models of binding sites of regulatory proteins

[33, 34], or incorporating other types of evidence including CAGE tags, DNase-seq or FAIRE-seq

signals, paired-end diTags (PET-seq) [35] and polyA-seq [36] sequences, where available. Also

needed are complete reference data sets on genes or systems that can help evaluate the

performance in an unbiased way, or at the very least better simulation models. The latter

should include realistic models for sequencing artifacts, including intronic reads from

unprocessed pre-mRNA, as well as for the amount and complexity of splicing variation with

increasing sequencing depths, and for different types of RNA-seq experiments. Even further,

accuracy measures are needed to be able to evaluate programs for their ability to reconstruct

splice variations at both global and local levels, including canonical alternative splicing events

and local assemblies. Current evaluation schemes focus on the reconstruction of full-

transcripts, discounting correct partial reconstructions. Lastly, new sequencing technologies or

continuous improvements in the existing ones that extend both read and insert lengths will

provide increasing contiguity, while large and judiciously designed experiments will provide

multiple replicates or concordant data sets that can be analyzed simultaneously [37, 38] to

improve both throughput and accuracy.

Work on this project was supported in part by NSF award ABI-1159078, ABI-1356078 and IOS-

1339134 to L.F., Stanley Medical Research Institute to S.S.. CLASS and CLASS2 are available free

of charge for all and under a GNU GPL license from http://sourceforge.net/projects/Splicebox.

http://sourceforge.net/projects/Splicebox

52

Chapter 2

PsiCLASS: efficient and scalable transcriptome

assembly from multiple RNA-seq samples

2.1 Introduction

RNA sequencing has become the de facto standard in surveying the transcriptome of a cell,

organism or species, to determine the expressed genes and transcripts and their expression

levels, and to enable differential and functional analyses [39, 7]. A crucial step in virtually all

RNA sequencing (RNA-seq) data analyses is assembling the reads into full-length transcripts.

The accuracy of transcript reconstruction is critical for quantification, detection and

characterization of alternative splice variants, and the identification of differences in gene

expression and splicing patterns between tissues, developmental stages, and physiological or

disease states.

Virtually all transcriptomic studies involve multiple samples. The current paradigm is to

assemble the reads in each sample, then merge the partial transcripts (transfrags) across all

samples to create a unified set of meta-annotations [40], which is used as reference for

downstream quantification and differential analyses. Most single-sample assemblers including

Cufflinks [9], isoCEM [11], Scripture [10], Traph [41], CLASS [17], iReckon [12], CIDANE [42],

FlipFlop [43], CLASS2 [44], StringTie [45], Scallop [46] and TransComb [47] build a graph

53

structure from read alignments on the genome, then traverse the graph to select an optimized

set of transcripts, represented as paths. Recent transcript assembly methods including

StringTie, CLASS2 and Scallop have taken great strides towards increasing the accuracy and

efficiency of assembly at single-sample level, and meta-assemblers such as StringTie(ST)-merge

and TACO [40] have led to more robust collections of meta-annotations. Despite these efforts

precision remains low, with less than 40% of the predicted transcripts in a single-sample and

less than 30% of transcripts in meta-annotations representing complete and accurate

reconstructions [40, 30].

We present PsiCLASS, based on a novel approach that simultaneously analyzes multiple RNA-

seq samples, which achieves significantly higher precision at sensitivity comparable to the best

current approaches, and significantly higher overall accuracy in its default setting. PsiCLASS is a

combined assembler and meta-assembler: it reports a set of transcripts for each sample, as well

as a set of meta-annotations obtained by combining the individual samples’ outputs. PsiCLASS

starts by selecting a set of high-confidence introns and subexons at each locus, using novel

statistical models of introns and intronic read levels. It then builds a unified subexon splice

graph that is used within a dynamic programming optimization procedure to select a

representative set of transcripts in each sample (See 2.2 and Figure 2-1 for details). Lastly,

PsiCLASS extracts a subset of meta-annotations from the aggregated transcript sets by voting.

54

Figure 2-1 Overview of the PsiCLASS algorithm

(Step 1. Build sample-level subexon graphs from aligned reads and splice reads. PsiCLASS builds
a subexon graph for each sample by clustering overlapping read alignments into regions,

dividing regions into subexons at splice junctions (inferred from spliced reads), and connecting
with edges subexons that are adjacent within the same region or connected by an intron. Step 2.

Build and refine a global subexon graph, by merging sample-level subexon graphs and
employing intron and subexon filters that evaluate information simultaneously across all

samples. Step 3. Enumerate or select a set of candidate transcripts using dynamic programming
across all samples. Step 4. Select a subset of transcripts in each sample, using a greedy strategy

that iteratively select an optimal transcript (with global subexon graph-based dynamic
programming). Step 5. Select a unified set of meta-annotations from among the sample-level

transcripts, with voting.)

2.2 Methods

2.2.1 Algorithm overview

PsiCLASS builds a global subexon graph of a gene and its splice variants from genome-aligned

RNA-seq reads in all input samples. It then traverses the graph to select a subset of the encoded

transcripts in each sample. Lastly, it combines the predicted transcript sets across all samples,

using a voting procedure to select a final set of meta-annotations.

55

2.2.2 Building per sample subexon graphs

PsiCLASS builds a subexon graph for each sample, then combines graphs across all samples to

create a global subexon graph.

In each sample, PsiCLASS uses candidate introns extracted from spliced read alignments to

divide the genome into regions and subexons. A region denotes a maximal contiguous portion

of the genome covered by reads. A subexon is a portion of a region delimited by two

consecutive splice junctions and/or the end(s) of the region. A subexon graph has subexons as

vertices, and two subexons are connected by an edge if they are adjacent in the same region or

connected by an intron. Candidate splice variants are encoded as maximal paths in the subexon

graph.

To build the sample-level subexon graph, PsiCLASS clusters read alignments along the genome

that are co-located and on the same strand. Introns are extracted from spliced alignments and

used to divide the region into subexons. A major confounding factor in determining subexons

from RNA-seq data is the presence of intronic unprocessed RNA (‘noise’). To differentiate

between intronic ‘noise’ and ‘signal’, such as retained introns or alternative 5’ and 3’ gene ends,

PsiCLASS assigns each subexon a score that reflects the probability that it is ‘noise’. In contrast

to current single-sample methods, which simply discard a subexon if it fails sample-wide

cutoffs, PsiCLASS then combines sample-level scores across all samples to determine a final

‘label’ for the subexon and its inclusion in the global subexon graph.

More specifically, PsiCLASS computes the probability that a subexon is due to intronic ‘noise’

using two models: i) the exon-intron coverage ratio, and ii) the intronic read coverage. Let ci be

56

the average read coverage of (intronic) subexon i. In the coverage ratio model, PsiCLASS

calculates a score that is equal to the coverage ratio of this subexon versus its flanking

subexons: 𝑟𝑖 = min (
𝑐𝑖

𝑐𝑖−1
,

𝑐𝑖

𝑐𝑖+1
). The score is fitted to a mixture of two Gamma distributions, one

representing ‘signal’ and one ‘noise’: p(ri) = 𝜋𝐺𝑎𝑚𝑚𝑎𝜃0,𝑘0
(𝑟𝑖) + (1 − 𝜋)𝐺𝑎𝑚𝑚𝑎𝜃1,𝑘1

(𝑟𝑖),

where 𝜋, (1 − 𝜋) are the prior probabilities that an intronic subexon is ‘noise’ or ‘signal’,

respectively, and 𝜃0, 𝑘0, 𝜃1, 𝑘1 are the parameters for the Gamma distributions, calculated with

an expectation maximization (EM) algorithm. With these parameters, PsiCLASS can infer the

probability that subexon i is ‘noise’ according to the Bayes formula: PR(ri) =

𝜋𝐺𝑎𝑚𝑚𝑎𝜃0,𝑘0
(𝑟𝑖)

𝜋𝐺𝑎𝑚𝑚𝑎𝜃0,𝑘0
(𝑟𝑖)+(1−𝜋)𝐺𝑎𝑚𝑚𝑎𝜃1,𝑘1

(𝑟𝑖)
.

The coverage ratio model above is insufficient when the overall gene coverage is low. Hence,

the second model establishes a similar formula for coverage levels, PC(ci), with 𝜃′0, 𝑘′0, 𝜃′1, 𝑘′1

the parameters inferred using coverage. The final per sample subexon score then is P(𝑖) =

max (𝑃𝑅(𝑟𝑖), 𝑃𝐶(𝑐𝑖)).

2.2.3 Building the global subexon graph

PsiCLASS removes likely artifactual introns and intronic ‘noise’ subexons by evaluating evidence

across all sample, and builds a global subexon graph by combining individual samples’ graphs

that share at least one intron.

Multi-sample intron selection. To select a highly accurate set of introns, PsiCLASS assesses each

candidate intron’s read support across all samples. Assume the experiment contains M

samples, and denote each intron by its coordinates in the genome, e.g. (𝑎, 𝑏). Let 𝑆(𝑎, 𝑏)

57

denote the total number of read alignments supporting (𝑎, 𝑏) over all samples. Then the total

number of alignments supporting its splice sites: 𝑆(𝑎) = ∑ 𝑆(𝑎, 𝑦)(𝑎,𝑦) , 𝑆(𝑏) = ∑ 𝑆(𝑥, 𝑏)(𝑥,𝑏) .

PsiCLASS keeps intron (𝑎, 𝑏) iff: i)
𝑆(𝑎,𝑏)

𝑀
≥ 0.5, indicating strong read support in one or a few

samples, or consistent read support across multiple samples; and ii) (𝑎, 𝑏) appears in at least

M0 samples, where M0 = min(⌈
𝑀

50
⌉ (⌊

𝑏−𝑎+1

100,000
⌋ + 1), 𝑀), if |b-a|>=100,000 (long intron).

Condition ii) is intended to filter out long intron-type alignment artifacts due to gene families

and repeats, or from sequencing errors, which can lead to merged genes and transcripts.

Multi-sample subexon selection. To determine a global set of subexons, PsiCLASS combines the

subexon sets of individual samples with some modifications. Where multiple 3’ or 5’-end (i.e.,

subexons not delimited by a splice site) candidate subexons occur with the same endpoint and

potentially different lengths among the samples, PsiCLASS creates a unique subexon with the

median length. Further, to determine intronic subexons, PsiCLASS calculates a final score by

combining all sample scores with a Bayesian formula. More specifically, let 𝜋̅ denote the prior

probability of intronic ‘noise’ in the global model, calculated as the average of the mixture

coefficients of the samples. Then the subexon score: Pn(noise|data) =

𝜋̅P(𝑑𝑎𝑡𝑎 | 𝑛𝑜𝑖𝑠𝑒)

𝜋̅P(𝑑𝑎𝑡𝑎 | 𝑛𝑜𝑖𝑠𝑒)+(1−𝜋̅)𝑃(𝑑𝑎𝑡𝑎 | 𝑟𝑒𝑎𝑙)
 reflects the probability that the subexon is ‘noise’, where ‘data’

is the observed information such as the coverage in each sample. We assume the samples are

independent, hence P(data | noise) = ∏ 𝐺0
(𝑠)(𝑖)𝑀

𝑠=1 , where s=1, ..., M denotes the sample.

Here, 𝐺0
(𝑠)(𝑖) is 𝐺𝑎𝑚𝑚𝑎

𝜃0
(𝑠)

,𝑘0
(𝑠)(𝑟𝑖

(𝑠)
) if the ratio model is used for subexon i in sample s, and

58

𝐺𝑎𝑚𝑚𝑎
𝜃′0

(𝑠)
,𝑘′0

(𝑠)(𝑐𝑖
(𝑠)

) if the coverage model is employed. Similarly, P(data | real) =

∏ 𝐺1
(𝑠)(𝑖)𝑀

𝑠=1 . In the end, the subexon is retained if it passes a pre-defined threshold.

2.2.4 Transcript selection

Candidate transcript models are represented as maximal paths in the global subexon graph,

from a node with no incoming edges (source) to a node with no outgoing edges (sink). Since the

graph generally encodes a much larger number of transcripts than is biologically possible,

PsiCLASS identifies and selects a subset of transcripts that can explain all contiguity constraints

from spliced reads and paired-reads. PsiCLASS first predicts a set of transcripts for each sample,

using a graph-based dynamic programming algorithm with the global subexon graph and the

sample specific alignment data, then combines the individual samples’ transcript sets and

selects a subset of meta-annotations by voting.

To predict a set of transcripts for each sample, PsiCLASS employs a SET_COVER framework and

dynamic programming algorithms similar to its predecessor CLASS2 (Chapter 1), adapted for

subexon graphs.

SET_COVER formalism

 We define a constraint as a cluster of read alignments with the same subexon pattern. Like

CLASS2, PsiCLASS uses constraints to decrease the memory usage while preserving the

structural and contiguity information contained in the full set of reads. For a given graph G, let

C = {c1, …, cm} denote the set of constraints and T = {t1, …, tn} the set of candidate transcripts,

encoded in the graph. Given a constraint ci, its abundance ai = a(ci) defined as the number of

supporting reads (or read pairs) normalized by the number of possible start positions of the

59

reads within the constraint’s subexons. To reduce the transcript selection problem to

SET_COVER, we view each candidate transcript tj as the set of constraints that are compatible

with its exon-intron structure: C(tj) = {c1, … ,cnj}, where ci ~ tj . In the simplest formulation, the

goal then is to select a minimal (parsimonious) subset of transcripts that satisfies all constraints.

More realistically, to account for the different abundance of constraints, we define a

transcript’s abundance as the minimum abundance among its set of constraints: Aj = min { ai |

ci~tj }. The goal then becomes to determine a subset of transcripts that most closely explain the

constraints and their abundance levels. PsiCLASS uses a greedy approximation framework to

address this problem, iteratively selecting the transcript that covers the largest number of

constraints weighted by the constraints’ abundance, then adjusting the constraints’ abundance

levels before the next iteration:

while ({non-depleted constraints} ≠ ∅):

(1) Choose transcript 𝑡 ∈ 𝑇 that maximizes |𝐶(𝑡)|(1 +
𝐴𝑡

𝐴
)

(2) Update the constraints’ abundance:

𝑥 = min
𝑐∈𝐶(𝑡)

{𝑎(𝑐)}

 For each 𝑐 ∈ 𝐶(𝑡):

 𝑎(𝑐) = 𝑎(𝑐) − 𝑥

 if 𝑎(𝑐) ≤ 0, mark constraint c as depleted.

Implementation: PsiCLASS implements the procedure above in two steps. First, it determines

the candidate set of transcripts T, using either enumeration (for graphs with <200,000

transcripts) or a variation of the splice-graph dynamic programming algorithm in Chapter 1 that

60

considers all reads single-end, for fast processing. Once the candidate transcript set T is

determined, PsiCLASS applies the greedy SET_COVER approximation algorithm above.

For completeness, we include a brief description of the dynamic programming optimization

procedure. The algorithm considers all subpaths L, and recursively calculates the maximum

number of constraints f(L) for substranscripts starting with subpath L:

f(L) = maxL’ { f(L’) + c(L,L’), if L’ exists; c(L), if L’ does not exist },

where: i) L’ is a subpath immediately following L so that all constraints compatible with L end

before or within L’; ii) c(L,L’) is the number of constraints starting in and (partially) compatible

with L and L’, and compatible with the concatenated subpath L.L′; and iii) c(L) is the number of

constraints covered by subtranscript L. To take into account the abundance levels in the

optimization process, at each sweep of the graph the algorithm excludes subpaths that cover

constraints with abundance below a fixed value x; hence, the dynamic programming algorithm

will return the best transcript with abundance greater than x (x-abundance transcript). With

this modification, at each graph sweep the selection process selects an x-abundance transcript,

starting with x0 = 0 (thus guaranteeing that such a transcript exists), and each selected

transcript’s abundance value used as lower bound for the selection process at the following

step: 0=x0<x1<x2<…<xm, until no transcript can be found. The optimal transcript then is among

those selected by the sweeps. More details, along with proof of correctness for the algorithm,

can be found in Chapter 1 .

61

2.2.5 Selecting a global set of transcripts

PsiCLASS selects a set of meta-annotations from the individual samples’ sets of transcripts by

voting. By default, at each locus a transcript is selected if it appears in a minimum number of

samples, either pre-set or that can be specified by the user. As different voting parameter

values might work best for data with specific characteristics, as exemplified by our liver RNA-

seq collection, the user can adjust or re-calibrate the voting parameters post-assembly, starting

from the full sets of transcripts of individual samples.

2.2.6 Performance evaluation scheme

Sequence data

We evaluated PsiCLASS and other methods on both simulated and real data. We generated 25

RNA-seq samples, with ~85 million 100 bp paired-end reads, using the software Polyester [48]

with the default gene and transcript distribution models and randomly sampling 10% of the

transcripts (at 13,912 genes) from the human GENCODE v.27 [22] gene annotations. Reads

were aligned to the reference genome hg38 separately with HISAT2 [1] and STAR [2].

Chromosome 2 alignments were extracted and used in the assembly and evaluations. Human

liver RNA-seq samples were obtained from the Stanley Foundation and previously sequenced

by Dr. Sabunciyan’s lab. Total RNA was isolated using the Qiagen RNeasy kit and libraries were

constructed using the Illumina TruSeq Stranded Total RNA kit for Human/Mouse/Rat following

the manufacturers recommended protocol. The resulting stranded, rRNA depleted liver libraries

were sequenced on an Illumina HiSeq 2000 instrument. 667 RNA-seq samples from human

lymphoblastoid cell lines part of the GEUVADIS population variation project were publicly

62

available from ArrayExpress (accession: E-GEUV-6), and mouse hippocampus RNA-seq data

were those reported in [49] and available from GenBank (ProjectID: PREJB18790).

Evaluation metrics

Once the reads were mapped to the genome, we used StringTie v.1.3.3.b and Scallop v.0.10.2

to assemble them into transcripts, for each individual sample. Transcript sets for all samples in

an experiment were then merged with StringTie(ST)-merge and TACO v.0.7.3. For PsiCLASS

v.1.0.0, reads were assembled simultaneously across all samples. To evaluate the accuracy of

transcript assembly, we employed standard sensitivity (Sn) and precision (Pr) measures and

evaluation criteria to assess the accuracy of transcript reconstructions by comparison to a gold

reference. The reference annotation for the simulation experiment consisted of the set of

transcripts simulated by Polyster, whereas experiments on real data used the human GENCODE

v.27 and mouse RefSeq gene annotations. A predicted transcript is deemed a true positive (TP)

iff its intron chain fully matches that of a gold reference transcript. If N is the number of

predicted transcripts, M be the number of ground truth transcripts, then Sn = TP/M and Pr =

TP/N [11].

2.3 Results

2.3.1 Performance on simulated data

We compared PsiCLASS with the best current approaches, namely StringTie and Scallop at the

single-sample level, and the combinations of StringTie with ST-merge and Scallop with TACO, at

the meta-assembly level. (Other combinations are shown in Figure 2-2). We first applied the

methods to 25 RNA-seq samples simulated with Polyester [48], where reads were aligned with

63

two methods, Hisat2 [1] and STAR [2]. Performance was slightly better for all programs when

reads were aligned with Hisat2 (Figure 2-3), therefore we chose this alignment method for the

rest of the analyses.

Figure 2-2 Performance evaluation of combination methods at the level of meta-annotations on
simulated data

(Methods tested include three single-sample assemblers (Cufflinks, StringTie and Scallop), two
meta-assemblers (TACO and StringTie(ST)-merge), and two multi-sample integrated methods

(PsiCLASS and ISP), where TACO and ST-merge were used to aggregate the outputs from
individual samples into a unified set of meta-annotations. Below, the shape of the point

represents the tool used, and the color represents the aggregation method. For PsiCLASS, the
red curve shows the variation in performance as the voting cutoff varies between 1 to 25 (right
to left). PsiCLASS produces the highest precision regardless of the meta-assembly method used

(TACO, ST-merge or the PsiCLASS3 built-in voting), and its sensitivity is comparable with the best
of the other methods.)

64

Figure 2-3 Comparison of transcript assembly methods at the single sample-level, and with
different alignment tools

(Each point represents the performance of the stated method on one of the 25 simulated
samples. The shape of the mark represents the transcript assembly method (StringTie, Scallop

and PsiCLASS), and the color indicates the RNA-seq alignment tool (Hisat2 and STAR). All
methods perform similarly with the two alignment methods, with Hisat2 leading to a slight
increase in performance. When assembly methods are compared, PsiCLASS using a global

subexon graph leads to improved accuracy at single-sample level, with the highest per sample
average precision, and sensitivity slightly higher than StringTie’s (by 3%) and comparable to

Scallop’s (within 1.5%).)

On the simulated data, PsiCLASS with default voting achieved 72.1% precision, which is 16.1%

higher than the StringTie system and 29.5% higher than Scallop with TACO, whereas sensitivity

for all programs was roughly 50% (Figure 2-4). Even at the individual sample level, PsiCLASS had

both the highest precision and the highest sensitivity: 75.8% precision on average, compared to

70.8% for StringTie and 62.9% for Scallop, and 47.8% sensitivity compared to 41.7% for

65

StringTie and 46.2% for Scallop. Precision values for both StringTie and Scallop, but to a lesser

extent for PsiCLASS, dropped significantly after aggregation, hence PsiCLASS produces more

consistent sets of transcripts between individual samples and the set of meta-annotations.

Figure 2-4 Performance evaluation of methods on 25 simulated data sets

(Sensitivity (recall) and precision values for PsiCLASS, StringTie and Scallop at the level of
individual samples are shown in boxed plots, and meta-annotations resulted from aggregation

(with PsiCLASS voting, ST-merge and TACO) are shown with colored shapes.)

