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Abstract 

With the advent of next generation sequencing, researchers can now investigate genome of 

species and individuals in unprecedented detail. Each part of genome has its own function. 

Annotation is the process to identify the parts and their functions.  

Deep RNA sequencing (RNA-seq) emerged as a revolutionary technology for transcriptome 

analysis, now widely used to annotate genes. Our transcript assemblers, CLASS and CLASS2, 

were designed to better detect alternative splicing events and to find new transcripts from 

RNA-seq data. With sequencing costs dropping, experiments now routinely include multiple 

RNA-seq samples, to improve the power of statistical analyses. We took advantage of the 

power of multiple samples in the software PsiCLASS. PsiCLASS simultaneously assembles 

multiple RNA-seq samples, which significantly improves performance over the traditional 

‘assemble-and-merge’ model.     

For many alignment and assembly applications, sequencing errors can confound downstream 

analyses. We implemented two k-mer-based error correctors, Lighter and Rcorrector, for whole 

genome sequencing data and for RNA-seq data, respectively. Lighter was the first k-mer-based 

error corrector without counting and is much faster and more memory-efficient than other 

error correctors while having comparable accuracy. Rcorrector searches for a path in the De 

Bruijn graph that is closest to the current read, using local k-mer thresholds to determine 

trusted k-mers. Rcorrector measurably improves de novo assembled transcripts, which is critical 

in annotating species without a high-quality reference genome. 
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A newly assembled genome is typically highly fragmented, which makes it difficult to annotate. 

Contiguity information from paired-end RNA-seq reads can be used to connect multiple 

disparate pieces of the gene. We implemented this principle in Rascaf, a tool for assembly 

scaffolding with RNA-seq read alignments. Rascaf is highly practical, and has improved 

sensitivity and precision compared to traditional approaches using de novo assembled 

transcripts. 

Overall, the collection of algorithms, methods and tools represent a powerful and valuable 

resource that can be readily and effectively used in any genome sequencing and annotation 

project and for a vast array of transcriptomic analyses.  

Thesis committee members: 
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Introduction 

DNA is the blue print for life. It encodes the proteins that represent the building blocks for an 

organism. DNA does not generate the proteins directly but through an intermediate, messenger 

RNA (mRNA). mRNA molecules are transcribed from the DNA, and many of the mRNAs will then 

be translated into proteins. We call the transcribed portion of the DNA a gene. In eukaryotes, 

such as human, the sequence for the matured mRNA is not contiguous on the DNA, with some 

portions of the gene being spliced out from the transcribed pre-mRNA sequence. The removed 

parts are called ‘introns’ and the remaining parts are ‘exons’. Furthermore, due to alternative 

splicing, pre-mRNAs can splice out different combinations of introns. As a result, a gene has the 

potential to generate different RNAs, which we will refer as ‘transcripts’, ‘splice variants’ or 

‘isoforms’. Alternative splicing occurs in more than 90% of the genes in human and at similar 

levels in other eukaryotes. This mechanism makes it possible to produce millions of different 

proteins from only about 25,000 genes. The process of inferring the function for each piece of 

the DNA is called genome annotation. In this thesis, we introduce tools that improve on the 

genome annotation process. 

RNA-seq is the next generation sequencing of RNA transcripts. Despite advances in sequencing, 

a transcript is still much longer than the read length, which is typically 50-150 bp. Therefore, 

the huge number of short reads need to be pieced together to form the full-length transcripts. 

Downstream analysis can then be applied to determine their function, expression levels and to 

compare the sets of transcripts, collectively called the transcriptome, between different 
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conditions. Reconstructing the full-length transcripts, or ‘transcriptome assembly’, is a difficult 

computational problem owing to the short read lengths, biases in the RNA-seq data, and the 

complexity of splicing. For example, due to alternative splicing two identical reads from the 

same gene can originate from different transcripts. 

There are two general strategies for transcriptome assembly. Reference-based transcriptome 

assembly uses the alignments of RNA-seq reads on the reference genome.  De novo 

transcriptome assembly directly stitching reads into transcripts, guided by their sequence 

similarity. For a low-expression transcript, there is little overlap between reads and thus such a 

transcript is more difficult to reconstruct de novo. Both strategies are active areas of research. 

This thesis will focus on the problem of reference-based transcriptome assembly. We present 

the CLASS series of reference-based transcriptome assemblers. CLASS is based on the 

SET_COVER model, which seeks a minimal number of sets (transcripts) to explain all the 

elements (read alignments). CLASS uses a compact graph data structure to represent a gene 

and its splice variants, and proposes an efficient dynamic programming algorithm to select a set 

of likely transcripts from the splice graph or the subexon graph. 

As sequencing costs decrease, using multiple RNA-seq samples becomes routine for many 

biological studies.  Multiple RNA-seq samples give more statistical power, for instance for 

differential expression and differential splicing analyses. Such differential studies use a global 

annotation (meta-assembly), comprising the expressed genes and transcripts as inferred from 

the RNA-seq reads. To produce the meta-assembly, the current paradigm is to reconstruct the 

transcripts for each sample individually, using a single-sample transcriptome assembler, and 
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then merge the resulting transcript sets across all samples. However, in this approach, each 

sample is assembled individually, and the merged result conflates the errors, often leading to 

low accuracy. PsiCLASS proposes an alternative model, in which samples are analyzed 

simultaneously and gene information is used across the samples to improve both completeness 

(sensitivity) and reliability (precision). PsiCLASS builds a global subexon graph by merging the 

sample-wise subexon graphs, filtered to remove likely exon and intron artifacts, and selects a 

set of transcripts for each sample based on the global splice graph. A unified set of meta-

annotations is then obtained from the full set of transcripts by voting. Since the transcripts for 

each sample are selected from the same underlying global data structure, they are more 

consistent among samples, as well as with the resulting meta-assembly. 

Sequencing errors can affect the performance of tools operating on the raw sequencing data, 

including alignment tools and the genome assemblers based on De Bruijn graph. This limitation 

has motivated the development of sequencing error correctors. The most widely used approach 

for error correction of next generation sequencing data is by leveraging the multiplicity of k-

mers. A k-mer is a substring of size k; a read of length r will then contain r-k+1 overlapping k-

mers. If a k-mer is error-free (‘solid’), it will appear many times in the data set and will have 

high multiplicity.  If a k-mer contains a sequencing error (‘weak’), given that the errors are rare 

and random, it will only occur a small number of times and will have low multiplicity. The error 

correction consists of turning the weak k-mers into solid k-mers by changing the bases of the 

read. The tradition approach counts the multiplicity of the k-mers, a process that is slow and 

memory-consuming. Our tool Lighter is an error corrector based on k-mers without counting. 

We designed a two-pass streaming algorithm in Lighter to obtain the solid k-mers. The only 
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sizable data structures in Lighter are two Bloom filters. A Bloom filter is a memory-efficient data 

structure that can answer the question of whether an element is in a set or not with a small 

false positive rate. As a result, Lighter is both much faster and much more space-efficient than 

other error correctors. Furthermore, Lighter consumes constant memory when the sequencing 

depth for a species increases. 

Unlike with whole genome sequencing (DNA) data, where read coverage is expected to be 

uniform, due to different expression levels of the transcripts in an RNA-seq sample one cannot 

distinguish solid from weak k-mers with a global multiplicity threshold. For example, a k-mer 

with low multiplicity can originate from a transcript with low expression level, or can contain an 

error. Rcorrector adopts a local threshold to distinguish between solid and weak k-mers at k-

mer level, and also at read level. To correct a read, Rcorrector searches paths in the De Bruijn 

graph of read sequences. It then chooses the path whose corresponding sequence has the 

minimum edit distance to the original read, such that each k-mer’s multiplicity in the path 

exceeds its own local threshold. Thorough evaluation of Rcorrector showed that correcting the 

errors directly improves the quality of the de novo assembled transcripts. 

For genomes assembled from short next generation sequencing reads, in particular Illumina 

reads, the newly assembled sequence is usually highly fragmented into contigs and/or 

scaffolds. A contig is a portion of the genome that the assembler reconstructed with no gaps. A 

contig typically terminates at a repeat boundary, when the read or k-mer is not able to resolve 

the repeat. A mate pair is produced by sequencing the two ends of the same DNA fragment. 

The two reads are then close on the genome and have well defined position and orientation 

relative to one another. The difference between the mates’ locations on the fragment and on 
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the (original) genome is called insert size. If the insert size is longer than the factor terminating 

the contig, such as the repeat size, the mate pair that spans two contigs can be used to connect 

the two contigs together, with a gap between them.  This structure is called a ‘scaffold’. A 

scaffold can contain multiple contigs with specified order and orientation.  

Because they contain introns, eukatyotic genes can span thousands of bases and are very likely 

to be split across different scaffolds. This makes the downstream annotation process difficult. 

RNA-seq reads are sampled from the gene regions and may ‘jump’ over the introns, regardless 

of the insert size, and therefore provide the contiguity information that can be used to connect 

different pieces of the gene and their underlying contigs and/or scaffolds. While genome 

sequencing projects have occasionally used de novo assembled transcripts to lay out the 

scaffolds, this process is time-consuming and error-prone, as misassemblies in the transcripts 

can transfer onto the resulting scaffold. State-of-the-art short RNA-seq read aligners, such as 

HISAT [1] and STAR [2], can align the short reads on the raw assembly fast and efficiently. 

Therefore, we developed Rascaf to directly use the alignments of short mate-pair RNA-seq 

reads to guide scaffolding. Compared with L_RNA_Scaffolder, based on the de novo assembled 

transcripts, Rascaf showed higher sensitivity and significantly better precision. 

The rest of the thesis is organized as follows: Chapter 1 presents the reference-based 

transcriptome assemblers CLASS and CLASS2. Chapter 2 describes PsiCLASS, which extends 

CLASS2 to simultaneously handle multiple RNA-seq samples. Chapter 3 and Chapter 4 introduce 

the error correctors Lighter and Rcorrector, for whole genome sequencing and for RNA-seq 

data, respectively. Lastly, Chapter 5 presents Rascaf, a scaffolder based on RNA-seq alignments. 
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Chapter 1   

CLASS: accurate and efficient splice variant 

annotation from RNA-seq reads 

1.1 Introduction 

Alternative splicing is an inherent property of eukaryotic genes, with important roles in 

increasing functional diversity and in disease [3, 4, 5]. More than 90% of the human genes are 

alternatively spliced [6, 7], with similar levels reported in other eukaryotes. Each gene can 

produce from one to potentially thousands of splice variants under different cellular conditions, 

and gene splice isoforms can have similar, independent and even antagonistic functions. 

Identifying the genes and their transcript variants is therefore a critical first step in answering a 

broad range of biological questions. Over the past years, next generation sequencing of cellular 

RNA (RNA-seq) has enabled the discovery of thousands of novel non-coding RNAs and has 

significantly expanded our catalog of splice variants. However, despite significant progress, 

extracting gene expression estimates and identifying splice variants in the vast amounts of 

short read data remains challenging, demanding bioinformatics tools that are fast, accurate and 

efficient. 

The primary goal of a typical RNA-seq analysis is to comprehensively determine the precise 

exon–intron boundaries on the genome for all transcripts and to estimate their expression 
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levels in the samples. Before this can be accomplished, reads must be mapped to the genome 

with a fast spliced alignment program that accounts for introns and sequencing errors [8]. 

Alignments are then pieced together to form gene and transcript models. Virtually all genome-

guided transcript assemblers build a graph that represents a gene and its splice variants, and 

then traverse it to select a subset of transcripts that are likely represented in the sample. 

Among current programs, Cufflinks [9] connects overlapping reads into overlap graphs, 

Scripture [10] and IsoLasso [11] build connectivity graphs, and iReckon [12], Scripture and SLIDE 

[13] generate splice or subexon graphs [14]. Although there are some differences among the 

exons and introns predicted by each program, these representations more or less encode 

equivalent sets of candidate transcripts. Therefore, the strategy for selecting transcripts from 

among the many encoded possibilities in the graph is important for the program's accuracy as 

well as for the number of variants identified. Parsimony-based methods such as Cufflinks’ 

minimum partition algorithm select a mathematically minimum number of transcripts. They can 

usually identify the genes and most major isoforms relatively accurately, but are less apt at 

identifying low abundance splicing events. ‘Best fit’ methods, which include IsoLasso, SLIDE and 

iReckon, choose a subset of transcripts such as to optimize an objective function, using either 

an integer programming or an expectation maximization formulation. The main problem with 

these approaches is over-fitting, where programs tend to report a large number of spurious 

transcripts based on low abundance reads. In yet another category, programs such as 

SpliceGrapher [15] simply omit enumerating transcripts altogether, or otherwise exhaustively 

enumerate all splice variants encoded in the graph (Scripture). While they can generally capture 

a larger portion of the true splicing variation, these methods are too imprecise to allow 
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meaningful downstream analyses. Lastly, programs differ in their use of known annotations to 

inform their predictions. Annotation-guided methods, such as iReckon and SLIDE, rely on an 

existing set of gene annotations to build their gene models. For species for which there is 

already an extensive set of gene annotations these methods generally produce more variants, 

but are also more prone to reporting spurious isoforms and cannot be used to identify novel 

genes. In contrast, de novo programs including Cufflinks, Scripture and IsoCEM, build gene and 

transcript models from RNA-seq reads alone, without any prior knowledge of gene structure, 

and therefore are more suited to annotate newly sequenced or less studied organisms. Overall, 

while many tools already exist to determine the expressed genes and loci in an RNA-seq 

sample, there is an unmet need for methods that specifically target alternative splicing. 

We developed CLASS and its successor CLASS2 (Constraint-based Local Assembly and Selection 

of Splice variants), to bridge this gap and detect low abundance splice variation with high 

accuracy. At its core is the concept of the splice graph, a data structure that we have previously 

employed in splice variant annotation using both conventional Sanger (EST) [16] and next 

generation sequencing [17]. A splice graph compactly represents a gene with its exons as nodes 

and introns as edges; splice variants can be read as maximal paths in the graph. CLASS2 uses a 

linear programming method to predict exons, and then connects them into splice graphs via 

introns detected from spliced alignments. Since the splice graph may encode many biologically 

unfeasible combinations, CLASS2 uses an efficient dynamic programming optimization 

algorithm to select candidate transcripts. CLASS2 builds upon its predecessor CLASS [17], but 

brings several critical algorithmic and performance improvements, including a new formulation 

for transcript scoring and selection as an optimization problem, novel and scalable dynamic 
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programming transcript selection algorithms, and a new model for ‘intronic’ noise due to reads 

from unspliced RNA. This chapter will focus on CLASS2. When compared to reference programs, 

CLASS2 captured significantly more splicing variation, both fully reconstructed transcripts and 

partial splicing events, with high precision. Most importantly, it was the only program tested 

that produced consistently well formed and easy to interpret annotations for all applications 

and sequencing strategies. More specifically, our comparative analyses have shown that:  

1. CLASS2 offers the best tradeoff between sensitivity and precision in reconstructing full 

transcripts. In its default setting, CLASS2 detects 10–70% more transcripts than 

Cufflinks, which is the most popular and most precise of these programs, with higher or 

comparable precision. In its sensitive settings, CLASS2 detects up to twice as many 

transcripts as Cufflinks for a relatively small drop in precision. 

2. It is the best suited to capture local alternative splicing variation. In particular, it can 

detect up to twice as many alternative splicing events as Cufflinks, with high precision. 

CLASS2 finds slightly fewer events than Scripture, which is the most sensitive of the 

programs, but its precision is considerably (70–80%) higher. 

3. It employs a combined gene-level and genome-level model of intronic ‘noise’ that allows 

more accurate detection of intron retention events. 

4. The amount of novel alternative splicing variation detected by CLASS2 increases with 

increasingly large data sets. 

5. CLASS2 is multi-threaded and scales well with the amount of data, requiring <3GB RAM 

for all of our tests, and can complete most regular tasks in a few hours. 
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6. Lastly, since CLASS2 can produce annotations from RNA-seq data alone, without 

requiring an existing set of gene annotations, it is very well suited for the annotation of 

newly sequenced organisms. 

We present the overall strategy below, followed by more details about the individual 

algorithms in the corresponding Methods sections. We then comparatively evaluate CLASS2 

and several popular programs, including both de novo and annotation-dependent transcript 

assemblers, on both control and real RNA-seq sets, in the Results section.  

1.2 Methods 

1.2.1 Overview 

CLASS2 determines a set of transcripts in three stages (Figure 1-1). First, it infers a set of exons 

from read coverage levels and splice sites using a linear programming technique. Then, it 

connects the exons into a splice graph via introns extracted from spliced reads. Once the graph 

is constructed, CLASS2 selects a subset of transcripts from among those encoded in the graph 

using an efficient splice graph-based dynamic programming algorithm. 



11 
 

 

Figure 1-1 The CLASS2 transcript assembly algorithm 

(Step 1 (A) Exon and introns. Infer exons from the read coverage levels, using linear 
programming, and introns from spliced alignments. Step 2 (B) Splice graph. Build a splice graph 
to represent the gene, connecting exons by introns. Shown is a section from a splice graph, with 
a skipped exon event and a 2-intron retention event, encoding two possible paths (transcripts). 

Step 3 (C) Constraints. Cluster reads into classes (constraints) by their splicing and interval 
patterns. Step 4 (D) Transcript selection. Build and solve the bipartite constraint graph and 

associated transcript selection problem, shown here for three read pairs c1, c2 and c3, and three 
transcripts t1, t2 and t3.) 

1.2.2 Building the exons 

Exons are key to the transcript assembly process, because incorrectly reconstructing exons can 

miss important gene variations or can create false ones. Since current RNA-seq reads are too 

short to cover many exons end-to-end, CLASS2 uses read coverage levels along the genome and 

splice junctions from spliced read alignments to find exons (Figure 1-1A). CLASS2 employs a 

two-step procedure to determine a set of exons: first, it enumerates all combinations of exons 
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that can explain the splice site patterns and paired-end reads. Second, for each such 

combination it formulates and solves a linear program expressing several types of constraints. 

Intuitively, the read coverage levels for all alternative exons over a common interval should 

cumulatively add up to the observed read coverage levels. Additionally, we assume read 

coverage levels are locally uniform, and therefore the coverage of adjacent portions of the 

same exon should be similar. Each exon combination is scored by the linear program, and the 

combination with the minimum objective function value is chosen in the end. 

1.2.3 Modeling intronic ‘noise’ 

Intronic RNA, produced by unspliced pre-mRNA transcripts that are either residual or part of 

the experiment, is a common artifact with real RNA-seq samples. Such intronic ‘noise’ can 

confound the detection of mature mRNA resulting from intron retention and alternative 

transcription start and termination events [18]. Distinguishing between ‘signal’ and ‘noise’ is 

therefore critical for creating a full and accurate set of exons. CLASS2 introduces a new method 

to identify intronic mRNA, by modeling intronic read levels across genomic intervals, both 

within a gene locus and along the genome. The gene-level ‘noise’ is modeled as a Poisson 

distribution of the individual intronic positions, retaining the introns whose average coverage 

ranks at the top of the distribution (P-value = 10e−5). For the genome-wide ‘noise’, we consider 

the coverage distribution of intronless regions (‘islands’), modeled as a normal distribution, and 

retain only those introns with Z-score > 6. In the end, only introns that pass both filters are 

deemed as likely retained introns or alternative gene ends, and are then incorporated into the 

exon finding procedure. 
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1.2.4 Transcript enumeration and selection 

Once a set of exons is determined, CLASS2 generates a splice graph by connecting the exons 

(nodes) via introns (edges) extracted from spliced read alignments. Candidate transcripts are 

encoded in the graph as maximal paths from a node with no incoming edges (source) to a node 

with no outgoing edges (sink) (Figure 1-1B). Since the splice graph generally encodes a much 

larger number of transcripts than is biologically possible, CLASS2 uses a selection procedure to 

identify a subset of candidates that can explain all contiguity constraints from spliced reads and 

paired-reads. In practical terms, a constraint is a cluster of reads or read pairs that share the 

same set of exons or exon fragments and therefore can be assembled into the same transcript 

(Figure 1-1C). 

Conceptually, we model the problem as a graph with two types of nodes (bipartite), transcripts 

and constraints, where each transcript node is connected by edges to the constraints it 

satisfies, and we must select a subset of transcripts that collectively satisfy all constraints 

(Figure 1-1D). In early work, we implemented a simple greedy SET_COVER approximation 

algorithm [17] that aimed to minimize the number of transcripts that could explain all the read 

patterns, or constraints, without regard to the number of supporting reads. Here, we report an 

improved algorithm that additionally takes into account the read coverage (abundance) 

information for each transcript and constraint, modeled as a dynamic programming 

optimization problem. It selects a subset of candidate transcripts while simultaneously 

assigning a set of compatible reads, and it does so efficiently by exploiting the compactness of 

the splice graph data structure. The algorithm iteratively grows a set of transcripts by selecting, 

at each step, the transcript that maximizes a scoring function which takes into account both the 
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number of constraints not covered by the current set and their abundance. As a new transcript 

is selected, reads are simultaneously assigned to it as determined by its set of constraints, and 

the algorithm is reiterated with the updated sets of constraints and transcripts. 

Since the algorithm favors abundant isoforms, transcripts are being selected largely in the order 

of their abundance, from the most highly expressed to the least expressed. This allows the 

selection procedure to be terminated whenever the abundance reaches a user-specified cutoff 

(parameter ‘-F’), with the most trusted isoforms being reported first. To further improve the 

algorithm's efficiency for genes with complex structures, rather than enumerating all 

transcripts at each step in the algorithm, CLASS2 implements an efficient splice-graph based 

dynamic programming transcript selection procedure, described below. This method 

considerably reduces both memory and run time, and allows the program to be run on very 

large data sets without sacrificing sensitivity. 

1.2.5 Exon reconstruction algorithm 

To determine a set of exons, CLASS2 uses a protocol similar to CLASS (15), modified to exclude 

intervals that contain intronic ‘noise’. More specifically, it analyzes regions of the genome 

covered by reads, which represent exons or combinations of exons, using splice sites to split 

each region into intervals. Each interval can belong to more than one exon; the portion of an 

exon corresponding to an interval is called subexon. To determine the most likely combination 

of exons within a region, CLASS2 enumerates all feasible exon sets, i.e. that are necessary and 

sufficient to explain all splice sites and all reads. For each such set it formulates and solves a 
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linear program (LP), which is used to score the combination. The combination with the best LP 

score is chosen as the representative set of exons. The linear program is formalized below. 

1.2.6 The LP-based scoring system for exon combinations 

More formally, consider a region R = r1…rN, where N is the number of intervals. Let Lj = |rj| be 

the length of interval rj, and L = ∑j=1
N Lj  the length of the region. Denote S = {X1, …, XM} the set 

of possible exons, represented as vectors: Xi=(xi,j)∊{0,1}N, with xi,j = 1 if and only if Xi contains 

interval rj, and 0 otherwise. Hence, Xi will contain all 0s except for a run of 1s, starting at 

interval bi and ending at interval ei. Given a candidate set of exons S’ ⊆ S, CLASS2 assigns each 

subexon an (unknown) read coverage level, ci,j, defined as the average number of reads per 

base of subexon i,j. Let Cj be the (observed) read coverage on interval j. We write a linear 

system with the following constraints:  

(i) additivity - for each interval rj, j = 1,…,N, the cumulative coverage levels of subexons 

within the interval should be roughly equal to the observed coverage level:   

|∑ 𝑥𝑖,𝑗𝑐𝑖,𝑗 − 𝐶𝑗

𝑖

| ≤ 𝜖𝑗 

(ii) continuity - for each exon Xi ∊ S’, the coverage of adjacent subexons should be 

roughly equal:   

|𝑐𝑖,𝑗 − 𝑐𝑖,𝑗−1| ≤ 𝜖𝑖,𝑗 for each 𝑗 = 𝑏𝑖 + 1, … , 𝑒𝑖 

(iii) conservation - the total coverage of all exons should be roughly equal to the total 

coverage of the region:   
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|∑ ∑ 𝑐𝑖,𝑗𝐿𝑗 −

𝑗𝑖

∑ 𝐶𝑗𝐿𝑗

𝑗

| ≤ 𝜖 

(iv) non-negativity - all (sub)exons of exons should be expressed: 

𝑐𝑖,𝑗 ≥ 1, 𝑖𝑓 𝑥𝑖,𝑗 = 1; 𝑐𝑖,𝑗 = 0 𝑖𝑓 𝑥𝑖,𝑗 = 0 

The objective function minimizes the total error:   

𝑚𝑖𝑛𝑖,𝑗(∑ 𝜖𝑗

𝑗

+ ∑ 𝜖𝑖,𝑗

𝑖,𝑗

+ 𝜖) 

For single-end reads, this value is used explicitly to score the combination. For paired-end 

reads, deviations from the observed fragment length distribution are included as penalties to 

more finely differentiate among likely exon sets, as described in [17]. In the end, the exon 

combination with the smallest score (‘error’) is chosen. 

Here is an example illustrating the algorithm. Consider the region in Figure 1-1A, we have: 

(i) Additivity: | c1,a+c4,a –Ca |  a ,| c4,b – Cb |  b, | c2,c+c4,c-Cc |  c, | c4,d-Cd |  d, | 

c3,e+c4,e-Ce |  e 

(ii) Continuity: | c4,a-c4,b |  4,a, | c4,b-c4,c |  4,b, | c4,c-c4,d |  4,c 

(iii) Conservation: 

| (c1,a+c4,a) La + c4,b Lb + (c2,c+c4,c) Lc + c4,d Ld + (c3,e+c4,e) Le  

– (CaLa+CbLb+CcLc+CdLd+CeLe) |   

(iv) Non-negativity: c1,a1, c4,a1, c4,b1, c2,c1, c4,c1, c4,d1, c3,e1, c5,e1 

       Optimization function:    min ( j{a-e}j + i=1,4; j{a-e}i,j + ) 
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Once determined, exons are connected into a splice graph via introns extracted from spliced 

alignments, and candidate transcripts are enumerated as maximal paths in this graph. The 

candidate transcript set is typically much larger than the true set of transcripts. CLASS2 

implements several algorithms to select a subset of transcripts that are the most likely to be 

represented in the sample. 

1.2.7 Transcript selection algorithms 

The goal is to select a subset of the transcripts encoded in the splice graph that can collectively 

explain all the reads, which we formulate as a dynamic programming optimization problem. We 

implement an iterative procedure that simultaneously selects the next transcript and assigns 

reads to it, thus estimating its abundance in the process. To start, we mark the boundaries of 

the exons along the genomes and divide the gene into intervals, as described above. To reduce 

space, we group reads (or read pairs) that cover the same set of intervals into classes, called 

constraints. For each constraint ci, we define its abundance ai as the number of reads (or read 

pairs) for that constraint divided by the number of possible start positions of the reads within 

the intervals. Each constraint can be included (satisfied) into one or more candidate transcripts, 

ci ∼ tj; conversely, a transcript can be viewed as the set of constraints it satisfies: tj = {c1, …,cn1}. 