Performance by transcript expression level

We further investigated the performance of methods based on the transcripts’ expression

levels (Figure 2-5). Simulated transcripts were divided into low (463 transcripts; Fragments Per

66

Kilobase (FPK)<30), medium (658 transcripts; 30<=FPK<500) and high (322 transcripts;

FPK>=500) according to the pre-defined expression levels. PsiCLASS with voting reconstructs

the largest fraction of highly-expressed transcripts, 82.4%, and all three programs recover ~60%

of the medium–expressed ones. Scallop shows good sensitivity in detecting low expression

features, confirming prior reports [46], followed closely by StringTie. Overall, however, the

sensitivity of all programs on this class of transcripts is very low, between 10% and 20%. Note

that, because a reconstructed transcript’s expression level may fall in another class than the

predefined one, precision cannot be rigorously evaluated.

Figure 2-5 Performance evaluation of methods on 25 simulated sets, genes grouped by
abundance

Low

R
e

c
a
ll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

M edim um

R
e

c
a
ll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

PsiCLASS

StringTie

Scallop+TACO

H igh

R
e

c
a
ll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

67

2.3.2 Performance on real RNA-seq data

We next assessed the performance on two representative RNA-seq data sets, generated with

two different library preparation protocols: 25 randomly selected sets from polyA-selected

lymphoblastoid samples from the GEUVADIS population variation project, and 73 rRNA-

depleted total RNA libraries from postmortem human liver samples with funding from the

Stanley Medical Research Institute. With the default voting setting, for the GEUVADIS set

PsiCLASS’ precision is 83% and 104% higher than StringTie’s and Scallop plus TACO’s,

respectively, whereas sensitivity is 2.4% and 15.2% lower (Figure 2-6). Notably, precision

remains higher as the voting cutoff varies (Figure 2-8A), exceeding StringTie’s by 83% and

Scallop’s by 66% even as PsiCLASS matches or approaches each method’s sensitivity setting.

Similarly, advantages of the multi-sample approach are seen for the liver total RNA data set,

with 257% and 331% improvements in precision, albeit at 19% and 36% lower sensitivity. In

such cases, the default voting setting may not present the best tradeoff, and as PsiCLASS’

precision remains significantly higher than that of its counterparts the user may choose a

different cutoff (Figure 2-8B). For instance, when sensitivity is matched to that of StringTie and

Scallop, PsiCLASS maintains a 149% and 45% increase in precision over these systems,

respectively (Figure 2-7).

68

Figure 2-6 Performance evaluation of methods on 25 GEUVADIS samples (poly-adenylated RNA)

(Additional symbols mark sensitivity and precision values for PsiCLASS when tuned to match or
approach the sensitivity of its competitor)

69

Figure 2-7 Performance evaluation of methods on 73 liver RNA-seq samples (rRNA-depleted
total RNA)

70

Figure 2-8 Performance evaluation of methods on real data

((A) all method combinations, meta-annotations, Geuvadis data (25 samples); (B) all method
combinations, meta-annotations, total RNA from human liver (73 samples); and (C) all method

combinations, meta-annotations, mouse hippocampus samples, healthy and with induced
epileptic seizures (44 samples). In (A-C), the voting cutoff for the minimum number of samples
that a PsiCLASS3-reported transcript must appear in is varied between 1 and 25 (Geuvadis), 1
and 73 (human liver), and 1-44 (mouse hippocampi), respectively (shown left-to-right, as red

curves).)

71

Performance on two-condition data

Most RNA-seq analyses are aimed at determining differences between conditions. To explore

the robustness of PsiCLASS when combining multi-condition samples, we applied it and the

other methods to RNA-seq samples from hippocampi of normal mice (24 samples) and mice

with induced epileptic seizures (20 samples) [49]. The diagrams in Figure 2-9 indicate that at the

level of individual samples PsiCLASS has slightly higher sensitivity than StringTie, by 6% on

average, but mildly lower than Scallop, by 9%. However, after voting, PsiCLASS’ precision at the

level of meta-annotations is 62.1% and 72.4% higher than the other programs’, along with a

slight increase in sensitivity, therefore recommending it as the overall best performer. Thus,

PsiCLASS can be effectively and more reliably used on the aggregate set of samples in a two-

condition comparison.

72

Figure 2-9 Performance evaluation of methods on 44 hippocampus samples from healthy and
epileptic mice

2.3.3 Scalability

We next investigated the utility of the multi-sample approach for small data collections,

including single samples. Table 2-1 shows the results for all methods on sets of 2, 3, 5 and 10

samples from our simulated set, averaged over five independent trials, and for single-sample

sets, averaged over all possible 25 trials. The multi-sample approach has clear benefits in all

cases, most notably for precision (71-81% for PsiCLASS, compared to 64-71% for StringTie, and

57-63% for Scallop with TACO), at comparable levels of sensitivity (42-50% for all three

73

methods). Remarkably, PsiCLASS ranks slightly ahead of both StringTie and Scallop as single-

sample assemblers, and therefore can be gainfully used even within the conventional approach.

Table 2-1 Performance of methods on experiments with small numbers of samples

 Recall (%) Precision (%)

Sample Size PsiCLASS StringTie Scallop PsiCLASS StringTie Scallop

1 44.7 41.7 46.2 73.8 70.8 62.9

2 42.5 43.8 43.3 78.5 69.1 57.0

3 42.3 45.2 45.0 81.1 68.5 56.7

5 47.0 46.6 46.2 77.6 66.7 56.7

10 50.4 48.0 48.1 71.6 64.0 56.5

As the emerging landscape of RNA sequencing foresees increasingly larger data sets from large

patient cohorts and population variation studies, we aimed to assess the suitability of the multi-

sample approach as the data set increases. We evaluated program performance on increasingly

larger subsets of RNA-seq samples from the GEUVADIS population variation project, up to the

full set of 667 samples (Figure 2-10). All methods show improvements in sensitivity as the

number of samples increases, but while PsiCLASS and Scallop show further slight gains after 20-

50 samples, the sensitivity of StringTie drops. Precision drops markedly for both Scallop and

StringTie, to less than 35% for 50 samples and below 20% for the full set of samples. In sharp

contrast, PsiCLASS’s sensitivity and precision remain almost constant with more than 10

samples, demonstrating the robustness of this approach. Also, with sensitivity comparable to

StringTie’s and precision (75%) twice as high as that of the other two systems when the data set

exceeds 20-50 samples, PsiCLASS is unequivocally the best suited for handling large RNA-seq

collections. Lastly, PsiCLASS took only 9 hours with 24 threads to process the 667 samples on an

3.0 GHz Intel “Ivy Bridge” Xeon server, amounting to less than 1 minute per sample.

74

Figure 2-10 Performance evaluation of methods on 667 GEUVADIS samples

2.4 Conclusions

Determining the set of expressed genes and transcripts in an RNA-seq experiment is critical for

subsequent quantification and differential expression and splicing analyses. The conventional

approach to process each sample separately and then merge the sets of transcripts to create a

unified set of annotations has limitations, in particular low precision. We present PsiCLASS, a

transcript assembler and meta-assembler that simultaneously analyzes all samples in an RNA-

seq experiment. It employs global subexon graphs along with statistical models of intronic read

coverage, dynamic programming optimization algorithms, and voting for transcript selection.

PsiCLASS has significantly higher precision at similar sensitivity when compared to current best

methods; precision remains consistently high, over 55%, when tested on data from a variety of

experimental conditions. PsiCLASS is scalable, efficient and robust with large numbers of RNA-

2 5 10 20 50 100 200 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Sample Size

P
re

c
is

io
n

R
e

c
a

ll

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

PsiCLASS

StringTie

Scallop+TACO

Precision

Recall

75

seq samples, thus providing a highly effective paradigm for large-scale analyses of collections of

hundreds and thousands of samples.

Development and evaluations were performed on the Maryland Advanced Research Computing

Center (MARCC). Work was supported in part by NSF grants ABI-1356078 and IOS-1339134 to

L.F., and by NIH grant R01GM12453 to L.F. and Kathleen Burns. S.S was supported by a grant

from the Stanley Medical Research Institute. PsiCLASS is available free of charge from

https://github.com/splicebox/PsiCLASS .

https://github.com/splicebox/PsiCLASS

76

Chapter 3

Lighter: fast and memory-efficient error

correction without counting

3.1 Introduction

The cost and throughput of DNA sequencing have improved rapidly in the past several years

[50], with recent advances reducing the cost of sequencing a single human genome at 30-fold

coverage to around $1,000 [51]. With these advances has come an explosion of new software

for analyzing large sequencing datasets. Sequencing error correction is a basic need for many of

these tools. Removing errors can also improve the accuracy, speed and memory-efficiency of

downstream tools, particularly for de novo assemblers based on De Bruijn graphs [52, 53].

To be useful in practice, error correction software must make economical use of time and

memory even when input datasets are large (many billions of reads) and when the genome

under study is also large (billions of nucleotides). Several methods have been proposed,

covering a wide tradeoff space between accuracy, speed and memory- and storage-efficiency.

SHREC [54] and HiTEC [55] build a suffix index of the input reads and locate errors by finding

instances where a substring is followed by a character less often than expected. Coral [56] and

ECHO [57] find overlaps among reads and use the resulting multiple alignments to detect and

77

correct errors. Reptile [58] and Hammer [59] detect and correct errors by examining each k-

mer’s neighborhood in the dataset’s k-mer Hamming graph.

The most practical and widely used error correction methods descend from the spectral

alignment approach introduced in the earliest De Bruijn graph based assemblers [52, 53]. These

methods count the number of times each k-mer occurs (its multiplicity) in the input reads, then

apply a threshold such that k-mers with multiplicity exceeding the threshold are considered

solid. These k-mers are unlikely to have been altered by sequencing errors. k-mers with low

multiplicity (weak k-mers) are systematically edited into high-multiplicity k-mers using a

dynamic-programming solution to the spectral alignment problem [52, 53] or, more often, a

fast heuristic approximation. Quake [60], one of the most widely used error correction tools,

uses a hash-based k-mer counter called Jellyfish [61] to determine which k-mers are correct.

CUDA-EC [62] was the first to use a Bloom filter as a space-efficient alternative to hash tables

for counting k-mers and for representing the set of solid k-mers. More recent tools, such as

Musket [63] and BLESS [64], use a combination of Bloom filters and hash tables to count k-mers

or to represent the set of solid k-mers.

Lighter (LIGHTweight ERror corrector) is also in the family of spectral alignment methods, but

differs from previous approaches in that it avoids counting k-mers. Rather than count k-mers,

Lighter samples k-mers randomly, storing the sample in a Bloom filter. Lighter then uses a

simple test applied to each position of each read to compile a set of solid k-mers, stored in a

second Bloom filter. These two Bloom filters are the only sizable data structures used by

Lighter.

78

A crucial advantage is that Lighter’s parameters can be set such that memory footprint and

accuracy are near constant with respect to depth of sequencing. That is, no matter how deep

the coverage, Lighter can allocate the same sized Bloom filters and achieve nearly the same: (a)

Bloom filter occupancy, (b) Bloom filter false positive rate and (c) error correction accuracy.

Lighter does this without using any disk space or other secondary memory. This is in contrast to

BLESS and Quake/Jellyfish, which use secondary memory to store some or all of the k-mer

counts.

Lighter’s accuracy is comparable to competing tools. We show this both in simulation

experiments where false positives and false negatives can be measured, and in real-world

experiments where read alignment scores and assembly statistics can be measured. Lighter is

also very simple and fast, faster than all other tools tried in our experiments. These advantages

make Lighter quite practical compared to previous counting-based approaches, all of which

require an amount of memory or secondary storage that increases with depth of coverage.

Lighter is free open-source software available from https://github.com/mourisl/Lighter.

3.2 Methods

Lighter’s workflow is illustrated in Figure 3-1. Lighter makes three passes over the input reads.

The first pass obtains a sample of the k-mers present in the input reads, storing the sample in

Bloom filter A. The second pass uses Bloom filter A to identify solid k-mers, which it stores in

Bloom filter B. The third pass uses Bloom filter B and a greedy procedure to correct errors in the

input reads.

79

Figure 3-1 The framework of Lighter

3.2.1 Bloom filter

A Bloom filter [65] is a compact probabilistic data structure representing a set. It consists of an

array of m bits, each initialized to 0. To add an item o, h independent hash functions

H0(o),H1(o),…,Hh-1(o) are calculated. Each maps o to an integer in [0, m) and the corresponding h

array bits are set to 1. To test if item q is a member, the same hash functions are applied to q. q

is a member if all corresponding bits are set to 1. A false positive occurs when the

corresponding bits are set to 1 ‘by coincidence’, that is, because of items besides q that were

added previously. Assuming the hash functions map items to bit array elements with equal

probability, the Bloom filter’s false positive rate is approximately (1 − 𝑒−ℎ
𝑛

𝑚
)

ℎ

, where n is the

number of distinct items added, which we call the cardinality. Given n, which is usually

determined by the dataset, m and h can be adjusted to achieve a desired false positive rate.

80

Lower false positive rates can come at a cost, since greater values of m require more memory

and greater values of h require more hash function calculations. Many variations on Bloom

filters have been proposed that additionally permit compression of the filter, storage of count

data, representation of maps in addition to sets, etc. [66]. Bloom filters and variants thereon

have been applied in various bioinformatics settings, including assembly [67][19], compression

[68], k-mer counting [69] and error correction [62].

By way of contrast, another way to represent a set is with a hash table. Hash tables do not yield

false positives, but Bloom filters are far smaller. Whereas a Bloom filter is an array of bits, a

hash table is an array of buckets, each large enough to store a pointer, key or both. If chaining is

used, lists associated with buckets incur additional overhead. While the Bloom filter’s small size

comes at the expense of false positives, these can be tolerated in many settings including in

error correction.

Lighter’s efficiency depends on the efficiency of the Bloom filter implementation. For a

standard Bloom filter, each of the h hash functions could map item o to any element of the bit

array. The bit array will often be very large, much larger than the processor cache. Thus, each

probe into the bit array is likely to cause a cache miss. Putze et al [70] propose a blocked Bloom

filter. Given a block size b, the first hash function H0(o) is used to select a size-b block of

consecutive positions in the bit array. Then, H1(o),...,Hh−1(o) map o onto elements of that block.

When b is less than or equal to the size of a cache line, the h accesses will tend to cause only

one or two cache misses, rather than approximately h cache misses. The drawback is that h and

m must be somewhat larger to achieve the same false positive rate (FPR) as a corresponding

standard Bloom filter. To estimate the FPR of the blocked Bloom filter, we can consider each of

81

the possible m − b + 1 blocks. For the i-th block, the FPR within the block is (b′i/b)h, where b′i is

the number of bits set to 1 in block i. So the overall FPR is:

∑ (
𝑏𝑖

′

𝑏
)

ℎ

𝑖

𝑚 − 𝑏 + 1

Putze et al also propose a pattern-blocked Bloom filter [70], where the difference is that instead

of updating the h positions in the block separately, we pre-compute a list of patterns where

each pattern is a bitmask describing how to update h positions in a block with a few bitwise

operations. To perform such an update we first find the appropriate pattern using hash

function, then update the corresponding positions simultaneously. In Lighter, 64-bit integers

are used to form the mask. For example, if b = 256, the pattern is made up of 4 64-bit integers,

and we can update in 4 64-bit operations, regardless of h. The FPR formula above still roughly

estimates the FPR for the pattern-blocked bloom filter.

In our method, the items to be stored in the Bloom filters are k-mers. Because we would like to

treat genome strands equivalently for counting purposes, we will always canonicalize a k-mer

before adding it to or using it to query a Bloom filter. A canonicalized k-mer is either the k-mer

itself or its reverse complement, whichever is lexicographically prior.

3.2.2 Sequencing model

We use a simple model to describe the sequencing process and Lighter’s subsampling. The

model resembles one suggested previously [71]. Let K be the total number of k-mers obtained

by the sequencer. We say a k-mer is incorrect if its sequence has been altered by one or more

sequencing errors. Otherwise it is correct. Let ε be the fraction of k-mers that are incorrect. We

82

assume ε does not vary with the depth of sequencing. The sequencer obtains correct k-mers by

sampling independently and uniformly from k-mers in the genome. Let the number of k-mers in

the genome be G, and assume all are distinct. If κ c is a random variable for the multiplicity of a

correct k-mer in the input, κc is binomial with success probability 1/G and number of trials

(1−ε)K:

κc∼Binom((1−ε)K,1/G).

Since the number of trials is large and the success probability is small, the binomial is well

approximated by a Poisson:

κc∼Pois(K(1−ε)/G).

A sequenced k-mer survives subsampling with probability α. If κ’c is a random variable for the

number of times a correct k-mer appears in the subsample:

κ’c ∼Binom((1−ε)K,α/G),

which is approximately Pois(αK(1−ε)/G).

We model incorrect k-mers similarly. The sequencer obtains incorrect k-mers by sampling

independently and uniformly from k-mers ‘close to’ a k-mer in the genome. We might define

these as the set of all k-mers with low but non-zero Hamming distance from some genomic k-

mer. If κe is a random variable for the multiplicity of an incorrect k-mer, κe is binomial with

success probability 1/H and number of trials εK: κe ∼Binom(ε K,1/H), which is approximately

Pois(Kε/H). It is safe to assume H≫G. κ’e∼Pois(α K ε/H) is a random variable for the number of

times an incorrect k-mer appears in the subsample.

83

Others have noted that, given a dataset with deep and uniform coverage, incorrect k-mers

occur rarely while correct k-mers occur many times, proportionally to coverage [52, 53].

3.2.3 Stages of the method

First pass

In the first pass, Lighter examines each k-mer of each read. With probability 1−α, the k-mer is

ignored. k-mers containing ambiguous nucleotides (e.g. ‘N’) are also ignored. Otherwise, the k-

mer is canonicalized and added to Bloom filter A.

Say a distinct k-mer a occurs a total of Na times in the dataset. If none of the Na occurrences

survive subsampling, the k-mer is never added to A and A’s cardinality is reduced by one. Thus,

reducing α can in turn reduce A’s cardinality. Because correct k-mers are more numerous,

incorrect k-mers tend to be discarded from A before correct k-mers as α decreases.

The subsampling fraction α is set by the user. We suggest adjusting α in inverse proportion to

depth of sequencing, for reasons discussed below. For experiments described here, we set

α=0.1 when the average coverage is 70-fold. That is, we set α to 0.1(70/C), where C is average

coverage.

Second pass

A read position is overlapped by up to x k-mers, 1≤x≤k, where x depends on how close the

position is to either end of the read. For a position altered by sequencing error, the overlapping

k-mers are all incorrect and are unlikely to appear in A. We apply a threshold such that if the

number of k-mers overlapping the position and appearing in Bloom filter A is less than the

threshold, we say the position is untrusted. Otherwise we say it is trusted. Each instance where

84

the threshold is applied is called a test case. When one or more of the x k-mers involved in two

test cases differ, we say the test cases are distinct.

Let P*(α) be the probability an incorrect k-mer appears in A, taking the Bloom filter’s false

positive rate into account. If random variable Be,x represents the number of k-mers appearing in

A for an untrusted position overlapped by x k-mers:

Be,x∼Binom(x,P*(α)).

We define thresholds yx, for each x in [1,k]. yx is the minimum integer such that:

P(Be,x≤yx−1)≥0.995.

Ignoring false positives for now, we model the probability of a sequenced k-mer having been

added to A as:

𝑃(𝛼) = 1 − (1 − 𝛼)𝑓(𝛼).

We define:

f(α)=max{2,0.2/α}.

That is, we assume the multiplicity of a weak k-mer is at most f(α), which will often be a

conservative assumption, especially for small α. It is also possible to define P(α) in terms of

random variables κe and κe‘, but we avoid this here for simplicity.

A property of this threshold is that when α is small:

𝑃(𝛼/𝑧) = 1 − (1 −
𝛼

𝑧
)

0.2𝑧/𝛼

≈ 1 − (1 − 𝛼)0.2/𝛼 = 𝑃(𝛼),

85

where z is a constant greater than 1 and we use the fact that:

(1−α/z)z≈1−α.

For P∗(α), we additionally take A’s false positive rate into account. If the false positive rate is β,

then:

P∗(α)=P(α)+β−βP(α).

Once all positions in a read have been marked trusted or untrusted using the threshold, we find

all instances where k trusted positions appear consecutively. The k-mer made up by those

positions is added to Bloom filter B.

Third pass

In the third pass, Lighter applies a simple, greedy error correction procedure like that used in

BLESS [64]. A read r of length |r|, contains |r|−k+1 k-mers. ki denotes the k-mer starting at read

position i, 1≤i≤|r|−k+1. We first identify the longest stretch of consecutive k-mers in the read

that appear in Bloom filter B. Let kb and ke be the k-mers at the left and right extremes of the

stretch. If e<|r|−k+1, we examine successive k-mers to the right starting at ke+1. For a k-mer ki

that does not appear in B, we assume the nucleotide at offset i+k−1 is incorrect. We consider all

possible ways of substituting for the incorrect nucleotide. For each substitution, we count how

many consecutive k-mers starting with ki appear in Bloom filter B after making the substitution.

We pick the substitution that creates the longest stretch of consecutive k-mers in B. The

procedure is illustrated in Figure 3-2.

86

Figure 3-2 An example of the greedy error correction procedure. k-mer CCGATTC does not
appear in Bloom filter B, so we attempt to substitute a different nucleotide for the C shown in
red. We select A since it yields the longest stretch of consecutive k-mers that appear in Bloom

filter B.