We then denote the abundance of a transcript, Aj, as the minimum abundance of its set of 

constraints: Aj = min{ai | ci~tj} Let G be a graph with n transcripts T = {t1, …, tn} and m 

constraints C = {c1, …, cm}. We give a basic enumeration and selection algorithm for relatively 

simple graphs, and then an efficient splice-graph based implementation that can efficiently 

handle complex graphs, below. 
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1.2.8 Basic algorithm 

For a small graph, it is feasible to enumerate and assess all candidate transcripts t1, …, tn 

encoded in the graph. At each step, the algorithm evaluates all remaining transcripts and 

selects the new transcript, ti, that maximizes the score function Vi = ni/(2-Ai /max A), where ni is 

the current number of constraints that transcript ti is compatible with, Ai is the abundance of 

transcript ti, and max A is the maximum abundance over all transcripts of the gene. Once a 

transcript ti is selected, its abundance is subtracted from those of the constraints it satisfies: cj = 

cj - Ai. If for any constraint the abundance becomes 0, it is removed from the set. The algorithm 

is reiterated until there are no non-empty constraints. 

1.2.9 An efficient splice graph-based algorithm 

For complex genes that can generate a large number of transcripts, it may not be efficient or 

even feasible to enumerate and assess all transcripts at each step. Instead, we take advantage 

of the compactness of the splice graph representation and the locality of the constraints to 

design a memory and time efficient dynamic programming algorithm. We start by giving an 

algorithm to iteratively find the next transcript ti that satisfies the maximum number of 

constraints ni, by traversing the graph while calculating an optimal path, and then modify it to 

take into account the abundance, or read numbers. 

Let L be a subpath (subtranscript) in the splice graph and L’ the minimum subpath immediately 

following L such that the constraints partially compatible with L cannot end after L’ (‘memory’). 

We enumerate all the paths L’ and recursively calculate the maximum number of constraints 

f(L) of subtranscripts starting with subpath L:   
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f(L)=max{ f(L′)+c(L,L′), if L′ exists;  c(L), if L′ does not exist}, 

where c(L,L′) is the number of constraints partially compatible with L (start within L) and 

compatible with the concatenated subpath L.L′, and c(L) is the number of constraints covered 

by subtranscript L. The algorithm starts with considering every 5’ exon as a subpath. Along with 

the maximum number of constraints covered, the algorithm can also track the corresponding 

optimal transcript. Note that, while iterating over subpaths of the splice graph does not change 

the theoretical exponential complexity of the algorithm, due to the limited fragment size the 

number of possible sub-paths is drastically reduced, leading to significant savings in both 

memory and run time in practice. An example illustrating the procedure is given in  

 

Figure 1-2 Dynamic programming representation of transcript selection algorithm 

(Starting from a 5’ end, the algorithm calculates for each subpath L the maximum number of 
constraints for transcripts starting with L and ending at a 3’ end: f(L) = max { f(L’) + c(L,L’) }, 

where L’ is the minimum subpath such that all constraints starting in L cannot end past L’ (i.e., L’ 
is used as ‘look-ahead’). On the figure, c1 and c2 are constraints compatible with and used in the 

calculation of f(L). c3, c4 and c5 are not used in this stage, however, c3 and c4 had been used in 
the calculation of f(L’).) 

To incorporate abundance information into the optimization process, we modify the algorithm 

as follows. When processing L and L’, we exclude subpaths that cover constraints with 

abundance less than or equal to some fixed value x. Hence, the algorithm reports the transcript 
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covering the most constraints among those whose abundance is larger than x. We call such a 

transcript an x-abundance transcript. This variation helps determine, at each step, the 

transcript t* with maxi Vi = maxi ni /(2-(Ai /max A)). We first calculate the 0-abundance 

transcript; suppose its abundance is x1. We then calculate the x1-abundance transcript, and so 

on, until we cannot find any xm-abundance transcript, where xm = max A, in the (m+1)-st 

iteration. Then the following Theorem establishes that transcript t* is among the transcripts 

computed. 

Theorem: The optimal transcript t* is among the 0-abundance, x1-abundance, …, xm-1-

abundance transcripts. 

Proof: Suppose n*, V*, A* corresponds to the number of covered constraints, score and 

abundance for the optimal transcript t*. Let x0 = 0, then the following two properties hold from 

the definitions above: (i) 0 = x0 < x1 < … < xm; and (ii) n0 ≥ n1 ≥ … ≥ nm. Then A* is between x0 

and xm, and suppose that xi < A* ≤ xi+1, where 0 ≤ i< m. Denote the xi-abundance transcript by 

ti. Then Vi ≤ V*, by virtue of the fact that t* is the optimal transcript. We only need to prove 

that Vi = V*. 

Suppose Vi < V*, and we already know that ni ≥ n* because the dynamic programming always 

returns the transcript covering the most constraints (property (2) above). According to the 

definitions of Vi and V*, then it is necessary that Ai < A* in order to make Vi < V*. But, Ai = xi+1 

based on the definition. Therefore, A* > Ai = xi+1, which contradicts the fact that A* is in the 

interval (xi, xi+1]. Hence, the assumption that Vi<V* is false and we must have Vi = V* and hence 

t* = ti (i.e. the xi+1-abundance transcript), which concludes the proof. 
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1.2.10 Materials and sequences 

For our analyses on simulated data, we generated RNA-seq reads with the software 

FluxSimulator [19], starting from the GENCODE v.17 gene annotations and choosing the options 

‘RNA fragmentation’ and 200 million clusters. In total, 15 062 genes and 22 544 GENCODE 

transcripts were represented by the 200 million 75 bp paired-end reads in the sample. 

Directional mRNA and rRNA-depleted sequencing libraries were prepared from peripheral 

blood lymphocyte (PBL) samples from the same individual, collected as part of a 

neuropsychiatric study in twins, and were subjected to paired end sequencing. The sequencing 

produced 183 million and 317 million 100 bp paired-end reads, respectively. Lastly, for our 

analyses on very deep sequencing data sets, RNA-seq reads from long RNAs in whole-cell, 

cytosol and nucleus (two biological replicates each) of IMR90 lung fibroblast cells were 

downloaded from the ENCODE project's website at UCSC (http://genome.ucsc.edu/ENCODE). 

All reads were mapped to the human genome hg19 using the software Tophat2 [20] using a 

combined non-redundant set of GENCODE and RefSeq transcripts as reference annotations and 

all other default parameters. 

1.2.11 Analysis of alternative splicing events 

To evaluate the programs for their ability to capture individual types of alternative splicing 

events, we generated a reference set of events (exon skipping, intron retention and alternative 

exon ends) from the simulated data. We used ASprofile [21] to extract events from the 

transcripts sampled by FluxSimulator, and then filtered them to retain only those actually 

supported by the reads in the sample. We processed each program's GTF output in a similar 

manner and compared against the reference sets. To characterize the sources of errors, we 
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searched the set of false positive predictions from each program against the set of events 

extracted from the full GENCODE data set, which determine artifacts due to paralogs and splice 

variants present in the annotation. The remaining false positive events were searched for 

spurious introns and for class-specific patterns. For intron retention, these include mis-

classification of 5’ and 3’ terminal exons and of reads from alternative exons overlapping the 

intron, whereas for alternative exon ends they include spurious chimeric combinations of exon 

start and ends. 

1.2.12 Evaluation measures 

We used conventional measures, as introduced in [11], to assess program performance at the 

transcript, exon, intron and alternative splicing event levels: Recall (sensitivity) = TP/(TP+FN), 

Precision = TP/(TP+FP) and F-value = 2*Recall*Precision/(Recall+Precision). 

1.2.13 PCR validation of predicted intron retention events 

PCR validation of predicted IR events was performed by Dr. Sarven Sabunciyan, Department of 

Pediatrics, JHU. Human Blood (Clonetech CAT#:636592) and human genomic DNA (Promega 

Madison, WI CAT#:G1471) were purchased from the suppliers. One microgram of total RNA was 

converted into cDNA using the SuperScript First-Strand Synthesis kit (Life Technologies 

CAT#:11904018) following the manufacturers recommended protocol. Q5 High Fidelity DNA 

polymerase (NEB Cat#:M0491S) was used to generate amplicons in gDNA and cDNA. The 

primers were ordered from Integrated DNA Technologies (Corlaville, IA, USA); primer 

sequences are listed in Table 1-1. 
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Table 1-1 Primer sequences for PCR validation 

PCR Primer Name Sequence 

CACNA2D4-1 
CACNA2D4_A1For_94 GGGTCCTGCTTCTTGTGTTT 

CACNA2D4_A1Rev_336 GACAGTGGGGATAGGTGACC 

CACNA2D4-2 
CACNA2D4_A2For_57 CACGAACACGGGGTACTCC 

CACNA2D4_A2Rev_175 TGCCACCATGTTTTCCTGTG 

KLRF1-1 
KLRF1_A1For_165 GGAGTTCTGCCCAAACATCTC 

KLRF1_A1Rev_354 ACTGTGGAGTGTACTAATAGAGC 

KLRF1-2 
KLRF1_A2For_172 TGCCCAAACATCTCAACTTACA 

KLRF1_A2Rev_421 CCGTATTAGACTGTATGCCACT 

 

Fifty microliters of PCR reactions were performed containing 1x Reaction buffer, 0.5 μM of each 

primer, 1 unit of Taq and 200 μM of each dNTP. Each PCR reaction also contained 

approximately one-tenth of the cDNA synthesis reaction or 75 ng of genomic DNA. Using an 

annealing temperature of 65°C, the PCR reactions were amplified for 35 cycles. The resulting 

amplicons were cloned into the Topo 2.1 cloning vector (Life Technologies) and individual 

clones were sequenced at the Johns Hopkins Sequencing and Synthesis Core Facility. 

1.3 Results 

1.3.1 Comparative evaluation on control data 

We evaluated CLASS2 and several state-of-the-art programs for their ability to reconstruct full 

transcripts and to capture partial splice variation. We included in our tests four de novo 

assemblers, namely CLASS2 (v. 2.1.2), Cufflinks (v. 2.1.1; [9]), IsoCEM (v. 0.9.1; [11]) and 
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Scripture (v. beta2; [10]), and two annotation-based methods, SLIDE (May 7, 2012 download; 

[13]) and iReckon (v. 1.0.7; [12]). We ran CLASS2 in two different modes, stringent (default; ‘-F 

0.05’) and sensitive (‘-F 0.01’); the latter allows the program to report more minor isoforms. For 

the annotation-based programs we provided GENCODE v.17 [22] gene annotations as guides. 

To generate test data, we simulated 200 million 75 bp paired end reads using FluxSimulator 

[19] and starting from GENCODE v17 gene annotations as models. Reads were then mapped to 

the human genome hg19 using the program Tophat2 [20] and assembled with each program. 

Performance of programs in detecting full-length transcripts 

To evaluate the performance and also to identify potential limitations and biases of each 

program we performed two types of analyses. In the first analysis we compared the transcripts 

produced by each program against the set of transcripts sampled by FluxSimulator, to obtain an 

unbiased assessment. We then also compared the predictions against a comprehensive set of 

non-redundant GENCODE and RefSeq transcript models, to identify biases and artifacts due to 

annotated paralogs and splice variants representing alternative combinations of the same 

exons. These classes of artifacts are impossible to tease apart on real data, where the ground 

truth is not known, and will be erroneously counted as true matches, thus over-estimating the 

program's performance. When evaluated against the set of true annotations (Figure 1-3A), 

most programs detect a majority (63–78%) of the exons and introns (‘set of parts’) of the 

sampled transcripts, with the notable exception of iReckon, which only finds roughly 52% of the 

features in each category. SLIDE is the most sensitive among the programs but has very low 

precision, and Cufflinks and CLASS2 are the most precise. CLASS2 and CLASS2_F0.01 have the 

best overall performance, detecting a large fraction of both exons and introns with remarkably 
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high precision, >90% for exons and >97% for introns. Programs rank similarly for reconstructing 

full-length transcripts. CLASS2 and CLASS2_F0.01 again have the best overall performance as 

measured by the F-value, a combined measure of sensitivity and precision, and are able to 

reconstruct 9% and 16% more full-length transcripts compared to Cufflinks, the next and close 

runner up. 
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Figure 1-3 Performance of programs in reconstructing full-length transcripts, on simulated data 

(Observed performance values when measured (A) against the set of FluxSimulator-sampled 
transcripts (‘truth’), and (B) against the full set of GENCODE reference annotations. Recall = 

TP/(TP+FN), Precision = TP/(TP+FP) and F = 2*Recall*Precision/(Recall+Precision). (C) 
Performance ‘inflation’, or the difference between performance measured on the full GENCODE 
set and the subset of GENCODE transcripts actually represented in the sample. The additional 

matches are from spurious paralogs and variants not present in the sample. PCI = 
(Match_GENCODE/Match_sim) -1, where Match_sim refers to the subset of transcripts actually 

present in the simulated sample.) 

In our second analysis, evaluating the programs against the full set of GENCODE and RefSeq 

gene annotations revealed several types of biases and errors (Figure 1-3B,C). All programs now 

seemingly detect the ‘parts’ equally well (∼20% sensitivity and 88–100% precision), indicating 

that many of the false predictions in the earlier comparison come from paralogs of the genes in 

the sample. Unsurprisingly, programs also seemingly detect more of the reference transcripts, 

artificially increasing programs’ performance. In particular, the two annotation-based methods 

show the largest inflation, with SLIDE more than doubling (120% increase) the number of 

annotation matches and iReckon adding 64% more matches, by virtue of their use of known 

annotations to scaffold gene models. When we traced these additional matches, most were 

variants of the sampled genes (53–92%), and the rest were paralogs, except for iReckon where 

the variants and paralogs each accounted for roughly half of the false matches. A large portion 

of the artifacts, between 15% and 67% of the total (with the exception of SLIDE, which had very 

few), were single exon transcripts. However, even when restricting our analysis to multi-exon 

transcripts only, SLIDE had very high inflation (128%), followed by iReckon (25%) and Scripture 

(22%). CLASS2 (both variations) and Cufflinks had the lowest inflation by far, between 5–7%. 

Thus, these two programs are the most trusted to produce measurable results on real data. 
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Performance of programs by transcript abundance 

We further assessed the performance of programs as a function of the abundance level of 

transcripts. Simulated transcripts were divided into high-, medium- and low-abundance groups 

based on their relative expression level assigned by FluxSimulator (FPKM ≤ 5e−7, low; 5e−7 < 

FPKM ≤ 0.0001, medium, FPKM > 0.0001, high). Because the programs do not classify their 

output into classes, true precision values cannot be computed. However, we calculate a 

measure of precision based on the full set of predicted transcripts. Programs’ performance was 

more varied across the three ranges, with SLIDE being the most sensitive and CLASS2 a close 

second for the high and medium abundance transcripts, whereas the precision was 4-fold 

higher for CLASS2. The two annotation-based programs iReckon and SLIDE were best suited for 

the low-abundance class (Table 1-2). All programs, especially de novo assemblers, had difficulty 

reconstructing low-abundance transcripts, many of which did not have sufficient reads to cover 

their entire length. Overall, CLASS2 exhibited the best overall performance for the medium- and 

high-abundance transcripts, and performance comparable to de novo assemblers for the low-

coverage transcripts. Lastly, while CLASS2 does not explicitly address the problem of transcript 

quantification, there is a high correlation between the abundance values of full-length 

reconstructed transcripts estimated with CLASS2 and the FluxSimulator generated expression 

levels (R2 = 0.972), surpassed only by IsoCEM (R2 = 0.977) (Figure 1-4 Correlation of predicted 

and sampled (‘truth’) expression values for transcripts). Overall, CLASS2 can reconstruct most 

high and medium expression isoforms of a gene, where it is the best or comparable overall 

program, as well as some of the rare isoforms. 
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Table 1-2 Programs performance by transcript abundance class 

    
High  

(2402 
transcripts)  

Medium  
(13 464 

transcripts)  

Low  
(6658 

transcripts)  

Program  Transcripts  R  P  R  P  R  P  

CLASS2  16 790  0.824  0.118  0.672  0.539  0.048  0.019  

CLASS2_F0.01  18 946  0.827  0.105  0.704  0.501  0.055  0.019  

Cufflinks  16 163  0.788  0.118  0.630  0.527  0.069  0.029  

IsoCEM  21 906  0.597  0.066  0.525  0.325  0.017  0.005  

Scripture  38 484  0.551  0.035  0.553  0.196  0.033  0.006  

iReckon  30 180  0.591  0.052  0.611  0.290  0.262  0.061  

SLIDE  72 867  0.841  0.028  0.787  0.148  0.243  0.023  

(Simulated transcripts were divided into high-, medium- and low-abundance classes based on 
their FluxSimulator-generated abundance. R = TP/(TP+FN) values were calculated within each 

class, and P = TP/#Transcripts values were based on the full set of transcripts.) 

 

 

Figure 1-4 Correlation of predicted and sampled (‘truth’) expression values for transcripts 

(Left: Scatterplot of FluxSimulator-generated expression levels (‘truth’) and abundance values 
estimated by CLASS2. Right: Correlations between sampled expression levels and abundance 
estimates by each of the tested programs. Fully-reconstructed transcripts by each program, 

which could be unambiguously associated with sampled (reference) transcripts were included.  
R2 = Pearson correlation.) 

 

Program R2 

cufflinks 0.804 

isoCEM 0.977 

iReckon 0.708 

SLIDE 0.878 

Scripture 0.674 

CLASS2 0.972 

CLASS2_F0.01 0.972 
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Performance of programs in detecting alternative splicing events 

Even with the best data, predicting full-length splice variant transcripts from short RNA-seq 

reads aligned to the genome is prone to assembly errors. Alternative splicing events, which can 

be determined from the local structure of transcripts or reads, can be detected with more 

accuracy and are frequently used in studies [23, 24, 25]. We therefore analyze the ability of the 

programs to capture primitive classes of alternative splicing events, including exon skipping, 

intron retention and alternative exon ends. Since most programs do not specifically predict 

alternative transcription start and termination, we did not include them in the analysis. We 

compared events detected from transcripts generated by each of the programs to the set of 

events represented in the simulation data. 

As Figure 1-5 indicates, CLASS2_F0.01 and Scripture are the best overall performers as indicated 

by their F-values, albeit the two programs have strikingly different behavior. Scripture captures 

the largest number of events in each category, but it does so at the expense of reporting a very 

large number of false positives, which can severely impact the significance of downstream 

analyses. CLASS2 and CLASS2_F0.01 find a large portion of the events in each category, 

balancing sensitivity with high accuracy and achieving the best tradeoff. More specifically, 

CLASS2 finds 25–36% more events in each category compared to Cufflinks, which is the leading 

reference annotation tool and is also the most precise of the programs, at higher or comparable 

precision. Moreover, CLASS2_F0.01 finds roughly twice as many events as Cufflinks in each 

category with only a relatively small drop in precision (4–17%). Like CLASS2, Cufflinks allows 

users to vary the stringency of the program. We therefore separately compared the 

performance when varying the parameter range of both CLASS2 and Cufflinks to control the 
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number of isoforms reported (‘-F f’, with f = 0.01, 0.02, 0.03, 0.05, 0.1, 0.1, 0.15). Cufflinks’ 

performance dropped sharply from its default settings, whereas CLASS2 showed a consistent 

performance (Figure 1-6). CLASS2 extended the sensitivity range and, for the same sensitivity 

level, it delivered significantly higher precision. Therefore, using CLASS2 in its various settings 

has the highest potential for applications that involve studies of alternative splicing variation. 

 

Figure 1-5 Performance of programs in capturing alternative splicing events 

(Exon skipping (SKIP), intron retention (IR) and alternative exon ends (AE)) 
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Figure 1-6 Comparison of CLASS2 and Cufflinks in detecting alternative splicing events 

(Recall (R, horizontal axis) and precision (P, vertical axis) of CLASS2 (light grey) and Cufflinks 
(dark grey) are shown for various stringency settings (‘-F f’, with f=0.01, 0.02, 0.03, 0.05, 0.1 and 

0.2; right-to-left in the plots). The parameter ‘F’ controls the expression range of isoforms 
reported, as a fraction of the expression level of the most abundant isoform for the gene. Both 

programs have high specificity for stringent settings, but CLASS2 can detect more events overall 
and, for the same sensitivity (recall) level, has significantly higher precision than Cufflinks.) 

We next analyzed the errors made by these programs to evaluate their capacity to capture 

alternative splicing information. Programs detected exon skipping events with varying degrees 

of sensitivity (19–79%) and precision (10–94%). Notably, a majority of the false positives for all 

programs (67–86%; except for SLIDE, 23%) were matches to gene paralogs (Table 1-3), and only 

a small fraction were due to other alignment artifacts. This is most clearly illustrated by iReckon 

and IsoCEM, which predicted large numbers of splicing events, the majority of which were false 

positives. In contrast, most of the errors for SLIDE were due to spurious introns. The 

performance of all programs was significantly lower for intron retention events, with 10–52% 

sensitivity and only 2–29% precision. In most cases, false intron retention predictions resulted 

from mis-classification of 5’ and 3’ alternative gene starts and ends, as well as from cases in 

which a splice variant contained an exon that overlapped an intron in the corresponding gene 

(53–82% of false positives, except for Scripture, 23%). Lastly, programs in general were slightly 
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less accurate in capturing alternative exon ends compared to exon skipping, finding 15–76% of 

the true variations with 9–80% precision. The errors here were more evenly split between 

paralogs and variants present in the annotation but not sampled by the data (53–69%; except 

for iReckon 33%) and from spurious combinations of exon ends. CLASS2 had both a very low 

number and a very small percentage of false positives, matched only by Cufflinks, while 

detecting 30% more features (>90% more when CLASS2_F0.01 is used). These analyses also 

suggest that a simple way in which performance of most programs can be improved is by better 

distinguishing between true matches and paralogs, and that further improvements can come 

from better distinguishing between intron retention and other types of variation. Note that the 

simulated data does not model intronic reads resulted from unprocessed transcripts; the 

following sections provide a more realistic, albeit empirical, assessment on real data sets. 

Table 1-3 Programs’ performance in capturing alternative splicing events 

Program Predicted Correct Recall Precision 
F-

value 
Artifacts 

Exon skipping (SKIP) 

Variants+ 

Paralogs 

Spurious intron(s) 

 

CLASS 586 537 0.405 0.916 0.561 33 6 

CLASS_F0.01 897 783 0.590 0.873 0.704 92 9 

Cufflinks 432 406 0.306 0.940 0.462 20 2 

Cufflinks_F0.01 1142 782 0.589 0.685 0.634 311 32 

IsoCEM 940 496 0.374 0.528 0.438 380 33 

Scripture 1724 1045 0.787 0.606 0.685 558 74 

iReckon 1186 251 0.189 0.212 0.200 781 49 
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SLIDE 3022 311 0.234 0.103 0.143 618 2083 

Intron retention (IR) 

Variants+ 

Paralogs 

Spurious 

intron(s) 

Mis-

classified 

CLASS 176 51 0.276 0.290 0.283 17 12 52+41 

CLASS_F0.01 331 80 0.432 0.242 0.310 44 57 83+63 

Cufflinks 150 38 0.205 0.253 0.227 19 13 43+50 

Cufflinks_F0.01 319 68 0.368 0.213 0.270 50 41 89+61 

IsoCEM 205 18 0.097 0.088 0.092 25 61 48+51 

Scripture 388 97 0.524 0.250 0.339 104 119 49+18 

iReckon 818 18 0.097 0.022 0.036 116 56 392+204 

SLIDE 0 0 0 0 0 0 0 0 

Alternative exon ends (AE) 

Variants+ 

Paralogs 

Spurious 

intron(s) 

Spurious 

combin. 

CLASS 496 369 0.363 0.744 0.488 62 4 61 

CLASS_F0.01 831 551 0.542 0.663 0.597 169 11 100 

Cufflinks 367 293 0.288 0.798 0.424 39 5 30 

Cufflinks_F0.01 977 488 0.480 0.499 0.490 326 35 123 

IsoCEM 761 223 0.219 0.293 0.251 372 40 126 

Scripture 3,196 767 0.755 0.240 0.364 1656 197 576 

iReckon 1,721 150 0.148 0.087 0.110 512 50 1009 

SLIDE 0 0 0 0 0 0 0 0 

 

(Programs were evaluated for their ability to detect 1327 exon skipping (SKIP), 185 intron 
retention (IR) and 1016 alternative exon end (AE) events present in the simulated data. Incorrect 
predictions were analyzed to determine classes of artifacts. Artifacts due to paralogs and splice 
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variants of the genes and transcripts in the sample were determined by comparison against 
events extracted from the full set of GENCODE annotations. The remaining events were 

searched for spurious introns and for class-specific error patterns, due to mis-classification of 
alternative first and terminal exons, or of reads from overlapping exons within the same or a 

different gene (IR), and to spurious combinations of exon start and exon end (AE).) 

1.3.2 Comparative evaluation on real data for different sequencing strategies 

To assess the performance of programs on real data, we applied them to two large RNA-seq 

data sets. A lymphocyte sample from an individual free of neuropsychiatric disease was 

sequenced using two different library preparation strategies, as part of a twin study. In the first 

method, polyA-selected RNA was sequenced on an Illumina HiSeq2000 instrument to produce 

roughly 183 million 100 bp paired-end reads. This data set provides a good illustration of a 

typical RNA-seq analysis experiment, for which most programs are currently optimized. The 

second library was generated from the same lymphocyte sample by rRNA-depleting the total 

RNA, and sequenced to generate 317 million paired-end reads. Mapping all reads to the 

genome with Tophat2 produced roughly 170 million and 240 million read alignments, 

respectively, but comparatively a larger fraction (46% versus 7%) in the latter sample was in 

intronic reads. 

Comparison on the polyA-selected data set 

Because the current human genome annotation is inherently incomplete, while also including 

genes and isoforms not expressed in the sample, it is not possible to determine the true 

sensitivity and precision of any analysis tool on real data. Nevertheless, we deem consistency 

with the reference annotation, in particular for sensitivity, as a good indicator of a program's 

performance. Using a non-redundant set of GENCODE and RefSeq transcript models as 

reference, we compare the output of the six programs against the reference annotations. 
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Filtering out single exon assemblies, most of which are biological or computational artifacts, 

significantly increased the precision of Cufflinks and IsoCEM, whereas there was very little 

effect on the other programs. 