If more than one candidate substitution is equally good (i.e. results in the same number of

consecutive k-mers from B), we call position i+k−1 ambiguous and make no attempt to correct

it. The procedure then resumes starting at ki+k, or the procedure ends if the read is too short to

contain k-mer ki+k.

When errors are located near to the end of a read, the stretches of consecutive k-mers used to

prioritize substitutions are short. For example, if the error is at the very last position of the

read, we must choose a substation on the basis of just one k-mer: the rightmost k-mer. This

very often results in a tie, and no correction. Lighter avoids many of these ties by considering k-

mers that extend beyond the end of the read. Lighter extends the read base by base. For the

new base beyond the read, Lighter tries all the four nucleotides in the order of “A”, “C”, “G”,

“T”, and uses the first nucleotide creating a k-mer that can be found in Bloom filter A. This

procedure is terminated until all the nucleotides fails or the distance to the candidate

substitution’s position is larger than k-1. Then we choose the candidate substitution with the

longest extension based on this greedy procedure. As a result, we can solve some ties that are

more likely to happened near the end of a read due to insufficient extension.

87

For better precision, Lighter also limits the corrections that can be made in any window of size k

in a read. The default limit is 4, and it is configurable. Corrections at positions with an ‘N’

contribute 0, and corrections at low-quality bases (defined in the Quality score section below)

contribute 0.5 toward this limit. All other positions contribute 1.

3.2.4 Scaling with depth of sequencing

Lighter’s accuracy can be made near constant as the depth of sequencing K increases and its

memory footprint is held constant. This is accomplished by holding αK constant, i.e., by

adjusting α in inverse proportion to K. This is illustrated in Table 3-1 and (Rows labeled k show

the k-mer sizes selected for each tool and dataset)

Table 3-2.

Table 3-1 Accuracy measures for datasets simulated with Mason with various sequencing
depths and error rates

Coverage 35× 70× 140×

Error rate 1% 3% 1% 3% 1% 3%

α for Lighter 0.2 0.2 0.1 0.1 0.05 0.05

Recall

Quake 89.68 48.77 89.64 48.82 89.59 48.78

SOAPec 57.71 38 57.57 37.71 57.09 36.76

Musket 93.75 92.62 93.73 92.64 93.73 92.63

Bless 99.81 99.33 99.82 99.58 99.82 99.58

Lighter 99.87 98.53 99.84 98.72 99.86 98.78

Precision

Quake 99.99 99.99 99.99 99.99 99.99 99.99

SOAPec 99.99 100 99.99 99.99 99.99 99.99

Musket 99.99 99.93 99.99 99.93 99.99 99.93

Bless 99.73 98.86 99.73 99.35 99.72 99.36

Lighter 99.98 99.96 99.98 99.96 99.98 99.96

F-score

Quake 94.55 65.56 94.54 65.61 94.51 65.57

SOAPec 73.18 55.07 73.07 54.77 72.68 53.75

Musket 96.77 96.14 96.76 96.15 96.76 96.15

Bless 99.77 99.09 99.77 99.47 99.77 99.47

Lighter 99.93 99.24 99.91 99.33 99.92 99.36

88

Gain

Quake 89.67 48.76 89.64 48.82 89.59 48.78

SOAPec 57.7 38 57.57 37.71 57.09 36.75

Musket 93.74 92.56 93.72 92.58 93.72 92.57

Bless 99.54 98.19 99.54 98.93 99.54 98.94

Lighter 99.85 98.49 99.81 98.68 99.84 98.73

k

Quake 17 17 17 17 17 17

SOAPec 17 17 17 17 17 17

Musket 23 19 23 19 23 19

Bless 31 23 31 23 31 23

Lighter 23 19 23 19 23 19

(Rows labeled k show the k-mer sizes selected for each tool and dataset)

Table 3-2 Occupancy (fraction of bits set) for Bloom filters A and B for various coverages

Coverage α Bloom A (%) Bloom B (%)

20× 0.35 53.082 34.037

35× 0.2 53.085 34.398

70× 0.1 53.082 34.429

140× 0.05 53.094 34.411

280× 0.025 53.088 34.419

Here is the formal argument on why Lighter’s accuracy is near-constant as the depth of

sequencing K increases and its memory footprint is held constant. The basic idea is that as K

increases, we adjust α in inverse proportion. That is, we hold αK constant. For concreteness,

consider two scenarios: scenario I, where the total number of k-mers is K1 and subsampling

fraction is α1, and scenario II where the number is K2 = zK1 and subsampling fraction is α2 = α1/z.

Contents of Bloom filter A

 The occupancy of Bloom filter A, as well as the fraction of correct k-mers in A, are

approximately the same in both scenarios. This follows from the fact that κ‘c ∼ Pois(αK(1 −

ε)/G), κ’e ∼ Pois(αKε/H), and αK, ε, G, and H are constant across scenarios. This is also

supported by our experiments, as seen in the main body of the manuscript. Because the

occupancy does not change, we can hold the Bloom filter’s size constant while achieving the

same false positive rate.

89

Accuracy of trusted / untrusted classifications

Also, if a read position and its neighbors within k − 1 positions on either side are error-free,

then the probability it will be called trusted does not change between scenarios. We mentioned

that when α is small, P(α1) ≈ P(α1/z) = P(α2). We also showed that the false positive rate of the

bloom filter is approximately constant between scenarios, so P*(α1) ≈ P*(α1/z) = P*(α2). Thus,

the thresholds yx will also remain unchanged. pc = (p(κ′c ≥ 1))/(p(κc ≥ 1)) is the probability a

correct k-mer is in the subsample given that it was sequenced. pc = (1 − e−
α(1−ϵ)K

G)/(1 −

e−
(1−ϵ)K

G) ≈ 1 − e−
α(1−ϵ)K

G , since (1 − ε)K/G is large. pc is constant across scenarios since αK, ε,

and G are constant. Since pc is constant, the parameters of the Be,x distribution are constant and

the probability a correct position will be called trusted is also constant.

Now we consider an incorrect read position. We ignore false positives from Bloom filter A for

now. pe = p(κe
′ ≥ 1)/p(κe ≥ 1) = (1 − e−

αϵK

H)/(1 − e−
ϵK

H) is the probability an incorrect

k-mer is in the subsample given that it was sequenced. Since εK/H is close to 0, e−εK/H ≈ 1 − ε

K/H and pe ≈ (αεK/H)/(εK/H) = α. Say an incorrect read position is covered by x k-mers; if Be,x is

a random variable for the number of k-mers overlapping the position that appear in Bloom

filter A, then Be,x ∼ Binom(x,pe) ≈ Binom(x,α). The probability of falsely trusting a position is

therefore: 𝑝(𝐵𝑒,𝑥 ≥ 𝑦𝑥) = ∑ (𝑥
𝑖
)𝑥

𝑖=𝑦𝑥
𝑝𝑒

𝑖 (1 − 𝑝𝑒)𝑥−𝑖 ≈ ∑ (𝑥
𝑖
)𝑥

𝑖=𝑦𝑥
𝛼

𝑖(1 − 𝛼)𝑥−𝑖 . If we omit the (1

− α)x−i term in the sum, what remains is an upper bound, i.e. ∑ (𝑥
𝑖
)𝛼𝑖(1 − 𝛼)𝑥−𝑖x

i=yx
≤

∑ (𝑥
𝑖
)𝛼𝑖x

i=yx
. Since α2 = α1/z, the upper bound in scenario II is lower by a factor of at least 1/z

relative to the upper bound in scenario I. So an upper bound on the probability of labeling an

90

incorrect position as trusted decreases by a factor of at least z. When K increases, the number

of distinct test cases for incorrect positions increases by a factor of at most z. Thus, we expect

the total number incorrect positions labeled as trusted to remain approximately constant.

When α is small, the false positive rate β may dominate the probability pe. In practice,

however, the false positive rate is usually small enough that the probability of a incorrect

position being labeled as trusted due to false positives is extremely low. For example, when k-

mer length k = 17, the false positive rate of Bloom A ≈ 0.004, the threshold y2k−1 = 6, and α =

0.05. In this situation, p(Be,x≥yx) ≈ 5 · 10−11.

The above is not an exhaustive analysis, since we have not examined the case where a read

position is error-free but not all of its neighbors within k−1 positions on either side are error-

free. In this case, whether the threshold is passed depends chiefly on the whereabouts of the

nearby errors.

Contents of Bloom filter B

Given the analysis in the previous section, we expect that the collection of k-mers drawn from

the stretches of trusted positions in the reads will not change much across scenarios and,

therefore, the contents of Bloom filter B will not change much. This conclusion is also

supported by our experiments, as seen in the main body of the manuscript.

91

3.2.5 Quality score

A low base quality value at a certain position can force Lighter to treat that position as

untrusted even if the overlapping k-mers indicate it is trusted. First, Lighter scans the first 1

million reads in the input, recording the quality value at the last position in each read. Lighter

then chooses the fifth-percentile quality value; that is, the value such that 5% of the values are

less than or equal to it, say t1. Using the same idea, we get another fifth-percentile quality

value, say t2, for the first base for the first 1 million reads. When Lighter is deciding whether a

position is trusted, if its quality score is less than or equal to min{t1,t2−1}, then it is called

untrusted regardless of how many of the overlapping k-mers appear in Bloom filter A.

3.2.6 Parallelization

As shown in Figure 3-1, Lighter works in three passes: (1) populating Bloom filter A with a k-mer

subsample, (2) applying the per-position test and populating Bloom filter B with likely correct k-

mers and (3) error correction. For pass 1, because α is usually small, most time is spent

scanning the input reads. Consequently, we found little benefit in parallelizing pass 1. Pass 2 is

parallelized by using concurrent threads to handle subsets of input reads. Because Bloom filter

A is only being queried (not added to), we need not synchronize accesses to A. Accesses to B

are synchronized so that additions of k-mers to B by different threads do not interfere. Since it

is typical for the same correct k-mer to be added repeatedly to B, we can save synchronization

effort by first checking whether the k-mer is already present and adding it (synchronously) only

if necessary. Pass 3 is parallelized by using concurrent threads to handle subsets of the reads;

since Bloom filter B is only being queried, we need not synchronize accesses.

92

3.3 Results

https://github.com/mourisl/Lighter_paper/blob/revision1/README.md describes the exact

command lines used.

3.3.1 Simulated dataset

Accuracy on simulated data

We compared the performance of Lighter v1.0.2 with Quake v0.3 [60], Musket v1.1 [63], BLESS

v0p17 [64] and SOAPec v2.0.1 [72]. We simulated a collection of reads from the reference

genome for the K12 strain of Escherichia coli (NC_000913.2) using Mason v0.1.2 [73]. We

simulated six distinct datasets with 101-bp single-end reads, varying average coverage (35×,

75× and 140×) and average error rate (1% and 3%). For a given error rate e we specify Mason

parameters -qmb -qmb e/2-qme -qme 3e, so that the average error rate is e but errors are

more common toward the 3′ end, as in real datasets.

We then ran all four tools on all six datasets, with results presented in Table 3-1. BLESS was run

with the -notrim option to make the results more comparable. In these comparisons, a true

positive (TP) is an instance where an error is successfully corrected, i.e. with the correct base

substituted. A false positive (FP) is an instance where a spurious substitution is made at an

error-free position. A false negative (FN) is an instance where we either fail to detect an error

or an incorrect base is substituted. As done in previous studies [63], we report the following

summaries:

93

recall=TP/(TP+NP),

precision=TP/(TP+FP),

Fscore=2×recall×precision/(recall+precision) and

gain =(TP−FP)/(TP+FN).

Since these tools are sensitive to the choice of k-mer size, we tried several values for this

parameter (17, 19, 23, 27 and 31) and picked the value yielding the greatest gain in the

accuracy evaluation. The k-mer sizes chosen are shown in the bottom rows of Table 3-1. Note

that SOAPec’s maximum k-mer size is 27. We found that Quake crashed for k-mer sizes 23 and

up.

Unlike the other tools, Quake both trims the untrusted tails of the reads and discards reads it

cannot correct. BLESS also trims some reads (even in -notrim mode), but only a small fraction

(0.1%) of them, which has only a slight effect on results. For these simulation experiments, we

measure precision and recall with respect to all the nucleotides (even the trimmed ones) in all

the reads (even those discarded). This tends to lead to higher precision but lower recall for

Quake relative to the other tools.

Apart from Quake, SOAPec, Musket and Lighter achieve the highest precision. Lighter achieves

the highest recall, F-score and gain in the experiments with 1% error, and is comparable to

BLESS when the error rate is 3%.

For the Mason-simulated 1% error dataset, we found that Lighter’s gain was maximized by

setting the k-mer size to 23. We therefore fix the k-mer size to 23 for subsequent experiments,

except where otherwise noted.

94

Caenorhabditis elegans simulation

We performed a similar accuracy test as in the previous section, but using data simulated from

the larger C. elegans genome, WBcel235 (Table 3-3). We used Mason to simulate a dataset of

101-bp single-end reads with a 1% error rate totaling 35× coverage. We again tried several

values for the k-mer size parameter (19, 23, 27 and 31) and picked the value yielding the

greatest gain in the accuracy evaluation. As for the E. coli experiment, Lighter had the greatest

recall, F-score and gain.

Table 3-3 Simulation results with C. elegans genome

 Quake SOAPec Musket Bless Lighter

Recall 85.7 53.4 90.31 98.99 98.12

Precision 99.82 99.84 99.59 95.64 99.66

F-score 92.22 69.58 94.72 97.29 98.88

Gain 85.55 53.31 89.94 94.48 97.78

k 19 23 27 31 31

Scaling with depth of simulated sequencing

We also used Mason to generate a series of datasets with 1% error, like those used in Table 3-1,

but for 20×, 35×, 70×, 140× and 280× average coverage. We ran Lighter on each and measured

final occupancies (fraction of bits set) for Bloom filters A and B. If our assumptions and scaling

arguments are accurate, we expect the final occupancies of the Bloom filters to remain

approximately constant for relatively high levels of coverage. As seen in Table 3-2, this is indeed

the case.

95

Cardinality of Bloom filter B

We also measured the number of correct k-mers added to table B. We used the Mason dataset

with 70× coverage and 1% error rate. The E. coli genome has 4,564,614 distinct k-mers, and

4,564,569 (99.999%) of them are in table B.

Effect of ploidy on Bloom filter B

We conducted an experiment like that in the previous section but with Mason configured to

simulate reads from a diploid version of the E. coli genome. Specifically, we introduced

heterozygous SNPs at 0.1% of the positions in the reference genome. Mason then sampled

equal numbers of reads from both genomes, making a dataset with 70× average coverage in

total. Of the 214,567 simulated k-mers that overlapped a position with a heterozygous SNP,

table B held 214,545 (99.990%) of them at the end of the run. Thus, Lighter retained in table B

almost the same fraction of the k-mers overlapping heterozygous positions (99.990%) as of the

k-mers overall (99.999%).

Musket and BLESS both infer a threshold for the multiplicity of solid k-mers. In this experiment,

Musket inferred a threshold of 10 and BLESS inferred a threshold of 9. All three tools use a k-

mer size of 23. By counting the multiplicity of the k-mers overlapping heterozygous positions,

we conclude that Musket would classify 214,458 (99.949%) as solid and BLESS would classify

214,557 (99.995%) as solid. So in the diploid case, it seems Lighter’s ability to identify correct k-

mers overlapping heterozygous SNPs is comparable to that of error correctors that are based

on counting.

96

Diploidy is one example of a phenomenon that tends to drive the count distribution for some

correct k-mers (those overlapping heterozygous variants) closer to the count distribution for

incorrect k-mers. In the Discussion section we elaborate on other such phenomena, such as

copy number, sequencing bias and non-uniform coverage.

Effect of varying α

 In a series of experiments, we measured how different settings for the subsampling fraction α

affected Lighter’s accuracy as well as the occupancies of Bloom filters A and B. We still use the

datasets simulated by Mason with 35×, 70× and 140× coverage.

As shown in Figure 3-3 and Figure 3-4, only a fraction of the correct k-mers are added to A

when α is very small, causing many correct read positions to fail the threshold test. Lighter

attempts to ‘correct’ these error-free positions, decreasing accuracy. This also has the effect of

reducing the number of consecutive stretches of k trusted positions in the reads, leading to a

smaller fraction of correct k-mers added to B, and ultimately to lower accuracy. When α grows

too large, the yx thresholds grow to be greater than k, causing all positions to fail the threshold

test, as seen in the right-hand side of Figure 3-4. This also leads to a dramatic drop in accuracy

as seen in Figure 3-3. Between the two extremes, we find a fairly broad range of values for α

(from about 0.15 to 0.3) that yield high accuracy when the error rate is 1% or 3%. The range is

wider when the error rate is lower.

97

Figure 3-3 The effect of α on the accuracy using the simulated 35× dataset

98

Figure 3-4 The effect of α on occupancy of Bloom filters A and B. The effect of α on occupancy of
Bloom filters A and B using simulated 35×, 70× and 140× datasets. The error rate is 1%.

Effect of varying k

A key parameter of Lighter is the k-mer length k. Smaller k yields a higher probability that a k-

mer affected by a sequencing error also appears elsewhere in the genome. For larger k, the

fraction of k-mers that are correct decreases, which could lead to fewer correct k-mers in

Bloom filter A. We measured how different settings for k affect accuracy using the simulated

data with 35× coverage and both 1% and 3% error rates. Results are shown in Figure 3-5.

Accuracy is high for k-mer lengths ranging from about 18 to 30 when the error rate is 1%. But

the recall drops gradually when the error rate is 3%.

99

Figure 3-5 The effect of k -mer length k on accuracy.

3.3.2 Real datasets

Escherichia coli

Next we benchmarked the same error correction tools using a real sequencing dataset, [EMBL-

SRA ERR022075]. This is a deep DNA sequencing dataset of the the K-12 strain of the E. coli

genome. To obtain a level of coverage more reflective of other projects, we randomly

subsampled the reads in the dataset to obtain roughly 75× coverage (approximately 3.5 million

reads) of the E. coli K-12 reference genome. The reads are 100 × 102 bp paired-end reads.

Because BLESS cannot handle paired-end reads where the ends have different lengths, we

truncated the last two bases from the 102-bp end before running our experiments. We again

ran BLESS with the -notrim option.

100

These data are not simulated, so we cannot measure accuracy directly. But we can measure it

indirectly, as other studies have [64], by measuring read alignment statistics before and after

error correction. We use Bowtie2 [74] v2.2.2 with default parameters to align the original reads

and the corrected reads to the E. coli K-12 reference genome. For each error corrector, we

tested different k-mer sizes (17, 19, 23, 27 and 31) and chose the size that yielded the greatest

total number of matching aligned nucleotides. For Quake and BLESS, we use only the reads (and

partial reads) that remained after trimming and discarding for this evaluation. Results are

shown in Table 3-4. Lighter yields the greatest improvement in fraction of reads aligned,

whereas Quake and BLESS yield the greatest improvement in fraction of aligned bases that

match the reference, with Lighter very close behind. As before, Quake is hard to compare to the

other tools because it trims and discards many reads.

Table 3-4 Alignment statistics for the 75× Escherichia coli dataset

 Read level Base level

 k
Mapped

reads
Increase (%)

Matches/aligned
base (%)

Increase
(%)

Original – 3,464,137 – 99.038 –

Quake 19 3,373,498 −2.62 99.659 0.63

SOAPec 17 3,465,819 0.05 99.13 0.09

Musket 17 3,467,875 0.11 99.601 0.57

BLESS 19 3,468,677 0.13 99.666 0.63

Lighter 19 3,478,658 0.42 99.639 0.61

(k column shows k-mer size selected for each tool. First ‘Increase’ column shows percentage
increase in reads aligned. Second ‘Increase’ column shows percentage increase in the fraction of
aligned bases that match the reference genome. The original row is before error correction and

the other rows are after error correction.)

To assess accuracy further, we assembled the reads before and after error correction and

measured relevant assembly statistics using Quast [75]. The corrected reads are those reported

in Table 3-4. We used Velvet 1.2.10 [76] for assembly. Velvet is a De Bruijn graph-based

101

assembler designed for second-generation sequencing reads. A key parameter of Velvet is the

De Bruijn graph’s k-mer length. For each tool we tested different k-mer sizes for Velvet (43, 47,

49, 51, 53, 55, 57, 63 and 67) and chose the one that yielded the greatest NG50. We set the k-

mer sizes of the error correctors to match those selected in the alignment experiment of Table

3-4. As before, we used only the reads (and partial reads) that remained after trimming and

discarding for Quake and BLESS. For each assembly, we then evaluated the assembly’s quality

using Quast, which was configured to discard contigs shorter than 100 bp before calculating

statistics. Results are shown in Table 3-5.

Table 3-5 De novo assembly statistics for the Escherichia coli dataset

 N50 NG50 Edits/100 kbp Misassemblies
Coverage

(%)

Original 94,879 94,879 3.41 0 97.496

Quake 89,470 88,209 11.62 4 97.515

SOAPec 98,111 94,879 3.49 1 97.473

Musket 86,421 86,421 6.45 0 97.53

BLESS 85,486 85,486 3.58 1 97.302

Lighter 105,460 105,460 3.71 1 97.477

N50 is the length such that the total length of the contigs no shorter than the N50 cover at least

half the assembled genome. NG50 is similar, but with the requirement that contigs cover half

the reference genome rather than half the assembled genome. Edits per 100 kbp is the number

of mismatches or indels per 100 kbp when aligning the contigs to the reference genome. A

misassembly is an instance where two adjacent stretches of bases in the assembly align either

to two very distant or to two highly overlapping stretches of the reference genome. The Quast

study defines these metrics in more detail [75].