Programs detected between 25–38% of the reference exons and 25–42% of the reference 

introns, but could only fully reconstruct a small fraction (4–9%; 7000–16 000) of the annotated 

transcripts. This is not unexpected, since only a subset of the reference annotations will be 

present in any given sample, but the small numbers make it difficult to differentiate among 

programs and determine the significance. To better assess the relative performance, we 

designate one method as reference and determine for each of the others the relative change in 

the number of transcripts found (Figure 1-7A, top). We chose Cufflinks as reference, because in 

our earlier testing on simulated data it was the most accurate among the reference programs. 
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Figure 1-7 Relative performance of programs on real data 

(All values are relative to Cufflinks. (A) Performance on two real RNA-seq data sets from 
lymphocytes from the same individual: a polyA-selected data set (top), and an rRNA-depleted 
data set (bottom). (B) Performance with very deep sequencing data sets: the ENCODE IMR90 

cell line, cytosol sample (top); same cell line, nucleus sample. For a program P, the relative 
performance improvement for recall is Delta_recall(P) = [TP(P) – TP(Cufflinks)]/TP(Cufflinks)], 

and similarly for precision. The value for Cufflinks (reference) is 0.) 

With the exception of isoCEM, programs find 21–48% more transcripts than Cufflinks, with 

iReckon and CLASS2_F0.01 reconstructing the largest numbers of reference transcripts. 

Cufflinks has the best precision again, followed very closely by iReckon and CLASS2. (Note that 

true ‘precision’ is impossible to assess, as ‘false positives’ could in fact represent true splice 

isoforms, not found in the reference annotation.) Overall, CLASS2 and CLASS2_F0.01 perform 

the best among de novo assemblers and offer the best tradeoff between sensitivity and 

precision, as measured by the F-value. When all programs are considered, iReckon appears to 
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perform the best; however, its performance is likely biased by the fact that it used as input the 

very set of gene annotations we now use for evaluation. When adjusting for paralog and 

spurious splice variant inflation, CLASS2 and CLASS2_F0.01 are the only two programs to exhibit 

positive cumulative gains in combined sensitivity and ‘precision’ (26% and 41%, respectively, 

more reference transcripts found compared to Cufflinks, at comparable or slightly lower 

precision). In conclusion, while Cufflinks appears to be the most precise of the programs for this 

type of data, CLASS2 is just as precise while more sensitive, and both CLASS2 and CLASS2_F0.01 

offer more accuracy in combined sensitivity and precision. 

Comparison on the rRNA-depleted data set 

We repeated the analysis on the rRNA-depleted RNA sample. Surprisingly, both Cufflinks and 

IsoCEM performed very poorly, finding only a small subset of reference features; we suspect 

the reason is that both employ a local intronic ‘noise’ filter at the individual intron level, 

whereas other programs characterize ‘noise’ at gene (iReckon, CLASS2) and/or genome level 

(Scripture, CLASS2). Rankings for other programs were similar to those for the polyA+ data 

(Figure 1-7A, bottom). Although this data set does not fit the characteristics of the simulated 

data, which was modeled after the polyA-selected RNA sample preparation, we again 

conjecture that a large portion of iReckon's performance is in fact due to over-counting of 

paralogs and alternative exon combinations toward the true matches. CLASS2 and 

CLASS2_F0.01 are robust with the intronic noise levels and produce reliable gene models, 

having the best accuracy among de novo assemblers. In particular, they can reconstruct 2.5 

times as many transcripts as Cufflinks. An example illustrating the programs’ performance at 

the UBR4-CAPZB locus is shown in Figure 1-8. 
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Figure 1-8 Illustration of program output at the UBR4-CAPZB gene locus (lymphocyte, rRNA-
depleted sample) 

(IsoCEM and Cufflinks fail to identify full-length transcripts models, and are confounded by 
intronic noise (red circle). ) 

Validation of predicted intron retention events 

Intron retention has recently been shown to play a part as a regulatory mechanism in cellular 

differentiation and tumor-suppressor inactivation [26, 27]. Yet, intron retention events are 

difficult to identify from RNA-seq data and are likely under-represented in the gene annotation 

databases. To illustrate the ability of CLASS2 to identify novel alternative splicing events, we 

performed PCR validation on two intron retention events detected from the PBL RNA-seq data 

by CLASS2 and were not found by any of the other programs: the 304 bp chr12:1 908 861–1 909 

166 intron at the CACNA2D4 (Calcium channel voltage-dependent Alpha 2/Delta subunit 4) 

gene locus, and the 888 bp chr12:9 985 010–9 985 899 intron within the KLRF1 (Killer cell lectin-

Like receptor subfamily F, member 1) gene. Human blood cDNA and genomic DNA were 

amplified with primer sets targeting intron retention events in the two genes (Figure 1-9). The 

primers were designed to span a nearby exon–intron junction to demonstrate the intron 

retention event occurred in a spliced mRNA transcript. Strong PCR products of the expected 
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size were observed in cDNA but not genomic DNA. The cDNA PCR product was then cloned and 

sequenced to demonstrate the retention of the intron. Integration with other data sets in the 

UCSC Genome Browser shows supporting evidence from one mRNA (accession: BX537436) for 

CACNA2D4, but no evidence was previously available for KLRF1, therefore demonstrating the 

power of the approach. 

 

Figure 1-9 PCR validation of CLASS2 output 

((A) PCR validation strategy: blue squares represent annotated exons, the red rectangle 
represents the identified intron retention event, and the blue lines with arrowheads represent 

introns. Green arrows denote the location of the PCR primers. Human blood cDNA and genomic 
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DNA were amplified with primer sets targeting intron retention events in (B) CACNA2D4 and (D) 
KLRF1 genes. For each primer set, a strong PCR product of the expected size was observed in 
cDNA but not genomic DNA. The sequences of the PCR reactions for (C) CACNA2D4 and (E) 

KLRF1, labeled ‘YourSeq’ in the figure, were aligned against the human genome using the UCSC 
Genome Browser.) 

Performance of programs on very deep sequencing data sets 

The fast and cost-effective RNA-seq technology has led to a steady increase in the data size and 

depth of sequencing, enabling detailed alternative splicing studies. To tackle very large data 

sets, some programs focus on determining the major isoforms and therefore provide a limited 

view of the splicing repertoire in a sample, whereas others simply cannot handle the 

combinatorial explosion. To assess the potential for discovering splicing variation from deep 

sequencing data sets, we applied all programs to two very large data sets produced by the 

ENCODE project [28, 29]. The IMR90 lung fibroblast cell line was sequenced at great depth in 

three separate surveys, of the whole cell, the cytosolic and the nuclear fractions. Two replicates 

were run for each fraction, which can be used in our evaluation to assess the accuracy of the 

predicted features by testing their reproducibility in multiple samples. To reduce the run time, 

below we restricted our accuracy analyses to chromosome 1. Even so, SLIDE was prohibitively 

slow and was excluded from the analysis. Summary results of programs are listed separately 

(Table 1-4). 

With >300 million reads, the ENCODE IMR90 data sets are among the most deeply sequenced 

to date and are expected to sample RNA biotypes not found in the reference annotations. 

Therefore, true accuracy (especially precision) is not possible to assess since novel splice 

variants will be counted as false positives. Nevertheless, we again judge concordance with 

annotated features (introns and full transcripts) as indicative of sensitivity and leverage the 
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reproducibility of features across the six samples to better estimate the programs’ 

performance. 

When considering the goal of reconstructing full transcripts, iReckon has seemingly the best 

performance, as it identified the largest number of transcripts present in the existing 

annotations (Figure 1-7B). Again, however, these results should be considered with caution 

given the large inflation from variants and paralogs observed with simulated data. Excluding 

iReckon, both CLASS2 and CLASS2_F0.01 reconstruct the largest number of annotated 

transcripts in both the cytosol and the nucleus samples, 60–90% (77–103% nucleus) more than 

Cufflinks and 15–43% (30–49% nucleus) more than the best of the programs, while also having 

higher or comparable ‘precision’. 

We separately evaluated the programs’ accuracy in capturing deeper splicing variation, in 

particular novel variation, using splice junctions (introns) as surrogates (Table 1-4). CLASS2 and 

CLASS2_F0.01 find by far the most known introns, 8% and 11% more than the best of the other 

programs on the cytosolic sample, and 22% and 37% more on the nucleus sample. When 

including in the reference those novel introns that are reproducible in at least two data sets, 

CLASS2_F0.01 remained the most sensitive, followed by CLASS2 and Scripture, at very high 

precision (>97% for cytosol and >95% for nucleus). 

Table 1-4 Performance of programs on the ENCODE IMR90 data 

Program  Transcripts  Introns  

  
Predicted

  
Match

  
R  P  

Predicted
  

Match  R  P  

Cytosol 
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CLASS2  3029  1053  0.068 0.348 12 662  
12 557 

(11 
996)  

0.378 
(0.361)

  

0.968 
(0.947)

  

CLASS2_F0.01  3836  1183  0.076 0.308 13 413  
13 253 

(12 
327)  

0.399 
(0.371)

  

0.988 
(0.919)

  

Cufflinks  2508  621  0.040 0.248 10 420  
10 372 

(10 
109)  

0.312 
(0.304)

  

0.995 
(0.970)

  

Cufflinks_F0.0
1  

3458  719  0.046 0.208 11 725  
11 564 

(10 
779)  

0.348 
(0.325)

  

0.986 
(0.919)

  

IsoCEM  2479  722  0.047 0.291 11 483  
11 297 

(10 
617)  

0.340 
(0.320)

  

0.984 
(0.925)

  

Scripture  14 621  971  0.063 0.066 13 820  
12 751 

(11 
149)  

0.384 
(0.336)

  

0.923 
(0.807)

  

iReckon  4512  1730  0.112 0.383 11 724  
11 477 

(10 
552)  

0.346 
(0.318)

  

0.979 
(0.900)

  

Nucleus  

CLASS2  6084  992  0.064 0.163 16 391  
15 765 

(12 
862)  

0.475 
(0.418)

  

0.962 
(0.846)

  

CLASS2_F0.01  10 216  1141  0.074 0.11  18 610  
17 699 

(14 
539)  

0.532 
(0.438)

  

0.950 
(0.781)

  

Cufflinks  2714  561  0.036 0.207 11 255  
11 079 

(10 
576)  

0.334 
(0.319)

  

0.984 
(0.940)

  

Cufflinks_F0.0
1  

6085  789  0.051 0.13  16 884  
16 064 

(13 
568)  

0.484 
(0.409)

  

0.951 
(0.804)

  

IsoCEM  2236  277  0.018 0.124 9604  
8737 

(7576)  

0.263 
(0.228)

  

0.910 
(0.789)

  

Scripture  45 247  764  0.049 0.017 18 048  
13 910 

(10 
188)  

0.419 
(0.307)

  

0.771 
(0.564)

  

iReckon  5769  1539  
0.099

  
0.267

  
10 162  

9474 
(8232)  

0.285 
(0.248)

  

0.932 
(0.810)
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(Features (full-transcripts and introns) matching known and/or high-confidence novel 
annotations. GENCODE v.17 chromosome 1 annotation contains 15 493 transcripts and 33 202 

introns. R = (recall) = Match/Annotations, P = (precision) = Match/Predicted.) 

Lastly, CLASS2 completed the task in roughly 30 min for the chromosome 1 of the cytosol 

sample and was comparable in speed with the fastest of the programs (Table 1-5). As a practical 

matter, for increased efficiency CLASS2_F0.01 can be run first to report a comprehensive set of 

transcripts, and the output can be filtered using various ‘-F’ parameters (minimum fraction of 

reported isoforms’ abundance from that of the most expressed isoform) to produce 

increasingly more precise subsets, at the cost of finding fewer transcripts. Therefore, results for 

CLASS2 with multiple settings can be obtained in roughly the same time as a single run. 

Table 1-5 Running times of transcript assembly algorithms 

 

Program/ 

Data set 

Time (wall clock) 

 
Sim 

PBL 
polyA+ 

PBL 
rRNA- 

IMR90 
Cytosol 
(chr1) 

IMR90 
Nucleus 
(chr1) 

CLASS2 390m 296m 244m 31m 747m 

Cufflinks 488m 1679m 4245m 84m 548m 

isoCEM 168m 169m 225m 18m 67m 

iReckon 6097m 5696m 17481m Na Na 

SLIDE ~1.5 weeks Na Na Na Na 

Scripture 1039m 1262m 1574m 27m 75m 

(Run times for CLASS2 and CLASS2_F0.01 are largely the same, since the algorithm first detects 
a comprehensive set of transcripts and then applies the expression cutoff to select a subset. Run 

times for iReckon included the time for internally re-mapping the reads to the genome with 
bwa, and were excluded. All times measured on a Unix machine with 512 GB RAM and 2100 

MHz CPU, single-threaded. Memory usage for CLASS2 for all tasks was <3 GB RAM. PBL = 
Peripheral Blood Lymphocytes.) 
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De novo annotation of a newly sequenced organism 

Next generation sequencing has significantly accelerated the pace at which new genomes are 

being produced. Annotation projects for these genomes are increasingly relying on fast and low 

cost RNA-seq resources. The choice of RNA-seq transcript assembler here is critical; for 

instance, since annotation-based programs are not designed to identify novel genes, de novo 

methods are the most productive. To illustrate CLASS2's ability to annotate new genomes, we 

apply it to enhance the annotation of the peach genome. With its 226.6 MB of sequence 

assembled in 365 scaffolds, the Prunus persica (peach) genome is a good model for future plant 

species annotation projects. We use CLASS2 to analyze four RNA-seq data sets sampled from 

embryo and cotyledon, fruit, root and leaf of peach tree (PRJNA34817), totaling 164.1 million 

75 bp paired-end reads. Preliminary gene annotations are also available, and we use them to 

identify novel transcript variants that could be used to enhance the existing annotation. 

Following read mapping and assembly, CLASS2 produced between 15 000–27 500 transcript 

fragments (transfrags) per sample (Table 1-6). When compared across the four samples, these 

amounted to roughly 19 500 transfrags corresponding to existing annotations, but also more 

than 1000 new loci, each present in at least two of the samples, and 27 161 novel transcripts of 

known genes, representing new splice variants or extensions of the annotated transcripts. In 

one example at the ppa023343m gene locus (Figure 1-10A), transfrags assembled from short 

reads extended the existing gene model by 10–11 exons and revealed several novel splice 

variations. The extended gene encodes a 1016 aa protein that has similarity over its entire 

length to importin-11 and importin-11-like proteins in other species (Prunus mume, Vitis 

vinifera, Citrus simensis, Fragaria vesca, Theobroma cacao and Glycine max). In another 
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example at the ppa023750 gene locus, transfrags assembled from the four RNA-seq samples 

point to additional splice variants, including a novel skipping event of a 39 bp exon located at 

scaffold_1:4613746–4613784, and a potential retention of an 84 bp intron 

(scaffold_1:4621242–4621327; Figure 1-10B), manifested only in the embryo and cotyledon 

sample. The landscape for this gene is also significantly reconfigured, by merging two previously 

adjacent genes and by a further extension of its 5’ end. The gene has extensive and close 

similarity to predicted proteins in apple, Japanese apricot, orange, and cacao. Lastly, a new 

gene locus, located between genes ppa026188m and ppa005862m, and several putative splice 

variants discovered with CLASS2 can be seen in Figure 1-10C. Blast searches of the two novel 

putative gene sequences found distant homologs elsewhere in the genome, as well as matches 

to cytochrome C oxidase subunit 6b protein and to predicted FLX-like proteins in several 

Rosaceae species. Both sequences contain long open reading frames (762 bp out of 1347 bp, 

and 234 bp out of the 366 bp sequences, respectively) and are strong candidates for novel, not 

yet annotated genes. 

Table 1-6 Annotation of a newly sequenced organism (peach) 

Set Reads Mapped Genes Transcripts Genes Transcripts 

      (CLASS2) (CLASS2) (CLASS2_F0.01) (CLASS2_F0.01) 

SRR531862 42394368 4E+07 17320 22617 17,322 27,442 

SRR531863 41589898 3E+07 16313 20799 16,313 24,614 

SRR531864 42341754 3E+07 16320 18,397 16,321 19,816 

SRR531865 38883238 2E+07 12083 13,752 12,083 14,935 

(Summary of mapping and assembly results are shown for the four RNA-seq samples 
(SRR531862 – embryos and cotyledons, SRR531863 – root, SRR531864 – fruit and SRR531865 – 
leaf). ‘Mapped’ represents the number of reads mapped with 10 or fewer matches on the peach 
genome. The last two columns give the numbers of loci (‘genes’) and transcripts assembled with 

CLASS2, using the default and the sensitive (‘-F 0.01’) settings.) 
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Figure 1-10 Refining the peach gene models 
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(CLASS2 transcript predictions for four peach RNA-seq data sets (BioProject ID: PRJNA34817) are 
shown in blue, and reference annotations in gold. (A) RNA-seq reads assembled with CLASS2 

extend the ppa023342m gene model by 10–11 exons and suggest additional splice variants. The 
extended gene model is supported by data in all of the four samples. (B) An extended gene 

model and several novel splice variants at the ppa023750m gene locus. The intron bridging the 
two existing gene annotations has (18,7,9,8) supporting reads, respectively, in the four samples, 

and the last intron is supported by (8,15,6,9) reads. Further, the 39 bp novel exon at 
scaffold_1:4613746–4613784 in the SRR531862 sample is alternatively skipped in the reference 

annotation, and there is ample intronic read support for a putative 84 bp frame-preserving 
intron retention event at scaffold_1: 4621242–4621327. (C) CLASS2 finds novel genes and splice 

variants in the intergenic region between annotations ppa026188m and ppa005862m.) 

1.4 Conclusions 

A wealth of RNA-seq data, from small individual projects to very large-scale systematic 

experiments, is making it possible for the first time to catalog alternative splicing variation in 

detail in different organisms, tissues, at various developmental stages and stress or disease 

states, and in individual cell types. Many computational methods have already been developed 

to translate the data into knowledge at the level of genes and transcripts. However, they are 

still far from being able to assemble full transcript models with high accuracy [30] and have 

limited ability to capture even local splicing variation, including canonical alternative splicing 

events. Some classes of events are especially difficult to detect due to artifacts that occur 

during data generation and mapping (Figure 1-5), and have not been systematically pursued by 

current programs. 

We developed a novel splice graph-based algorithm and software tool, CLASS2, with the goal to 

assemble likely models of full-length transcripts while capturing local splicing variations with 

high accuracy, to allow genome and system-wide alternative splicing analyses. CLASS2 employs 

intronic reads and splice junction ‘noise’ models to accurately determine the set of parts, 

namely exons and introns, and a novel time and memory efficient dynamic programming 
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algorithm to select a subset of probable transcripts that retain most of the splicing variation in 

the sample. 

CLASS2 differs technically from existing approaches while promoting alternative splicing 

discovery in several ways: (i) it uses an LP-based system to locally predict exon variations, such 

as alternative 5’ and 3’ exon ends; (ii) it incorporates a combined gene- and genome-level 

model of intronic ‘noise’, to distinguish retained introns; (iii) it models alternative first and last 

exons, including the cases when they occur at internal exons; and (iv) it uses an iterative 

algorithm and a complex scoring system to select a minimal subset of transcripts that 

collectively retain as much splicing variation as possible while explaining all the reads. 

CLASS2 also implements several memory and time saving strategies that are critical to its 

performance and allow it to run on very deep sequencing data sets without sacrificing accuracy. 

These include a smaller LP system formulated on gene regions rather than along the entire 

gene, which is both faster and more accurate to solve; clustering reads into classes 

(‘constraints’); employing a compact and scalable splice graph representation of genes; and, 

last but not least, implementing a new dynamic programming transcript selection algorithm 

that avoids enumerating transcripts in complicated graphs, and is memory and space efficient. 

As a result, a typical run on an Illumina-generated 200 million paired-end read set requires less 

than 3 GB RAM and, when run with multiple threads, takes only a few hours and therefore can 

be run on most desktop computers. 

In our comparative evaluation of CLASS2 and several state-of-the-art programs, we found 

CLASS2 to be significantly more sensitive in capturing alternative splicing variations, at both the 
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level of full transcripts and for local alternative splicing events, at precision higher or 

comparable with that of the best program. In particular, it detected almost twice as much 

variation as Cufflinks, the most precise of the programs, with only a small decrease in precision. 

The evaluation also afforded us a unique view of the strengths and limitations of the different 

approaches. For instance, annotation based approaches as employed by SLIDE and iReckon can 

detect a larger number of the reference annotations, but are also prone to reporting paralogs 

and splice variants not actually present in the sample. This is particularly problematic when 

interpreting the programs’ output on real data, where they would be incorrectly labeled as true 

matches. The quantity and quality of data can create significant challenges, while library sample 

preparation can further introduce biases and significantly alter the characteristics of the data 

[31]. In general, we found Cufflinks to be the most precise of the programs but missing 

important splice variations, and Scripture to be the most sensitive but imprecise. However, 

while different programs may score best by various criteria and for different types of 

applications, CLASS2 delivered a consistently good performance for a wide variety of 

applications and sequencing strategies. These included surveys of polyA-selected (spliced) RNA, 

which are the most frequent among RNA-seq applications, as well as of ribosomal depleted 

total RNA, and very deep sequencing experiments to characterize splicing variation, low 

expression forms, and novel and cellular fraction-specific RNA biospecies, in great depth. 

While the boundary between true and noisy splice variation [32] continues to remain 

undefined, making it ever more difficult to determine the extent of splicing variation and 

number of isoforms for any given gene, some strategies could help improve the outcome. 

Better methods are needed to characterize the various types of artifacts that confound classes 
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of variations, such as alternative polyadenylation or alternative promoter usage and retained 

introns. These can entail implementing sequence models of binding sites of regulatory proteins 

[33, 34], or incorporating other types of evidence including CAGE tags, DNase-seq or FAIRE-seq 

signals, paired-end diTags (PET-seq) [35] and polyA-seq [36] sequences, where available. Also 

needed are complete reference data sets on genes or systems that can help evaluate the 

performance in an unbiased way, or at the very least better simulation models. The latter 

should include realistic models for sequencing artifacts, including intronic reads from 

unprocessed pre-mRNA, as well as for the amount and complexity of splicing variation with 

increasing sequencing depths, and for different types of RNA-seq experiments. Even further, 

accuracy measures are needed to be able to evaluate programs for their ability to reconstruct 

splice variations at both global and local levels, including canonical alternative splicing events 

and local assemblies. Current evaluation schemes focus on the reconstruction of full-

transcripts, discounting correct partial reconstructions. Lastly, new sequencing technologies or 

continuous improvements in the existing ones that extend both read and insert lengths will 

provide increasing contiguity, while large and judiciously designed experiments will provide 

multiple replicates or concordant data sets that can be analyzed simultaneously [37, 38] to 

improve both throughput and accuracy. 

Work on this project was supported in part by NSF award ABI-1159078, ABI-1356078 and IOS-

1339134 to L.F., Stanley Medical Research Institute to S.S.. CLASS and CLASS2 are available free 

of charge for all and under a GNU GPL license from http://sourceforge.net/projects/Splicebox. 

  

http://sourceforge.net/projects/Splicebox
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Chapter 2  

PsiCLASS: efficient and scalable transcriptome 

assembly from multiple RNA-seq samples 

2.1 Introduction 

RNA sequencing has become the de facto standard in surveying the transcriptome of a cell, 

organism or species, to determine the expressed genes and transcripts and their expression 

levels, and to enable differential and functional analyses [39, 7]. A crucial step in virtually all 

RNA sequencing (RNA-seq) data analyses is assembling the reads into full-length transcripts. 

The accuracy of transcript reconstruction is critical for quantification, detection and 

characterization of alternative splice variants, and the identification of differences in gene 

expression and splicing patterns between tissues, developmental stages, and physiological or 

disease states.  

Virtually all transcriptomic studies involve multiple samples. The current paradigm is to 

assemble the reads in each sample, then merge the partial transcripts (transfrags) across all 

samples to create a unified set of meta-annotations [40], which is used as reference for 

downstream quantification and differential analyses. Most single-sample assemblers including 

Cufflinks [9], isoCEM [11], Scripture [10], Traph [41], CLASS [17], iReckon [12], CIDANE [42], 

FlipFlop [43], CLASS2 [44], StringTie [45], Scallop [46] and TransComb [47] build a graph 
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structure from read alignments on the genome, then traverse the graph to select an optimized 

set of transcripts, represented as paths. Recent transcript assembly methods including 

StringTie, CLASS2 and Scallop have taken great strides towards increasing the accuracy and 

efficiency of assembly at single-sample level, and meta-assemblers such as StringTie(ST)-merge 

and TACO [40] have led to more robust collections of meta-annotations. Despite these efforts 

precision remains low, with less than 40% of the predicted transcripts in a single-sample and 

less than 30% of transcripts in meta-annotations representing complete and accurate 

reconstructions [40, 30].  

We present PsiCLASS, based on a novel approach that simultaneously analyzes multiple RNA-

seq samples, which achieves significantly higher precision at sensitivity comparable to the best 

current approaches, and significantly higher overall accuracy in its default setting. PsiCLASS is a 

combined assembler and meta-assembler: it reports a set of transcripts for each sample, as well 

as a set of meta-annotations obtained by combining the individual samples’ outputs. PsiCLASS 

starts by selecting a set of high-confidence introns and subexons at each locus, using novel 

statistical models of introns and intronic read levels. It then builds a unified subexon splice 

graph that is used within a dynamic programming optimization procedure to select a 

representative set of transcripts in each sample (See 2.2 and Figure 2-1 for details). Lastly, 

PsiCLASS extracts a subset of meta-annotations from the aggregated transcript sets by voting.  
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Figure 2-1 Overview of the PsiCLASS algorithm 

(Step 1. Build sample-level subexon graphs from aligned reads and splice reads. PsiCLASS builds 
a subexon graph for each sample by clustering overlapping read alignments into regions, 

dividing regions into subexons at splice junctions (inferred from spliced reads), and connecting 
with edges subexons that are adjacent within the same region or connected by an intron. Step 2. 

Build and refine a global subexon graph, by merging sample-level subexon graphs and 
employing intron and subexon filters that evaluate information simultaneously across all 

samples. Step 3. Enumerate or select a set of candidate transcripts using dynamic programming 
across all samples. Step 4. Select a subset of transcripts in each sample, using a greedy strategy 

that iteratively select an optimal transcript (with global subexon graph-based dynamic 
programming). Step 5. Select a unified set of meta-annotations from among the sample-level 

transcripts, with voting.) 

2.2 Methods 

2.2.1 Algorithm overview 

PsiCLASS builds a global subexon graph of a gene and its splice variants from genome-aligned 

RNA-seq reads in all input samples. It then traverses the graph to select a subset of the encoded 

transcripts in each sample. Lastly, it combines the predicted transcript sets across all samples, 

using a voting procedure to select a final set of meta-annotations.  
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2.2.2 Building per sample subexon graphs 

PsiCLASS builds a subexon graph for each sample, then combines graphs across all samples to 

create a global subexon graph.  

In each sample, PsiCLASS uses candidate introns extracted from spliced read alignments to 

divide the genome into regions and subexons. A region denotes a maximal contiguous portion 

of the genome covered by reads. A subexon is a portion of a region delimited by two 

consecutive splice junctions and/or the end(s) of the region. A subexon graph has subexons as 

vertices, and two subexons are connected by an edge if they are adjacent in the same region or 

connected by an intron. Candidate splice variants are encoded as maximal paths in the subexon 

graph.  

To build the sample-level subexon graph, PsiCLASS clusters read alignments along the genome 

that are co-located and on the same strand. Introns are extracted from spliced alignments and 

used to divide the region into subexons. A major confounding factor in determining subexons 

from RNA-seq data is the presence of intronic unprocessed RNA (‘noise’). To differentiate 

between intronic ‘noise’ and ‘signal’, such as retained introns or alternative 5’ and 3’ gene ends, 

PsiCLASS assigns each subexon a score that reflects the probability that it is ‘noise’. In contrast 

to current single-sample methods, which simply discard a subexon if it fails sample-wide 

cutoffs, PsiCLASS then combines sample-level scores across all samples to determine a final 

‘label’ for the subexon and its inclusion in the global subexon graph.  

More specifically, PsiCLASS computes the probability that a subexon is due to intronic ‘noise’ 

using two models: i) the exon-intron coverage ratio, and ii) the intronic read coverage.  Let ci be 
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the average read coverage of (intronic) subexon i. In the coverage ratio model, PsiCLASS 

calculates a score that is equal to the coverage ratio of this subexon versus its flanking 

subexons: 𝑟𝑖 = min (
𝑐𝑖

𝑐𝑖−1
,

𝑐𝑖

𝑐𝑖+1
). The score is fitted to a mixture of two Gamma distributions, one 

representing ‘signal’ and one ‘noise’: p(ri) = 𝜋𝐺𝑎𝑚𝑚𝑎𝜃0,𝑘0
(𝑟𝑖) + (1 − 𝜋)𝐺𝑎𝑚𝑚𝑎𝜃1,𝑘1

(𝑟𝑖), 

where 𝜋, (1 − 𝜋) are the prior probabilities that an intronic subexon is ‘noise’ or ‘signal’, 

respectively, and 𝜃0, 𝑘0, 𝜃1, 𝑘1 are the parameters for the Gamma distributions, calculated with 

an expectation maximization (EM) algorithm. With these parameters, PsiCLASS can infer the 

probability that subexon i is ‘noise’ according to the Bayes formula: PR(ri) =

𝜋𝐺𝑎𝑚𝑚𝑎𝜃0,𝑘0
(𝑟𝑖)

𝜋𝐺𝑎𝑚𝑚𝑎𝜃0,𝑘0
(𝑟𝑖)+(1−𝜋)𝐺𝑎𝑚𝑚𝑎𝜃1,𝑘1

(𝑟𝑖)
.  

The coverage ratio model above is insufficient when the overall gene coverage is low. Hence, 

the second model establishes a similar formula for coverage levels, PC(ci), with 𝜃′0, 𝑘′0, 𝜃′1, 𝑘′1 

the parameters inferred using coverage. The final per sample subexon score then is P(𝑖) =

max (𝑃𝑅(𝑟𝑖), 𝑃𝐶(𝑐𝑖)).  

2.2.3 Building the global subexon graph 

PsiCLASS removes likely artifactual introns and intronic ‘noise’ subexons by evaluating evidence 

across all sample, and builds a global subexon graph by combining individual samples’ graphs 

that share at least one intron.  

Multi-sample intron selection. To select a highly accurate set of introns, PsiCLASS assesses each 

candidate intron’s read support across all samples. Assume the experiment contains M 

samples, and denote each intron by its coordinates in the genome, e.g. (𝑎, 𝑏). Let 𝑆(𝑎, 𝑏) 
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denote the total number of read alignments supporting (𝑎, 𝑏) over all samples. Then the total 

number of alignments supporting its splice sites: 𝑆(𝑎) = ∑ 𝑆(𝑎, 𝑦)(𝑎,𝑦) , 𝑆(𝑏) = ∑ 𝑆(𝑥, 𝑏)(𝑥,𝑏) . 

PsiCLASS keeps intron (𝑎, 𝑏) iff:  i) 
𝑆(𝑎,𝑏)

𝑀
≥ 0.5, indicating strong read support in one or a few 

samples, or consistent read support across multiple samples; and ii) (𝑎, 𝑏) appears in at least 

M0 samples, where M0 = min(⌈
𝑀

50
⌉ (⌊

𝑏−𝑎+1

100,000
⌋ + 1), 𝑀), if |b-a|>=100,000 (long intron). 

Condition ii) is intended to filter out long intron-type alignment artifacts due to gene families 

and repeats, or from sequencing errors, which can lead to merged genes and transcripts. 

Multi-sample subexon selection. To determine a global set of subexons, PsiCLASS combines the 

subexon sets of individual samples with some modifications. Where multiple 3’ or 5’-end (i.e., 

subexons not delimited by a splice site) candidate subexons occur with the same endpoint and 

potentially different lengths among the samples, PsiCLASS creates a unique subexon with the 

median length. Further, to determine intronic subexons, PsiCLASS calculates a final score by 

combining all sample scores with a Bayesian formula. More specifically, let 𝜋̅ denote the prior 

probability of intronic ‘noise’ in the global model, calculated as the average of the mixture 

coefficients of the samples. Then the subexon score: Pn(noise|data) =

𝜋̅P(𝑑𝑎𝑡𝑎 | 𝑛𝑜𝑖𝑠𝑒)

𝜋̅P(𝑑𝑎𝑡𝑎 | 𝑛𝑜𝑖𝑠𝑒)+(1−𝜋̅)𝑃(𝑑𝑎𝑡𝑎 | 𝑟𝑒𝑎𝑙)
 reflects the probability that the subexon is ‘noise’, where ‘data’ 

is the observed information such as the coverage in each sample. We assume the samples are 

independent, hence P(data | noise) = ∏ 𝐺0
(𝑠)(𝑖)𝑀

𝑠=1 , where s=1, ..., M denotes the sample. 

Here, 𝐺0
(𝑠)(𝑖) is 𝐺𝑎𝑚𝑚𝑎

𝜃0
(𝑠)

,𝑘0
(𝑠)(𝑟𝑖

(𝑠)
) if the ratio model is used for subexon i in sample s, and 
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𝐺𝑎𝑚𝑚𝑎
𝜃′0

(𝑠)
,𝑘′0

(𝑠)(𝑐𝑖
(𝑠)

) if the coverage model is employed. Similarly, P(data | real) =

∏ 𝐺1
(𝑠)(𝑖)𝑀

𝑠=1 . In the end, the subexon is retained if it passes a pre-defined threshold.  

2.2.4 Transcript selection 

Candidate transcript models are represented as maximal paths in the global subexon graph, 

from a node with no incoming edges (source) to a node with no outgoing edges (sink). Since the 

graph generally encodes a much larger number of transcripts than is biologically possible, 

PsiCLASS identifies and selects a subset of transcripts that can explain all contiguity constraints 

from spliced reads and paired-reads. PsiCLASS first predicts a set of transcripts for each sample, 

using a graph-based dynamic programming algorithm with the global subexon graph and the 

sample specific alignment data, then combines the individual samples’ transcript sets and 

selects a subset of meta-annotations by voting.  

To predict a set of transcripts for each sample, PsiCLASS employs a SET_COVER framework and 

dynamic programming algorithms similar to its predecessor CLASS2 (Chapter 1 ), adapted for 

subexon graphs.  

SET_COVER formalism 

 We define a constraint as a cluster of read alignments with the same subexon pattern. Like 

CLASS2, PsiCLASS uses constraints to decrease the memory usage while preserving the 

structural and contiguity information contained in the full set of reads. For a given graph G, let 

C = {c1, …, cm} denote the set of constraints and T = {t1, …, tn} the set of candidate transcripts, 

encoded in the graph. Given a constraint ci, its abundance ai = a(ci) defined as the number of 

supporting reads (or read pairs) normalized by the number of possible start positions of the 
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reads within the constraint’s subexons. To reduce the transcript selection problem to 

SET_COVER, we view each candidate transcript tj as the set of constraints that are compatible 

with its exon-intron structure: C(tj) = {c1, … ,cnj}, where ci ~ tj . In the simplest formulation, the 

goal then is to select a minimal (parsimonious) subset of transcripts that satisfies all constraints. 

More realistically, to account for the different abundance of constraints, we define a 

transcript’s abundance as the minimum abundance among its set of constraints: Aj = min { ai | 

ci~tj  }. The goal then becomes to determine a subset of transcripts that most closely explain the 

constraints and their abundance levels. PsiCLASS uses a greedy approximation framework to 

address this problem, iteratively selecting the transcript that covers the largest number of 

constraints weighted by the constraints’ abundance, then adjusting the constraints’ abundance 

levels before the next iteration: 

while ( {non-depleted constraints} ≠ ∅ ): 

(1) Choose transcript 𝑡 ∈ 𝑇 that maximizes |𝐶(𝑡)|(1 +
𝐴𝑡

𝐴
) 

(2) Update the constraints’ abundance: 

𝑥 = min
𝑐∈𝐶(𝑡) 

{𝑎(𝑐)}  

        For each 𝑐 ∈ 𝐶(𝑡): 

  𝑎(𝑐) = 𝑎(𝑐) − 𝑥   

  if 𝑎(𝑐) ≤ 0, mark constraint c as depleted. 

 

Implementation: PsiCLASS implements the procedure above in two steps. First, it determines 

the candidate set of transcripts T, using either enumeration (for graphs with <200,000 

transcripts) or a variation of the splice-graph dynamic programming algorithm in Chapter 1 that 
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considers all reads single-end, for fast processing. Once the candidate transcript set T is 

determined, PsiCLASS applies the greedy SET_COVER approximation algorithm above. 

For completeness, we include a brief description of the dynamic programming optimization 

procedure. The algorithm considers all subpaths L, and recursively calculates the maximum 

number of constraints f(L) for substranscripts starting with subpath L:  

f(L) = maxL’ { f(L’) + c(L,L’),  if  L’ exists;  c(L),  if  L’ does not exist }, 

where: i) L’ is a subpath immediately following L so that all constraints compatible with L end 

before or within L’; ii) c(L,L’) is the number of constraints starting in and (partially) compatible 

with L and L’, and compatible with the concatenated subpath L.L′; and iii) c(L) is the number of 

constraints covered by subtranscript L.  To take into account the abundance levels in the 

optimization process, at each sweep of the graph the algorithm excludes subpaths that cover 

constraints with abundance below a fixed value x; hence, the dynamic programming algorithm 

will return the best transcript with abundance greater than x (x-abundance transcript). With 

this modification, at each graph sweep the selection process selects an x-abundance transcript, 

starting with x0 = 0 (thus guaranteeing that such a transcript exists), and each selected 

transcript’s abundance value used as lower bound for the selection process at the following 

step:  0=x0<x1<x2<…<xm, until no transcript can be found. The optimal transcript then is among 

those selected by the sweeps. More details, along with proof of correctness for the algorithm, 

can be found in Chapter 1 . 
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2.2.5 Selecting a global set of transcripts   

PsiCLASS selects a set of meta-annotations from the individual samples’ sets of transcripts by 

voting. By default, at each locus a transcript is selected if it appears in a minimum number of 

samples, either pre-set or that can be specified by the user. As different voting parameter 

values might work best for data with specific characteristics, as exemplified by our liver RNA-

seq collection, the user can adjust or re-calibrate the voting parameters post-assembly, starting 

from the full sets of transcripts of individual samples. 

2.2.6 Performance evaluation scheme 

Sequence data 

We evaluated PsiCLASS and other methods on both simulated and real data. We generated 25 

RNA-seq samples, with ~85 million 100 bp paired-end reads, using the software Polyester [48] 

with the default gene and transcript distribution models and randomly sampling 10% of the 

transcripts (at 13,912 genes) from the human GENCODE v.27 [22] gene annotations. Reads 

were aligned to the reference genome hg38 separately with HISAT2 [1] and STAR [2]. 

Chromosome 2 alignments were extracted and used in the assembly and evaluations. Human 

liver RNA-seq samples were obtained from the Stanley Foundation and previously sequenced 

by Dr. Sabunciyan’s lab. Total RNA was isolated using the Qiagen RNeasy kit and libraries were 

constructed using the Illumina TruSeq Stranded Total RNA kit for Human/Mouse/Rat following 

the manufacturers recommended protocol. The resulting stranded, rRNA depleted liver libraries 

were sequenced on an Illumina HiSeq 2000 instrument.  667 RNA-seq samples from human 

lymphoblastoid cell lines part of the GEUVADIS population variation project were publicly 
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available from ArrayExpress (accession: E-GEUV-6), and mouse hippocampus RNA-seq data 

were those reported in [49] and available from GenBank (ProjectID: PREJB18790). 

Evaluation metrics 

Once the reads were mapped to the genome, we used StringTie v.1.3.3.b and Scallop v.0.10.2 

to assemble them into transcripts, for each individual sample. Transcript sets for all samples in 

an experiment were then merged with StringTie(ST)-merge and TACO v.0.7.3. For PsiCLASS 

v.1.0.0, reads were assembled simultaneously across all samples. To evaluate the accuracy of 

transcript assembly, we employed standard sensitivity (Sn) and precision (Pr) measures and 

evaluation criteria to assess the accuracy of transcript reconstructions by comparison to a gold 

reference. The reference annotation for the simulation experiment consisted of the set of 

transcripts simulated by Polyster, whereas experiments on real data used the human GENCODE 

v.27 and mouse RefSeq gene annotations. A predicted transcript is deemed a true positive (TP) 

iff its intron chain fully matches that of a gold reference transcript. If N is the number of 

predicted transcripts, M be the number of ground truth transcripts, then Sn = TP/M and Pr = 

TP/N [11]. 

2.3 Results 

2.3.1 Performance on simulated data 

We compared PsiCLASS with the best current approaches, namely StringTie and Scallop at the 

single-sample level, and the combinations of StringTie with ST-merge and Scallop with TACO, at 

the meta-assembly level. (Other combinations are shown in Figure 2-2). We first applied the 

methods to 25 RNA-seq samples simulated with Polyester [48], where reads were aligned with 



63 
 

two methods, Hisat2 [1] and STAR [2]. Performance was slightly better for all programs when 

reads were aligned with Hisat2 (Figure 2-3), therefore we chose this alignment method for the 

rest of the analyses.  

 

Figure 2-2 Performance evaluation of combination methods at the level of meta-annotations on 
simulated data 

(Methods tested include three single-sample assemblers (Cufflinks, StringTie and Scallop), two 
meta-assemblers (TACO and StringTie(ST)-merge), and two multi-sample integrated methods 

(PsiCLASS and ISP), where TACO and ST-merge were used to aggregate the outputs from 
individual samples into a unified set of meta-annotations. Below, the shape of the point 

represents the tool used, and the color represents the aggregation method. For PsiCLASS, the 
red curve shows the variation in performance as the voting cutoff varies between 1 to 25 (right 
to left). PsiCLASS produces the highest precision regardless of the meta-assembly method used 

(TACO, ST-merge or the PsiCLASS3 built-in voting), and its sensitivity is comparable with the best 
of the other methods.) 
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Figure 2-3 Comparison of transcript assembly methods at the single sample-level, and with 
different alignment tools 

(Each point represents the performance of the stated method on one of the 25 simulated 
samples. The shape of the mark represents the transcript assembly method (StringTie, Scallop 

and PsiCLASS), and the color indicates the RNA-seq alignment tool (Hisat2 and STAR). All 
methods perform similarly with the two alignment methods, with Hisat2 leading to a slight 
increase in performance. When assembly methods are compared, PsiCLASS using a global 

subexon graph leads to improved accuracy at single-sample level, with the highest per sample 
average precision, and sensitivity slightly higher than StringTie’s (by 3%) and comparable to 

Scallop’s (within 1.5%).) 

On the simulated data, PsiCLASS with default voting achieved 72.1% precision, which is 16.1% 

higher than the StringTie system and 29.5% higher than Scallop with TACO, whereas sensitivity 

for all programs was roughly 50% (Figure 2-4). Even at the individual sample level, PsiCLASS had 

both the highest precision and the highest sensitivity: 75.8% precision on average, compared to 

70.8% for StringTie and 62.9% for Scallop, and 47.8% sensitivity compared to 41.7% for 
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StringTie and 46.2% for Scallop. Precision values for both StringTie and Scallop, but to a lesser 

extent for PsiCLASS, dropped significantly after aggregation, hence PsiCLASS produces more 

consistent sets of transcripts between individual samples and the set of meta-annotations. 

 

Figure 2-4 Performance evaluation of methods on 25 simulated data sets 

(Sensitivity (recall) and precision values for PsiCLASS, StringTie and Scallop at the level of 
individual samples are shown in boxed plots, and meta-annotations resulted from aggregation 

(with PsiCLASS voting, ST-merge and TACO) are shown with colored shapes.) 

Performance by transcript expression level 

We further investigated the performance of methods based on the transcripts’ expression 

levels (Figure 2-5). Simulated transcripts were divided into low (463 transcripts; Fragments Per 
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Kilobase (FPK)<30), medium (658 transcripts; 30<=FPK<500) and high (322 transcripts; 

FPK>=500) according to the pre-defined expression levels. PsiCLASS with voting reconstructs 

the largest fraction of highly-expressed transcripts, 82.4%, and all three programs recover ~60% 

of the medium–expressed ones. Scallop shows good sensitivity in detecting low expression 

features, confirming prior reports [46], followed closely by StringTie. Overall, however, the 

sensitivity of all programs on this class of transcripts is very low, between 10% and 20%. Note 

that, because a reconstructed transcript’s expression level may fall in another class than the 

predefined one, precision cannot be rigorously evaluated.  

 

Figure 2-5 Performance evaluation of methods on 25 simulated sets, genes grouped by 
abundance 
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2.3.2 Performance on real RNA-seq data 

We next assessed the performance on two representative RNA-seq data sets, generated with 

two different library preparation protocols: 25 randomly selected sets from polyA-selected 

lymphoblastoid samples from the GEUVADIS population variation project, and 73 rRNA-

depleted total RNA libraries from postmortem human liver samples with funding from the 

Stanley Medical Research Institute. With the default voting setting, for the GEUVADIS set 

PsiCLASS’ precision is 83% and 104% higher than StringTie’s and Scallop plus TACO’s, 

respectively, whereas sensitivity is 2.4% and 15.2% lower (Figure 2-6). Notably, precision 

remains higher as the voting cutoff varies (Figure 2-8A), exceeding StringTie’s by 83% and 

Scallop’s by 66% even as PsiCLASS matches or approaches each method’s sensitivity setting. 

Similarly, advantages of the multi-sample approach are seen for the liver total RNA data set, 

with 257% and 331% improvements in precision, albeit at 19% and 36% lower sensitivity. In 

such cases, the default voting setting may not present the best tradeoff, and as PsiCLASS’ 

precision remains significantly higher than that of its counterparts the user may choose a 

different cutoff (Figure 2-8B). For instance, when sensitivity is matched to that of StringTie and 

Scallop, PsiCLASS maintains a 149% and 45% increase in precision over these systems, 

respectively (Figure 2-7). 
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Figure 2-6 Performance evaluation of methods on 25 GEUVADIS samples (poly-adenylated RNA) 

(Additional symbols mark sensitivity and precision values for PsiCLASS when tuned to match or 
approach the sensitivity of its competitor) 
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Figure 2-7 Performance evaluation of methods on 73 liver RNA-seq samples (rRNA-depleted 
total RNA) 
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Figure 2-8 Performance evaluation of methods on real data 

((A) all method combinations, meta-annotations, Geuvadis data (25 samples); (B) all method 
combinations, meta-annotations, total RNA from human liver (73 samples); and (C) all method 

combinations, meta-annotations, mouse hippocampus samples, healthy and with induced 
epileptic seizures (44 samples). In (A-C), the voting cutoff for the minimum number of samples 
that a PsiCLASS3-reported transcript must appear in is varied between 1 and 25 (Geuvadis), 1 
and 73 (human liver), and 1-44 (mouse hippocampi), respectively (shown left-to-right, as red 

curves).) 
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Performance on two-condition data 

Most RNA-seq analyses are aimed at determining differences between conditions. To explore 

the robustness of PsiCLASS when combining multi-condition samples, we applied it and the 

other methods to RNA-seq samples from hippocampi of normal mice (24 samples) and mice 

with induced epileptic seizures (20 samples) [49]. The diagrams in Figure 2-9 indicate that at the 

level of individual samples PsiCLASS has slightly higher sensitivity than StringTie, by 6% on 

average, but mildly lower than Scallop, by 9%. However, after voting, PsiCLASS’ precision at the 

level of meta-annotations is 62.1% and 72.4% higher than the other programs’, along with a 

slight increase in sensitivity, therefore recommending it as the overall best performer. Thus, 

PsiCLASS can be effectively and more reliably used on the aggregate set of samples in a two-

condition comparison. 
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Figure 2-9 Performance evaluation of methods on 44 hippocampus samples from healthy and 
epileptic mice 

2.3.3 Scalability 

We next investigated the utility of the multi-sample approach for small data collections, 

including single samples. Table 2-1 shows the results for all methods on sets of 2, 3, 5 and 10 

samples from our simulated set, averaged over five independent trials, and for single-sample 

sets, averaged over all possible 25 trials. The multi-sample approach has clear benefits in all 

cases, most notably for precision (71-81% for PsiCLASS, compared to 64-71% for StringTie, and 

57-63% for Scallop with TACO), at comparable levels of sensitivity (42-50% for all three 
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methods). Remarkably, PsiCLASS ranks slightly ahead of both StringTie and Scallop as single-

sample assemblers, and therefore can be gainfully used even within the conventional approach.   

Table 2-1 Performance of methods on experiments with small numbers of samples 

 Recall (%) Precision (%) 

Sample Size PsiCLASS StringTie Scallop PsiCLASS StringTie Scallop 

1 44.7 41.7 46.2 73.8 70.8 62.9 

2 42.5 43.8 43.3 78.5 69.1 57.0 

3 42.3 45.2 45.0 81.1 68.5 56.7 

5 47.0 46.6 46.2 77.6 66.7 56.7 

10 50.4 48.0 48.1 71.6 64.0 56.5 

 

As the emerging landscape of RNA sequencing foresees increasingly larger data sets from large 

patient cohorts and population variation studies, we aimed to assess the suitability of the multi-

sample approach as the data set increases. We evaluated program performance on increasingly 

larger subsets of RNA-seq samples from the GEUVADIS population variation project, up to the 

full set of 667 samples (Figure 2-10). All methods show improvements in sensitivity as the 

number of samples increases, but while PsiCLASS and Scallop show further slight gains after 20-

50 samples, the sensitivity of StringTie drops. Precision drops markedly for both Scallop and 

StringTie, to less than 35% for 50 samples and below 20% for the full set of samples. In sharp 

contrast, PsiCLASS’s sensitivity and precision remain almost constant with more than 10 

samples, demonstrating the robustness of this approach. Also, with sensitivity comparable to 

StringTie’s and precision (75%) twice as high as that of the other two systems when the data set 

exceeds 20-50 samples, PsiCLASS is unequivocally the best suited for handling large RNA-seq 

collections. Lastly, PsiCLASS took only 9 hours with 24 threads to process the 667 samples on an 

3.0 GHz Intel “Ivy Bridge” Xeon server, amounting to less than 1 minute per sample. 
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Figure 2-10 Performance evaluation of methods on 667 GEUVADIS samples 

2.4 Conclusions 

Determining the set of expressed genes and transcripts in an RNA-seq experiment is critical for 

subsequent quantification and differential expression and splicing analyses. The conventional 

approach to process each sample separately and then merge the sets of transcripts to create a 

unified set of annotations has limitations, in particular low precision. We present PsiCLASS, a 

transcript assembler and meta-assembler that simultaneously analyzes all samples in an RNA-

seq experiment. It employs global subexon graphs along with statistical models of intronic read 

coverage, dynamic programming optimization algorithms, and voting for transcript selection. 

PsiCLASS has significantly higher precision at similar sensitivity when compared to current best 

methods; precision remains consistently high, over 55%, when tested on data from a variety of 

experimental conditions. PsiCLASS is scalable, efficient and robust with large numbers of RNA-

2 5 10 20 50 100 200 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Sample Size

P
re

c
is

io
n

R
e

c
a

ll

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

PsiCLASS

StringTie

Scallop+TACO

Precision

Recall



75 
 

seq samples, thus providing a highly effective paradigm for large-scale analyses of collections of 

hundreds and thousands of samples.  

Development and evaluations were performed on the Maryland Advanced Research Computing 

Center (MARCC). Work was supported in part by NSF grants ABI-1356078 and IOS-1339134 to 

L.F., and by NIH grant R01GM12453 to L.F. and Kathleen Burns. S.S was supported by a grant 

from the Stanley Medical Research Institute. PsiCLASS is available free of charge from 

https://github.com/splicebox/PsiCLASS .  

https://github.com/splicebox/PsiCLASS
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Chapter 3  

Lighter: fast and memory-efficient error 

correction without counting 

3.1 Introduction 

The cost and throughput of DNA sequencing have improved rapidly in the past several years 

[50], with recent advances reducing the cost of sequencing a single human genome at 30-fold 

coverage to around $1,000 [51]. With these advances has come an explosion of new software 

for analyzing large sequencing datasets. Sequencing error correction is a basic need for many of 

these tools. Removing errors can also improve the accuracy, speed and memory-efficiency of 

downstream tools, particularly for de novo assemblers based on De Bruijn graphs [52, 53]. 

To be useful in practice, error correction software must make economical use of time and 

memory even when input datasets are large (many billions of reads) and when the genome 

under study is also large (billions of nucleotides). Several methods have been proposed, 

covering a wide tradeoff space between accuracy, speed and memory- and storage-efficiency. 

SHREC [54] and HiTEC [55] build a suffix index of the input reads and locate errors by finding 

instances where a substring is followed by a character less often than expected. Coral [56] and 

ECHO [57] find overlaps among reads and use the resulting multiple alignments to detect and 
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correct errors. Reptile [58] and Hammer [59] detect and correct errors by examining each k-

mer’s neighborhood in the dataset’s k-mer Hamming graph. 