102

Assemblies produced from reads corrected with the four programs are very similar according to

these measures, with Quake and Lighter yielding the longest contigs and the greatest genome

coverage. Surprisingly, the post-correction assemblies have more differences at nucleotide level

compared to the pre-correction assemblies, perhaps due to spurious corrections.

GAGE human chromosome 14

We also evaluated Lighter’s effect on alignment and assembly using a dataset from the GAGE

project [77]. The dataset consists of real 101 × 101 bp paired-end reads covering human

chromosome 14 to 35× average coverage (approximately 36.5 million reads). For each error

corrector, we tested different k-mer sizes (19, 23, 27 and 31) and chose the size that yielded the

greatest total number of matching aligned nucleotides. For the assembly experiment, we set

the k-mer size for each error corrector to match that selected in the alignment experiment. Also

for each assembly experiment, we tested different k-mer sizes for Velvet (47, 53, 57, 63 and 67)

and chose the one that yielded the greatest NG50.

The effect of error correction on Bowtie 2 alignment statistics are shown in Table 3-6. We used

Bowtie 2 with default parameters to align the reads to an index of the human chromosome 14

sequence of the hg19 build of the human genome. As before, Lighter yields the greatest

improvement in fraction of reads aligned, whereas Quake and BLESS yield the greatest

improvement in fraction of aligned bases that match the reference, with Lighter very close

behind.

Table 3-6 Alignment statistics for the GAGE chromosome 14 dataset

 Read level Base level

103

 k
Mapped

reads
Increase (%)

Matches/aligned
base (%)

Increase
(%)

Original – 35,993,147 – 98.507 –

Quake 19 32,547,091 −9.57 99.845 1.36

SOAPec 19 36,116,405 0.34 98.768 0.26

Musket 19 36,316,699 0.9 99.109 0.61

BLESS 27 36,301,816 0.86 99.411 0.92

Lighter 19 36,320,688 0.91 99.235 0.74

We also tested the effect of error correction on de novo assembly of this dataset using Velvet

for assembly and Quast to evaluate the quality of the assembly. For each tool we tested

different k-mer sizes (19, 23, 27 and 31) and chose the one that yielded the greatest NG50.

Results are shown in Table 3-7. Overall, Lighter’s accuracy on real data is comparable to other

error correction tools, with Lighter and BLESS achieving the greatest N50, NG50 and coverage.

Table 3-7 De novo assembly statistics for the GAGE chromosome 14 dataset

 N50 NG50 Edits/100 kbp Misassemblies
Coverage

(%)

Original 5,290 3,861 139.46 1263 78.778

Quake 4,829 3,520 141.59 1201 78.358

SOAPec 5,653 4,143 127.8 623 79.087

Musket 5,587 4,105 131.17 559 79.175

BLESS 5,898 4,345 128.4 581 79.279

Lighter 5,827 4,280 127.69 618 79.287

Caenorhabditis elegans

Using the same procedure as in the previous section, we measured the effect of error

correction on another large real dataset using the reads from accession [NCBI-SRA SRR065390].

Results are shown in Table 3-8 and Table 3-9. This run contains real 100 × 100 bp paired-end

reads covering the C. elegans genome (WBcel235) to 66× average coverage (approximately 67.6

104

million reads). k-mer sizes for the error correctors and for Velvet were selected in the same way

as for the chromosome 14 experiment. The alignment comparison shows BLESS achieving the

greatest increase in fraction of reads aligned, and BLESS and Quake achieving the greatest

fraction of aligned bases that match the reference, probably due to their trimming policy.

Lighter does the best of the non-trimming tools in the alignment comparison. In the assembly

comparison, Lighter and SOAPec achieve the greatest N50, NG50 and coverage.

Table 3-8 Alignment statistics for the Caenorhabditis elegans dataset

 Read level Base level

 k
Mapped

reads
Increase (%)

Matches/aligned
base (%)

Increase
(%)

Original – 63,017,855 – 99.048 –

Quake 19 60,469,150 −4.04 99.834 0.79

SOAPec 19 63,032,768 0.02 99.185 0.14

Musket 23 63,060,601 0.07 99.42 0.38

BLESS 31 64,150,807 1.8 99.744 0.7

Lighter 23 63,081,655 0.1 99.469 0.43

Table 3-9 De novo assembly statistics for the Caenorhabditis elegans dataset

 N50 NG50 Edits/100 kbp Misassemblies
Coverage

(%)

Original 17,330 17,317 27.66 441 94.873

Quake 13,887 13,668 27.19 559 94.32

SOAPec 19,369 19,457 25.71 449 95.308

Musket 18,761 18,917 28.02 438 95.288

BLESS 17,673 17,693 29.24 524 94.968

Lighter 19,222 19,333 26.9 434 95.332

105

3.3.3 Speed, space usage, and scalability

We compared Lighter’s peak memory usage, disk usage and running time with those of Quake,

Musket and BLESS. These experiments were run on a computer running Red Hat Linux 4.1.2-52

with 48 2.1-GHz AMD Opteron processors and 512 GB memory. The input datasets are the

same simulated E. coli datasets with 1% error rate discussed previously, plus the GAGE human

chromosome 14 dataset and C. elegans dataset.

The space usage is shown in Table 3-10. BLESS and Lighter achieve constant memory footprint

across sequencing depths. While Musket uses less memory than Quake, it uses more than

either BLESS or Lighter. BLESS achieves constant memory footprint across sequencing depths,

but consumes more disk space for datasets with deeper sequencing. Note that BLESS can be

configured to trade off between peak memory footprint and the number of temporary files it

creates. Lighter’s algorithm uses no disk space. Lighter’s only sizable data structures are the two

Bloom filters, which reside in memory.

Table 3-10 Memory usage (peak resident memory) and disk usage of error correction tools

 35× 70× 140× chr14
Caenorhabditi

s elegans

 Mem Disk Mem Disk Mem Disk Mem Disk Mem Disk

Quake
2.8
GB

3.3
GB

7.1
GB

6.0
GB

14 GB 12 GB 48 GB 57 GB 86 GB 99 GB

Musket
119
MB

0
165
MB

0
225
MB

0
1.4
GB

0
2.5
GB

0

BLESS 11 MB
918
MB

11 MB
1.8
GB

13 MB
3.5
GB

138
MB

15 GB
175
MB

36 GB

Lighter 35 MB 0 35 MB 0 35 MB 0
514
MB

0
514
MB

0

(Mem: memory)

106

To assess scalability, we also compared running times for Quake, Musket and Lighter using

different numbers of threads. For these experiments we used the simulated E. coli dataset with

70× coverage and 1% error. Results are shown in Figure 3-6. Note that Musket requires at least

two threads due to its master–slave design. BLESS can only be run with one thread and its

running time is 1,812 s, which is slower than Quake.

Figure 3-6 Error correctors' running times. The running times for Quake, Musket and Lighter on
70× simulated dataset with increasing number of threads.

3.4 Conclusions

At Lighter’s core is a method for obtaining a set of correct k-mers from a large collection of

sequencing reads. Unlike previous methods, Lighter does this without counting k-mers. By

setting its parameters appropriately, its memory usage and accuracy can be held almost

107

constant with respect to depth of sequencing. It is also quite fast and memory-efficient, and

requires no temporary disk space.

Though we demonstrate Lighter in the context of sequencing error correction, Lighter’s

counting-free approach could be applied in other situations where a collection of solid k-mers is

desired. For example, one tool for scaling metagenome sequence assembly uses a Bloom filter

populated with solid k-mers as a memory-efficient, probabilistic representation of a De Bruijn

graph [67]. Other tools use counting Bloom filters [78, 79] or the related CountMin sketch [80]

to represent De Bruijn graphs for compression [68] or digital normalization and related tasks

[81]. We expect ideas from Lighter could be useful in reducing the memory footprint of these

and other tools.

An important question is how Lighter’s performance can be improved for datasets where

coverage is significantly non-uniform, and where solid k-mers can therefore have widely varying

abundance. In practice, datasets have non-uniform coverage because of ploidy, repeats and

sequencing bias. Also, assays such as exome and RNA sequencing intentionally sample non-

uniformly from the genome. Even in standard whole-genome DNA sequencing of a diploid

individual, k-mers overlapping heterozygous variants will be about half as abundant as k-mers

overlapping only homozygous variants. Lighter’s ability to classify the heterozygous k-mers

deteriorates as a result, as shown in the section Effect of ploidy on Bloom filter B above.

Hammer [59] relaxes the uniformity-of-coverage assumption and favors corrections that

increase the multiplicity of a k-mer, without using a threshold to separate solid from non-solid

k-mers. A question for future work is whether something similar can be accomplished in

108

Lighter’s non-counting regime, or whether some counting (e.g. with a counting Bloom filter [78,

79] or CountMin sketch [80]) is necessary.

A related issue is systematically biased sequencing errors, i.e. errors that correlate with the

sequence context. One study demonstrates this bias in data from the Illumina GA II sequencer

[82]. This bias boosts the multiplicity of some incorrect k-mers, causing problems for error

correction tools. For Lighter, increased multiplicity of incorrect k-mers causes them to appear

more often (and spuriously) in Bloom filters A and/or B, ultimately decreasing accuracy. It has

also been shown that these errors tend to have low base quality and tend to occur only on one

strand or the other [82]. Lighter’s policy of using a fifth-percentile threshold to classify low-

quality positions as untrusted will help in some cases. However, because Lighter canonicalizes

k-mers (as do many other error correctors), it loses information about whether an error tends

to occur on one strand or the other.

Lighter has three parameters the user must specify: the k-mer length k, the genome length G

and the subsampling fraction α. While the performance of Lighter is not overly sensitive to

these parameters (see Figure 3-3 and Figure 3-5), it is not desirable to leave these settings to

the user. In the future, we plan to extend Lighter to estimate G, along with appropriate values

for k and α, from the input reads. This could be accomplished with methods proposed in the

KmerGenie [83] and KmerStream [71] studies.

Work on this project was supported in part by NSF grant ABI-1159078 to L.F. and IIS-1349906

and Sloan Research Fellowship to B.L.. Lighter is free open-source software released under the

109

GNU GPL license, and has been compiled and tested on Linux, Mac OS X and Windows

computers. The software and its source are available from https://github.com/mourisl/Lighter.

https://github.com/mourisl/Lighter

110

Chapter 4

Rcorrector: efficient and accurate error

correction for Illumina RNA-seq reads

4.1 Introduction

Next-generation sequencing of cellular RNA (RNA-seq) has become the foundation of virtually

every transcriptomic analysis. The large number of reads generated from a single sample allow

researchers to study the genes being expressed and estimate their expression levels, and to

discover alternative splicing and other sequence variations. However, biases and errors

introduced at various stages during the experiment, in particular sequencing errors, can have a

significant impact on bioinformatics analyses.

Systematic error correction of whole-genome sequencing (WGS) reads was proven to increase

the quality of alignment and assembly (Chapter 3), two critical steps in analyzing next-

generation sequencing data. There are currently several error correction methods for WGS

reads, classified into three categories [84]. K-spectrum based methods, which are the most

popular of the three, classify a k-mer as trusted or untrusted depending on whether the

number of occurrences in the input reads exceeds a given threshold. Then, for each read, low-

frequency (untrusted) k-mers are converted into high-frequency (trusted) ones. Candidate k-

mers are stored in a data structure such as a Hamming graph, which connects k-mers within a

111

fixed distance, or a Bloom filter. Methods in this category include Quake [60], Hammer [59],

Musket [63], Bless [64], BFC [85], and Lighter [86]. Suffix tree and suffix array based methods

build a data structure from the input reads, and replace a substring in a read if its number of

occurrences falls below that expected given a probabilistic model. These methods, which

include Shrec [54], Hybrid-Shrec [87] and HiTEC [55], can handle multiple k-mer sizes. Lastly,

multiple sequence alignment (MSA) based methods such as Coral [56] and SEECER [88] cluster

reads that share k-mers to create a local vicinity and a multiple alignment, and use the

consensus sequence as a guide to correct the reads.

RNA-seq sequence data differ from WGS data in several critical ways. First, while read coverage

in WGS data is largely uniform across the genome, genes and transcripts in an RNA-seq

experiment have different expression levels. Consequently, even low-frequency k-mers may be

correct, belonging to a homolog or a splice isoform. Second, alternative splicing events can

create multiple correct k-mers at the event boundaries, a phenomenon that occurs only at

repeat regions for WGS reads. In both of these cases, the reads would be erroneously

converted by a WGS correction method. Hence, error correctors for WGS reads are generally

not well suited for RNA-seq sequences [89].

There is so far only one other tool designed specifically for RNA-seq error correction, called

SEECER [88], based on the MSA approach. Given a read, SEECER attempts to determine its

context (overlapping reads from the same transcript), characterized by a hidden Markov model,

and to use this to identify and correct errors. One significant drawback, however, is the large

amount of memory needed to index the reads. Herein we propose a novel k-spectrum based

method, Rcorrector (RNA-seq error CORRECTOR), for RNA-seq data. Rcorrector uses a flexible k-

112

mer count threshold, computing a different threshold for a k-mer within each read, to account

for different transcript and gene expression levels. It also allows for multiple k-mer choices at

any position in the read. Rcorrector only stores k-mers that appear more than once in the read

set, which makes it scalable with large datasets. Accurate and efficient, Rcorrector is uniquely

suited to datasets from species with large and complex genomes and transcriptomes, such as

human, without requiring significant hardware resources. Rcorrector can also be applied to

other types of data with non-uniform coverage such as single-cell sequencing, as we will show

later. In the following sections we present the algorithm, first, followed by an evaluation of this

and other methods on both simulated and real data. In particular, we illustrate and compare

the impact of several error correctors for two popular bioinformatics applications, namely,

alignment and assembly of reads.

4.2 Methods

4.2.1 De Bruijn graph

In a first preprocessing stage, Rcorrector builds a De Bruijn graph of all k-mers that appear more

than once in the input reads, together with their counts. To do so, Rcorrector uses Jellyfish2

[61] to build a Bloom counter that detects k-mers occurring multiple times, and then stores

these in a hash table. Intuitively, the graph encodes all transcripts (full or partial) that can be

assembled from the input reads. At run time, for each read the algorithm finds the closest path

in the graph, corresponding to its transcript of origin, which it then uses to correct the read.

113

4.2.2 Read error correction: the path search algorithm

As with any k-spectrum method, Rcorrector distinguishes among solid and non-solid k-mers as

the basis for its correction algorithm. A solid k-mer is one that passes a given count threshold

and therefore can be trusted to be correct. Rcorrector uses a flexible threshold for solid k-mers,

which is calculated for each k-mer within each read sequence. At run time, Rcorrector scans the

read sequence and, at each position, decides whether the next k-mer and each of its

alternatives are solid and therefore represent valid continuations of the path. The path with the

smallest number of differences from the read sequence, representing the likely transcript of

origin, is then used to correct k-mers in the original read.

More formally, let u be a k-mer in read r and S(u,c) denote the successor k-mer for u when

appending nucleotide c, with c∊{A,C,G,T}. For example, in Figure 4-1, S(AAGT,C)=AGTC, k=4. Let

M(u) denote the multiplicity of k-mer u. To find a start node in the graph from which to search

for a valid path, Rcorrector scans the read to identify a stretch of two or more consecutive solid

k-mers, and marks these bases as solid. Starting from the longest stretch of solid bases, it

proceeds in both directions, one base at a time as described below. By symmetry, we only

illustrate the search in the 5’→3’ direction.

114

Figure 4-1 Path extension in Rcorrector

(Four possible path continuations at the AGTC k-mer (k=4) in the De Bruijn graph for the r=
AAGTCATAA read sequence. Numbers in the vertices represent k-mer counts. The first (top) path
corresponds to the original read’s representation in the De Bruijn graph. The extension is pruned

after the first step, AGTC →GTCA, as the count M(GTCA)=4 falls below the local cutoff

(determined based on the maximum k-mer count (494) of the four possible successors of AGTC).
The second path (yellow) has higher k-mer counts but it introduces four corrections, changing
the read into AAGTCCGTC. The third path (blue) introduces only two corrections, to change the

sequence into AAGTCGTTA, and is therefore chosen to correct the read. The fourth (bottom)
path is pruned as the k-mer count for GTCT does not pass the threshold. Paths 2 and 3 are likely

to indicate paralogs and/or splice variants of this gene.)

Suppose u=riri+1…ri+k-1 is the k-mer starting at position i in read r. Rcorrector considers all

possible successors S(u,c), c∊{A,C,G,T}, and their multiplicities M(S(u,c)) and determines which

ones are solid based on a locally defined threshold (see below). Rcorrector tests all the possible

nucleotides for position i+k and retains those that lead to solid k-mers, and then follows the

paths in the De Bruijn graph from these k-mers. Multiple k-mer choices are considered in order

to allow for splice variants. If the nucleotide in the current path is different from ri+k, then it is

marked as a correction. When the number of corrections in the path exceeds an a priori defined

threshold, Rcorrector terminates the current search path and starts a new one. In the end,

115

Rcorrector selects the path with the minimum number of changes and uses the path’s sequence

to correct the read. To improve speed, Rcorrector does not attempt to correct solid positions,

and gradually decreases the allowable number of corrections if the number of searched paths

becomes large.

4.2.3 A flexible local threshold for solid k-mers

Let u be the k-mer starting at position i in the read, as before. Unlike with WGS reads, even if

the multiplicity M(S(u,ri+k)) of its successor k-mer is very low, the base ri+k may still be correct,

for instance sampled from a low-expression transcript. Therefore, an RNA-seq read error

corrector cannot simply use a global k-mer count threshold. Rcorrector uses a locally defined

threshold as follows. Let t= maxcM(S(u,c)), calculated over all possible successors of k-mer u

encoded in the De Bruijn graph. Rcorrector defines the local threshold at run time, f(t,r), as the

smaller of two values, a k-mer-level threshold and a read-level one: f(t,r)= min(g(t),h(r)).

The k-mer-level threshold is defined as g(t) = αt + 6√αt, where α is a global variation

coefficient. Specifically, α is determined for each dataset from a sample of 1 million high-count

k-mers (multiplicities over 1,000), as follows. Given the four (or fewer) possible continuations of

a k-mer, Rcorrector calculates a value equal to the ratio between the second highest and the

highest multiplicities. Then, α is chosen as the smallest such value larger than 95 % of those in

the sample. This criterion ensures that only k-mers that can be unambiguously distinguished

from their alternates will be chosen; lowering this parameter value will reduce the stringency.

Note that the k-mer-level threshold is the same for a k-mer in all read contexts, but differs by k-

mer.

116

To calculate the read-level threshold, Rcorrector orders all k-mers in the read by decreasing

multiplicities. Let x be the multiplicity before the first sharp drop (> 2-fold) in this curve.

Rcorrector then uses h(r)=g(x) as the read-level threshold. Refinements to this step to

accommodate additional lower-count paths are described below.

4.2.4 Refinements

Clustered corrections

Once a set of corrections has been determined for a read, Rcorrector scans the read and

selectively refines those at nearby positions. The rationale for this step is that the likelihood of

two or more clustered errors is very low under the assumed model of random sequencing

errors, and the read may instead originate from a paralog. More specifically, let ui and uj be the

k-mers ending at two positions i and j, with j−i<k, and M(ui) and M(uj) their multiplicities. To

infer the source for the k-mer, Rcorrector uses the local read context and tests for the

difference in the multiplicities of k-mers before correction. If the difference is significant, then it

is a strong indication for a cluster of sequencing errors. Otherwise (i.e., if 0.5<M(ui)/M(uj)<2),

then the k-mers are likely to have originated from the same path in the graph, corresponding to

a low-expression paralog, and the read is deemed to be correct. Rcorrector will revert

corrections at positions i and j and then iteratively revisit all corrections within distance k from

those previously reverted.

Unfixable reads

Rcorrector builds multiple possible paths for a read and in the end chooses the path with the

minimum number of base changes. If the number of changes over the entire read or within any

117

window of size k exceeds an a priori determined threshold, the read is deemed ‘unfixable’.

There are two likely explanations for unfixable reads: i) the read is correct, and originates from

a low-expression transcript for which there is a higher-expression homolog present in the

sample; and ii) the read contains too many errors to be rescued.

In the first case, Rcorrector never entered the true path in the graph during the extension, and

hence the read was incorrectly converted to the high-expression homolog. To alleviate this

problem, Rcorrector uses an iterative procedure to lower the read-level threshold h(r) and

allow lower count k-mers in the path.

Specifically, Rcorrector looks for the next sharp drop in the k-mer multiplicity plot to define a

new and reduced h(r), until there is no such drop or the number of corrections is within the set

limits.

PolyA tail reads

The presence of polyA tail sequences in the sample will lead to k-mers with mostly A or T bases.

Because their multiplicities are derived from a mixture distribution from a large number of

transcripts, these k-mers are ignored during the correction process. Rcorrector will

consequently not attempt to correct such k-mers.

Paired-end reads

With paired-end reads, Rcorrector leverages the k-mer count information across the two reads

to improve the correction accuracy. In particular, it chooses the smaller of the two read-level

thresholds as the common threshold for the two reads. In doing so, it models the scenario

where the fragment comes from a low-expression isoform of the gene, with one of the reads

118

specific to this isoform and the other shared among multiple, higher-expression isoforms. In

this case, the lower of the two read-level thresholds better represents the originating

transcript.