The most practical and widely used error correction methods descend from the spectral 

alignment approach introduced in the earliest De Bruijn graph based assemblers [52, 53]. These 

methods count the number of times each k-mer occurs (its multiplicity) in the input reads, then 

apply a threshold such that k-mers with multiplicity exceeding the threshold are considered 

solid. These k-mers are unlikely to have been altered by sequencing errors. k-mers with low 

multiplicity (weak k-mers) are systematically edited into high-multiplicity k-mers using a 

dynamic-programming solution to the spectral alignment problem [52, 53] or, more often, a 

fast heuristic approximation. Quake [60], one of the most widely used error correction tools, 

uses a hash-based k-mer counter called Jellyfish [61] to determine which k-mers are correct. 

CUDA-EC [62] was the first to use a Bloom filter as a space-efficient alternative to hash tables 

for counting k-mers and for representing the set of solid k-mers. More recent tools, such as 

Musket [63] and BLESS [64], use a combination of Bloom filters and hash tables to count k-mers 

or to represent the set of solid k-mers. 

Lighter (LIGHTweight ERror corrector) is also in the family of spectral alignment methods, but 

differs from previous approaches in that it avoids counting k-mers. Rather than count k-mers, 

Lighter samples k-mers randomly, storing the sample in a Bloom filter. Lighter then uses a 

simple test applied to each position of each read to compile a set of solid k-mers, stored in a 

second Bloom filter. These two Bloom filters are the only sizable data structures used by 

Lighter. 
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A crucial advantage is that Lighter’s parameters can be set such that memory footprint and 

accuracy are near constant with respect to depth of sequencing. That is, no matter how deep 

the coverage, Lighter can allocate the same sized Bloom filters and achieve nearly the same: (a) 

Bloom filter occupancy, (b) Bloom filter false positive rate and (c) error correction accuracy. 

Lighter does this without using any disk space or other secondary memory. This is in contrast to 

BLESS and Quake/Jellyfish, which use secondary memory to store some or all of the k-mer 

counts. 

Lighter’s accuracy is comparable to competing tools. We show this both in simulation 

experiments where false positives and false negatives can be measured, and in real-world 

experiments where read alignment scores and assembly statistics can be measured. Lighter is 

also very simple and fast, faster than all other tools tried in our experiments. These advantages 

make Lighter quite practical compared to previous counting-based approaches, all of which 

require an amount of memory or secondary storage that increases with depth of coverage. 

Lighter is free open-source software available from https://github.com/mourisl/Lighter. 

3.2 Methods 

Lighter’s workflow is illustrated in Figure 3-1. Lighter makes three passes over the input reads. 

The first pass obtains a sample of the k-mers present in the input reads, storing the sample in 

Bloom filter A. The second pass uses Bloom filter A to identify solid k-mers, which it stores in 

Bloom filter B. The third pass uses Bloom filter B and a greedy procedure to correct errors in the 

input reads. 
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Figure 3-1 The framework of Lighter 

3.2.1 Bloom filter 

A Bloom filter [65] is a compact probabilistic data structure representing a set. It consists of an 

array of m bits, each initialized to 0. To add an item o, h independent hash functions 

H0(o),H1(o),…,Hh-1(o) are calculated. Each maps o to an integer in [0, m) and the corresponding h 

array bits are set to 1. To test if item q is a member, the same hash functions are applied to q. q 

is a member if all corresponding bits are set to 1. A false positive occurs when the 

corresponding bits are set to 1 ‘by coincidence’, that is, because of items besides q that were 

added previously. Assuming the hash functions map items to bit array elements with equal 

probability, the Bloom filter’s false positive rate is approximately (1 − 𝑒−ℎ
𝑛

𝑚
 )

ℎ

, where n is the 

number of distinct items added, which we call the cardinality. Given n, which is usually 

determined by the dataset, m and h can be adjusted to achieve a desired false positive rate. 
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Lower false positive rates can come at a cost, since greater values of m require more memory 

and greater values of h require more hash function calculations. Many variations on Bloom 

filters have been proposed that additionally permit compression of the filter, storage of count 

data, representation of maps in addition to sets, etc. [66]. Bloom filters and variants thereon 

have been applied in various bioinformatics settings, including assembly [67][19], compression 

[68], k-mer counting [69] and error correction [62]. 

By way of contrast, another way to represent a set is with a hash table. Hash tables do not yield 

false positives, but Bloom filters are far smaller. Whereas a Bloom filter is an array of bits, a 

hash table is an array of buckets, each large enough to store a pointer, key or both. If chaining is 

used, lists associated with buckets incur additional overhead. While the Bloom filter’s small size 

comes at the expense of false positives, these can be tolerated in many settings including in 

error correction. 

Lighter’s efficiency depends on the efficiency of the Bloom filter implementation. For a 

standard Bloom filter, each of the h hash functions could map item o to any element of the bit 

array. The bit array will often be very large, much larger than the processor cache. Thus, each 

probe into the bit array is likely to cause a cache miss. Putze et al [70] propose a blocked Bloom 

filter. Given a block size b, the first hash function H0(o) is used to select a size-b block of 

consecutive positions in the bit array. Then, H1(o),...,Hh−1(o) map o onto elements of that block. 

When b is less than or equal to the size of a cache line, the h accesses will tend to cause only 

one or two cache misses, rather than approximately h cache misses. The drawback is that h and 

m must be somewhat larger to achieve the same false positive rate (FPR) as a corresponding 

standard Bloom filter. To estimate the FPR of the blocked Bloom filter, we can consider each of 
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the possible m − b + 1 blocks. For the i-th block, the FPR within the block is (b′i/b)h, where b′i is 

the number of bits set to 1 in block i. So the overall FPR is: 

∑ (
𝑏𝑖

′

𝑏
)

ℎ

𝑖

𝑚 − 𝑏 + 1
 

Putze et al also propose a pattern-blocked Bloom filter [70], where the difference is that instead 

of updating the h positions in the block separately, we pre-compute a list of patterns where 

each pattern is a bitmask describing how to update h positions in a block with a few bitwise 

operations. To perform such an update we first find the appropriate pattern using hash 

function, then update the corresponding positions simultaneously. In Lighter, 64-bit integers 

are used to form the mask. For example, if b = 256, the pattern is made up of 4 64-bit integers, 

and we can update in 4 64-bit operations, regardless of h. The FPR formula above still roughly 

estimates the FPR for the pattern-blocked bloom filter. 

In our method, the items to be stored in the Bloom filters are k-mers. Because we would like to 

treat genome strands equivalently for counting purposes, we will always canonicalize a k-mer 

before adding it to or using it to query a Bloom filter. A canonicalized k-mer is either the k-mer 

itself or its reverse complement, whichever is lexicographically prior. 

3.2.2 Sequencing model 

We use a simple model to describe the sequencing process and Lighter’s subsampling. The 

model resembles one suggested previously [71]. Let K be the total number of k-mers obtained 

by the sequencer. We say a k-mer is incorrect if its sequence has been altered by one or more 

sequencing errors. Otherwise it is correct. Let ε be the fraction of k-mers that are incorrect. We 
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assume ε does not vary with the depth of sequencing. The sequencer obtains correct k-mers by 

sampling independently and uniformly from k-mers in the genome. Let the number of k-mers in 

the genome be G, and assume all are distinct. If κ c is a random variable for the multiplicity of a 

correct k-mer in the input, κc is binomial with success probability 1/G and number of trials 

(1−ε)K: 

κc∼Binom((1−ε)K,1/G). 

Since the number of trials is large and the success probability is small, the binomial is well 

approximated by a Poisson: 

κc∼Pois(K(1−ε)/G). 

A sequenced k-mer survives subsampling with probability α. If κ’c is a random variable for the 

number of times a correct k-mer appears in the subsample: 

κ’c ∼Binom((1−ε)K,α/G), 

which is approximately Pois(αK(1−ε)/G). 

We model incorrect k-mers similarly. The sequencer obtains incorrect k-mers by sampling 

independently and uniformly from k-mers ‘close to’ a k-mer in the genome. We might define 

these as the set of all k-mers with low but non-zero Hamming distance from some genomic k-

mer. If κe is a random variable for the multiplicity of an incorrect k-mer, κe is binomial with 

success probability 1/H and number of trials εK: κe ∼Binom(ε K,1/H), which is approximately 

Pois(Kε/H). It is safe to assume H≫G. κ’e∼Pois(α K ε/H) is a random variable for the number of 

times an incorrect k-mer appears in the subsample. 
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Others have noted that, given a dataset with deep and uniform coverage, incorrect k-mers 

occur rarely while correct k-mers occur many times, proportionally to coverage [52, 53]. 

3.2.3 Stages of the method 

First pass 

In the first pass, Lighter examines each k-mer of each read. With probability 1−α, the k-mer is 

ignored. k-mers containing ambiguous nucleotides (e.g. ‘N’) are also ignored. Otherwise, the k-

mer is canonicalized and added to Bloom filter A. 

Say a distinct k-mer a occurs a total of Na times in the dataset. If none of the Na occurrences 

survive subsampling, the k-mer is never added to A and A’s cardinality is reduced by one. Thus, 

reducing α can in turn reduce A’s cardinality. Because correct k-mers are more numerous, 

incorrect k-mers tend to be discarded from A before correct k-mers as α decreases. 

The subsampling fraction α is set by the user. We suggest adjusting α in inverse proportion to 

depth of sequencing, for reasons discussed below. For experiments described here, we set 

α=0.1 when the average coverage is 70-fold. That is, we set α to 0.1(70/C), where C is average 

coverage. 

Second pass 

A read position is overlapped by up to x k-mers, 1≤x≤k, where x depends on how close the 

position is to either end of the read. For a position altered by sequencing error, the overlapping 

k-mers are all incorrect and are unlikely to appear in A. We apply a threshold such that if the 

number of k-mers overlapping the position and appearing in Bloom filter A is less than the 

threshold, we say the position is untrusted. Otherwise we say it is trusted. Each instance where 
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the threshold is applied is called a test case. When one or more of the x k-mers involved in two 

test cases differ, we say the test cases are distinct. 

Let P*(α) be the probability an incorrect k-mer appears in A, taking the Bloom filter’s false 

positive rate into account. If random variable Be,x represents the number of k-mers appearing in 

A for an untrusted position overlapped by x k-mers: 

Be,x∼Binom(x,P*(α)). 

We define thresholds yx, for each x in [1,k]. yx is the minimum integer such that: 

P(Be,x≤yx−1)≥0.995. 

Ignoring false positives for now, we model the probability of a sequenced k-mer having been 

added to A as: 

𝑃(𝛼) = 1 − (1 − 𝛼)𝑓(𝛼). 

We define: 

f(α)=max{2,0.2/α}. 

That is, we assume the multiplicity of a weak k-mer is at most f(α), which will often be a 

conservative assumption, especially for small α. It is also possible to define P(α) in terms of 

random variables κe and κe‘, but we avoid this here for simplicity. 

A property of this threshold is that when α is small: 

𝑃(𝛼/𝑧) = 1 − (1 −
𝛼

𝑧
)

0.2𝑧/𝛼

≈ 1 − (1 − 𝛼)0.2/𝛼 = 𝑃(𝛼), 
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where z is a constant greater than 1 and we use the fact that: 

(1−α/z)z≈1−α. 

For P∗(α), we additionally take A’s false positive rate into account. If the false positive rate is β, 

then: 

P∗(α)=P(α)+β−βP(α). 

Once all positions in a read have been marked trusted or untrusted using the threshold, we find 

all instances where k trusted positions appear consecutively. The k-mer made up by those 

positions is added to Bloom filter B. 

Third pass 

In the third pass, Lighter applies a simple, greedy error correction procedure like that used in 

BLESS [64]. A read r of length |r|, contains |r|−k+1 k-mers. ki denotes the k-mer starting at read 

position i, 1≤i≤|r|−k+1. We first identify the longest stretch of consecutive k-mers in the read 

that appear in Bloom filter B. Let kb and ke be the k-mers at the left and right extremes of the 

stretch. If e<|r|−k+1, we examine successive k-mers to the right starting at ke+1. For a k-mer ki 

that does not appear in B, we assume the nucleotide at offset i+k−1 is incorrect. We consider all 

possible ways of substituting for the incorrect nucleotide. For each substitution, we count how 

many consecutive k-mers starting with ki appear in Bloom filter B after making the substitution. 

We pick the substitution that creates the longest stretch of consecutive k-mers in B. The 

procedure is illustrated in Figure 3-2. 
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Figure 3-2 An example of the greedy error correction procedure. k-mer CCGATTC does not 
appear in Bloom filter B, so we attempt to substitute a different nucleotide for the C shown in 
red. We select A since it yields the longest stretch of consecutive k-mers that appear in Bloom 

filter B. 

If more than one candidate substitution is equally good (i.e. results in the same number of 

consecutive k-mers from B), we call position i+k−1 ambiguous and make no attempt to correct 

it. The procedure then resumes starting at ki+k, or the procedure ends if the read is too short to 

contain k-mer ki+k. 

When errors are located near to the end of a read, the stretches of consecutive k-mers used to 

prioritize substitutions are short. For example, if the error is at the very last position of the 

read, we must choose a substation on the basis of just one k-mer: the rightmost k-mer. This 

very often results in a tie, and no correction. Lighter avoids many of these ties by considering k-

mers that extend beyond the end of the read. Lighter extends the read base by base. For the 

new base beyond the read, Lighter tries all the four nucleotides in the order of “A”, “C”, “G”, 

“T”, and uses the first nucleotide creating a k-mer that can be found in Bloom filter A. This 

procedure is terminated until all the nucleotides fails or the distance to the candidate 

substitution’s position is larger than k-1. Then we choose the candidate substitution with the 

longest extension based on this greedy procedure. As a result, we can solve some ties that are 

more likely to happened near the end of a read due to insufficient extension. 
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For better precision, Lighter also limits the corrections that can be made in any window of size k 

in a read. The default limit is 4, and it is configurable. Corrections at positions with an ‘N’ 

contribute 0, and corrections at low-quality bases (defined in the Quality score section below) 

contribute 0.5 toward this limit. All other positions contribute 1. 

3.2.4 Scaling with depth of sequencing 

Lighter’s accuracy can be made near constant as the depth of sequencing K increases and its 

memory footprint is held constant. This is accomplished by holding αK constant, i.e., by 

adjusting α in inverse proportion to K. This is illustrated in Table 3-1 and (Rows labeled k show 

the k-mer sizes selected for each tool and dataset) 

Table 3-2.  

Table 3-1 Accuracy measures for datasets simulated with Mason with various sequencing 
depths and error rates  

Coverage  35× 70× 140× 

Error rate  1% 3% 1% 3% 1% 3% 

α for Lighter  0.2 0.2 0.1 0.1 0.05 0.05 

Recall 

Quake 89.68 48.77 89.64 48.82 89.59 48.78 

SOAPec 57.71 38 57.57 37.71 57.09 36.76 

Musket 93.75 92.62 93.73 92.64 93.73 92.63 

Bless 99.81 99.33 99.82 99.58 99.82 99.58 

Lighter 99.87 98.53 99.84 98.72 99.86 98.78 

Precision 

Quake 99.99 99.99 99.99 99.99 99.99 99.99 

SOAPec 99.99 100 99.99 99.99 99.99 99.99 

Musket 99.99 99.93 99.99 99.93 99.99 99.93 

Bless 99.73 98.86 99.73 99.35 99.72 99.36 

Lighter 99.98 99.96 99.98 99.96 99.98 99.96 

F-score 

Quake 94.55 65.56 94.54 65.61 94.51 65.57 

SOAPec 73.18 55.07 73.07 54.77 72.68 53.75 

Musket 96.77 96.14 96.76 96.15 96.76 96.15 

Bless 99.77 99.09 99.77 99.47 99.77 99.47 

Lighter 99.93 99.24 99.91 99.33 99.92 99.36 
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Gain 

Quake 89.67 48.76 89.64 48.82 89.59 48.78 

SOAPec 57.7 38 57.57 37.71 57.09 36.75 

Musket 93.74 92.56 93.72 92.58 93.72 92.57 

Bless 99.54 98.19 99.54 98.93 99.54 98.94 

Lighter 99.85 98.49 99.81 98.68 99.84 98.73 

k 

Quake 17 17 17 17 17 17 

SOAPec 17 17 17 17 17 17 

Musket 23 19 23 19 23 19 

Bless 31 23 31 23 31 23 

Lighter 23 19 23 19 23 19 

(Rows labeled k show the k-mer sizes selected for each tool and dataset) 

Table 3-2 Occupancy (fraction of bits set) for Bloom filters A and B for various coverages 

Coverage α Bloom A (%) Bloom B (%) 

20× 0.35 53.082 34.037 

35× 0.2 53.085 34.398 

70× 0.1 53.082 34.429 

140× 0.05 53.094 34.411 

280× 0.025 53.088 34.419 

Here is the formal argument on why Lighter’s accuracy is near-constant as the depth of 

sequencing K increases and its memory footprint is held constant. The basic idea is that as K 

increases, we adjust α in inverse proportion. That is, we hold αK constant. For concreteness, 

consider two scenarios: scenario I, where the total number of k-mers is K1 and subsampling 

fraction is α1, and scenario II where the number is K2 = zK1 and subsampling fraction is α2 = α1/z. 

Contents of Bloom filter A 

 The occupancy of Bloom filter A, as well as the fraction of correct k-mers in A, are 

approximately the same in both scenarios. This follows from the fact that κ‘c ∼ Pois(αK(1 − 

ε)/G), κ’e ∼ Pois(αKε/H), and αK, ε, G, and H are constant across scenarios. This is also 

supported by our experiments, as seen in the main body of the manuscript. Because the 

occupancy does not change, we can hold the Bloom filter’s size constant while achieving the 

same false positive rate. 
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Accuracy of trusted / untrusted classifications 

Also, if a read position and its neighbors within k − 1 positions on either side are error-free, 

then the probability it will be called trusted does not change between scenarios. We mentioned 

that when α is small, P(α1) ≈ P(α1/z) = P(α2). We also showed that the false positive rate of the 

bloom filter is approximately constant between scenarios, so P*(α1) ≈ P*(α1/z) = P*(α2). Thus, 

the thresholds yx will also remain unchanged. pc = (p(κ′c ≥ 1))/(p(κc ≥ 1)) is the probability a 

correct k-mer is in the subsample given that it was sequenced. pc = (1 − e−
α(1−ϵ)K

G )/(1 −

e−
(1−ϵ)K

G ) ≈ 1 − e−
α(1−ϵ)K

G , since (1 − ε)K/G is large. pc is constant across scenarios since αK, ε, 

and G are constant. Since pc is constant, the parameters of the Be,x distribution are constant and 

the probability a correct position will be called trusted is also constant.  

Now we consider an incorrect read position. We ignore false positives from Bloom filter A for 

now. pe = p(κe
′  ≥  1)/p(κe ≥ 1)  =  (1 −  e−

αϵK

H )/(1 −  e−
ϵK

H ) is the probability an incorrect 

k-mer is in the subsample given that it was sequenced. Since εK/H is close to 0, e−εK/H ≈ 1 − ε 

K/H and pe ≈ (αεK/H)/(εK/H) = α. Say an incorrect read position is covered by x k-mers; if Be,x is 

a random variable for the number of k-mers overlapping the position that appear in Bloom 

filter A, then Be,x ∼ Binom(x,pe) ≈ Binom(x,α). The probability of falsely trusting a position is 

therefore: 𝑝(𝐵𝑒,𝑥 ≥ 𝑦𝑥) =  ∑ (𝑥
𝑖
)𝑥

𝑖=𝑦𝑥
𝑝𝑒

𝑖 (1 − 𝑝𝑒)𝑥−𝑖 ≈ ∑ (𝑥
𝑖
)𝑥

𝑖=𝑦𝑥
𝛼 

𝑖(1 − 𝛼)𝑥−𝑖 . If we omit the (1 

− α)x−i term in the sum, what remains is an upper bound, i.e. ∑ (𝑥
𝑖
)𝛼𝑖(1 − 𝛼)𝑥−𝑖x

i=yx
≤

∑ (𝑥
𝑖
)𝛼𝑖x

i=yx
. Since α2 = α1/z, the upper bound in scenario II is lower by a factor of at least 1/z 

relative to the upper bound in scenario I. So an upper bound on the probability of labeling an 
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incorrect position as trusted decreases by a factor of at least z. When K increases, the number 

of distinct test cases for incorrect positions increases by a factor of at most z. Thus, we expect 

the total number incorrect positions labeled as trusted to remain approximately constant.  

When α is small, the false positive rate β may dominate the probability pe. In practice, 

however, the false positive rate is usually small enough that the probability of a incorrect 

position being labeled as trusted due to false positives is extremely low. For example, when k-

mer length k = 17, the false positive rate of Bloom A ≈ 0.004, the threshold y2k−1 = 6, and α = 

0.05. In this situation, p(Be,x≥yx) ≈ 5 · 10−11.  

The above is not an exhaustive analysis, since we have not examined the case where a read 

position is error-free but not all of its neighbors within k−1 positions on either side are error-

free. In this case, whether the threshold is passed depends chiefly on the whereabouts of the 

nearby errors. 

Contents of Bloom filter B  

Given the analysis in the previous section, we expect that the collection of k-mers drawn from 

the stretches of trusted positions in the reads will not change much across scenarios and, 

therefore, the contents of Bloom filter B will not change much. This conclusion is also 

supported by our experiments, as seen in the main body of the manuscript. 
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3.2.5 Quality score 

A low base quality value at a certain position can force Lighter to treat that position as 

untrusted even if the overlapping k-mers indicate it is trusted. First, Lighter scans the first 1 

million reads in the input, recording the quality value at the last position in each read. Lighter 

then chooses the fifth-percentile quality value; that is, the value such that 5% of the values are 

less than or equal to it, say t1. Using the same idea, we get another fifth-percentile quality 

value, say t2, for the first base for the first 1 million reads. When Lighter is deciding whether a 

position is trusted, if its quality score is less than or equal to min{t1,t2−1}, then it is called 

untrusted regardless of how many of the overlapping k-mers appear in Bloom filter A. 

3.2.6 Parallelization 

As shown in Figure 3-1, Lighter works in three passes: (1) populating Bloom filter A with a k-mer 

subsample, (2) applying the per-position test and populating Bloom filter B with likely correct k-

mers and (3) error correction. For pass 1, because α is usually small, most time is spent 

scanning the input reads. Consequently, we found little benefit in parallelizing pass 1. Pass 2 is 

parallelized by using concurrent threads to handle subsets of input reads. Because Bloom filter 

A is only being queried (not added to), we need not synchronize accesses to A. Accesses to B 

are synchronized so that additions of k-mers to B by different threads do not interfere. Since it 

is typical for the same correct k-mer to be added repeatedly to B, we can save synchronization 

effort by first checking whether the k-mer is already present and adding it (synchronously) only 

if necessary. Pass 3 is parallelized by using concurrent threads to handle subsets of the reads; 

since Bloom filter B is only being queried, we need not synchronize accesses. 
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3.3 Results 

https://github.com/mourisl/Lighter_paper/blob/revision1/README.md describes the exact 

command lines used. 

3.3.1 Simulated dataset 

Accuracy on simulated data 

We compared the performance of Lighter v1.0.2 with Quake v0.3 [60], Musket v1.1 [63], BLESS 

v0p17 [64] and SOAPec v2.0.1 [72]. We simulated a collection of reads from the reference 

genome for the K12 strain of Escherichia coli (NC_000913.2) using Mason v0.1.2 [73]. We 

simulated six distinct datasets with 101-bp single-end reads, varying average coverage (35×, 

75× and 140×) and average error rate (1% and 3%). For a given error rate e we specify Mason 

parameters -qmb -qmb e/2-qme -qme 3e, so that the average error rate is e but errors are 

more common toward the 3′ end, as in real datasets. 

We then ran all four tools on all six datasets, with results presented in Table 3-1. BLESS was run 

with the -notrim option to make the results more comparable. In these comparisons, a true 

positive (TP) is an instance where an error is successfully corrected, i.e. with the correct base 

substituted. A false positive (FP) is an instance where a spurious substitution is made at an 

error-free position. A false negative (FN) is an instance where we either fail to detect an error 

or an incorrect base is substituted. As done in previous studies [63], we report the following 

summaries: 
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recall=TP/(TP+NP), 

precision=TP/(TP+FP), 

Fscore=2×recall×precision/(recall+precision) and 

gain =(TP−FP)/(TP+FN). 

Since these tools are sensitive to the choice of k-mer size, we tried several values for this 

parameter (17, 19, 23, 27 and 31) and picked the value yielding the greatest gain in the 

accuracy evaluation. The k-mer sizes chosen are shown in the bottom rows of Table 3-1. Note 

that SOAPec’s maximum k-mer size is 27. We found that Quake crashed for k-mer sizes 23 and 

up. 

Unlike the other tools, Quake both trims the untrusted tails of the reads and discards reads it 

cannot correct. BLESS also trims some reads (even in -notrim mode), but only a small fraction 

(0.1%) of them, which has only a slight effect on results. For these simulation experiments, we 

measure precision and recall with respect to all the nucleotides (even the trimmed ones) in all 

the reads (even those discarded). This tends to lead to higher precision but lower recall for 

Quake relative to the other tools. 

Apart from Quake, SOAPec, Musket and Lighter achieve the highest precision. Lighter achieves 

the highest recall, F-score and gain in the experiments with 1% error, and is comparable to 

BLESS when the error rate is 3%. 

For the Mason-simulated 1% error dataset, we found that Lighter’s gain was maximized by 

setting the k-mer size to 23. We therefore fix the k-mer size to 23 for subsequent experiments, 

except where otherwise noted. 
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Caenorhabditis elegans simulation 

We performed a similar accuracy test as in the previous section, but using data simulated from 

the larger C. elegans genome, WBcel235 (Table 3-3). We used Mason to simulate a dataset of 

101-bp single-end reads with a 1% error rate totaling 35× coverage. We again tried several 

values for the k-mer size parameter (19, 23, 27 and 31) and picked the value yielding the 

greatest gain in the accuracy evaluation. As for the E. coli experiment, Lighter had the greatest 

recall, F-score and gain. 

Table 3-3 Simulation results with C. elegans genome 

  Quake SOAPec Musket Bless Lighter 

Recall 85.7 53.4 90.31 98.99 98.12 

Precision 99.82 99.84 99.59 95.64 99.66 

F-score 92.22 69.58 94.72 97.29 98.88 

Gain 85.55 53.31 89.94 94.48 97.78 

k 19 23 27 31 31 

 

Scaling with depth of simulated sequencing 

We also used Mason to generate a series of datasets with 1% error, like those used in Table 3-1, 

but for 20×, 35×, 70×, 140× and 280× average coverage. We ran Lighter on each and measured 

final occupancies (fraction of bits set) for Bloom filters A and B. If our assumptions and scaling 

arguments are accurate, we expect the final occupancies of the Bloom filters to remain 

approximately constant for relatively high levels of coverage. As seen in Table 3-2, this is indeed 

the case. 
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Cardinality of Bloom filter B 

We also measured the number of correct k-mers added to table B. We used the Mason dataset 

with 70× coverage and 1% error rate. The E. coli genome has 4,564,614 distinct k-mers, and 

4,564,569 (99.999%) of them are in table B. 