4.3 Results

We evaluate Rcorrector for its ability to correct Illumina sequencing reads, both simulated and

real. We include in the evaluation four other error correctors: SEECER (v0.1.3), which is the only

other tool specifically designed for RNA-seq reads, as well as at least one representative

method for each of the three classes of WGS error correction methods. These include Musket

(v1.1) and BFC (r181) for k-spectrum, Hybrid-Shrec (Hshrec) for suffix tree and suffix array, and

Coral (v1.4) for MSA-based methods. Since many tools are sensitive to the k-mer size k, we test

different k-mer sizes for each tool where applicable and report the result that produces the

best performance. We assess the impact of all programs on two representative bioinformatics

applications, read alignment and read assembly. Lastly, we show that Rcorrector can be

successfully applied to other types of data exhibiting non-uniform read coverage, such as

single-cell sequencing reads.

4.3.1 Evaluation on simulated data

In a first test, we evaluated all programs on a simulated dataset containing 100 million 100 bp

long paired-end reads. Reads were generated with FluxSimulator [19] starting from the human

GENCODE v.17 gene annotations. Errors were subsequently introduced with Mason [73]; error

rates were extracted from alignments of same-length Illumina Human Body Map reads. As in

Chapter 3, we evaluate the accuracy of error corrections by inspecting how each base was

119

corrected. Let true positives (TP) be the number of error bases that are converted into the

correct nucleotide; false positives (FP) the number of error-free bases that are falsely corrected;

and false negatives (FN) the number of error bases that are not converted or where the

converted base is still an error. We use the standard measures of Recall=TP/(TP+FN),

Precision=TP/(TP+FP), and F-score=2∗Recall∗Precision/(Recall+Precision) to evaluate all

methods. For each tool we test different k-mer sizes and report the result with the best F-score.

Accuracy values and performance measurements for the six error correctors are shown in Table

4-1. All programs were run on a 256 GB RAM machine with a 48-core 2.1 GHz AMD

Opteron(TM) processor, with 8 threads. Here and throughout the manuscript, all measures are

expressed in percentages. The overall sensitivity is below 90 % for all methods due to the large

number of polyA reads generated by FluxSimulator, which are left unchanged. Rcorrector has

the best overall performance by all measures, with 88 % sensitivity and greater than 99 %

precision, followed closely by SEECER. Rcorrector is also virtually tied with BFC for the fastest

method, and is among the most memory efficient. In particular, at 5 GB RAM for analyzing 100

million reads, it required 12 times less memory than SEECER and can easily fit in the memory of

most desktop computers (Table 4-1).

Table 4-1 Accuracy of the six error correction methods on the 100 million RNA-seq simulated
reads

Program k Recall Precision F-score
Run time

(min)
Memory

(GB)

SEECER 31 87.13 96.93 91.77 177 61

HShrec - 69.53 31.74 43.58 13641 30

Coral 31 58.35 85.14 69.25 1391 81

Musket 27 78.24 96.9 86.58 152 4

BFC 27 80.45 97.91 88.32 111 6

120

Rcorrector 27 88.94 99.84 94.07 118 5

The difficulty of error correction is expected to vary with the expression level of transcripts.

Correcting reads from low-expression transcripts is particularly challenging because the error-

containing k-mers cannot be easily distinguished on the basis of frequency. To assess the

performance of the various tools with transcript expression levels, we divide the simulated

transcripts into low-, medium-, and high-expression groups based on their relative abundance A

assigned by FluxSimulator (low, A<5e−7; medium, 5e−7<A<0.0001; and high, A>0.0001). The

results of each tool on the three subclasses are shown in Table 4-2. Most tools perform well on

the high-expression dataset, with the exception of Coral (low sensitivity) and Hshrec (low

precision). However, the performance for all methods, especially sensitivity, drops for reads

from low-expression transcripts. Rcorrector has the best or comparable sensitivity and

precision for each of the three classes of transcripts. Both Rcorrector and SEECER are

significantly more precise (>86 % in all categories) and more sensitive than methods designed

for DNA reads, especially for reads from low-expression transcripts.

Table 4-2 Accuracy of six error correction methods on 100 million simulated reads, by expression
level of transcripts

Program Recall Precision F-score

Low expression

SEECER 32.78 90.54 48.14

HShrec 24.77 0.81 1.56

Coral 31.88 64.6 42.69

Musket 13.88 33.94 19.71

BFC 25.18 58.37 35.19

Rcorrector 39.4 86.62 54.16

Medium expression

SEECER 86.58 97.05 91.51

121

HShrec 70.57 19.57 30.64

Coral 89.07 85.12 87.05

Musket 72.02 92.16 80.86

BFC 89.12 96.88 92.84

Rcorrector 87.73 99.66 93.31

High expression

SEECER 87.39 96.9 91.9

HShrec 69.22 41.67 52.02

Coral 47.59 85.17 61.06

Musket 80.5 98.53 88.61

BFC 77.47 98.35 86.67

Rcorrector 89.42 99.91 94.37

(k-mer sizes used are those in Table 4-1)

4.3.2 Real datasets

For a more realistic assessment, we applied the tools to three real datasets that vary in their

sequencing depth, read length, amount of sequence variation, and application area (Table 4-3).

These include a plant RNA-seq dataset (peach embryos and cotyledons; SRA accession

SRR531865), a lung cancer cell line (SRA accession SRR1062943), and a lymphoblastoid cell line

sequenced as part of the GEUVADIS population variation project (SRA accession ERR188021).

We use these three sets to evaluate the performance of programs on real data, as well as to

illustrate the effects of error correction on the alignment and assembly of RNA-seq reads.

Summary statistics for all datasets are shown in Table 4-3 and the histograms inferring the

variation coefficients are shown in Figure 4-2.

Table 4-3 Summary of datasets included in the evaluation

Name Reads
Read length

(bp)
Aligned

Perfectly
aligned

Simulated 99,338,716 100 81,994,413 21,070,024

Peach 38,883,238 75 24,775,386 5,617,514

Lung 113,313,254 50 110,771,941 85,160,322

Geuvadis 65,015,656 75 59,130,806 26,468,128

122

Figure 4-2 Variation coefficient (α) for the 4 data sets

(For each data set (simulated, peach, Geuvadis and lung), we plot the histogram of variation
ratios calculated as follows. The variation ratio for a k-mer is defined as the ratio between the
second largest and the largest multiplicities among the four continuation k-mers. Hence, the
lower the ratio, the more likely it is that the base change at the last position is a sequencing

error. Conversely, values closer to 1 are indicative of polymorphisms, whereas middle values are
potentially due to sequence differences between paralogs and/or isoforms of a gene. The

histograms and distributions were estimated based on 1 million high-count k-mers. Then, we
define α value corresponding to the 5th percentile of the distribution.)

Unlike for simulated data, the ground truth for each base is unknown, making it impossible to

judge performance directly and in an unbiased way. Instead, we use alignment rates to

estimate the accuracy of error correction. We tested different k-mer sizes for each tool, and

123

chose the one maximizing the total number of matching bases. Statistics for alignments

generated with Tophat2 (v2.0.13) [20] are summarized in Table 4-4. Lacking a true measure of

sensitivity, the number and percentage of aligned reads as well as the per base match rate, as

introduced in [3], are used to estimate sensitivity at read and base-level, respectively. The per

base match rate is computed as the ratio of the total number of all the matching bases to the

total number of aligned reads. Likewise, we introduce an alternate measure of specificity,

defined as TN/(TN+FP), based on a high-confidence subset of the original reads (Table 4-4). We

extracted those reads that have perfect alignments on the genome, i.e., that had exact

sequence matches and the alignment of reads in a pair was concordant. These reads are

expected to be predominantly error-free, therefore the proportion of reads that are not

corrected represents a measure of specificity. As a caveat, these measures will falsely include

those reads that are incorrectly converted to a paralog and aligned at the wrong location in the

genome.

Table 4-4 Tophat2 alignments of simulated and real reads

 k Aligned
Observed

rate
Base match

rate
Specificity

 Simulated reads

Original - 81,994,413 82.54 99.391 -

SEECER 31 85,374,347 85.943 99.988 99.619

Hshrec - 77,488,558 78.004 99.888 97.886

Coral 31 84,662,510 85.226 99.745 99.494

Musket 27 84,892,466 85.458 99.906 99.739

BFC 27 84,844,168 85.409 99.918 99.889

Rcorrector 27 85,033,277 85.599 99.986 99.97

Peach

Original - 24,775,386 63.717 99.198 -

SEECER 27 29,056,747 74.728 99.879 99.199

Hshrec - 24,496,308 63 99.265 96.027

124

Coral 23 28,974,141 74.516 99.316 99.027

Musket 27 28,345,203 72.898 99.256 99.677

BFC 31 26,553,943 68.291 99.278 99.777

Rcorrector 23 30,563,388 78.603 99.833 99.628

Lung

Original - 110,771,941 97.757 99.717 -

SEECER 23 111,261,651 98.189 99.855 98.239

Hshrec - 102,121,932 90.124 99.781 89.786

Coral 23 111,107,133 98.053 99.809 98.33

Musket 27 110,907,828 97.877 99.781 98.698

BFC 23 111,427,773 98.336 99.824 99.359

Rcorrector 23 111,198,587 98.134 99.83 99.599

Geuvadis

Original - 59,130,806 90.949 99.477 -

SEECER 23 61,514,024 94.614 99.837 98.53

Hshrec 23 51,669,686 79.473 99.709 87.924

Coral 23 61,399,007 94.437 99.717 98.049

Musket 23 60,450,316 92.978 99.652 97.9

BFC 23 61,870,897 95.163 99.775 98.79

Rcorrector 23 61,641,866 94.811 99.814 99.227

Error correction improves alignment rates by 1–11 %, depending on the dataset (Table 4-4).

Note that alignment rates themselves differ with the amount of sequence variation and quality

of the data. Rcorrector, SEECER, and BFC take turns in being the most sensitive across the four

datasets. However, only Rcorrector and SEECER are consistently ranked among the top results

in each category. Rcorrector has the highest or comparable specificity, greater than 99.2 %, in

all cases.

We further assess the impact of error correction on improving de novo assembly of RNA-seq

reads. We used the transcript assembler Oases [90] to assemble the reads a priori corrected

with each of the methods. To evaluate the quality of the assembled transcripts, we aligned

them to the reference genome with the spliced alignment program ESTmapper/sim4db [91],

125

retaining only the best match for each transcript. We use conventional methods and measures

to evaluate the performance in reconstructing full-length transcripts [11]. Specifically, we

define a match between a reference annotation transcript and the spliced alignment of an

assembled transcript if and only if they have identical intron chains, whereas their endpoints

may differ. We used the GENCODE v.17 annotations and the peach gene annotations (v1.1)

obtained from the Genome Database for Rosaceae as the gold reference for the real datasets,

respectively, and the subset of GENCODE transcripts sampled by FluxSimulator for the

simulated data. The results, shown in Table 4-5, again indicate that SEECER, Rcorrector, and BFC

have the most impact on improving the accuracy and quality of the assembled transcripts, and

show comparable performance. Of note, these measures only capture full transcripts, whereas

many of the transcripts in the sample will not have enough reads to be assembled fully.

Table 4-5 Oases assembly of simulated and real reads

Program Simulated Peach Lung Geuvadis

 Recall Precision Recall Precision Recall Precision Recall Precision

Original 30.575 48.862 28.879 16.41 4.957 10.475 5.997 16.749

SEECER 36.698 52.181 29.752 16.116 4.944 10.174 6.162 16.639

Hshrec 23.334 47.417 26.132 13.85 3.608 11.459 4.266 19.101

Coral 35.039 51.942 29.784 15.881 4.934 10.174 6.17 16.372

Musket 33.845 47.769 28.76 15.991 4.92 10.577 5.846 16.901

BFC 34.789 50.579 29.633 16.211 5.018 10.498 6.166 16.509

Rcorrector 36.763 52.144 29.355 15.951 5.012 10.478 6.222 16.375

Figure 4-3 illustrates the spliced alignments of a 13 exon transcript at the MTMR11

(myotubularin related protein) gene locus (chr1:149,900,543-149,908,791) assembled with

Oases from the simulated reads before and after correction. All methods missed the first intron,

which was supported by six error-containing reads, but produced partial reconstructions of the

126

transcript, consisting of multiple contigs. While all error correctors improved upon the original

reads, Rcorrector produced the most complete and compact assembly, with only three contigs,

including one containing the full reconstruction of exons 1–12.

Figure 4-3 Transcripts assembled from the original and error-corrected reads at the MTMR11
gene locus

(Rcorrector (bottom panel) improves upon the original reads and leads to the most complete
reconstruction of the transcript)

4.3.3 Single-cell sequencing

While Rcorrector was designed to correct RNA-seq reads, the method is also applicable to a

wider range of problems where read coverage is non-uniform.

Single-cell sequencing has recently emerged as a powerful technique to survey the content and

variation within an individual cell. However, PCR amplification of the input DNA introduces

biases in read coverage across the genome. We compared Rcorrector with SEECER and the

error correction module built into the assembly package SPAdes (3.1.0) [92]. The latter is based

on the error corrector BayesHammer [93], which accounts for variable depth coverage. We

applied all three methods to correct 29,124,078 E. coli K-12 MG1655 Illumina reads [92], then

aligned the corrected reads to the E. coli K-12 genome with Bowtie2 [74] and assembled them

127

with SPAdes. We evaluated the alignment outcome as described earlier and separately used the

package QUAST [75] to assess the quality of the resulting genome assemblies.

As seen in Table 4-6, Rcorrector results in the largest number of aligned reads, and is also the

most specific among the methods. Surprisingly, the built-in SPAdes error corrector shows very

low specificity (41.5 %), primarily arising from BayesHammer’s trimming of end sequences for

some reads. In contrast, SEECER has very high specificity but relatively low sensitivity, as the

number of mapped reads was actually reduced after correction. Rcorrector shows both the

highest sensitivity and the highest precision, and is therefore the best choice for this dataset.

Table 4-6 Bowtie2 alignment of single-cell sequencing reads

 k Aligned Rate
Base match

rate
Specificity

Original - 27,002,682 92.716 98.863 -

SPAdes - 27,104,190 93.065 99.675 41.482

SEECER 27 26,937,652 92.493 99.507 99.553

Rcorrector 19 27,227,855 93.489 99.711 99.998

For assembly, both Rcorrector and SEECER lead to longer contigs and better genome coverage

compared to the built-in corrector in SPAdes, while Rcorrector additionally produces the

smallest number of misassemblies (Table 4-7). To conclude, Rcorrector can be effectively

applied to correct single-cell DNA sequencing reads.

Table 4-7 SPAdes assembly of single-cell sequencing reads

 NG50 Misassembly
Edits/100

kbps
Genome
coverage

Original 105,623 1 6.57 95.054

SPAdes 109,876 2 7.52 94.903

SEECER 110,103 2 7.26 95.059

128

Rcorrector 110,103 1 10.02 95.094

(NG50 is the minimum contig length such that the total number of bases in contigs this size or
longer represents more than half of the length of the reference genome)

4.4 Conclusions

Rcorrector is the first k-spectrum based method designed specifically for correcting RNA-seq

reads, and addresses several limitations in existing methods. It implements a flexible k-mer

count threshold, to account for different gene and transcript expression levels, and

simultaneously explores multiple correction paths for a read, to accommodate isoforms of a

gene. In comparisons with similar tools, Rcorrector showed the highest or near-highest

accuracy on all datasets, which varied in their amount of sequencing errors as well as

polymorphisms. Also, with a small 5 GB memory footprint for a 100 million read dataset, it

required an order of magnitude less memory than SEECER, the only other tool designed

specifically for RNA-seq reads. Lastly, Rcorrector was the fastest of all methods tested, taking

less than two hours to correct the simulated dataset. Therefore, Rcorrector is an excellent

choice for large-scale and affordable transcriptomic studies in both model and non-model

organisms.

Work on this project was supported in part by NSF grants ABI-1159078 and ABI-1356078 to L.F..

Rcorrector is available from https://github.com/mourisl/rcorrector.

https://github.com/mourisl/rcorrector

129

Chapter 5

Rascaf: Improving Genome Assembly with RNA

Sequencing Data

5.1 Introduction

Recent years have seen a tremendous increase in the number and diversity of sequenced

genomes [94]. More than 13,000 eukaryotes have been sequenced or are in the process of

sequencing, and more are planned including hundreds of plants and animals. Most model

organisms have been sequenced under the umbrella of large genome projects undertaken by

broad international consortia with the aim to create high-quality reference sequences [95, 96,

97, 98, 99, 100, 101]. In recent years, second-generation sequencing technologies have

dramatically accelerated the pace of generating new genomes, as reduced sequencing costs

along with increased access to sequencing have made it possible for groups and even individual

investigators to sequence the genome of the species they study. Virtually all of these projects

will produce draft versions of the genomes, in which the chromosomes are assembled into a

relatively large number of contigs separated by gaps. Annotation software will then use the

contigs, typically within groups of contigs with known order and gap sizes (scaffolds) or full

chromosomes, as the substrate on which to identify genes.

130

During a typical genome assembly process, overlapping reads are first used to build contigs,

then contigs are connected into larger scaffolds using order and orientation information from

mate–pair reads. Mates are sequenced from the two ends of DNA fragments in a size-selected

library, and their relative distance (insert size), order, and orientation on the originating DNA

sequence can be estimated with relatively high accuracy. Repetitive regions in the genome pose

a significant challenge to assembly algorithms. To be able to reconstruct these sequences,

insert sizes need to exceed the length of the repeat to allow anchoring the assembly onto the

nonrepetitive flanking regions. Therefore, a typical genome assembly project will require

multiple insert-size libraries, spanning from 500 bp to 8 to 10 kb. There is a rich body of work in

developing scaffolding algorithms based on mate pairs from whole-genome sequencing dating

back to the assembly of the first sequenced eukaryotic genomes [102]. However, building the

critical long-insert libraries is expensive and labor intensive.

Once a draft genome sequence is produced, the first and most crucial step in its analysis is

finding the genes, which then provide the basis for downstream studies of gene function and

variation. Deep RNA-seq has become the primary means to characterize the genes of a species,

and there are already a number of high-performance tools for RNA-seq read analysis, including

alignment and transcript assembly tools [103, 12, 104, 2, 14, 20, 1]. It also provides critical

information about species-specific genes and alternatively spliced variants, including novel

protein-coding genes and noncoding RNAs. Errors and gaps in the assembly can however

interfere with correct gene and transcript annotation by fragmenting the genes, deleting or

scrambling the exons, and by locally altering the gene’s sequence [105]. Therefore, to aid

131

investigators in their gene studies, every effort must be made to improve the quality of the

assembly, particularly in the gene regions.

Gene structures, in which introns may span thousands of bases, provide an effective way to

increase the completeness and continuity of an assembly in silico. Several genome sequencing

projects, starting with the human genome, have used gene information from independently

generated expressed sequence tags and full-length messenger RNAs (mRNAs) to detect

assembly errors or recruit additional contigs into the assembly [97, 106, 107, 108]. However,

tools that could be systematically applied to any genome project and take advantage of the

next-generation sequencing data being generated have been lacking. Traditional mate pair-

based scaffolding methods [109, 110, 111, 112, 113] rely on a uniform read coverage of the

genome and a statistically well characterized insert-size distribution and cannot be directly

applied to RNA-seq reads. Only two tools have been recently developed that take advantage of

next-generation RNA sequencing: L_RNA_scaffolder [114] applies the gene-based approach

using de novo transcript assemblies generated with tools such as Trinity [115], whereas AGOUTI

[116] employs the RNA-seq read alignments directly, in the context of known gene annotations,

to detect new connections. However, de novo assembly of RNA-seq sequences as employed by

L_RNA_scaffolder is challenging and error prone as well as time consuming. Chimeric transcript

reconstructions can lead to incorrect scaffolds, and low-expression genes may be only partially

reconstructed or missed entirely and therefore have limited impact.

We developed Rascaf (RnA-SCAFfolder), a novel tool that uses the alignments of RNA-seq reads

to identify new contig connections in a fragmented genome and improves the completeness

and accuracy of the genes and genome simultaneously. Rascaf uses an exon block graph to

132

simultaneously represent a gene and the underlying contig relationships and to determine a

heaviest contig path. Suggested contig connections can then be optionally validated by

database searches for cross-species complementary DNA (cDNA) and protein evidence. When

evaluated on both simulated and real sequence data, and against similar tools, Rascaf was both

more accurate and highly efficient and therefore can be effectively used to increase the quality

of new genome assemblies of plants and animals. More specifically:

1. Rascaf simultaneously improves an assembly and its gene annotations, resulting in

longer scaffolds, more accurate scaffolds, and more complete gene models.

2. It has higher or comparable accuracy to the best of the other tools for each application

tested.

3. Rascaf is highly precise with only a handful of misassemblies introduced, has a small

memory footprint, and runs in minutes on a regular workstation for a typical RNA-seq

data set and genome.

4. Rascaf identified 1000 to 10,000 new contig connections in the draft genomes of several

Fragaria species and of the Rosaceae pear (Pyrus communis L.), thus increasing their

utility.

5. The program can be used with a single or with multiple RNA-seq data sets

simultaneously.

6. An optional in silico validation step searches the predicted contig joins against external

cDNA or protein databases for independent evidence.

133

5.2 Methods

Rascaf builds an improved assembly in two stages. Stage 1, implemented in the program rascaf,

determines a set of possible contig connections based on continuity information from

alignments of paired-end RNA-seq reads. Once a set of possible connections is determined,

Stage 2, implemented in the program rascaf-join, uses the connections to scaffold the new

assembly and to generate the new genome sequence. The general framework is illustrated in

Figure 5-1, and the data structures and methods are described below.

134

Figure 5-1 Overall framework of the Rascaf algorithm

(Step 1: Prepare the raw assembly by splitting the scaffold-level assembly at runs of Ns. Paired-
end RNA sequencing (RNA-seq) reads (red) connect four contigs (blue boxes) in the raw genome
assembly. Step 2: Build the exon blocks by clustering read alignments along the genome. Step 3:
Build the gene blocks by connecting exon blocks by introns extracted from spliced reads. Step 4:
Build the gene block graph. Each gene block is represented by two nodes connected by a block
edge (thick lines); ends of contig nodes linked by paired-end reads are then connected by mate

135

edges (thin lines). Continuous lines represent the selected block scaffolds along the heaviest
path in the gene block graph, whereas dotted lines mark unselected edges in the graph. Step 5:
Given a block scaffold determined above, find a set of candidate connections between contigs

underlying the gene blocks. Steps 5 and 6: Build a contig graph by aggregating connections
derived from multiple RNA-seq data sets. Each contig is represented by a pair of nodes

connected by a contig edge (thick lines). Additionally, contigs adjacent in a scaffold in the raw
assembly, or that were part of a contig connection detected in Step 5, are linked by a scaffold

edge (thin lines). Step 7: Determine a set of cycle-free paths in the contig graph, using
topological sorting, and use them to guide the construction of the new scaffolds.)

5.2.1 Detecting contig connections

Step 1

The input to Rascaf is the draft genome in FASTA format and an alignment file of paired-end

RNA-seq reads. If the assembled genome is in scaffolds, Rascaf first converts it to a contig-level

(raw) assembly by splitting the sequences at runs of Ns.

Steps 2 and 3

The basic data structure employed by Rascaf is the exon block. An exon block denotes a

maximal set of consecutive genomic coordinates covered by aligned RNA-seq reads

corresponding to a block of overlapping exons. A gene block is an ordered set of exon blocks

connected by spliced alignments corresponding to a portion of a gene located on the same

contig.

Step 4

Rascaf builds a gene block graph as follows. Each gene block is represented by a pair of vertices

(L, R) connected by an edge (block edge). When the two reads in a pair span different gene

blocks, mate edges are added to connect the L endpoint of one gene block to the R endpoint of

the other (Figure 5-2). This data structure is similar to the contig graph in [117]. One important

136

constraint on the gene block graph is that every path must alternate block and mate edges.

Hence, setting the direction of one edge in a path will determine the directions of all remaining

edges such that the concatenation of contig sequences along the path spells either the

sequence of the genome or its reverse complement.

Figure 5-2 Methods – finding contig connections (rascaf)

(There are four types of possible connections between two contigs (L1,R1) and (L2,R2) as dictated
by the paired-end reads, represented by the mate edges below (thick lines). (1) Both contigs are

in the forward orientation (1,2). (2) Contig 2 needs to be reversed (1,-2). (3) Contigs 1 and 2
must be swapped (2,1). (4) Contig 1 is reversed, and contigs 1 and 2 are swapped (2,-1).)

Each component of the gene block graph corresponds to a gene or a portion of a gene. Rascaf

employs a greedy method to find the order of the gene blocks in each component, choosing the

most supported mate edge and then reiterating the search to extend the path in both

directions. The procedure is terminated when there is no possible extension, on encountering a

previously visited node, or at a sudden significant drop in read support. The algorithm produces

a path of gene blocks, or block scaffold. If there are any remaining edges where neither of the

adjacent nodes was selected, the procedure is repeated to find additional block scaffolds.

Sequencing and alignment errors may create false mate edges, leading to chimeric scaffolds.

Rascaf uses alignment, read pair, and genomic context information to filter likely false positives.

More specifically, Rascaf removes a mate edge if (i) it is supported by fewer than K reads (by

137

default, K = 2); (ii) there are multiple possible connections with similar support, indicating an

ambiguous and potentially error prone connection; (iii) the concatenated sequence of exon

blocks does not fit the mean and standard deviation of the insert size distribution for the RNA-

seq reads; and (iv) the gene blocks appear to be duplicated in the assembly based on the

overlap between their k-mer profiles, potentially indicating a paralogous connection.

Step 5

Once a set of block scaffolds is constructed, they are used as guides to find contig connections.

Rascaf iteratively parses each block scaffold, starting from the one with the strongest read

support, to create a list of contig connections and to decide the order and orientation of each

contig within the scaffold. Connections that are incompatible with previously ordered contigs

are ignored. In the end the procedure, implemented in the program rascaf, will determine a set

of contig connections with known relative order and orientation.

5.2.2 Scaffolding guided by connections

Step 6

Once a set of contig connections is determined, rascaf-join incorporates them into a scaffolding

algorithm to create a new assembled sequence. One ancillary benefit of separating the

scaffolding from the detection of contig connections is that it allows combining multiple RNA-

seq data sets, leveraging the variability in gene expression levels across the samples. For

instance, the locus of a low-expression gene in one sample may be difficult to scaffold because

connections here are hard to distinguish from noise, but this drawback can be mitigated when

the gene is more richly covered in another data set.

138

Rascaf-join builds a contig graph that is similar in concept to the gene block graph described

earlier. More specifically, each contig is represented by two vertices (Lc, Rc) connected by a

contig edge. Two contigs are connected by a scaffold edge if they are adjacent in a scaffold in

the raw assembly or are part of a contig connection identified by Rascaf. With multiple RNA-seq

data sets, scaffold edges from different data sets could potentially introduce cycles. Rascaf-join

detects any cycles in the contig graph using a depth-first search algorithm and removes all

scaffold edges previously identified by rascaf that are adjacent to the contigs in the cycle to

create an acyclic graph. It then attempts to improve each scaffold in the original assembly,

starting from the longest, as described below.

Given a scaffold S in the raw original assembly, rascaf-join attempts to fill gaps in S and to

extend it from both ends. Suppose S contains n contigs, with the associated contig nodes L1,

R1,…,Ln and Rn. Rascaf-join first finds the biconnected component in the contig graph containing

all contigs from S (the biconnected component is a subgraph such that every node can be

reached both from the path starting with L1→R1 and from the path starting with Rn→Ln).

Intuitively, a biconnected component contains the contigs from S as well as those contigs on a

path that branches off and then returns to S. It then converts the component into a directed

acyclic graph by fixing the path starting with L1→R1. Further, it uses a topological sort algorithm

[118] to order the contigs in the connected component and to produce a longer scaffold S′

(Figure 5-3). In the end, Stage 2 generates a new assembly by recruiting additional contigs

informed by the identified contig connections while adjusting the existing scaffolds as necessary

to create more complete gene models.

139

While RNA-seq data present many advantages for genome scaffolding, it also has its drawbacks.

For instance, the paired reads’ inner distance along the genome, which may include introns of

unknown sizes, cannot be characterized statistically, which can introduce ambiguity in the

contig order and may lead to local rearrangements within a scaffold. This is especially

problematic for genomes with very long introns and short contigs, in particular, with contigs

located entirely within introns of the genes. Therefore, while using RNA-seq or gene structure

information provides a highly practical solution to filling in the scaffold structure and building

more complete gene models, further validation using, for instance, optical or physical maps and

other data types may be necessary to resolve the local contig order at high resolution.

140

Figure 5-3 Methods – scaffolding (rascaf-join)

(This example illustrates scaffolding starting from a raw assembly with 5 contigs (blue boxes):
contigs 1-3 are connected into scaffold S, and contigs 4 and 5 are singletons. In stage 1, rascaf

detects connections between contigs (1,4), (4,2) and (3,-5). The resulting contig graph has 5
(contig) nodes and 10 edges: 5 contig edges (thick lines), which connect the two nodes

representing a contig, and 5 mate edges, representing either adjacency relationships in the
original scaffold ((1,2) and (2,3)) or connections detected by rascaf based on RNA-seq paired-

end reads ((1,4), (4,2) and (3,-5)). Starting from scaffold S, rascaf-join then traverses the contig
graph to determine a bi-connected component and then uses a topological sort algorithm to

determine a component path (scaffold) containing contigs 1,4,2 and 3 that satisfies all
precedence relationships. Note that contig 5 is not part of the bi-connected component, as L5

and R5 can be reached from L1→R1 but not from R3→L3 in scaffold S. We call R3,L5,R5 a dangling

path. To add dangling paths to the scaffold, rascaf-join traverses the component path starting
from the last contig and moving backwards. In iteration i, it greedily chooses a maximal path

starting with Li→Ri and trims it if it reaches a contig that has already been added to the

scaffold. This path is then inserted in the component path (scaffold) following node Ri. Reverse
dangling paths, which can be reached from L3→R3, are analyzed similarly.)

141

5.3 Results

5.3.1 Performance evaluation on simulated control data

To obtain an accurate evaluation of performance on control data, we applied each program

(Rascaf v.1.0.1; L_RNA_scaffolder (v. June 2013) and AGOUTI v.0.3.0-22) to a simulated data

set. We generated an artificial genome by extracting the sequences of human chromosomes 1

and 12 and splitting them into contigs. For a more realistic model, we followed the contig size

distribution of the Prunus persica v.1.0 genome from www.rosaceae.org [119]. In parallel, we

used FluxSimulator [19] to generate 100 million 100-bp paired-end RNA-seq reads with average

insert size 174 bp, respectively, using the GENCODE v.22 (www.gencode.org) gene annotations

as reference. No chimeric reads were included. For Rascaf and AGOUTI, we mapped the ∼15

million reads from chromosomes 1 and 12 to the contigs with a fast-spliced aligner, HISAT [1].

Additionally, Rascaf has been adapted to incorporate partial alignments generated with BWA-

mem [120], potentially obtained from spliced alignments spanning multiple contigs. For

L_RNA_scaffolder, we first assembled the reads into transcripts with Trinity, and for AGOUTI we

used as input annotation the gene models produced from the RNA-seq reads by Cufflinks [9].

To create a gold reference, we consider all pairs of ordered and oriented contigs in the

assembly that are supported by read pairs. Let M be the size of this set and let N be the number

of scaffold edges in the set of contig paths predicted by the program being evaluated. A contig

pair (c1,c2) in the reference data set is said to be satisfied, or is a true positive (TP), if c1 and c2

appear in the same order and orientation in a contig path (c1 and c2 need not be adjacent).

Conversely, a scaffold edge in a contig path is said to match the reference, or is a strong true

142

positive (STP), if its two contig nodes are connected by a read pair in the gold reference in the

same order and orientation. With these concepts in place, we define sensitivity Sn = TP/M, and

precision Pr = STP/N.

For this test case, Rascaf using both full and partial alignments had the best overall

performance, at 0.763 sensitivity and precision 0.995, with L_RNA_scaffolder a very close

second, at 0.741 sensitivity and precision 1.0 (Figure 5-4). This simple simulated example also

illustrates one limitation when using RNA-seq reads directly without prior assembly, as

implemented in Rascaf and AGOUTI, particularly for RNA-seq libraries with short insert sizes.

Intuitively, a short insert size produces more read pairs sampled from the same exon and where

one or both reads could span the boundary of the intron. Such cross-contig spliced alignments

are missed by current alignment software. Indeed, both Rascaf’s and AGOUTI’s performance is

improved with longer fragments (Table 5-1 Effects of library insert size on program

performance, on the simulated dataTable 5-1), and their relative performance vis-à-vis the

assembly-based L_RNA_scaffolder is fully recovered when incorporating partial (clipped)

alignments produced with BWA-mem.

143

Figure 5-4 Performance evaluation of programs on simulated data

Table 5-1 Effects of library insert size on program performance, on the simulated data

Program
m=174 bp m=225 bp m=275 bp

Sn Pr Sn Pr Sn Pr

Rascaf 0.463 1 0.596 1 0.656 1

Rascaf+BWA-mem 0.763 0.995 0.774 0.997 0.74 0.993

L_RNA_scaffolder 0.741 1 0.739 0.995 0.725 0.984

AGOUTI 0.352 0.974 0.498 0.989 0.573 0.987

5.3.2 In silico validation of Pyrus communis genome improvement

To assess the usefulness and accuracy of programs on a real assembly project, we applied them

to improve the completeness and contiguity of the P. communis (‘Bartlett’) genome [121]. The

pear genome has recently been sequenced using second-generation (Roche 454) single-end

reads from 2- and 7-kb insert libraries, resulting in a 577 Mb assembly in 142,083 scaffolds

144

(184,520 contigs). Since no gold reference is available in this case, we performed an in silico

validation by searching the concatenated gene sequences spanning each contig connection

against the RefSeq gene database (BLASTn, dc-megablast option [122]. Note that since AGOUTI

does not report the underlying gene structure, we could not include it in the evaluation. A

match to a database homolog that spans the connection then greatly increases the confidence

of the prediction. We queried each connection sequence and inspected the BLAST alignments

for evidence of consistent coverage spanning the junction point. We deemed an alignment to

be positive, and therefore provide proof for the connection, if all gene block sequences were

contained in the alignment in the same order or orientation. We then distinguish between

uncertain and potentially novel connections, in which alignments are compatible in order and

orientation but cover only a subset of the gene blocks, and likely erroneous connections, which

either show rearrangements between the gene block segments or portions of the segments

(rearranged) or in which portions of the query sequence match different sequences in the

database (chimeric). Note that both chimeric and negative connections may in fact reflect

errors in other species’ genomes or gene annotations rather than decision errors made by the

tools. Lastly, since the programs may also report connections between the contigs from the

same scaffold that are already known, we excluded any such connections from the

performance measurements below.

When run with the SRR1609135 RNA-seq data set, comprised of 24.2 million 101-bp paired-end

reads sampled from pear leaves, Rascaf produced 1286 and L_RNA_scaffolder generated 707

new putative connections (Table 5-2). Of these, 1218 (94.7%) of Rascaf connections were

classified as positive, and an additional 55 (4.3%) were either uncertain or with no homolog in

145

the database and could potentially represent connections from novel genes or extensions of

annotated genes. For L_RNA_scaffolder, 474 (67%) were validated, and an additional 152

(21.5%) were uncertain or unaligned. Only 13 (1.0%) Rascaf connections were chimeric or

showed evidence of rearrangement compared with 81 (11.5%) for L_RNA_scaffolder.

Therefore, Rascaf detected >2.5× as many positive (validated) connections than

L_RNA_scaffolder and twice as many likely connections when the unaligned and uncertain

cases were included, and reported four times fewer chimeric and rearranged (negative) cases.

Hence, it was both more sensitive and more precise than L_RNA_scaffolder by a wide margin.

Table 5-2 In silico validation of programs on the Pyrus communis genome by BLAST searches
against the National Center for Biotechnology Information RefSeq mRNA database

Program Validated Uncertain Unaligned Rearranged Chimeric

Rascaf 1,218 42 13 4 9

L_RNA_scaffolder 474 128 24 38 43

An example of positively validated connection at the P. communis locus homologous to the

Malus×domestica GDSL esterase/lipase At3g48460-like gene region (accession:

XM_008395632.1) is shown in Figure 5-5A, and an uncertain connection at the P.

×bretschneideri peptidyl-prolyl cis-trans isomerase CYP71-like gene homolog (accession:

XR_668155.1) missing support for its terminal 256 bp is shown in Figure 5-5B. For some of the

connections classified as negative, the rearrangement resided in an existing contig rather than

being introduced by our procedure (e.g., P. ×bretschneideri cryptochrome-1-like gene homolog,

accession: XM_009380716.1; Figure 5-5C). Lastly, Figure 5-5D illustrates a chimeric connection

as a result of a duplication within the M. ×domestica UDP-glycosyltransferase 74F1-like gene

homolog (accession: XM_008396047). Therefore, Rascaf achieved >95% precision and can be

146

highly trusted to improve the sequence of a draft genome assembly while keeping the number

of errors to a minimum.

Figure 5-5 Examples of in silico validation of contig connections detected in the Pyrus communis
genome.

((A) Positive (validated) connection: alignments with the database homolog cover all gene
blocks (marked by red tick marks along the horizontal axis) and are consistent in order and

orientation. (B) Uncertain connection: alignments with the homolog do not cover the 256 bp in
the second gene block. (C) Negative (incorrect) connection: alignments with the database

homolog cover all gene blocks but are inconsistent in order and orientation. Here, however, the
translocation is due to a misassembly within a contig of the original assembly. (D) Chimeric

connection: alignments from three database homologs collectively cover all gene blocks. The
chimeric construct here likely is due to the repetitive nature of the gene.)

147

5.3.3 Assembly Improvement using Multiple RNA Sequencing Data Set

We further assessed the programs’ performance on a high-quality genome system, which can

serve as a more realistic control experiment. The 121-Mb genome of the model plant

Arabidopsis thaliana Col-0 [95] has been reported and is one of the most extensively studied

systems to date and therefore is the closest genome model yet to serving as a gold reference.

As an additional goal, we sought to determine the feasibility and benefits of improving the

assembly using multiple RNA-seq data sets simultaneously.

We used whole-genome DNA sequence data (SRA accession: SRR1810274; 60 million 100-bp

reads) and assembled it with SOAPdenovo2 [72]. After filtering small scaffolds shorter than 500

bp, the draft genome assembly consisted of 37,948 contigs organized in 8082 scaffolds. We also

downloaded 11 RNA-seq data sets sampled from plant leaves, root, and shoot apex

(SRR2187604, SRR2080045, SRR971148, SRR1106559, SRR1187932, SRR1781769, SRR2060632,

SRR2061405, SRR2895388, SRR2895627, and SRR2895761). For the multisample analysis, we

added each data set to a growing pool to incrementally evaluate their impact on assembly

improvement. Among the programs, only Rascaf can seamlessly integrate multiple RNA-seq

data sets for analysis, potentially identifying and resolving internal conflicts. Nevertheless, we

also ran L_RNA_scaffolder on the combined sets of transcripts assembled from the RNA-seq

data. For AGOUTI, which was not designed to handle multiple data sets simultaneously, we ran

the process iteratively (Table 5-3).

148

5.3.4 Comparative Evaluation of Programs

We first analyzed the performance of all programs by measuring the improvement on the

assembly for a single RNA-seq data set (SRR2187604) using the Quast [75] evaluation software

to compare against the reference A. thaliana genome. To calculate its statistics, Quast analyzes

all scaffolds 500 bp or longer by aligning them to the reference genome with nucmer [123].

Rascaf found the most new connections, reducing the number of scaffolds by ∼400, with or

without incorporating partial BWA-mem alignments. All three tools improved the NGA50, a

measure of assembly continuity, by 2 to 4 kb (5–9%) as shown in Table 5-3 (top) (NGA50 is

defined as the minimum length of a scaffold alignment such that 50% of the aligned portion of

the assembly to the reference genome is in scaffold alignments this size or longer). At the same

time, Rascaf and AGOUTI introduced a comparable number of misassemblies, while

L_RNA_scaffolder was more imprecise. More in-depth analyses of the putative misassemblies

introduced by the programs revealed that, in fact, most of these involved contigs that were

misassembled in the original SOAPdenovo2 assembly. In several other cases, the reported

misassembly was due to the intercontig gap length (1 kb) default parameter setting in Quast,

which was too short to accommodate gaps potentially introduced by introns. After correcting

for measurement errors and errors propagated from problematic contigs within the original

assembly, the number of effective misassemblies introduced by each program was significantly

reduced to 10 to 114 (0.8–8.8% of the total). Using Rascaf with additional partial BWA-mem

matches did not bring significant improvement, likely because of the longer insert size in the

RNA-seq library (245 bp) coupled with shorter exon sizes in A. thaliana. Overall, Rascaf

149

demonstrated better performance than the other tools, and both read alignment-based tools

were considerably more precise than the transcript-based L_RNA_scaffolder.

Table 5-3 Evaluation of Arabidopsis thaliana assemblies for single RNA sequencing (RNA-seq)
data (top) and with 0, 1, …, 11 RNA-seq data sets (bottom), using Quast

Programs
Raw

assembly
Rascaf

Rascaf+BWA
-mem

L_RNA_
scaffolde

r

AGOUT
I

Single RNA-seq set (SRR2187604)

Scaffolds 8082 7686 7674 7759 7771

NGA50 42,479 46,331 46,828 44,441 45,667

Misassemblies 1153 1180 1188 1296 1177

Problematic scaffolds 1412 1434 1434 1536 1433

Effective misassemblies na 10 14 114 10

Rascaf (multiple RNA-seq sets)

Data sets 0 (raw) 1 2 6 11

Scaffolds 8082 7686 7626 7283 7222

NGA50 42,479 46,331 46,898 49,673 50,571

Misassemblies 1153 1180 1190 1281 1302

Problematic scaffolds 1412 1434 1437 1473 1478

Effective misassemblies na 10 14 66 77

AGOUTI (iterative)

Data sets 0 (raw) 1 2 6 11

Scaffolds 8,082 7,771 7,679 7,174 7,109

NGA50 42,479 45,667 47,021 50,027 51,316

Misassemblies 1,153 1,177 1,209 1,401 1,417

Problematic scaffolds 1,412 1,433 1,439 1,450 1,454

Effective misassemblies - 10 22 81 84

L_RNA_scaffolder (batch)

Scaffolds 8,082 7,761 7,502 7,154 6,961

NGA50 42,479 44,399 45,491 46,328 46,627

Misassemblies 1,153 1,296 1,459 1,731 1,896

Problematic scaffolds 1,412 1,536 1,618 1,772 1,870

Effective misassemblies - 114 216 416 566

150

5.3.5 Performance Improvement with Multiple RNA Sequencing Data Set

In a second experiment, we assessed the impact of using multiple RNA-seq data sets on the

completeness and accuracy of the resulting genome and its gene annotations. Since AGOUTI

does not provide support for simultaneous analysis using multiple RNA-seq data sets, we ran

the program iteratively, generating a new temporary assembly and improving it with the

cumulative data set at the next step. As before, we used Quast to assess the impact on the

assembled genome sequence when using 0 (raw assembly), 1, 2, 6, and 11 RNA-seq data sets.