Effect of ploidy on Bloom filter B   

We conducted an experiment like that in the previous section but with Mason configured to 

simulate reads from a diploid version of the E. coli genome. Specifically, we introduced 

heterozygous SNPs at 0.1% of the positions in the reference genome. Mason then sampled 

equal numbers of reads from both genomes, making a dataset with 70× average coverage in 

total. Of the 214,567 simulated k-mers that overlapped a position with a heterozygous SNP, 

table B held 214,545 (99.990%) of them at the end of the run. Thus, Lighter retained in table B 

almost the same fraction of the k-mers overlapping heterozygous positions (99.990%) as of the 

k-mers overall (99.999%). 

Musket and BLESS both infer a threshold for the multiplicity of solid k-mers. In this experiment, 

Musket inferred a threshold of 10 and BLESS inferred a threshold of 9. All three tools use a k-

mer size of 23. By counting the multiplicity of the k-mers overlapping heterozygous positions, 

we conclude that Musket would classify 214,458 (99.949%) as solid and BLESS would classify 

214,557 (99.995%) as solid. So in the diploid case, it seems Lighter’s ability to identify correct k-

mers overlapping heterozygous SNPs is comparable to that of error correctors that are based 

on counting. 
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Diploidy is one example of a phenomenon that tends to drive the count distribution for some 

correct k-mers (those overlapping heterozygous variants) closer to the count distribution for 

incorrect k-mers. In the Discussion section we elaborate on other such phenomena, such as 

copy number, sequencing bias and non-uniform coverage. 

Effect of varying α 

 In a series of experiments, we measured how different settings for the subsampling fraction α 

affected Lighter’s accuracy as well as the occupancies of Bloom filters A and B. We still use the 

datasets simulated by Mason with 35×, 70× and 140× coverage. 

As shown in Figure 3-3 and Figure 3-4, only a fraction of the correct k-mers are added to A 

when α is very small, causing many correct read positions to fail the threshold test. Lighter 

attempts to ‘correct’ these error-free positions, decreasing accuracy. This also has the effect of 

reducing the number of consecutive stretches of k trusted positions in the reads, leading to a 

smaller fraction of correct k-mers added to B, and ultimately to lower accuracy. When α grows 

too large, the yx thresholds grow to be greater than k, causing all positions to fail the threshold 

test, as seen in the right-hand side of Figure 3-4. This also leads to a dramatic drop in accuracy 

as seen in Figure 3-3. Between the two extremes, we find a fairly broad range of values for α 

(from about 0.15 to 0.3) that yield high accuracy when the error rate is 1% or 3%. The range is 

wider when the error rate is lower. 
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Figure 3-3 The effect of α on the accuracy using the simulated 35× dataset 
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Figure 3-4 The effect of α on occupancy of Bloom filters A and B. The effect of α on occupancy of 
Bloom filters A and B using simulated 35×, 70× and 140× datasets. The error rate is 1%. 

Effect of varying k   

A key parameter of Lighter is the k-mer length k. Smaller k yields a higher probability that a k-

mer affected by a sequencing error also appears elsewhere in the genome. For larger k, the 

fraction of k-mers that are correct decreases, which could lead to fewer correct k-mers in 

Bloom filter A. We measured how different settings for k affect accuracy using the simulated 

data with 35× coverage and both 1% and 3% error rates. Results are shown in Figure 3-5. 

Accuracy is high for k-mer lengths ranging from about 18 to 30 when the error rate is 1%. But 

the recall drops gradually when the error rate is 3%. 
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Figure 3-5 The effect of k -mer length k on accuracy. 

3.3.2 Real datasets 

Escherichia coli 

Next we benchmarked the same error correction tools using a real sequencing dataset, [EMBL-

SRA ERR022075]. This is a deep DNA sequencing dataset of the the K-12 strain of the E. coli 

genome. To obtain a level of coverage more reflective of other projects, we randomly 

subsampled the reads in the dataset to obtain roughly 75× coverage (approximately 3.5 million 

reads) of the E. coli K-12 reference genome. The reads are 100 × 102 bp paired-end reads. 

Because BLESS cannot handle paired-end reads where the ends have different lengths, we 

truncated the last two bases from the 102-bp end before running our experiments. We again 

ran BLESS with the -notrim option. 
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These data are not simulated, so we cannot measure accuracy directly. But we can measure it 

indirectly, as other studies have [64], by measuring read alignment statistics before and after 

error correction. We use Bowtie2 [74] v2.2.2 with default parameters to align the original reads 

and the corrected reads to the E. coli K-12 reference genome. For each error corrector, we 

tested different k-mer sizes (17, 19, 23, 27 and 31) and chose the size that yielded the greatest 

total number of matching aligned nucleotides. For Quake and BLESS, we use only the reads (and 

partial reads) that remained after trimming and discarding for this evaluation. Results are 

shown in Table 3-4. Lighter yields the greatest improvement in fraction of reads aligned, 

whereas Quake and BLESS yield the greatest improvement in fraction of aligned bases that 

match the reference, with Lighter very close behind. As before, Quake is hard to compare to the 

other tools because it trims and discards many reads. 

Table 3-4 Alignment statistics for the 75× Escherichia coli dataset  

  Read level Base level 

 k 
Mapped 

reads 
Increase (%) 

Matches/aligned 
base (%) 

Increase 
(%) 

Original – 3,464,137 – 99.038 – 

Quake 19 3,373,498 −2.62 99.659 0.63 

SOAPec 17 3,465,819 0.05 99.13 0.09 

Musket 17 3,467,875 0.11 99.601 0.57 

BLESS 19 3,468,677 0.13 99.666 0.63 

Lighter 19 3,478,658 0.42 99.639 0.61 

(k column shows k-mer size selected for each tool. First ‘Increase’ column shows percentage 
increase in reads aligned. Second ‘Increase’ column shows percentage increase in the fraction of 
aligned bases that match the reference genome. The original row is before error correction and 

the other rows are after error correction.) 

To assess accuracy further, we assembled the reads before and after error correction and 

measured relevant assembly statistics using Quast [75]. The corrected reads are those reported 

in Table 3-4. We used Velvet 1.2.10 [76] for assembly. Velvet is a De Bruijn graph-based 
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assembler designed for second-generation sequencing reads. A key parameter of Velvet is the 

De Bruijn graph’s k-mer length. For each tool we tested different k-mer sizes for Velvet (43, 47, 

49, 51, 53, 55, 57, 63 and 67) and chose the one that yielded the greatest NG50. We set the k-

mer sizes of the error correctors to match those selected in the alignment experiment of Table 

3-4. As before, we used only the reads (and partial reads) that remained after trimming and 

discarding for Quake and BLESS. For each assembly, we then evaluated the assembly’s quality 

using Quast, which was configured to discard contigs shorter than 100 bp before calculating 

statistics. Results are shown in Table 3-5. 

Table 3-5 De novo assembly statistics for the Escherichia coli dataset 

 N50 NG50 Edits/100 kbp Misassemblies 
Coverage 

(%) 

Original 94,879 94,879 3.41 0 97.496 

Quake 89,470 88,209 11.62 4 97.515 

SOAPec 98,111 94,879 3.49 1 97.473 

Musket 86,421 86,421 6.45 0 97.53 

BLESS 85,486 85,486 3.58 1 97.302 

Lighter 105,460 105,460 3.71 1 97.477 

 

N50 is the length such that the total length of the contigs no shorter than the N50 cover at least 

half the assembled genome. NG50 is similar, but with the requirement that contigs cover half 

the reference genome rather than half the assembled genome. Edits per 100 kbp is the number 

of mismatches or indels per 100 kbp when aligning the contigs to the reference genome. A 

misassembly is an instance where two adjacent stretches of bases in the assembly align either 

to two very distant or to two highly overlapping stretches of the reference genome. The Quast 

study defines these metrics in more detail [75]. 
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Assemblies produced from reads corrected with the four programs are very similar according to 

these measures, with Quake and Lighter yielding the longest contigs and the greatest genome 

coverage. Surprisingly, the post-correction assemblies have more differences at nucleotide level 

compared to the pre-correction assemblies, perhaps due to spurious corrections. 

GAGE human chromosome 14 

We also evaluated Lighter’s effect on alignment and assembly using a dataset from the GAGE 

project [77]. The dataset consists of real 101 × 101 bp paired-end reads covering human 

chromosome 14 to 35× average coverage (approximately 36.5 million reads). For each error 

corrector, we tested different k-mer sizes (19, 23, 27 and 31) and chose the size that yielded the 

greatest total number of matching aligned nucleotides. For the assembly experiment, we set 

the k-mer size for each error corrector to match that selected in the alignment experiment. Also 

for each assembly experiment, we tested different k-mer sizes for Velvet (47, 53, 57, 63 and 67) 

and chose the one that yielded the greatest NG50. 

The effect of error correction on Bowtie 2 alignment statistics are shown in Table 3-6. We used 

Bowtie 2 with default parameters to align the reads to an index of the human chromosome 14 

sequence of the hg19 build of the human genome. As before, Lighter yields the greatest 

improvement in fraction of reads aligned, whereas Quake and BLESS yield the greatest 

improvement in fraction of aligned bases that match the reference, with Lighter very close 

behind. 

Table 3-6 Alignment statistics for the GAGE chromosome 14 dataset 

  Read level Base level 
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 k 
Mapped 

reads 
Increase (%) 

Matches/aligned 
base (%) 

Increase 
(%) 

Original – 35,993,147 – 98.507 – 

Quake 19 32,547,091 −9.57 99.845 1.36 

SOAPec 19 36,116,405 0.34 98.768 0.26 

Musket 19 36,316,699 0.9 99.109 0.61 

BLESS 27 36,301,816 0.86 99.411 0.92 

Lighter 19 36,320,688 0.91 99.235 0.74 

 

We also tested the effect of error correction on de novo assembly of this dataset using Velvet 

for assembly and Quast to evaluate the quality of the assembly. For each tool we tested 

different k-mer sizes (19, 23, 27 and 31) and chose the one that yielded the greatest NG50. 

Results are shown in Table 3-7. Overall, Lighter’s accuracy on real data is comparable to other 

error correction tools, with Lighter and BLESS achieving the greatest N50, NG50 and coverage. 

Table 3-7 De novo assembly statistics for the GAGE chromosome 14 dataset 

  N50 NG50 Edits/100 kbp Misassemblies 
Coverage 

(%) 

Original 5,290 3,861 139.46 1263 78.778 

Quake 4,829 3,520 141.59 1201 78.358 

SOAPec 5,653 4,143 127.8 623 79.087 

Musket 5,587 4,105 131.17 559 79.175 

BLESS 5,898 4,345 128.4 581 79.279 

Lighter 5,827 4,280 127.69 618 79.287 

 

Caenorhabditis elegans 

Using the same procedure as in the previous section, we measured the effect of error 

correction on another large real dataset using the reads from accession [NCBI-SRA SRR065390]. 

Results are shown in Table 3-8 and Table 3-9. This run contains real 100 × 100 bp paired-end 

reads covering the C. elegans genome (WBcel235) to 66× average coverage (approximately 67.6 
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million reads). k-mer sizes for the error correctors and for Velvet were selected in the same way 

as for the chromosome 14 experiment. The alignment comparison shows BLESS achieving the 

greatest increase in fraction of reads aligned, and BLESS and Quake achieving the greatest 

fraction of aligned bases that match the reference, probably due to their trimming policy. 

Lighter does the best of the non-trimming tools in the alignment comparison. In the assembly 

comparison, Lighter and SOAPec achieve the greatest N50, NG50 and coverage. 

Table 3-8 Alignment statistics for the Caenorhabditis elegans dataset 

    Read level  Base level  

  k 
Mapped 

reads 
Increase (%) 

Matches/aligned 
base (%) 

Increase 
(%) 

Original – 63,017,855 – 99.048 – 

Quake 19 60,469,150 −4.04 99.834 0.79 

SOAPec 19 63,032,768 0.02 99.185 0.14 

Musket 23 63,060,601 0.07 99.42 0.38 

BLESS 31 64,150,807 1.8 99.744 0.7 

Lighter 23 63,081,655 0.1 99.469 0.43 

 

Table 3-9 De novo assembly statistics for the Caenorhabditis elegans dataset 

  N50 NG50 Edits/100 kbp Misassemblies 
Coverage 

(%) 

Original 17,330 17,317 27.66 441 94.873 

Quake 13,887 13,668 27.19 559 94.32 

SOAPec 19,369 19,457 25.71 449 95.308 

Musket 18,761 18,917 28.02 438 95.288 

BLESS 17,673 17,693 29.24 524 94.968 

Lighter 19,222 19,333 26.9 434 95.332 
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3.3.3 Speed, space usage, and scalability 

We compared Lighter’s peak memory usage, disk usage and running time with those of Quake, 

Musket and BLESS. These experiments were run on a computer running Red Hat Linux 4.1.2-52 

with 48 2.1-GHz AMD Opteron processors and 512 GB memory. The input datasets are the 

same simulated E. coli datasets with 1% error rate discussed previously, plus the GAGE human 

chromosome 14 dataset and C. elegans dataset. 

The space usage is shown in Table 3-10. BLESS and Lighter achieve constant memory footprint 

across sequencing depths. While Musket uses less memory than Quake, it uses more than 

either BLESS or Lighter. BLESS achieves constant memory footprint across sequencing depths, 

but consumes more disk space for datasets with deeper sequencing. Note that BLESS can be 

configured to trade off between peak memory footprint and the number of temporary files it 

creates. Lighter’s algorithm uses no disk space. Lighter’s only sizable data structures are the two 

Bloom filters, which reside in memory. 

Table 3-10 Memory usage (peak resident memory) and disk usage of error correction tools  

  35×  70×  140×  chr14  
Caenorhabditi

s elegans  

  Mem Disk Mem Disk Mem Disk Mem Disk Mem Disk 

Quake 
2.8 
GB 

3.3 
GB 

7.1 
GB 

6.0 
GB 

14 GB 12 GB 48 GB 57 GB 86 GB 99 GB 

Musket 
119 
MB 

0 
165 
MB 

0 
225 
MB 

0 
1.4 
GB 

0 
2.5 
GB 

0 

BLESS 11 MB 
918 
MB 

11 MB 
1.8 
GB 

13 MB 
3.5 
GB 

138 
MB 

15 GB 
175 
MB 

36 GB 

Lighter 35 MB 0 35 MB 0 35 MB 0 
514 
MB 

0 
514 
MB 

0 

(Mem: memory) 
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To assess scalability, we also compared running times for Quake, Musket and Lighter using 

different numbers of threads. For these experiments we used the simulated E. coli dataset with 

70× coverage and 1% error. Results are shown in Figure 3-6. Note that Musket requires at least 

two threads due to its master–slave design. BLESS can only be run with one thread and its 

running time is 1,812 s, which is slower than Quake. 

 

Figure 3-6 Error correctors' running times. The running times for Quake, Musket and Lighter on 
70× simulated dataset with increasing number of threads. 

3.4 Conclusions 

At Lighter’s core is a method for obtaining a set of correct k-mers from a large collection of 

sequencing reads. Unlike previous methods, Lighter does this without counting k-mers. By 

setting its parameters appropriately, its memory usage and accuracy can be held almost 
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constant with respect to depth of sequencing. It is also quite fast and memory-efficient, and 

requires no temporary disk space. 

Though we demonstrate Lighter in the context of sequencing error correction, Lighter’s 

counting-free approach could be applied in other situations where a collection of solid k-mers is 

desired. For example, one tool for scaling metagenome sequence assembly uses a Bloom filter 

populated with solid k-mers as a memory-efficient, probabilistic representation of a De Bruijn 

graph [67]. Other tools use counting Bloom filters [78, 79] or the related CountMin sketch [80] 

to represent De Bruijn graphs for compression [68] or digital normalization and related tasks 

[81]. We expect ideas from Lighter could be useful in reducing the memory footprint of these 

and other tools. 

An important question is how Lighter’s performance can be improved for datasets where 

coverage is significantly non-uniform, and where solid k-mers can therefore have widely varying 

abundance. In practice, datasets have non-uniform coverage because of ploidy, repeats and 

sequencing bias. Also, assays such as exome and RNA sequencing intentionally sample non-

uniformly from the genome. Even in standard whole-genome DNA sequencing of a diploid 

individual, k-mers overlapping heterozygous variants will be about half as abundant as k-mers 

overlapping only homozygous variants. Lighter’s ability to classify the heterozygous k-mers 

deteriorates as a result, as shown in the section Effect of ploidy on Bloom filter B above. 

Hammer [59] relaxes the uniformity-of-coverage assumption and favors corrections that 

increase the multiplicity of a k-mer, without using a threshold to separate solid from non-solid 

k-mers. A question for future work is whether something similar can be accomplished in 
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Lighter’s non-counting regime, or whether some counting (e.g. with a counting Bloom filter [78, 

79] or CountMin sketch [80]) is necessary. 

A related issue is systematically biased sequencing errors, i.e. errors that correlate with the 

sequence context. One study demonstrates this bias in data from the Illumina GA II sequencer 

[82]. This bias boosts the multiplicity of some incorrect k-mers, causing problems for error 

correction tools. For Lighter, increased multiplicity of incorrect k-mers causes them to appear 

more often (and spuriously) in Bloom filters A and/or B, ultimately decreasing accuracy. It has 

also been shown that these errors tend to have low base quality and tend to occur only on one 

strand or the other [82]. Lighter’s policy of using a fifth-percentile threshold to classify low-

quality positions as untrusted will help in some cases. However, because Lighter canonicalizes 

k-mers (as do many other error correctors), it loses information about whether an error tends 

to occur on one strand or the other. 

Lighter has three parameters the user must specify: the k-mer length k, the genome length G 

and the subsampling fraction α. While the performance of Lighter is not overly sensitive to 

these parameters (see Figure 3-3 and Figure 3-5), it is not desirable to leave these settings to 

the user. In the future, we plan to extend Lighter to estimate G, along with appropriate values 

for k and α, from the input reads. This could be accomplished with methods proposed in the 

KmerGenie [83] and KmerStream [71] studies. 

Work on this project was supported in part by NSF grant ABI-1159078 to L.F. and IIS-1349906 

and Sloan Research Fellowship to B.L.. Lighter is free open-source software released under the 
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GNU GPL license, and has been compiled and tested on Linux, Mac OS X and Windows 

computers. The software and its source are available from https://github.com/mourisl/Lighter. 

  

https://github.com/mourisl/Lighter
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Chapter 4  

Rcorrector: efficient and accurate error 

correction for Illumina RNA-seq reads 

4.1 Introduction 

Next-generation sequencing of cellular RNA (RNA-seq) has become the foundation of virtually 

every transcriptomic analysis. The large number of reads generated from a single sample allow 

researchers to study the genes being expressed and estimate their expression levels, and to 

discover alternative splicing and other sequence variations. However, biases and errors 

introduced at various stages during the experiment, in particular sequencing errors, can have a 

significant impact on bioinformatics analyses. 

Systematic error correction of whole-genome sequencing (WGS) reads was proven to increase 

the quality of alignment and assembly (Chapter 3), two critical steps in analyzing next-

generation sequencing data. There are currently several error correction methods for WGS 

reads, classified into three categories [84]. K-spectrum based methods, which are the most 

popular of the three, classify a k-mer as trusted or untrusted depending on whether the 

number of occurrences in the input reads exceeds a given threshold. Then, for each read, low-

frequency (untrusted) k-mers are converted into high-frequency (trusted) ones. Candidate k-

mers are stored in a data structure such as a Hamming graph, which connects k-mers within a 
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fixed distance, or a Bloom filter. Methods in this category include Quake [60], Hammer [59], 

Musket [63], Bless [64], BFC [85], and Lighter [86]. Suffix tree and suffix array based methods 

build a data structure from the input reads, and replace a substring in a read if its number of 

occurrences falls below that expected given a probabilistic model. These methods, which 

include Shrec [54], Hybrid-Shrec [87] and HiTEC [55], can handle multiple k-mer sizes. Lastly, 

multiple sequence alignment (MSA) based methods such as Coral [56] and SEECER [88] cluster 

reads that share k-mers to create a local vicinity and a multiple alignment, and use the 

consensus sequence as a guide to correct the reads. 

RNA-seq sequence data differ from WGS data in several critical ways. First, while read coverage 

in WGS data is largely uniform across the genome, genes and transcripts in an RNA-seq 

experiment have different expression levels. Consequently, even low-frequency k-mers may be 

correct, belonging to a homolog or a splice isoform. Second, alternative splicing events can 

create multiple correct k-mers at the event boundaries, a phenomenon that occurs only at 

repeat regions for WGS reads. In both of these cases, the reads would be erroneously 

converted by a WGS correction method. Hence, error correctors for WGS reads are generally 

not well suited for RNA-seq sequences [89]. 

There is so far only one other tool designed specifically for RNA-seq error correction, called 

SEECER [88], based on the MSA approach. Given a read, SEECER attempts to determine its 

context (overlapping reads from the same transcript), characterized by a hidden Markov model, 

and to use this to identify and correct errors. One significant drawback, however, is the large 

amount of memory needed to index the reads. Herein we propose a novel k-spectrum based 

method, Rcorrector (RNA-seq error CORRECTOR), for RNA-seq data. Rcorrector uses a flexible k-
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mer count threshold, computing a different threshold for a k-mer within each read, to account 

for different transcript and gene expression levels. It also allows for multiple k-mer choices at 

any position in the read. Rcorrector only stores k-mers that appear more than once in the read 

set, which makes it scalable with large datasets. Accurate and efficient, Rcorrector is uniquely 

suited to datasets from species with large and complex genomes and transcriptomes, such as 

human, without requiring significant hardware resources. Rcorrector can also be applied to 

other types of data with non-uniform coverage such as single-cell sequencing, as we will show 

later. In the following sections we present the algorithm, first, followed by an evaluation of this 

and other methods on both simulated and real data. In particular, we illustrate and compare 

the impact of several error correctors for two popular bioinformatics applications, namely, 

alignment and assembly of reads. 

4.2 Methods 

4.2.1 De Bruijn graph 

In a first preprocessing stage, Rcorrector builds a De Bruijn graph of all k-mers that appear more 

than once in the input reads, together with their counts. To do so, Rcorrector uses Jellyfish2 

[61] to build a Bloom counter that detects k-mers occurring multiple times, and then stores 

these in a hash table. Intuitively, the graph encodes all transcripts (full or partial) that can be 

assembled from the input reads. At run time, for each read the algorithm finds the closest path 

in the graph, corresponding to its transcript of origin, which it then uses to correct the read. 
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4.2.2 Read error correction: the path search algorithm 

As with any k-spectrum method, Rcorrector distinguishes among solid and non-solid k-mers as 

the basis for its correction algorithm. A solid k-mer is one that passes a given count threshold 

and therefore can be trusted to be correct. Rcorrector uses a flexible threshold for solid k-mers, 

which is calculated for each k-mer within each read sequence. At run time, Rcorrector scans the 

read sequence and, at each position, decides whether the next k-mer and each of its 

alternatives are solid and therefore represent valid continuations of the path. The path with the 

smallest number of differences from the read sequence, representing the likely transcript of 

origin, is then used to correct k-mers in the original read. 

More formally, let u be a k-mer in read r and S(u,c) denote the successor k-mer for u when 

appending nucleotide c, with c∊{A,C,G,T}. For example, in Figure 4-1, S(AAGT,C)=AGTC, k=4. Let 

M(u) denote the multiplicity of k-mer u. To find a start node in the graph from which to search 

for a valid path, Rcorrector scans the read to identify a stretch of two or more consecutive solid 

k-mers, and marks these bases as solid. Starting from the longest stretch of solid bases, it 

proceeds in both directions, one base at a time as described below. By symmetry, we only 

illustrate the search in the 5’→3’ direction. 



114 
 

 

Figure 4-1 Path extension in Rcorrector 

(Four possible path continuations at the AGTC k-mer (k=4) in the De Bruijn graph for the r= 
AAGTCATAA read sequence. Numbers in the vertices represent k-mer counts. The first (top) path 
corresponds to the original read’s representation in the De Bruijn graph. The extension is pruned 

after the first step, AGTC →GTCA, as the count M(GTCA)=4 falls below the local cutoff 

(determined based on the maximum k-mer count (494) of the four possible successors of AGTC). 
The second path (yellow) has higher k-mer counts but it introduces four corrections, changing 
the read into AAGTCCGTC. The third path (blue) introduces only two corrections, to change the 

sequence into AAGTCGTTA, and is therefore chosen to correct the read. The fourth (bottom) 
path is pruned as the k-mer count for GTCT does not pass the threshold. Paths 2 and 3 are likely 

to indicate paralogs and/or splice variants of this gene.) 

Suppose u=riri+1…ri+k-1 is the k-mer starting at position i in read r. Rcorrector considers all 

possible successors S(u,c), c∊{A,C,G,T}, and their multiplicities M(S(u,c)) and determines which 

ones are solid based on a locally defined threshold (see below). Rcorrector tests all the possible 

nucleotides for position i+k and retains those that lead to solid k-mers, and then follows the 

paths in the De Bruijn graph from these k-mers. Multiple k-mer choices are considered in order 

to allow for splice variants. If the nucleotide in the current path is different from ri+k, then it is 

marked as a correction. When the number of corrections in the path exceeds an a priori defined 

threshold, Rcorrector terminates the current search path and starts a new one. In the end, 
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Rcorrector selects the path with the minimum number of changes and uses the path’s sequence 

to correct the read. To improve speed, Rcorrector does not attempt to correct solid positions, 

and gradually decreases the allowable number of corrections if the number of searched paths 

becomes large. 

4.2.3 A flexible local threshold for solid k-mers 

Let u be the k-mer starting at position i in the read, as before. Unlike with WGS reads, even if 

the multiplicity M(S(u,ri+k)) of its successor k-mer is very low, the base ri+k may still be correct, 

for instance sampled from a low-expression transcript. Therefore, an RNA-seq read error 

corrector cannot simply use a global k-mer count threshold. Rcorrector uses a locally defined 

threshold as follows. Let t= maxcM(S(u,c)), calculated over all possible successors of k-mer u 

encoded in the De Bruijn graph. Rcorrector defines the local threshold at run time, f(t,r), as the 

smaller of two values, a k-mer-level threshold and a read-level one: f(t,r)= min(g(t),h(r)). 

The k-mer-level threshold is defined as g(t) = αt + 6√αt, where α is a global variation 

coefficient. Specifically, α is determined for each dataset from a sample of 1 million high-count 

k-mers (multiplicities over 1,000), as follows. Given the four (or fewer) possible continuations of 

a k-mer, Rcorrector calculates a value equal to the ratio between the second highest and the 

highest multiplicities. Then, α is chosen as the smallest such value larger than 95 % of those in 

the sample. This criterion ensures that only k-mers that can be unambiguously distinguished 

from their alternates will be chosen; lowering this parameter value will reduce the stringency. 

Note that the k-mer-level threshold is the same for a k-mer in all read contexts, but differs by k-

mer. 
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To calculate the read-level threshold, Rcorrector orders all k-mers in the read by decreasing 

multiplicities. Let x be the multiplicity before the first sharp drop (> 2-fold) in this curve. 

Rcorrector then uses h(r)=g(x) as the read-level threshold. Refinements to this step to 

accommodate additional lower-count paths are described below. 

4.2.4 Refinements 

Clustered corrections 

Once a set of corrections has been determined for a read, Rcorrector scans the read and 

selectively refines those at nearby positions. The rationale for this step is that the likelihood of 

two or more clustered errors is very low under the assumed model of random sequencing 

errors, and the read may instead originate from a paralog. More specifically, let ui and uj be the 

k-mers ending at two positions i and j, with j−i<k, and M(ui) and M(uj) their multiplicities. To 

infer the source for the k-mer, Rcorrector uses the local read context and tests for the 

difference in the multiplicities of k-mers before correction. If the difference is significant, then it 

is a strong indication for a cluster of sequencing errors. Otherwise (i.e., if 0.5<M(ui)/M(uj)<2), 

then the k-mers are likely to have originated from the same path in the graph, corresponding to 

a low-expression paralog, and the read is deemed to be correct. Rcorrector will revert 

corrections at positions i and j and then iteratively revisit all corrections within distance k from 

those previously reverted. 

Unfixable reads 

Rcorrector builds multiple possible paths for a read and in the end chooses the path with the 

minimum number of base changes. If the number of changes over the entire read or within any 
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window of size k exceeds an a priori determined threshold, the read is deemed ‘unfixable’. 

There are two likely explanations for unfixable reads: i) the read is correct, and originates from 

a low-expression transcript for which there is a higher-expression homolog present in the 

sample; and ii) the read contains too many errors to be rescued. 

In the first case, Rcorrector never entered the true path in the graph during the extension, and 

hence the read was incorrectly converted to the high-expression homolog. To alleviate this 

problem, Rcorrector uses an iterative procedure to lower the read-level threshold h(r) and 

allow lower count k-mers in the path. 

Specifically, Rcorrector looks for the next sharp drop in the k-mer multiplicity plot to define a 

new and reduced h(r), until there is no such drop or the number of corrections is within the set 

limits. 

PolyA tail reads 

The presence of polyA tail sequences in the sample will lead to k-mers with mostly A or T bases. 

Because their multiplicities are derived from a mixture distribution from a large number of 

transcripts, these k-mers are ignored during the correction process. Rcorrector will 

consequently not attempt to correct such k-mers. 

Paired-end reads 

With paired-end reads, Rcorrector leverages the k-mer count information across the two reads 

to improve the correction accuracy. In particular, it chooses the smaller of the two read-level 

thresholds as the common threshold for the two reads. In doing so, it models the scenario 

where the fragment comes from a low-expression isoform of the gene, with one of the reads 
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specific to this isoform and the other shared among multiple, higher-expression isoforms. In 

this case, the lower of the two read-level thresholds better represents the originating 

transcript. 

4.3 Results 

We evaluate Rcorrector for its ability to correct Illumina sequencing reads, both simulated and 

real. We include in the evaluation four other error correctors: SEECER (v0.1.3), which is the only 

other tool specifically designed for RNA-seq reads, as well as at least one representative 

method for each of the three classes of WGS error correction methods. These include Musket 

(v1.1) and BFC (r181) for k-spectrum, Hybrid-Shrec (Hshrec) for suffix tree and suffix array, and 

Coral (v1.4) for MSA-based methods. Since many tools are sensitive to the k-mer size k, we test 

different k-mer sizes for each tool where applicable and report the result that produces the 

best performance. We assess the impact of all programs on two representative bioinformatics 

applications, read alignment and read assembly. Lastly, we show that Rcorrector can be 

successfully applied to other types of data exhibiting non-uniform read coverage, such as 

single-cell sequencing reads. 

4.3.1 Evaluation on simulated data 

In a first test, we evaluated all programs on a simulated dataset containing 100 million 100 bp 

long paired-end reads. Reads were generated with FluxSimulator [19] starting from the human 

GENCODE v.17 gene annotations. Errors were subsequently introduced with Mason [73]; error 

rates were extracted from alignments of same-length Illumina Human Body Map reads. As in 

Chapter 3, we evaluate the accuracy of error corrections by inspecting how each base was 
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corrected. Let true positives (TP) be the number of error bases that are converted into the 

correct nucleotide; false positives (FP) the number of error-free bases that are falsely corrected; 

and false negatives (FN) the number of error bases that are not converted or where the 

converted base is still an error. We use the standard measures of Recall=TP/(TP+FN), 

Precision=TP/(TP+FP), and F-score=2∗Recall∗Precision/(Recall+Precision) to evaluate all 

methods. For each tool we test different k-mer sizes and report the result with the best F-score. 

Accuracy values and performance measurements for the six error correctors are shown in Table 

4-1. All programs were run on a 256 GB RAM machine with a 48-core 2.1 GHz AMD 

Opteron(TM) processor, with 8 threads. Here and throughout the manuscript, all measures are 

expressed in percentages. The overall sensitivity is below 90 % for all methods due to the large 

number of polyA reads generated by FluxSimulator, which are left unchanged. Rcorrector has 

the best overall performance by all measures, with 88 % sensitivity and greater than 99 % 

precision, followed closely by SEECER. Rcorrector is also virtually tied with BFC for the fastest 

method, and is among the most memory efficient. In particular, at 5 GB RAM for analyzing 100 

million reads, it required 12 times less memory than SEECER and can easily fit in the memory of 

most desktop computers (Table 4-1). 

Table 4-1 Accuracy of the six error correction methods on the 100 million RNA-seq simulated 
reads 

Program k Recall Precision F-score 
Run time 

(min) 
Memory 

(GB) 

SEECER 31 87.13 96.93 91.77 177 61 

HShrec - 69.53 31.74 43.58 13641 30 

Coral 31 58.35 85.14 69.25 1391 81 

Musket 27 78.24 96.9 86.58 152 4 

BFC 27 80.45 97.91 88.32 111 6 
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Rcorrector 27 88.94 99.84 94.07 118 5 

 

The difficulty of error correction is expected to vary with the expression level of transcripts. 

Correcting reads from low-expression transcripts is particularly challenging because the error-

containing k-mers cannot be easily distinguished on the basis of frequency. To assess the 

performance of the various tools with transcript expression levels, we divide the simulated 

transcripts into low-, medium-, and high-expression groups based on their relative abundance A 

assigned by FluxSimulator (low, A<5e−7; medium, 5e−7<A<0.0001; and high, A>0.0001). The 

results of each tool on the three subclasses are shown in Table 4-2. Most tools perform well on 

the high-expression dataset, with the exception of Coral (low sensitivity) and Hshrec (low 

precision). However, the performance for all methods, especially sensitivity, drops for reads 

from low-expression transcripts. Rcorrector has the best or comparable sensitivity and 

precision for each of the three classes of transcripts. Both Rcorrector and SEECER are 

significantly more precise (>86 % in all categories) and more sensitive than methods designed 

for DNA reads, especially for reads from low-expression transcripts. 

Table 4-2 Accuracy of six error correction methods on 100 million simulated reads, by expression 
level of transcripts 

Program Recall Precision F-score 

Low expression  

SEECER 32.78 90.54 48.14 

HShrec 24.77 0.81 1.56 

Coral 31.88 64.6 42.69 

Musket 13.88 33.94 19.71 

BFC 25.18 58.37 35.19 

Rcorrector 39.4 86.62 54.16 

Medium expression  

SEECER 86.58 97.05 91.51 
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HShrec 70.57 19.57 30.64 

Coral 89.07 85.12 87.05 

Musket 72.02 92.16 80.86 

BFC 89.12 96.88 92.84 

Rcorrector 87.73 99.66 93.31 

High expression  

SEECER 87.39 96.9 91.9 

HShrec 69.22 41.67 52.02 

Coral 47.59 85.17 61.06 

Musket 80.5 98.53 88.61 

BFC 77.47 98.35 86.67 

Rcorrector 89.42 99.91 94.37 

(k-mer sizes used are those in Table 4-1) 

4.3.2 Real datasets 

For a more realistic assessment, we applied the tools to three real datasets that vary in their 

sequencing depth, read length, amount of sequence variation, and application area (Table 4-3). 

These include a plant RNA-seq dataset (peach embryos and cotyledons; SRA accession 

SRR531865), a lung cancer cell line (SRA accession SRR1062943), and a lymphoblastoid cell line 

sequenced as part of the GEUVADIS population variation project (SRA accession ERR188021). 

We use these three sets to evaluate the performance of programs on real data, as well as to 

illustrate the effects of error correction on the alignment and assembly of RNA-seq reads. 

Summary statistics for all datasets are shown in Table 4-3 and the histograms inferring the 

variation coefficients are shown in Figure 4-2. 

Table 4-3 Summary of datasets included in the evaluation 

Name Reads 
Read length 

(bp) 
Aligned 

Perfectly 
aligned 

Simulated 99,338,716 100 81,994,413 21,070,024 

Peach 38,883,238 75 24,775,386 5,617,514 

Lung 113,313,254 50 110,771,941 85,160,322 

Geuvadis 65,015,656 75 59,130,806 26,468,128 
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Figure 4-2 Variation coefficient (α) for the 4 data sets 

(For each data set (simulated, peach, Geuvadis and lung), we plot the histogram of variation 
ratios calculated as follows. The variation ratio for a k-mer is defined as the ratio between the 
second largest and the largest multiplicities among the four continuation k-mers. Hence, the 
lower the ratio, the more likely it is that the base change at the last position is a sequencing 

error. Conversely, values closer to 1 are indicative of polymorphisms, whereas middle values are 
potentially due to sequence differences between paralogs and/or isoforms of a gene. The 

histograms and distributions were estimated based on 1 million high-count k-mers. Then, we 
define α value corresponding to the 5th percentile of the distribution.) 

 

Unlike for simulated data, the ground truth for each base is unknown, making it impossible to 

judge performance directly and in an unbiased way. Instead, we use alignment rates to 

estimate the accuracy of error correction. We tested different k-mer sizes for each tool, and 
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chose the one maximizing the total number of matching bases. Statistics for alignments 

generated with Tophat2 (v2.0.13) [20] are summarized in Table 4-4. Lacking a true measure of 

sensitivity, the number and percentage of aligned reads as well as the per base match rate, as 

introduced in [3], are used to estimate sensitivity at read and base-level, respectively. The per 

base match rate is computed as the ratio of the total number of all the matching bases to the 

total number of aligned reads. Likewise, we introduce an alternate measure of specificity, 

defined as TN/(TN+FP), based on a high-confidence subset of the original reads (Table 4-4). We 

extracted those reads that have perfect alignments on the genome, i.e., that had exact 

sequence matches and the alignment of reads in a pair was concordant. These reads are 

expected to be predominantly error-free, therefore the proportion of reads that are not 

corrected represents a measure of specificity. As a caveat, these measures will falsely include 

those reads that are incorrectly converted to a paralog and aligned at the wrong location in the 

genome. 

Table 4-4 Tophat2 alignments of simulated and real reads 

  k Aligned 
Observed 

rate 
Base match 

rate 
Specificity 

 Simulated reads 

Original - 81,994,413 82.54 99.391 - 

SEECER 31 85,374,347 85.943 99.988 99.619 

Hshrec - 77,488,558 78.004 99.888 97.886 

Coral 31 84,662,510 85.226 99.745 99.494 

Musket 27 84,892,466 85.458 99.906 99.739 

BFC 27 84,844,168 85.409 99.918 99.889 

Rcorrector 27 85,033,277 85.599 99.986 99.97 

Peach  

Original - 24,775,386 63.717 99.198 - 

SEECER 27 29,056,747 74.728 99.879 99.199 

Hshrec - 24,496,308 63 99.265 96.027 
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Coral 23 28,974,141 74.516 99.316 99.027 

Musket 27 28,345,203 72.898 99.256 99.677 

BFC 31 26,553,943 68.291 99.278 99.777 

Rcorrector 23 30,563,388 78.603 99.833 99.628 

Lung  

Original - 110,771,941 97.757 99.717 - 

SEECER 23 111,261,651 98.189 99.855 98.239 

Hshrec - 102,121,932 90.124 99.781 89.786 

Coral 23 111,107,133 98.053 99.809 98.33 

Musket 27 110,907,828 97.877 99.781 98.698 

BFC 23 111,427,773 98.336 99.824 99.359 

Rcorrector 23 111,198,587 98.134 99.83 99.599 

Geuvadis  

Original - 59,130,806 90.949 99.477 - 

SEECER 23 61,514,024 94.614 99.837 98.53 

Hshrec 23 51,669,686 79.473 99.709 87.924 

Coral 23 61,399,007 94.437 99.717 98.049 

Musket 23 60,450,316 92.978 99.652 97.9 

BFC 23 61,870,897 95.163 99.775 98.79 

Rcorrector 23 61,641,866 94.811 99.814 99.227 

 

Error correction improves alignment rates by 1–11 %, depending on the dataset (Table 4-4). 

Note that alignment rates themselves differ with the amount of sequence variation and quality 

of the data. Rcorrector, SEECER, and BFC take turns in being the most sensitive across the four 

datasets. However, only Rcorrector and SEECER are consistently ranked among the top results 

in each category. Rcorrector has the highest or comparable specificity, greater than 99.2 %, in 

all cases. 

We further assess the impact of error correction on improving de novo assembly of RNA-seq 

reads. We used the transcript assembler Oases [90] to assemble the reads a priori corrected 

with each of the methods. To evaluate the quality of the assembled transcripts, we aligned 

them to the reference genome with the spliced alignment program ESTmapper/sim4db [91], 
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retaining only the best match for each transcript. We use conventional methods and measures 

to evaluate the performance in reconstructing full-length transcripts [11]. Specifically, we 

define a match between a reference annotation transcript and the spliced alignment of an 

assembled transcript if and only if they have identical intron chains, whereas their endpoints 

may differ. We used the GENCODE v.17 annotations and the peach gene annotations (v1.1) 

obtained from the Genome Database for Rosaceae as the gold reference for the real datasets, 

respectively, and the subset of GENCODE transcripts sampled by FluxSimulator for the 

simulated data. The results, shown in Table 4-5, again indicate that SEECER, Rcorrector, and BFC 

have the most impact on improving the accuracy and quality of the assembled transcripts, and 

show comparable performance. Of note, these measures only capture full transcripts, whereas 

many of the transcripts in the sample will not have enough reads to be assembled fully. 

Table 4-5 Oases assembly of simulated and real reads 

Program Simulated  Peach  Lung  Geuvadis  

  Recall Precision Recall Precision Recall Precision Recall Precision 

Original 30.575 48.862 28.879 16.41 4.957 10.475 5.997 16.749 

SEECER 36.698 52.181 29.752 16.116 4.944 10.174 6.162 16.639 

Hshrec 23.334 47.417 26.132 13.85 3.608 11.459 4.266 19.101 

Coral 35.039 51.942 29.784 15.881 4.934 10.174 6.17 16.372 

Musket 33.845 47.769 28.76 15.991 4.92 10.577 5.846 16.901 

BFC 34.789 50.579 29.633 16.211 5.018 10.498 6.166 16.509 

Rcorrector 36.763 52.144 29.355 15.951 5.012 10.478 6.222 16.375 

 

Figure 4-3 illustrates the spliced alignments of a 13 exon transcript at the MTMR11 

(myotubularin related protein) gene locus (chr1:149,900,543-149,908,791) assembled with 

Oases from the simulated reads before and after correction. All methods missed the first intron, 

which was supported by six error-containing reads, but produced partial reconstructions of the 
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transcript, consisting of multiple contigs. While all error correctors improved upon the original 

reads, Rcorrector produced the most complete and compact assembly, with only three contigs, 

including one containing the full reconstruction of exons 1–12. 

 

Figure 4-3 Transcripts assembled from the original and error-corrected reads at the MTMR11 
gene locus 

(Rcorrector (bottom panel) improves upon the original reads and leads to the most complete 
reconstruction of the transcript) 

4.3.3 Single-cell sequencing 

While Rcorrector was designed to correct RNA-seq reads, the method is also applicable to a 

wider range of problems where read coverage is non-uniform. 

Single-cell sequencing has recently emerged as a powerful technique to survey the content and 

variation within an individual cell. However, PCR amplification of the input DNA introduces 

biases in read coverage across the genome. We compared Rcorrector with SEECER and the 

error correction module built into the assembly package SPAdes (3.1.0) [92]. The latter is based 

on the error corrector BayesHammer [93], which accounts for variable depth coverage. We 

applied all three methods to correct 29,124,078 E. coli K-12 MG1655 Illumina reads [92], then 

aligned the corrected reads to the E. coli K-12 genome with Bowtie2 [74] and assembled them 
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with SPAdes. We evaluated the alignment outcome as described earlier and separately used the 

package QUAST [75] to assess the quality of the resulting genome assemblies. 

As seen in Table 4-6, Rcorrector results in the largest number of aligned reads, and is also the 

most specific among the methods. Surprisingly, the built-in SPAdes error corrector shows very 

low specificity (41.5 %), primarily arising from BayesHammer’s trimming of end sequences for 

some reads. In contrast, SEECER has very high specificity but relatively low sensitivity, as the 

number of mapped reads was actually reduced after correction. Rcorrector shows both the 

highest sensitivity and the highest precision, and is therefore the best choice for this dataset. 

Table 4-6 Bowtie2 alignment of single-cell sequencing reads 

  k Aligned Rate 
Base match 

rate 
Specificity 

Original - 27,002,682 92.716 98.863 - 

SPAdes - 27,104,190 93.065 99.675 41.482 

SEECER 27 26,937,652 92.493 99.507 99.553 

Rcorrector 19 27,227,855 93.489 99.711 99.998 

 

For assembly, both Rcorrector and SEECER lead to longer contigs and better genome coverage 

compared to the built-in corrector in SPAdes, while Rcorrector additionally produces the 

smallest number of misassemblies (Table 4-7). To conclude, Rcorrector can be effectively 

applied to correct single-cell DNA sequencing reads. 

Table 4-7 SPAdes assembly of single-cell sequencing reads 

  NG50 Misassembly 
Edits/100 

kbps 
Genome 
coverage 

Original 105,623 1 6.57 95.054 

SPAdes 109,876 2 7.52 94.903 

SEECER 110,103 2 7.26 95.059 
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Rcorrector 110,103 1 10.02 95.094 

(NG50 is the minimum contig length such that the total number of bases in contigs this size or 
longer represents more than half of the length of the reference genome) 

4.4 Conclusions 

Rcorrector is the first k-spectrum based method designed specifically for correcting RNA-seq 

reads, and addresses several limitations in existing methods. It implements a flexible k-mer 

count threshold, to account for different gene and transcript expression levels, and 

simultaneously explores multiple correction paths for a read, to accommodate isoforms of a 

gene. In comparisons with similar tools, Rcorrector showed the highest or near-highest 

accuracy on all datasets, which varied in their amount of sequencing errors as well as 

polymorphisms. Also, with a small 5 GB memory footprint for a 100 million read dataset, it 

required an order of magnitude less memory than SEECER, the only other tool designed 

specifically for RNA-seq reads. Lastly, Rcorrector was the fastest of all methods tested, taking 

less than two hours to correct the simulated dataset. Therefore, Rcorrector is an excellent 

choice for large-scale and affordable transcriptomic studies in both model and non-model 

organisms. 

Work on this project was supported in part by NSF grants ABI-1159078 and ABI-1356078 to L.F.. 

Rcorrector is available from https://github.com/mourisl/rcorrector. 
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Chapter 5   

Rascaf: Improving Genome Assembly with RNA 

Sequencing Data 

5.1 Introduction 

Recent years have seen a tremendous increase in the number and diversity of sequenced 

genomes [94]. More than 13,000 eukaryotes have been sequenced or are in the process of 

sequencing, and more are planned including hundreds of plants and animals. Most model 

organisms have been sequenced under the umbrella of large genome projects undertaken by 

broad international consortia with the aim to create high-quality reference sequences [95, 96, 

97, 98, 99, 100, 101]. In recent years, second-generation sequencing technologies have 

dramatically accelerated the pace of generating new genomes, as reduced sequencing costs 

along with increased access to sequencing have made it possible for groups and even individual 

investigators to sequence the genome of the species they study. Virtually all of these projects 

will produce draft versions of the genomes, in which the chromosomes are assembled into a 

relatively large number of contigs separated by gaps. Annotation software will then use the 

contigs, typically within groups of contigs with known order and gap sizes (scaffolds) or full 

chromosomes, as the substrate on which to identify genes. 
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During a typical genome assembly process, overlapping reads are first used to build contigs, 

then contigs are connected into larger scaffolds using order and orientation information from 

mate–pair reads. Mates are sequenced from the two ends of DNA fragments in a size-selected 

library, and their relative distance (insert size), order, and orientation on the originating DNA 

sequence can be estimated with relatively high accuracy. Repetitive regions in the genome pose 

a significant challenge to assembly algorithms. To be able to reconstruct these sequences, 

insert sizes need to exceed the length of the repeat to allow anchoring the assembly onto the 

nonrepetitive flanking regions. Therefore, a typical genome assembly project will require 

multiple insert-size libraries, spanning from 500 bp to 8 to 10 kb. There is a rich body of work in 

developing scaffolding algorithms based on mate pairs from whole-genome sequencing dating 

back to the assembly of the first sequenced eukaryotic genomes [102]. However, building the 

critical long-insert libraries is expensive and labor intensive. 

Once a draft genome sequence is produced, the first and most crucial step in its analysis is 

finding the genes, which then provide the basis for downstream studies of gene function and 

variation. Deep RNA-seq has become the primary means to characterize the genes of a species, 

and there are already a number of high-performance tools for RNA-seq read analysis, including 

alignment and transcript assembly tools [103, 12, 104, 2, 14, 20, 1]. It also provides critical 

information about species-specific genes and alternatively spliced variants, including novel 

protein-coding genes and noncoding RNAs. Errors and gaps in the assembly can however 

interfere with correct gene and transcript annotation by fragmenting the genes, deleting or 

scrambling the exons, and by locally altering the gene’s sequence [105]. Therefore, to aid 
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investigators in their gene studies, every effort must be made to improve the quality of the 

assembly, particularly in the gene regions. 

Gene structures, in which introns may span thousands of bases, provide an effective way to 

increase the completeness and continuity of an assembly in silico. Several genome sequencing 

projects, starting with the human genome, have used gene information from independently 

generated expressed sequence tags and full-length messenger RNAs (mRNAs) to detect 

assembly errors or recruit additional contigs into the assembly [97, 106, 107, 108]. However, 

tools that could be systematically applied to any genome project and take advantage of the 

next-generation sequencing data being generated have been lacking. Traditional mate pair-

based scaffolding methods [109, 110, 111, 112, 113] rely on a uniform read coverage of the 

genome and a statistically well characterized insert-size distribution and cannot be directly 

applied to RNA-seq reads. Only two tools have been recently developed that take advantage of 

next-generation RNA sequencing: L_RNA_scaffolder [114] applies the gene-based approach 

using de novo transcript assemblies generated with tools such as Trinity [115], whereas AGOUTI 

[116] employs the RNA-seq read alignments directly, in the context of known gene annotations, 

to detect new connections. However, de novo assembly of RNA-seq sequences as employed by 

L_RNA_scaffolder is challenging and error prone as well as time consuming. Chimeric transcript 

reconstructions can lead to incorrect scaffolds, and low-expression genes may be only partially 

reconstructed or missed entirely and therefore have limited impact. 

We developed Rascaf (RnA-SCAFfolder), a novel tool that uses the alignments of RNA-seq reads 

to identify new contig connections in a fragmented genome and improves the completeness 

and accuracy of the genes and genome simultaneously. Rascaf uses an exon block graph to 
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simultaneously represent a gene and the underlying contig relationships and to determine a 

heaviest contig path. Suggested contig connections can then be optionally validated by 

database searches for cross-species complementary DNA (cDNA) and protein evidence. When 

evaluated on both simulated and real sequence data, and against similar tools, Rascaf was both 

more accurate and highly efficient and therefore can be effectively used to increase the quality 

of new genome assemblies of plants and animals. More specifically: 

1. Rascaf simultaneously improves an assembly and its gene annotations, resulting in 

longer scaffolds, more accurate scaffolds, and more complete gene models. 

2. It has higher or comparable accuracy to the best of the other tools for each application 

tested. 

3. Rascaf is highly precise with only a handful of misassemblies introduced, has a small 

memory footprint, and runs in minutes on a regular workstation for a typical RNA-seq 

data set and genome. 

4. Rascaf identified 1000 to 10,000 new contig connections in the draft genomes of several 

Fragaria species and of the Rosaceae pear (Pyrus communis L.), thus increasing their 

utility. 

5. The program can be used with a single or with multiple RNA-seq data sets 

simultaneously. 

6. An optional in silico validation step searches the predicted contig joins against external 

cDNA or protein databases for independent evidence. 
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5.2 Methods 

Rascaf builds an improved assembly in two stages. Stage 1, implemented in the program rascaf, 

determines a set of possible contig connections based on continuity information from 

alignments of paired-end RNA-seq reads. Once a set of possible connections is determined, 

Stage 2, implemented in the program rascaf-join, uses the connections to scaffold the new 

assembly and to generate the new genome sequence. The general framework is illustrated in 

Figure 5-1, and the data structures and methods are described below. 
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Figure 5-1 Overall framework of the Rascaf algorithm 

(Step 1: Prepare the raw assembly by splitting the scaffold-level assembly at runs of Ns. Paired-
end RNA sequencing (RNA-seq) reads (red) connect four contigs (blue boxes) in the raw genome 
assembly. Step 2: Build the exon blocks by clustering read alignments along the genome. Step 3: 
Build the gene blocks by connecting exon blocks by introns extracted from spliced reads. Step 4: 
Build the gene block graph. Each gene block is represented by two nodes connected by a block 
edge (thick lines); ends of contig nodes linked by paired-end reads are then connected by mate 
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edges (thin lines). Continuous lines represent the selected block scaffolds along the heaviest 
path in the gene block graph, whereas dotted lines mark unselected edges in the graph. Step 5: 
Given a block scaffold determined above, find a set of candidate connections between contigs 

underlying the gene blocks. Steps 5 and 6: Build a contig graph by aggregating connections 
derived from multiple RNA-seq data sets. Each contig is represented by a pair of nodes 

connected by a contig edge (thick lines). Additionally, contigs adjacent in a scaffold in the raw 
assembly, or that were part of a contig connection detected in Step 5, are linked by a scaffold 

edge (thin lines). Step 7: Determine a set of cycle-free paths in the contig graph, using 
topological sorting, and use them to guide the construction of the new scaffolds.) 