As shown in Table 5-3 (bottom) for Rascaf, the number of scaffolds and NGA50 values gradually

improve as more data sets are added (by 5–10 and 9–19%, respectively). The number of

effective misassemblies remains small (10–77), however, representing a growing fraction (0.8–

5.9%) of the total assembly errors. AGOUTI was more aggressive in identifying new connections

and produced slightly longer scaffolds at the expense of introducing more errors (Table 5-3),

whereas L_RNA_scaffolder led to shorter scaffolds and a significantly larger (seven- to eight-

fold) number of errors. We attribute Rascaf’s high precision to its ability to identify and correct

inconsistencies that arise from combining multiple RNA-seq data sets as implemented in rascaf-

join.

Further, we assessed the impact of Rascaf’s assembly improvement procedure on the accuracy

and completeness of the gene repertoire. For each of the original and intermediate assemblies,

we aligned the 35,215 A. thaliana RefSeq mRNA transcript sequences to the scaffolds using the

spliced alignment programs ESTmapper and sim4db (Istrail et al., 2004; Walenz and Florea

2011). For each set, we plotted the percentage of transcript sequences that have more than f%

of their bases in the primary alignment, for varying coverage levels f (f = 5, 10, …, 100). The

151

coverage curves are plotted in Figure 5-6. Adding RNA-seq data improves the coverage and the

number of transcript sequences aligned at all coverage levels, especially at the higher coverage

cutoffs. In particular, adding the first RNA-seq data set brings the number of transcripts with

90% coverage to 33,529 from 33,183 in the original assembly, and that number further

increases to 33,847 when all 11 RNA-seq data sets are included. Most importantly, Rascaf

increases the coverage for 506 to 991 genes across the 11 assemblies.

Figure 5-6 Gene content evaluation of the improved Arabidopsis thaliana assemblies using 0,
1, … 11 RNA sequencing data sets

(Transcript coverage plots show the number of transcripts with a fraction x or more of their
bases contained in the primary alignment of that transcript on the corresponding A. thaliana

assembly, for coverage levels 0.05, 0.1, …, 1.0.)

javascript: void(0);

152

Therefore, using multiple RNA-seq sources improves both the assembled sequence and the

gene annotations on a broader scale, albeit the benefits reach diminishing returns as more data

sets recapitulating similar sets of genes are included.

5.3.6 Improving the Assembly and Gene Annotations of Sequenced Fragaria

Next-generation sequencing has dramatically accelerated the pace of genome sequencing

projects, with dozens of new draft genomes being reported every few months. To illustrate the

benefits of using RNA-seq to improve the quality of a genome assembly and its annotations, as

implemented in Rascaf, we applied the method to several sequenced and in-progress Rosaceae.

The octoploid genome of the cultivated strawberry (Fragaria × ananassa Duchesne ex Rozier)

has been sequenced and draft assembled, along with those of four wild diploid relatives, F.

iinumae Makino, F. nipponica Makino, F. nubicola (Hook. f.) Lindl. ex Lacaita, and F. orientalis

Losinsk [124]. All genomes were sequenced with a combination of Illumina and Roche 454

technologies and assembled de novo. For our analyses, we downloaded up-to-date draft

assemblies of these five Fragaria species from the Genome Database for Rosaceae

(www.rosaceae.org) with quality indicators listed in Table 5-4.

Table 5-4 Summary of quality indicators for the original (raw) assemblies of the sequenced
Fragaria species

Assembly
No. of

scaffolds
Total length

(bp)
N50

F. iinumae (v1.0) 117,822 199,627,645 3309

F. nipponica (v1.0) 215,024 206,414,979 1275

F. nubicola (v1.0) 210,780 203,686,576 1291

F. orientalis (v1.0) 323,163 214,184,046 722

F. × ananassa (v1.0) 625,966 697,765,214 2201

153

We used available RNA-seq reads from F. × ananassa (SRA accession: ERR430941, 70 million

100-bp paired-end reads) and separately from the close relative F. vesca (SRA accession:

SRR1930097, 76 million 101-bp paired-end reads). Fragaria vesca was previously sequenced and

assembled with a combination of Illumina and 454 reads [107] and has undergone multiple

rounds of curation to improve both the assembly and its gene models.

Rascaf found thousands of new putative connections for each genome, both when using the F.

× ananassa and the cross-species F. vesca RNA-seq reads. We first assessed the likelihood and

confidence of the connections using BLAST searches against the RefSeq mRNA database, as

described above (Table 5-5). More than 96% of the connections found in each case could be

validated, increasing to >99% likely connections when adding the uncertain and unaligned

sequences, except for F. × ananassa improved with same-species RNA-seq reads, which had

89% positive validation rate and 98% likely connections rate.

Table 5-5 In silico evaluation of predicted Rascaf connections in the Fragaria genomes by BLAST
searches against the NCBI RefSeq mRNA database

Species Validated Uncertain
Unaligne

d
Rearrange

d
Chimeri

c

Rascaf with ERR430941 (F. × ananassa)

 F. iinumae 5267 119 19 16 28

 F. nipponica 7496 155 32 20 35

 F. nubicola 8447 198 59 26 59

 F. orientalis 10,147 279 112 16 72

 F. × ananassa 5866 365 201 44 109

Rascaf with SRR1930097 (F. vesca)

 F. iinumae 1613 5 0 1 0

 F. nipponica 2710 6 1 1 3

 F. nubicola 3644 14 5 6 3

 F. orientalis 3880 25 9 2 7

 F. × ananassa 1876 36 9 6 8

154

We further assessed the impact on the completeness and accuracy of the gene annotations as

an overall measure of assembly accuracy in gene regions. For this purpose, sequences of F.

vesca RefSeq mRNA transcripts were mapped to each of the assemblies using ESTmapper and

sim4db, and the portion of the bases contained in the primary alignment of each sequence was

measured. The cumulative coverage plots were then computed as described in the previous

section. Figure 5-7 shows the coverage plots for five of the species. For example, using

ERR430941 leads to a significant increase (>5%) in the coverage of 6684 RefSeq transcripts in F.

iinumae and 8967 in F. nipponica, with 3192 to 10,302 transcripts showing gains in coverage in

the remaining species (Table 5-6). It also increases the numbers of complete or near-complete

transcripts, defined as having 90% or more bases in a single alignment, from 10,800 to 14,562

(34.8% increase) for F. iinumae and from 5997 to 8918 (48.7% increase) for F. nipponica. These

results are consistent with those in Table 5-5 and demonstrate that Rascaf significantly

improves the completeness of genes in all five of these species.

155

Figure 5-7 Gene content evaluation of the Fragaria species assemblies before and after
improvement with RNA-seq data

(Coverage plots show the number of transcripts with a fraction x or more contained in the
primary alignment.)

156

Table 5-6 Evaluation of gene content for the five Fragaria assemblies before and after
improvement using RNA sequencing (RNA-seq) data

Data set Transcripts with >90% coverage
Gain
(>0)

Gain
(>5%)

 Before After

RNA-seq accession: ERR430941

 F. iinumae 10,800 14,562 6931 6684

 F. nipponica 5997 8918 9399 8967

 F. nubicola 6468 9772 9928 9470

 F. orientalis 1747 3262 11,033 10,302

 F. × ananassa 6325 6711 3812 3192

RNA-seq accession: SRR1930097

 F. iinumae 10,800 11,699 1899 1816

 F. nipponica 5997 6722 2782 2543

 F. nubicola 6468 7495 3703 3441

 F. orientalis 1747 2222 3687 3263

 F. × ananassa 6325 6445 1019 834

(Shown are the numbers of transcripts with 90% or more base coverage as well as the total
number of transcripts that experienced gains in coverage.)

5.3.7 Availability and Run-Time Considerations

The Rascaf package was developed using a combination of C++ and Perl modules. More

specifically, source code for the two executables rascaf and rascaf-join was written in C++. A

Perl module implementing the in silico BLAST evaluation against an external National Center for

Biotechnology Information database, as an optional postprocessing step, is included in the

package. The user can optionally invoke the search and modify it to point to a local or external

database and to the BLAST search program of choice. Run times for analyses illustrated in this

manuscript were roughly 15 min when using a single RNA-seq data set and <2 h for 11 RNA-seq

samples when run sequentially on a machine with 512 GB RAM and AMD Opteron 2.1 GHz

processor not including the HISAT alignment step. Memory used was <1 GB RAM in all cases, as

alignment files are being read and processed sequentially. Running times for AGOUTI and

157

L_RNA_scaffolder alone were comparable; however, application of these tools in practice

incurred additional run times for preassembling the RNA-seq reads into transcripts with Trinity

(up to 1 d) and for generating the Cufflinks gene annotations. Therefore, Rascaf is highly

memory and time efficient and can be readily used in assembly projects large and small and on

a wide variety of platforms.

5.4 Conclusions

Fast and affordable next-generation sequencing has brought genome sequencing to the

fingertips of groups and even individual researchers. However, assembling the short reads into

a finished genome represents a significant challenge, demanding highly specialized expertise

and sophisticated bioinformatics methods. Most of the genomes thus produced will be in draft

form, consisting largely of ordered and oriented contigs grouped in scaffolds, but also many

orphan contigs for which there may not be sufficient information to allow placement into

scaffolds or chromosomes. We present a software tool, called Rascaf, that takes advantage of

the continuity information from paired-end Illumina RNA-seq reads to identify new connections

among contigs and use them to recruit additional contigs into an assembly and to improve the

organization of scaffolds. As most genome sequencing projects also deep sequence the

transcriptome, often of multiple tissues or organs, as part of gene annotation efforts, these

RNA-seq sequences represent an abundant and readily available resource that can be

effectively used to improve the genome sequence. Several genome sequencing projects have

already used gene structure information to further help orient contigs and recruit additional

contigs. However, these efforts largely used locally developed methods and relied on long cDNA

158

and mRNA sequences and more recently transcripts assembled de novo from Illumina reads,

which are prone to introducing chimeric connections. These programs often rely on

parameters, for instance to specify the criteria for alignments to be deemed significant, which

need to be adjusted by the expert user. We present a practical and easy-to-use software tool,

Rascaf, that can be universally used for any genome with no or very little need for calibration.

Rascaf improves the assembly and its gene annotations simultaneously, finding thousands of

contig connections and contributing additional sequence to thousands of genes in the tested

Rosaceae draft assemblies. It is also very precise, and almost every contig connection could be

verified by independent evidence. Importantly, by separating the connection detection and

scaffolding processes, Rascaf can incorporate multiple RNA-seq data sets, thus compensating

for low-expression genes in any one sample while also eliminating likely errors that are

revealed as incompatibilities. As an ancillary benefit, the split design reduces the end-to-end

running time, allowing for parallelization of RNA-seq alignments across data sets as well as

eliminating the overhead with building intermediate genome indices. Lastly, it provides a built-

in mechanism for the user to intervene in the curation process; the user can manually inspect

and edit the connections file to filter or add connections before processing them through the

rascaf-join scaffolder. For convenience, scripts are provided to search and filter the connections

against databases of proteins and cDNA sequences before scaffolding.

As another unique feature, Rascaf can incorporate partial alignment information, which is

particularly beneficial for RNA-seq libraries with short insert sizes. Future work will assess

incorporating alignments spliced across contigs, which cannot be generated by current

alignment programs. Also, while Rascaf appears to work reasonably well with RNA-seq

159

sequences from a very close relative, the performance is likely limited, since current alignment

tools are not equipped to handle sequence differences that arise from evolutionary changes,

including block insertion–deletion mutations and evolutionary mutation patterns.

In comparisons with the only two other programs, Rascaf had higher or comparable accuracy in

all tests and the lowest overall processing times. Fast and accurate, Rascaf is a highly practical

and much needed addition to the current genome assembly and assembly curation

compendium of tools.

Work on this project was supported in part by NSF grant IOS-1339134 to L.F. Rascaf is available

free of charge for all distributed under a GNU General Public License and can be obtained from

https://github.com/mourisl/Rascaf.

https://github.com/mourisl/Rascaf

160

Bibliography

[1] D. Kim, B. Langmead and S. L. Salzberg, "HISAT: a fast spliced aligner with low memory

requirements," Nature methods, vol. 12, p. 357, 2015.

[2] A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson

and T. R. Gingeras, "STAR: ultrafast universal RNA-seq aligner," Bioinformatics, vol. 29,

pp. 15-21, 2013.

[3] O. Kelemen, P. Convertini, Z. Zhang, Y. Wen, M. Shen, M. Falaleeva and S. Stamm,

"Function of alternative splicing," Gene, vol. 514, pp. 1-30, 2013.

[4] J. Tazi, N. Bakkour and S. Stamm, "Alternative splicing and disease," Biochimica et

Biophysica Acta (BBA)-Molecular Basis of Disease, vol. 1792, pp. 14-26, 2009.

[5] R. K. Singh and T. A. Cooper, "Pre-mRNA splicing in disease and therapeutics," Trends in

molecular medicine, vol. 18, pp. 472-482, 2012.

[6] E. T. Wang, R. Sandberg, S. Luo, I. Khrebtukova, L. Zhang, C. Mayr, S. F. Kingsmore, G. P.

Schroth and C. B. Burge, "Alternative isoform regulation in human tissue

transcriptomes," Nature, vol. 456, p. 470, 2008.

161

[7] Q. Pan, O. Shai, L. J. Lee, B. J. Frey and B. J. Blencowe, "Deep surveying of alternative

splicing complexity in the human transcriptome by high-throughput sequencing," Nature

genetics, vol. 40, p. 1413, 2008.

[8] N. A. Fonseca, J. Rung, A. Brazma and J. C. Marioni, "Tools for mapping high-throughput

sequencing data," Bioinformatics, vol. 28, pp. 3169-3177, 2012.

[9] C. Trapnell, B. A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M. J. Van Baren, S. L.

Salzberg, B. J. Wold and L. Pachter, "Transcript assembly and quantification by RNA-Seq

reveals unannotated transcripts and isoform switching during cell differentiation,"

Nature biotechnology, vol. 28, p. 511, 2010.

[10] M. Guttman, M. Garber, J. Z. Levin, J. Donaghey, J. Robinson, X. Adiconis, L. Fan, M. J.

Koziol, A. Gnirke, C. Nusbaum and others, "Ab initio reconstruction of cell type--specific

transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs,"

Nature biotechnology, vol. 28, p. 503, 2010.

[11] W. Li, J. Feng and T. Jiang, "IsoLasso: a LASSO regression approach to RNA-Seq based

transcriptome assembly," in International Conference on Research in Computational

Molecular Biology, 2011.

[12] A. M. Mezlini, E. J. M. Smith, M. Fiume, O. Buske, G. L. Savich, S. Shah, S. Aparicio, D. Y.

Chiang, A. Goldenberg and M. Brudno, "iReckon: simultaneous isoform discovery and

abundance estimation from RNA-seq data," Genome research, 2012.

162

[13] J. J. Li, C.-R. Jiang, J. B. Brown, H. Huang and P. J. Bickel, "Sparse linear modeling of next-

generation mRNA sequencing (RNA-Seq) data for isoform discovery and abundance

estimation," Proceedings of the National Academy of Sciences, vol. 108, pp. 19867-

19872, 2011.

[14] L. D. Florea and S. L. Salzberg, "Genome-guided transcriptome assembly in the age of

next-generation sequencing," IEEE/ACM Transactions on Computational Biology and

Bioinformatics (TCBB), vol. 10, pp. 1234-1240, 2013.

[15] M. F. Rogers, J. Thomas, A. S. N. Reddy and A. Ben-Hur, "SpliceGrapher: detecting

patterns of alternative splicing from RNA-Seq data in the context of gene models and EST

data," Genome biology, vol. 13, p. R4, 2012.

[16] L. Florea, V. Di Francesco, J. Miller, R. Turner, A. Yao, M. Harris, B. Walenz, C. Mobarry, G.

V. Merkulov, R. Charlab and others, "Gene and alternative splicing annotation with AIR,"

Genome research, vol. 15, pp. 54-66, 2005.

[17] L. Song and L. Florea, "CLASS: constrained transcript assembly of RNA-seq reads," in BMC

bioinformatics, 2013.

[18] A. Ameur, A. Zaghlool, J. Halvardson, A. Wetterbom, U. Gyllensten, L. Cavelier and L.

Feuk, "Total RNA sequencing reveals nascent transcription and widespread co-

transcriptional splicing in the human brain," Nature Structural and Molecular Biology,

vol. 18, p. 1435, 2011.

163

[19] T. Griebel, B. Zacher, P. Ribeca, E. Raineri, V. Lacroix, R. Guigó and M. Sammeth,

"Modelling and simulating generic RNA-Seq experiments with the flux simulator," Nucleic

acids research, vol. 40, pp. 10073-10083, 2012.

[20] D. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley and S. L. Salzberg, "TopHat2:

accurate alignment of transcriptomes in the presence of insertions, deletions and gene

fusions," Genome biology, vol. 14, p. R36, 2013.

[21] L. Florea, L. Song and S. L. Salzberg, "Thousands of exon skipping events differentiate

among splicing patterns in sixteen human tissues," F1000Research, vol. 2, 2013.

[22] J. Harrow, A. Frankish, J. M. Gonzalez, E. Tapanari, M. Diekhans, F. Kokocinski, B. L. Aken,

D. Barrell, A. Zadissa, S. Searle and others, "GENCODE: the reference human genome

annotation for The ENCODE Project," Genome research, vol. 22, pp. 1760-1774, 2012.

[23] A. Sveen, B. Johannessen, M. R. Teixeira, R. A. Lothe and R. I. Skotheim, "Transcriptome

instability as a molecular pan-cancer characteristic of carcinomas," BMC genomics, vol.

15, p. 672, 2014.

[24] J. Eswaran, A. Horvath, S. Godbole, S. D. Reddy, P. Mudvari, K. Ohshiro, D. Cyanam, S.

Nair, S. A. W. Fuqua, K. Polyak and others, "RNA sequencing of cancer reveals novel

splicing alterations," Scientific reports, vol. 3, p. 1689, 2013.

164

[25] F. J. Miguel, R. D. Sharma, M. J. Pajares, L. M. Montuenga, A. Rubio and R. Pio,

"Identification of alternative splicing events regulated by the oncogenic factor SRSF1 in

lung cancer," Cancer research, 2013.

[26] H. Pimentel, M. Parra, S. L. Gee, N. Mohandas, L. Pachter and J. G. Conboy, "A dynamic

intron retention program enriched in RNA processing genes regulates gene expression

during terminal erythropoiesis," Nucleic acids research, vol. 44, pp. 838-851, 2015.

[27] H. Jung, D. Lee, J. Lee, D. Park, Y. J. Kim, W.-Y. Park, D. Hong, P. J. Park and E. Lee, "Intron

retention is a widespread mechanism of tumor-suppressor inactivation," Nature

genetics, vol. 47, p. 1242, 2015.

[28] H. Tilgner, D. G. Knowles, R. Johnson, C. A. Davis, S. Chakrabortty, S. Djebali, J. Curado,

M. Snyder, T. R. Gingeras and R. Guigó, "Deep sequencing of subcellular RNA fractions

shows splicing to be predominantly co-transcriptional in the human genome but

inefficient for lncRNAs," Genome research, vol. 22, pp. 1616-1625, 2012.

[29] S. Djebali, C. A. Davis, A. Merkel, A. Dobin, T. Lassmann, A. Mortazavi, A. Tanzer, J.

Lagarde, W. Lin, F. Schlesinger and others, "Landscape of transcription in human cells,"

Nature, vol. 489, p. 101, 2012.

[30] T. Steijger, J. F. Abril, P. G. Engström, F. Kokocinski, M. Akerman, T. Alioto, G. Ambrosini,

S. E. Antonarakis, J. Behr, P. Bertone and others, "Assessment of transcript

reconstruction methods for RNA-seq," Nature methods, vol. 10, p. 1177, 2013.

165

[31] M. Carrara, J. Lum, F. Cordero, M. Beccuti, M. Poidinger, S. Donatelli, R. A. Calogero and

F. Zolezzi, "Alternative splicing detection workflow needs a careful combination of

sample prep and bioinformatics analysis," BMC bioinformatics, vol. 16, p. S2, 2015.

[32] J. K. Pickrell, A. A. Pai, Y. Gilad and J. K. Pritchard, "Noisy splicing drives mRNA isoform

diversity in human cells," PLoS genetics, vol. 6, p. e1001236, 2010.

[33] R. Elkon, A. P. Ugalde and R. Agami, "Alternative cleavage and polyadenylation: extent,

regulation and function," Nature Reviews Genetics, vol. 14, p. 496, 2013.

[34] D. C. Di Giammartino, K. Nishida and J. L. Manley, "Mechanisms and consequences of

alternative polyadenylation," Molecular cell, vol. 43, pp. 853-866, 2011.

[35] Y.-N. Kang, D.-P. Lai, H. S. Ooi, T.-t. Shen, Y. Kou, J. Tian, D. M. Czajkowsky, Z. Shao and X.

Zhao, "Genome-wide profiling of untranslated regions by paired-end ditag sequencing

reveals unexpected transcriptome complexity in yeast," Molecular genetics and

genomics, vol. 290, pp. 217-224, 2015.

[36] A. Derti, P. Garrett-Engele, K. D. MacIsaac, R. C. Stevens, S. Sriram, R. Chen, C. A. Rohl, J.

M. Johnson and T. Babak, "A quantitative atlas of polyadenylation in five mammals,"

Genome research, pp. gr--132563, 2012.

[37] J. Behr, A. Kahles, Y. Zhong, V. T. Sreedharan, P. Drewe and G. Rätsch, "MITIE:

Simultaneous RNA-Seq-based transcript identification and quantification in multiple

samples," Bioinformatics, vol. 29, pp. 2529-2538, 2013.

166

[38] F. Hormozdiari, I. Hajirasouliha, A. McPherson, E. E. Eichler and S. C. Sahinalp,

"Simultaneous structural variation discovery among multiple paired-end sequenced

genomes," Genome research, 2011.

[39] Z. Wang, M. Gerstein and M. Snyder, "RNA-Seq: a revolutionary tool for

transcriptomics," Nature reviews genetics, vol. 10, p. 57, 2009.

[40] Y. S. Niknafs, B. Pandian, H. K. Iyer, A. M. Chinnaiyan and M. K. Iyer, "TACO produces

robust multisample transcriptome assemblies from RNA-seq," Nature methods, vol. 14,

p. 68, 2016.

[41] A. I. Tomescu, A. Kuosmanen, R. Rizzi and V. Mäkinen, "A novel min-cost flow method for

estimating transcript expression with RNA-Seq," in BMC bioinformatics, 2013.

[42] S. Canzar, S. Andreotti, D. Weese, K. Reinert and G. W. Klau, "CIDANE: comprehensive

isoform discovery and abundance estimation," Genome biology, vol. 17, p. 16, 2016.

[43] E. Bernard, L. Jacob, J. Mairal and J.-P. Vert, "Efficient RNA isoform identification and

quantification from RNA-Seq data with network flows," Bioinformatics, vol. 30, pp. 2447-

2455, 2014.

[44] L. Song, S. Sabunciyan and L. Florea, "CLASS2: accurate and efficient splice variant

annotation from RNA-seq reads," Nucleic acids research, vol. 44, pp. e98--e98, 2016.

167

[45] M. Pertea, G. M. Pertea, C. M. Antonescu, T.-C. Chang, J. T. Mendell and S. L. Salzberg,

"StringTie enables improved reconstruction of a transcriptome from RNA-seq reads,"

Nature biotechnology, vol. 33, p. 290, 2015.

[46] M. Shao and C. Kingsford, "Accurate assembly of transcripts through phase-preserving

graph decomposition," Nature biotechnology, vol. 35, p. 1167, 2017.

[47] J. Liu, T. Yu, T. Jiang and G. Li, "TransComb: genome-guided transcriptome assembly via

combing junctions in splicing graphs," Genome biology, vol. 17, p. 213, 2016.

[48] A. C. Frazee, A. E. Jaffe, B. Langmead and J. T. Leek, "Polyester: simulating RNA-seq

datasets with differential transcript expression," Bioinformatics, vol. 31, pp. 2778-2784,

2015.

[49] P. K. Srivastava, M. Bagnati, A. Delahaye-Duriez, J.-H. Ko, M. Rotival, S. R. Langley, K.

Shkura, M. Mazzuferi, B. Danis, J. Eyll and others, "Genome-wide analysis of differential

RNA editing in epilepsy," Genome research, vol. 27, pp. 440-450, 2017.

[50] T. C. Glenn, "Field guide to next-generation DNA sequencers," Molecular Ecology

Resources, vol. 11, pp. 759-769, 2011.

[51] E. C. Hayden, "Is the $1,000 genome for real?," Nature News, 2014.

[52] P. A. Pevzner, H. Tang and M. S. Waterman, "An Eulerian path approach to DNA

fragment assembly," Proceedings of the National Academy of Sciences, vol. 98, pp. 9748-

9753, 2001.

168

[53] M. Chaisson, P. Pevzner and H. Tang, "Fragment assembly with short reads,"

Bioinformatics, vol. 20, pp. 2067-2074, 2004.

[54] J. Schröder, H. Schröder, S. J. Puglisi, R. Sinha and B. Schmidt, "SHREC: a short-read error

correction method," Bioinformatics, vol. 25, pp. 2157-2163, 2009.

[55] L. Ilie, F. Fazayeli and S. Ilie, "HiTEC: accurate error correction in high-throughput

sequencing data," Bioinformatics, vol. 27, pp. 295-302, 2011.

[56] L. Salmela and J. Schröder, "Correcting errors in short reads by multiple alignments,"

Bioinformatics, vol. 27, pp. 1455-1461, 2011.

[57] W.-C. Kao, A. H. Chan and Y. S. Song, "ECHO: a reference-free short-read error correction

algorithm," Genome research, vol. 21, pp. 1181-1192, 2011.

[58] X. Yang, K. S. Dorman and S. Aluru, "Reptile: representative tiling for short read error

correction," Bioinformatics, vol. 26, pp. 2526-2533, 2010.

[59] P. Medvedev, E. Scott, B. Kakaradov and P. Pevzner, "Error correction of high-throughput

sequencing datasets with non-uniform coverage," Bioinformatics, vol. 27, pp. i137--i141,

2011.

[60] D. R. Kelley, M. C. Schatz, S. L. Salzberg and others, "Quake: quality-aware detection and

correction of sequencing errors," Genome Biol, vol. 11, p. R116, 2010.

169

[61] G. Marçais and C. Kingsford, "A fast, lock-free approach for efficient parallel counting of

occurrences of k-mers," Bioinformatics, vol. 27, pp. 764-770, 2011.

[62] H. Shi, B. Schmidt, W. Liu and W. Müller-Wittig, "A parallel algorithm for error correction

in high-throughput short-read data on CUDA-enabled graphics hardware," Journal of

Computational Biology, vol. 17, pp. 603-615, 2010.

[63] Y. Liu, J. Schröder and B. Schmidt, "Musket: a multistage k-mer spectrum-based error

corrector for Illumina sequence data," Bioinformatics, vol. 29, pp. 308-315, 2013.

[64] Y. Heo, X.-L. Wu, D. Chen, J. Ma and W.-M. Hwu, "BLESS: Bloom-filter-based Error

Correction Solution for High-throughput Sequencing Reads," Bioinformatics, p. btu030,

2014.

[65] B. H. Bloom, "Space/time trade-offs in hash coding with allowable errors,"

Communications of the ACM, vol. 13, pp. 422-426, 1970.

[66] S. Tarkoma, C. E. Rothenberg and E. Lagerspetz, "Theory and practice of bloom filters for

distributed systems," Communications Surveys & Tutorials, IEEE, vol. 14, pp. 131-155,

2012.

[67] J. Pell, A. Hintze, R. Canino-Koning, A. Howe, J. M. Tiedje and C. T. Brown, "Scaling

metagenome sequence assembly with probabilistic de Bruijn graphs," Proceedings of the

National Academy of Sciences, vol. 109, pp. 13272-13277, 2012.

170

[68] D. C. Jones, W. L. Ruzzo, X. Peng and M. G. Katze, "Compression of next-generation

sequencing reads aided by highly efficient de novo assembly," Nucleic acids research, vol.

40, pp. e171--e171, 2012.

[69] P. Melsted and J. K. Pritchard, "Efficient counting of k-mers in DNA sequences using a

bloom filter," BMC bioinformatics, vol. 12, p. 333, 2011.

[70] F. Putze, P. Sanders and J. Singler, "Cache-, Hash-, and Space-efficient Bloom Filters," J.

Exp. Algorithmics, vol. 14, pp. 4:4.4--4:4.18, 1 2010.

[71] P. Melsted and B. V. Halldórsson, "KmerStream: Streaming algorithms for k-mer

abundance estimation," bioRxiv, 2014.

[72] R. Luo, B. Liu, Y. Xie, Z. Li, W. Huang, J. Yuan, G. He, Y. Chen, Q. Pan, Y. Liu and others,

"SOAPdenovo2: an empirically improved memory-efficient short-read de novo

assembler," Gigascience, vol. 1, p. 18, 2012.

[73] M. Holtgrewe, "Mason--a read simulator for second generation sequencing data,"

Technical Report FU Berlin, 2010.

[74] B. Langmead and S. L. Salzberg, "Fast gapped-read alignment with Bowtie 2," Nature

methods, vol. 9, pp. 357-359, 2012.

[75] A. Gurevich, V. Saveliev, N. Vyahhi and G. Tesler, "QUAST: quality assessment tool for

genome assemblies," Bioinformatics, vol. 29, pp. 1072-1075, 2013.

171

[76] D. R. Zerbino and E. Birney, "Velvet: algorithms for de novo short read assembly using de

Bruijn graphs," Genome research, vol. 18, pp. 821-829, 2008.

[77] S. L. Salzberg, A. M. Phillippy, A. Zimin, D. Puiu, T. Magoc, S. Koren, T. J. Treangen, M. C.

Schatz, A. L. Delcher, M. Roberts and others, "GAGE: A critical evaluation of genome

assemblies and assembly algorithms," Genome research, vol. 22, pp. 557-567, 2012.

[78] L. Fan, P. Cao, J. Almeida and A. Z. Broder, "Summary cache: a scalable wide-area web

cache sharing protocol," IEEE/ACM Transactions on Networking (TON), vol. 8, pp. 281-

293, 2000.

[79] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh and G. Varghese, "An improved

construction for counting bloom filters," in Algorithms--ESA 2006, Springer, 2006, pp.

684-695.

[80] G. Cormode and S. Muthukrishnan, "An improved data stream summary: the count-min

sketch and its applications," Journal of Algorithms, vol. 55, pp. 58-75, 2005.

[81] Q. Zhang, J. Pell, R. Canino-Koning, A. C. Howe and C. T. Brown, "These are not the k-

mers you are looking for: efficient online k-mer counting using a probabilistic data

structure," arXiv preprint arXiv:1309.2975, 2013.

[82] K. Nakamura, T. Oshima, T. Morimoto, S. Ikeda, H. Yoshikawa, Y. Shiwa, S. Ishikawa, M. C.

Linak, A. Hirai, H. Takahashi and others, "Sequence-specific error profile of Illumina

sequencers," Nucleic acids research, p. gkr344, 2011.

172

[83] R. Chikhi and P. Medvedev, "Informed and automated k-mer size selection for genome

assembly," Bioinformatics, vol. 30, pp. 31-37, 2014.

[84] X. Yang, S. P. Chockalingam and S. Aluru, "A survey of error-correction methods for next-

generation sequencing," Briefings in Bioinformatics, vol. 14, pp. 56-66, 2013.

[85] H. Li, "BFC: correcting Illumina sequencing errors," Bioinformatics, 2015.

[86] L. Song, L. Florea and B. Langmead, "Lighter: fast and memory-efficient sequencing error

correction without counting," Genome Biology, vol. 15, p. 509, 2014.

[87] L. Salmela, "Correction of sequencing errors in a mixed set of reads," Bioinformatics, vol.

26, pp. 1284-1290, 2010.

[88] H.-S. Le, M. H. Schulz, B. M. McCauley, V. F. Hinman and Z. Bar-Joseph, "Probabilistic

error correction for RNA sequencing," Nucleic Acids Research, vol. 41, p. e109, 2013.

[89] M. D. MacManes, "Optimizing error correction of RNAseq reads," bioRxiv, vol.

doi:10.1101/020123, 2015.

[90] M. H. Schulz, D. R. Zerbino, M. Vingron and E. Birney, "Oases: robust de novo RNA-seq

assembly across the dynamic range of expression levels," Bioinformatics, vol. 28, pp.

1086-1092, 2012.

[91] B. Walenz and L. Florea, "Sim4db and Leaff: utilities for fast batch spliced alignment and

sequence indexing," Bioinformatics, vol. 27, pp. 1869-1870, 2011.

173

[92] A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M. Lesin, S.

I. Nikolenko, S. K. Pham, A. D. Prjibelski, A. Pyshkin, A. Sirotkin, N. Vyahhi, G. Tesler, M. A.

Alekseyev and P. A. Pevzner, "SPAdes: A New Genome Assembly Algorithm and Its

Applications to Single-Cell Sequencing.," Journal of Computational Biology, vol. 19, pp.

455-477, 2012.

[93] S. I. Nikolenko, A. Korobeynikov and M. A. Alekseyev, "BayesHammer: Bayesian

clustering for error correction in single-cell sequencing.," BMC Genomics, vol. 14, p. S7,

2013.

[94] T. B. K. Reddy, A. D. Thomas, D. Stamatis, J. Bertsch, M. Isbandi, J. Jansson, J.

Mallajosyula, I. Pagani, E. A. Lobos and N. C. Kyrpides, "The Genomes OnLine Database

(GOLD) v. 5: a metadata management system based on a four level (meta) genome

project classification," Nucleic acids research, vol. 43, pp. D1099--D1106, 2014.

[95] Arabidopsis Genome Initiative and others, "Analysis of the genome sequence of the

flowering plant Arabidopsis thaliana," nature, vol. 408, p. 796, 2000.

[96] International Human Genome Sequencing Consortium and others, "Initial sequencing

and analysis of the human genome," Nature, vol. 409, p. 860, 2001.

[97] J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton, H. O. Smith, M.

Yandell, C. A. Evans, R. A. Holt and others, "The sequence of the human genome,"

science, vol. 291, pp. 1304-1351, 2001.

174

[98] Mouse Genome Sequencing Consortium and others, "Initial sequencing and comparative

analysis of the mouse genome," Nature, vol. 420, p. 520, 2002.

[99] Rat Genome Sequencing Project Consortium and others, "Genome sequence of the

Brown Norway rat yields insights into mammalian evolution," Nature, vol. 428, p. 493,

2004.

[100] International Human Genome Sequencing Consortium and others, "Finishing the

euchromatic sequence of the human genome," Nature, vol. 431, p. 931, 2004.

[101] G. A. Tuskan, S. Difazio, S. Jansson, J. Bohlmann, I. Grigoriev, U. Hellsten, N. Putnam, S.

Ralph, S. Rombauts, A. Salamov and others, "The genome of black cottonwood, Populus

trichocarpa (Torr. & Gray)," science, vol. 313, pp. 1596-1604, 2006.

[102] M. Hunt, C. Newbold, M. Berriman and T. D. Otto, "A comprehensive evaluation of

assembly scaffolding tools," Genome biology, vol. 15, p. R42, 2014.

[103] K. Wang, D. Singh, Z. Zeng, S. J. Coleman, Y. Huang, G. L. Savich, X. He, P. Mieczkowski, S.

A. Grimm, C. M. Perou and others, "MapSplice: accurate mapping of RNA-seq reads for

splice junction discovery," Nucleic acids research, vol. 38, pp. e178--e178, 2010.

[104] C. Trapnell, A. Roberts, L. Goff, G. Pertea, D. Kim, D. R. Kelley, H. Pimentel, S. L. Salzberg,

J. L. Rinn and L. Pachter, "Differential gene and transcript expression analysis of RNA-seq

experiments with TopHat and Cufflinks," Nature protocols, vol. 7, p. 562, 2012.

175

[105] L. Florea, A. Souvorov, T. S. Kalbfleisch and S. L. Salzberg, "Genome assembly has a major

impact on gene content: a comparison of annotation in two Bos taurus assemblies," PLoS

One, vol. 6, p. e21400, 2011.

[106] R. A. Dalloul, J. A. Long, A. V. Zimin, L. Aslam, K. Beal, L. A. Blomberg, P. Bouffard, D. W.

Burt, O. Crasta, R. P. M. A. Crooijmans and others, "Multi-platform next-generation

sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and

analysis," PLoS biology, vol. 8, p. e1000475, 2010.

[107] V. Shulaev, D. J. Sargent, R. N. Crowhurst, T. C. Mockler, O. Folkerts, A. L. Delcher, P.

Jaiswal, K. Mockaitis, A. Liston, S. P. Mane and others, "The genome of woodland

strawberry (Fragaria vesca)," Nature genetics, vol. 43, p. 109, 2011.

[108] J. L. Wegrzyn, J. D. Liechty, K. A. Stevens, L.-S. Wu, C. A. Loopstra, H. A. Vasquez-Gross,

W. M. Dougherty, B. Y. Lin, J. J. Zieve, P. J. Martıńez-Garcıá and others, "Unique features

of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence

annotation," Genetics, vol. 196, pp. 891-909, 2014.

[109] M. Pop, D. S. Kosack and S. L. Salzberg, "Hierarchical scaffolding with Bambus," Genome

research, vol. 14, pp. 149-159, 2004.

[110] A. Dayarian, T. P. Michael and A. M. Sengupta, "SOPRA: Scaffolding algorithm for paired

reads via statistical optimization," BMC bioinformatics, vol. 11, p. 345, 2010.

176

[111] M. Boetzer, C. V. Henkel, H. J. Jansen, D. Butler and W. Pirovano, "Scaffolding pre-

assembled contigs using SSPACE," Bioinformatics, vol. 27, pp. 578-579, 2010.

[112] S. Gao, N. Nagarajan and W.-K. Sung, "Opera: reconstructing optimal genomic scaffolds

with high-throughput paired-end sequences," in International Conference on Research in

Computational Molecular Biology, 2011.

[113] N. Donmez and M. Brudno, "SCARPA: scaffolding reads with practical algorithms,"

Bioinformatics, vol. 29, pp. 428-434, 2012.

[114] W. Xue, J.-T. Li, Y.-P. Zhu, G.-Y. Hou, X.-F. Kong, Y.-Y. Kuang and X.-W. Sun,

"L_RNA_scaffolder: scaffolding genomes with transcripts," BMC genomics, vol. 14, p.

604, 2013.

[115] B. J. Haas, A. Papanicolaou, M. Yassour, M. Grabherr, P. D. Blood, J. Bowden, M. B.

Couger, D. Eccles, B. Li, M. Lieber and others, "De novo transcript sequence

reconstruction from RNA-seq using the Trinity platform for reference generation and

analysis," Nature protocols, vol. 8, p. 1494, 2013.

[116] S. V. Zhang, L. Zhuo and M. W. Hahn, "AGOUTI: improving genome assembly and

annotation using transcriptome data," GigaScience, vol. 5, p. 31, 2016.

[117] D. H. Huson, K. Reinert and E. W. Myers, "The greedy path-merging algorithm for contig

scaffolding," Journal of the ACM (JACM), vol. 49, pp. 603-615, 2002.

177

[118] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to algorithms, MIT

press, 2009.

[119] I. Verde, A. G. Abbott, S. Scalabrin, S. Jung, S. Shu, F. Marroni, T. Zhebentyayeva, M. T.

Dettori, J. Grimwood, F. Cattonaro and others, "The high-quality draft genome of peach

(Prunus persica) identifies unique patterns of genetic diversity, domestication and

genome evolution," Nature genetics, vol. 45, p. 487, 2013.

[120] H. Li and R. Durbin, "Fast and accurate short read alignment with Burrows--Wheeler

transform," bioinformatics, vol. 25, pp. 1754-1760, 2009.

[121] D. Chagné, R. N. Crowhurst, M. Pindo, A. Thrimawithana, C. Deng, H. Ireland, M. Fiers, H.

Dzierzon, A. Cestaro, P. Fontana and others, "The draft genome sequence of European

pear (Pyrus communis L.'Bartlett')," PloS one, vol. 9, p. e92644, 2014.

[122] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller and D. J. Lipman,

"Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,"

Nucleic acids research, vol. 25, pp. 3389-3402, 1997.

[123] S. Kurtz, A. Phillippy, A. L. Delcher, M. Smoot, M. Shumway, C. Antonescu and S. L.

Salzberg, "Versatile and open software for comparing large genomes," Genome biology,

vol. 5, p. R12, 2004.

[124] H. Hirakawa, K. Shirasawa, S. Kosugi, K. Tashiro, S. Nakayama, M. Yamada, M. Kohara, A.

Watanabe, Y. Kishida, T. Fujishiro and others, "Dissection of the octoploid strawberry

178

genome by deep sequencing of the genomes of Fragaria species," DNA research, vol. 21,

pp. 169-181, 2014.

[125] L. Song and L. Florea, "Software and exemplar data for Rcorrector," GigaScience

Database http://dx.doi.org/10.5524/100171, 2015.

[126] R. S. Roy, D. Bhattacharya and A. Schliep, "Turtle: Identifying frequent k-mers with

cache-efficient algorithms," arXiv preprint arXiv:1305.1861, 2013.

[127] H. Li, "Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM,"

arXiv preprint arXiv:1303.3997, 2013.

[128] D. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley and S. L. Salzberg, "Accurate

alignment of transcriptomes in the presence of insertions, deletions and gene fusions,"

Genome Biology, vol. 14, p. R36, 2013.

[129] S. Istrail, G. G. Sutton, L. Florea, A. L. Halpern, C. M. Mobarry, R. Lippert, B. Walenz, H.

Shatkay, I. Dew, J. R. Miller and others, "Whole-genome shotgun assembly and

comparison of human genome assemblies," Proceedings of the National Academy of

Sciences, vol. 101, pp. 1916-1921, 2004.

[130] A. Doring, D. Weese, T. Rausch and K. Reinert, "SeqAn: An efficient, generic C++ library

for sequence analysis," BMC Bioinformatics, vol. 9, p. 11, 2008.

179

Curriculum Vitae

Li Song was born in Chengdu, Sichuan, China in 1987. He received a Bachelor of Engineering

degree from the Computer Science and Technology Department of Tongji University in 2009.

Between 2009-2012, he attended the Computer Science Department at the Michigan

Technological University, where he worked on high performance computing advised by Prof.

Steven Seidel. In 2012, he started his research in computational biology at the Department of

Computer Science at the Johns Hopkins University, where he designed algorithms for next

generation sequencing data analysis under the advisorship of Prof. Liliana Florea. Li Song

obtained a Master of Science degree in Computer Science from the Michigan Technological

University in 2011, a Master of Science degree in Applied Mathematics and Statistics from the

Johns Hopkins University in 2017, and a PhD degree in Computer Science from the Johns

Hopkins University in 2018.