5.2.1 Detecting contig connections 

Step 1 

The input to Rascaf is the draft genome in FASTA format and an alignment file of paired-end 

RNA-seq reads. If the assembled genome is in scaffolds, Rascaf first converts it to a contig-level 

(raw) assembly by splitting the sequences at runs of Ns. 

Steps 2 and 3 

The basic data structure employed by Rascaf is the exon block. An exon block denotes a 

maximal set of consecutive genomic coordinates covered by aligned RNA-seq reads 

corresponding to a block of overlapping exons. A gene block is an ordered set of exon blocks 

connected by spliced alignments corresponding to a portion of a gene located on the same 

contig. 

Step 4 

Rascaf builds a gene block graph as follows. Each gene block is represented by a pair of vertices 

(L, R) connected by an edge (block edge). When the two reads in a pair span different gene 

blocks, mate edges are added to connect the L endpoint of one gene block to the R endpoint of 

the other (Figure 5-2). This data structure is similar to the contig graph in [117]. One important 
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constraint on the gene block graph is that every path must alternate block and mate edges. 

Hence, setting the direction of one edge in a path will determine the directions of all remaining 

edges such that the concatenation of contig sequences along the path spells either the 

sequence of the genome or its reverse complement. 

 

Figure 5-2 Methods – finding contig connections (rascaf) 

(There are four types of possible connections between two contigs (L1,R1) and (L2,R2) as dictated 
by the paired-end reads, represented by the mate edges below (thick lines). (1) Both contigs are 

in the forward orientation (1,2). (2) Contig 2 needs to be reversed (1,-2). (3) Contigs 1 and 2 
must be swapped (2,1). (4) Contig 1 is reversed, and contigs 1 and 2 are swapped (2,-1). ) 

Each component of the gene block graph corresponds to a gene or a portion of a gene. Rascaf 

employs a greedy method to find the order of the gene blocks in each component, choosing the 

most supported mate edge and then reiterating the search to extend the path in both 

directions. The procedure is terminated when there is no possible extension, on encountering a 

previously visited node, or at a sudden significant drop in read support. The algorithm produces 

a path of gene blocks, or block scaffold. If there are any remaining edges where neither of the 

adjacent nodes was selected, the procedure is repeated to find additional block scaffolds. 

Sequencing and alignment errors may create false mate edges, leading to chimeric scaffolds. 

Rascaf uses alignment, read pair, and genomic context information to filter likely false positives. 

More specifically, Rascaf removes a mate edge if (i) it is supported by fewer than K reads (by 
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default, K = 2); (ii) there are multiple possible connections with similar support, indicating an 

ambiguous and potentially error prone connection; (iii) the concatenated sequence of exon 

blocks does not fit the mean and standard deviation of the insert size distribution for the RNA-

seq reads; and (iv) the gene blocks appear to be duplicated in the assembly based on the 

overlap between their k-mer profiles, potentially indicating a paralogous connection. 

Step 5 

Once a set of block scaffolds is constructed, they are used as guides to find contig connections. 

Rascaf iteratively parses each block scaffold, starting from the one with the strongest read 

support, to create a list of contig connections and to decide the order and orientation of each 

contig within the scaffold. Connections that are incompatible with previously ordered contigs 

are ignored. In the end the procedure, implemented in the program rascaf, will determine a set 

of contig connections with known relative order and orientation. 

5.2.2 Scaffolding guided by connections 

Step 6 

Once a set of contig connections is determined, rascaf-join incorporates them into a scaffolding 

algorithm to create a new assembled sequence. One ancillary benefit of separating the 

scaffolding from the detection of contig connections is that it allows combining multiple RNA-

seq data sets, leveraging the variability in gene expression levels across the samples. For 

instance, the locus of a low-expression gene in one sample may be difficult to scaffold because 

connections here are hard to distinguish from noise, but this drawback can be mitigated when 

the gene is more richly covered in another data set. 
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Rascaf-join builds a contig graph that is similar in concept to the gene block graph described 

earlier. More specifically, each contig is represented by two vertices (Lc, Rc) connected by a 

contig edge. Two contigs are connected by a scaffold edge if they are adjacent in a scaffold in 

the raw assembly or are part of a contig connection identified by Rascaf. With multiple RNA-seq 

data sets, scaffold edges from different data sets could potentially introduce cycles. Rascaf-join 

detects any cycles in the contig graph using a depth-first search algorithm and removes all 

scaffold edges previously identified by rascaf that are adjacent to the contigs in the cycle to 

create an acyclic graph. It then attempts to improve each scaffold in the original assembly, 

starting from the longest, as described below. 

Given a scaffold S in the raw original assembly, rascaf-join attempts to fill gaps in S and to 

extend it from both ends. Suppose S contains n contigs, with the associated contig nodes L1, 

R1,…,Ln and Rn. Rascaf-join first finds the biconnected component in the contig graph containing 

all contigs from S (the biconnected component is a subgraph such that every node can be 

reached both from the path starting with L1→R1 and from the path starting with Rn→Ln). 

Intuitively, a biconnected component contains the contigs from S as well as those contigs on a 

path that branches off and then returns to S. It then converts the component into a directed 

acyclic graph by fixing the path starting with L1→R1. Further, it uses a topological sort algorithm 

[118] to order the contigs in the connected component and to produce a longer scaffold S′ 

(Figure 5-3). In the end, Stage 2 generates a new assembly by recruiting additional contigs 

informed by the identified contig connections while adjusting the existing scaffolds as necessary 

to create more complete gene models. 
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While RNA-seq data present many advantages for genome scaffolding, it also has its drawbacks. 

For instance, the paired reads’ inner distance along the genome, which may include introns of 

unknown sizes, cannot be characterized statistically, which can introduce ambiguity in the 

contig order and may lead to local rearrangements within a scaffold. This is especially 

problematic for genomes with very long introns and short contigs, in particular, with contigs 

located entirely within introns of the genes. Therefore, while using RNA-seq or gene structure 

information provides a highly practical solution to filling in the scaffold structure and building 

more complete gene models, further validation using, for instance, optical or physical maps and 

other data types may be necessary to resolve the local contig order at high resolution. 
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Figure 5-3 Methods – scaffolding (rascaf-join) 

(This example illustrates scaffolding starting from a raw assembly with 5 contigs (blue boxes): 
contigs 1-3 are connected into scaffold S, and contigs 4 and 5 are singletons. In stage 1, rascaf 

detects connections between contigs (1,4), (4,2) and (3,-5). The resulting contig graph has 5 
(contig) nodes and 10 edges: 5 contig edges (thick lines), which connect the two nodes 

representing a contig, and 5 mate edges, representing either adjacency relationships in the 
original scaffold ((1,2) and (2,3)) or connections detected by rascaf based on RNA-seq paired-

end reads ((1,4), (4,2) and (3,-5)). Starting from scaffold S, rascaf-join then traverses the contig 
graph to determine a bi-connected component and then uses a topological sort algorithm to 

determine a component path (scaffold) containing contigs 1,4,2 and 3 that satisfies all 
precedence relationships. Note that contig 5 is not part of the bi-connected component, as L5 

and R5 can be reached from L1→R1 but not from R3→L3 in scaffold S. We call R3,L5,R5 a dangling 

path. To add dangling paths to the scaffold, rascaf-join traverses the component path starting 
from the last contig and moving backwards. In iteration i, it greedily chooses a maximal path 

starting with Li→Ri and trims it if it reaches a contig that has already been added to the 

scaffold. This path is then inserted in the component path (scaffold) following node Ri. Reverse 
dangling paths, which can be reached from L3→R3, are analyzed similarly.) 
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5.3 Results 

5.3.1 Performance evaluation on simulated control data 

To obtain an accurate evaluation of performance on control data, we applied each program 

(Rascaf v.1.0.1; L_RNA_scaffolder (v. June 2013) and AGOUTI v.0.3.0-22) to a simulated data 

set. We generated an artificial genome by extracting the sequences of human chromosomes 1 

and 12 and splitting them into contigs. For a more realistic model, we followed the contig size 

distribution of the Prunus persica v.1.0 genome from www.rosaceae.org [119]. In parallel, we 

used FluxSimulator [19] to generate 100 million 100-bp paired-end RNA-seq reads with average 

insert size 174 bp, respectively, using the GENCODE v.22 (www.gencode.org) gene annotations 

as reference. No chimeric reads were included. For Rascaf and AGOUTI, we mapped the ∼15 

million reads from chromosomes 1 and 12 to the contigs with a fast-spliced aligner, HISAT [1]. 

Additionally, Rascaf has been adapted to incorporate partial alignments generated with BWA-

mem [120], potentially obtained from spliced alignments spanning multiple contigs. For 

L_RNA_scaffolder, we first assembled the reads into transcripts with Trinity, and for AGOUTI we 

used as input annotation the gene models produced from the RNA-seq reads by Cufflinks [9]. 

To create a gold reference, we consider all pairs of ordered and oriented contigs in the 

assembly that are supported by read pairs. Let M be the size of this set and let N be the number 

of scaffold edges in the set of contig paths predicted by the program being evaluated. A contig 

pair (c1,c2) in the reference data set is said to be satisfied, or is a true positive (TP), if c1 and c2 

appear in the same order and orientation in a contig path (c1 and c2 need not be adjacent). 

Conversely, a scaffold edge in a contig path is said to match the reference, or is a strong true 
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positive (STP), if its two contig nodes are connected by a read pair in the gold reference in the 

same order and orientation. With these concepts in place, we define sensitivity Sn = TP/M, and 

precision Pr = STP/N. 

For this test case, Rascaf using both full and partial alignments had the best overall 

performance, at 0.763 sensitivity and precision 0.995, with L_RNA_scaffolder a very close 

second, at 0.741 sensitivity and precision 1.0 (Figure 5-4). This simple simulated example also 

illustrates one limitation when using RNA-seq reads directly without prior assembly, as 

implemented in Rascaf and AGOUTI, particularly for RNA-seq libraries with short insert sizes. 

Intuitively, a short insert size produces more read pairs sampled from the same exon and where 

one or both reads could span the boundary of the intron. Such cross-contig spliced alignments 

are missed by current alignment software. Indeed, both Rascaf’s and AGOUTI’s performance is 

improved with longer fragments (Table 5-1 Effects of library insert size on program 

performance, on the simulated dataTable 5-1), and their relative performance vis-à-vis the 

assembly-based L_RNA_scaffolder is fully recovered when incorporating partial (clipped) 

alignments produced with BWA-mem. 
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Figure 5-4 Performance evaluation of programs on simulated data 

Table 5-1 Effects of library insert size on program performance, on the simulated data 

Program 
m=174 bp m=225 bp m=275 bp 

Sn Pr Sn Pr Sn Pr 

Rascaf 0.463 1 0.596 1 0.656 1 

Rascaf+BWA-mem 0.763 0.995 0.774 0.997 0.74 0.993 

L_RNA_scaffolder 0.741 1 0.739 0.995 0.725 0.984 

AGOUTI 0.352 0.974 0.498 0.989 0.573 0.987 

 

5.3.2 In silico validation of Pyrus communis genome improvement 

To assess the usefulness and accuracy of programs on a real assembly project, we applied them 

to improve the completeness and contiguity of the P. communis (‘Bartlett’) genome [121]. The 

pear genome has recently been sequenced using second-generation (Roche 454) single-end 

reads from 2- and 7-kb insert libraries, resulting in a 577 Mb assembly in 142,083 scaffolds 
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(184,520 contigs). Since no gold reference is available in this case, we performed an in silico 

validation by searching the concatenated gene sequences spanning each contig connection 

against the RefSeq gene database (BLASTn, dc-megablast option [122]. Note that since AGOUTI 

does not report the underlying gene structure, we could not include it in the evaluation. A 

match to a database homolog that spans the connection then greatly increases the confidence 

of the prediction. We queried each connection sequence and inspected the BLAST alignments 

for evidence of consistent coverage spanning the junction point. We deemed an alignment to 

be positive, and therefore provide proof for the connection, if all gene block sequences were 

contained in the alignment in the same order or orientation. We then distinguish between 

uncertain and potentially novel connections, in which alignments are compatible in order and 

orientation but cover only a subset of the gene blocks, and likely erroneous connections, which 

either show rearrangements between the gene block segments or portions of the segments 

(rearranged) or in which portions of the query sequence match different sequences in the 

database (chimeric). Note that both chimeric and negative connections may in fact reflect 

errors in other species’ genomes or gene annotations rather than decision errors made by the 

tools. Lastly, since the programs may also report connections between the contigs from the 

same scaffold that are already known, we excluded any such connections from the 

performance measurements below. 

When run with the SRR1609135 RNA-seq data set, comprised of 24.2 million 101-bp paired-end 

reads sampled from pear leaves, Rascaf produced 1286 and L_RNA_scaffolder generated 707 

new putative connections (Table 5-2). Of these, 1218 (94.7%) of Rascaf connections were 

classified as positive, and an additional 55 (4.3%) were either uncertain or with no homolog in 
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the database and could potentially represent connections from novel genes or extensions of 

annotated genes. For L_RNA_scaffolder, 474 (67%) were validated, and an additional 152 

(21.5%) were uncertain or unaligned. Only 13 (1.0%) Rascaf connections were chimeric or 

showed evidence of rearrangement compared with 81 (11.5%) for L_RNA_scaffolder. 

Therefore, Rascaf detected >2.5× as many positive (validated) connections than 

L_RNA_scaffolder and twice as many likely connections when the unaligned and uncertain 

cases were included, and reported four times fewer chimeric and rearranged (negative) cases. 

Hence, it was both more sensitive and more precise than L_RNA_scaffolder by a wide margin. 

Table 5-2 In silico validation of programs on the Pyrus communis genome by BLAST searches 
against the National Center for Biotechnology Information RefSeq mRNA database 

Program Validated Uncertain Unaligned Rearranged Chimeric 

Rascaf 1,218 42 13 4 9 

L_RNA_scaffolder 474 128 24 38 43 

 

An example of positively validated connection at the P. communis locus homologous to the 

Malus×domestica GDSL esterase/lipase At3g48460-like gene region (accession: 

XM_008395632.1) is shown in Figure 5-5A, and an uncertain connection at the P. 

×bretschneideri peptidyl-prolyl cis-trans isomerase CYP71-like gene homolog (accession: 

XR_668155.1) missing support for its terminal 256 bp is shown in Figure 5-5B. For some of the 

connections classified as negative, the rearrangement resided in an existing contig rather than 

being introduced by our procedure (e.g., P. ×bretschneideri cryptochrome-1-like gene homolog, 

accession: XM_009380716.1; Figure 5-5C). Lastly, Figure 5-5D illustrates a chimeric connection 

as a result of a duplication within the M. ×domestica UDP-glycosyltransferase 74F1-like gene 

homolog (accession: XM_008396047). Therefore, Rascaf achieved >95% precision and can be 
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highly trusted to improve the sequence of a draft genome assembly while keeping the number 

of errors to a minimum. 

 

Figure 5-5 Examples of in silico validation of contig connections detected in the Pyrus communis 
genome. 

((A) Positive (validated) connection: alignments with the database homolog cover all gene 
blocks (marked by red tick marks along the horizontal axis) and are consistent in order and 

orientation. (B) Uncertain connection: alignments with the homolog do not cover the 256 bp in 
the second gene block. (C) Negative (incorrect) connection: alignments with the database 

homolog cover all gene blocks but are inconsistent in order and orientation. Here, however, the 
translocation is due to a misassembly within a contig of the original assembly. (D) Chimeric 

connection: alignments from three database homologs collectively cover all gene blocks. The 
chimeric construct here likely is due to the repetitive nature of the gene.) 
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5.3.3 Assembly Improvement using Multiple RNA Sequencing Data Set 

We further assessed the programs’ performance on a high-quality genome system, which can 

serve as a more realistic control experiment. The 121-Mb genome of the model plant 

Arabidopsis thaliana Col-0 [95] has been reported and is one of the most extensively studied 

systems to date and therefore is the closest genome model yet to serving as a gold reference. 

As an additional goal, we sought to determine the feasibility and benefits of improving the 

assembly using multiple RNA-seq data sets simultaneously. 

We used whole-genome DNA sequence data (SRA accession: SRR1810274; 60 million 100-bp 

reads) and assembled it with SOAPdenovo2 [72]. After filtering small scaffolds shorter than 500 

bp, the draft genome assembly consisted of 37,948 contigs organized in 8082 scaffolds. We also 

downloaded 11 RNA-seq data sets sampled from plant leaves, root, and shoot apex 

(SRR2187604, SRR2080045, SRR971148, SRR1106559, SRR1187932, SRR1781769, SRR2060632, 

SRR2061405, SRR2895388, SRR2895627, and SRR2895761). For the multisample analysis, we 

added each data set to a growing pool to incrementally evaluate their impact on assembly 

improvement. Among the programs, only Rascaf can seamlessly integrate multiple RNA-seq 

data sets for analysis, potentially identifying and resolving internal conflicts. Nevertheless, we 

also ran L_RNA_scaffolder on the combined sets of transcripts assembled from the RNA-seq 

data. For AGOUTI, which was not designed to handle multiple data sets simultaneously, we ran 

the process iteratively (Table 5-3). 
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5.3.4 Comparative Evaluation of Programs 

We first analyzed the performance of all programs by measuring the improvement on the 

assembly for a single RNA-seq data set (SRR2187604) using the Quast [75] evaluation software 

to compare against the reference A. thaliana genome. To calculate its statistics, Quast analyzes 

all scaffolds 500 bp or longer by aligning them to the reference genome with nucmer [123]. 

Rascaf found the most new connections, reducing the number of scaffolds by ∼400, with or 

without incorporating partial BWA-mem alignments. All three tools improved the NGA50, a 

measure of assembly continuity, by 2 to 4 kb (5–9%) as shown in Table 5-3 (top) (NGA50 is 

defined as the minimum length of a scaffold alignment such that 50% of the aligned portion of 

the assembly to the reference genome is in scaffold alignments this size or longer). At the same 

time, Rascaf and AGOUTI introduced a comparable number of misassemblies, while 

L_RNA_scaffolder was more imprecise. More in-depth analyses of the putative misassemblies 

introduced by the programs revealed that, in fact, most of these involved contigs that were 

misassembled in the original SOAPdenovo2 assembly. In several other cases, the reported 

misassembly was due to the intercontig gap length (1 kb) default parameter setting in Quast, 

which was too short to accommodate gaps potentially introduced by introns. After correcting 

for measurement errors and errors propagated from problematic contigs within the original 

assembly, the number of effective misassemblies introduced by each program was significantly 

reduced to 10 to 114 (0.8–8.8% of the total). Using Rascaf with additional partial BWA-mem 

matches did not bring significant improvement, likely because of the longer insert size in the 

RNA-seq library (245 bp) coupled with shorter exon sizes in A. thaliana. Overall, Rascaf 
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demonstrated better performance than the other tools, and both read alignment-based tools 

were considerably more precise than the transcript-based L_RNA_scaffolder. 

Table 5-3 Evaluation of Arabidopsis thaliana assemblies for single RNA sequencing (RNA-seq) 
data (top) and with 0, 1, …, 11 RNA-seq data sets (bottom), using Quast 

Programs 
Raw 

assembly 
Rascaf 

Rascaf+BWA
-mem 

L_RNA_ 
scaffolde

r 

AGOUT
I 

Single RNA-seq set (SRR2187604) 

Scaffolds 8082 7686 7674 7759 7771 

NGA50 42,479 46,331 46,828 44,441 45,667 

Misassemblies 1153 1180 1188 1296 1177 

Problematic scaffolds 1412 1434 1434 1536 1433 

Effective misassemblies na 10 14 114 10 

Rascaf (multiple RNA-seq sets) 

Data sets 0 (raw) 1 2 6 11 

Scaffolds 8082 7686 7626 7283 7222 

NGA50 42,479 46,331 46,898 49,673 50,571 

Misassemblies 1153 1180 1190 1281 1302 

Problematic scaffolds 1412 1434 1437 1473 1478 

Effective misassemblies na 10 14 66 77 

AGOUTI (iterative) 

Data sets 0 (raw) 1 2 6 11 

Scaffolds 8,082 7,771 7,679 7,174 7,109 

NGA50 42,479 45,667 47,021 50,027 51,316 

Misassemblies 1,153 1,177 1,209 1,401 1,417 

Problematic scaffolds 1,412 1,433 1,439 1,450 1,454 

Effective misassemblies - 10 22 81 84 

L_RNA_scaffolder (batch) 

Scaffolds 8,082 7,761 7,502 7,154 6,961 

NGA50 42,479 44,399 45,491 46,328 46,627 

Misassemblies 1,153 1,296 1,459 1,731 1,896 

Problematic scaffolds 1,412 1,536 1,618 1,772 1,870 

Effective misassemblies - 114 216 416 566 
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5.3.5 Performance Improvement with Multiple RNA Sequencing Data Set 

In a second experiment, we assessed the impact of using multiple RNA-seq data sets on the 

completeness and accuracy of the resulting genome and its gene annotations. Since AGOUTI 

does not provide support for simultaneous analysis using multiple RNA-seq data sets, we ran 

the program iteratively, generating a new temporary assembly and improving it with the 

cumulative data set at the next step. As before, we used Quast to assess the impact on the 

assembled genome sequence when using 0 (raw assembly), 1, 2, 6, and 11 RNA-seq data sets. 

As shown in Table 5-3 (bottom) for Rascaf, the number of scaffolds and NGA50 values gradually 

improve as more data sets are added (by 5–10 and 9–19%, respectively). The number of 

effective misassemblies remains small (10–77), however, representing a growing fraction (0.8–

5.9%) of the total assembly errors. AGOUTI was more aggressive in identifying new connections 

and produced slightly longer scaffolds at the expense of introducing more errors (Table 5-3), 

whereas L_RNA_scaffolder led to shorter scaffolds and a significantly larger (seven- to eight-

fold) number of errors. We attribute Rascaf’s high precision to its ability to identify and correct 

inconsistencies that arise from combining multiple RNA-seq data sets as implemented in rascaf-

join. 

Further, we assessed the impact of Rascaf’s assembly improvement procedure on the accuracy 

and completeness of the gene repertoire. For each of the original and intermediate assemblies, 

we aligned the 35,215 A. thaliana RefSeq mRNA transcript sequences to the scaffolds using the 

spliced alignment programs ESTmapper and sim4db (Istrail et al., 2004; Walenz and Florea 

2011). For each set, we plotted the percentage of transcript sequences that have more than f% 

of their bases in the primary alignment, for varying coverage levels f (f = 5, 10, …, 100). The 
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coverage curves are plotted in Figure 5-6. Adding RNA-seq data improves the coverage and the 

number of transcript sequences aligned at all coverage levels, especially at the higher coverage 

cutoffs. In particular, adding the first RNA-seq data set brings the number of transcripts with 

90% coverage to 33,529 from 33,183 in the original assembly, and that number further 

increases to 33,847 when all 11 RNA-seq data sets are included. Most importantly, Rascaf 

increases the coverage for 506 to 991 genes across the 11 assemblies. 

 

Figure 5-6 Gene content evaluation of the improved Arabidopsis thaliana assemblies using 0, 
1, … 11 RNA sequencing data sets 

(Transcript coverage plots show the number of transcripts with a fraction x or more of their 
bases contained in the primary alignment of that transcript on the corresponding A. thaliana 

assembly, for coverage levels 0.05, 0.1, …, 1.0.) 

javascript: void(0);
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Therefore, using multiple RNA-seq sources improves both the assembled sequence and the 

gene annotations on a broader scale, albeit the benefits reach diminishing returns as more data 

sets recapitulating similar sets of genes are included. 

5.3.6 Improving the Assembly and Gene Annotations of Sequenced Fragaria 

Next-generation sequencing has dramatically accelerated the pace of genome sequencing 

projects, with dozens of new draft genomes being reported every few months. To illustrate the 

benefits of using RNA-seq to improve the quality of a genome assembly and its annotations, as 

implemented in Rascaf, we applied the method to several sequenced and in-progress Rosaceae. 

The octoploid genome of the cultivated strawberry (Fragaria × ananassa Duchesne ex Rozier) 

has been sequenced and draft assembled, along with those of four wild diploid relatives, F. 

iinumae Makino, F. nipponica Makino, F. nubicola (Hook. f.) Lindl. ex Lacaita, and F. orientalis 

Losinsk [124]. All genomes were sequenced with a combination of Illumina and Roche 454 

technologies and assembled de novo. For our analyses, we downloaded up-to-date draft 

assemblies of these five Fragaria species from the Genome Database for Rosaceae 

(www.rosaceae.org) with quality indicators listed in Table 5-4. 

Table 5-4 Summary of quality indicators for the original (raw) assemblies of the sequenced 
Fragaria species 

Assembly 
No. of 

scaffolds 
Total length 

(bp) 
N50 

F. iinumae (v1.0) 117,822 199,627,645 3309 

F. nipponica (v1.0) 215,024 206,414,979 1275 

F. nubicola (v1.0) 210,780 203,686,576 1291 

F. orientalis (v1.0) 323,163 214,184,046 722 

F. × ananassa (v1.0) 625,966 697,765,214 2201 
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We used available RNA-seq reads from F. × ananassa (SRA accession: ERR430941, 70 million 

100-bp paired-end reads) and separately from the close relative F. vesca (SRA accession: 

SRR1930097, 76 million 101-bp paired-end reads). Fragaria vesca was previously sequenced and 

assembled with a combination of Illumina and 454 reads [107] and has undergone multiple 

rounds of curation to improve both the assembly and its gene models. 

Rascaf found thousands of new putative connections for each genome, both when using the F. 

× ananassa and the cross-species F. vesca RNA-seq reads. We first assessed the likelihood and 

confidence of the connections using BLAST searches against the RefSeq mRNA database, as 

described above (Table 5-5). More than 96% of the connections found in each case could be 

validated, increasing to >99% likely connections when adding the uncertain and unaligned 

sequences, except for F. × ananassa improved with same-species RNA-seq reads, which had 

89% positive validation rate and 98% likely connections rate. 

Table 5-5 In silico evaluation of predicted Rascaf connections in the Fragaria genomes by BLAST 
searches against the NCBI RefSeq mRNA database 

Species Validated Uncertain 
Unaligne

d 
Rearrange

d 
Chimeri

c 

Rascaf with ERR430941 (F. × ananassa) 

 F. iinumae 5267 119 19 16 28 

 F. nipponica 7496 155 32 20 35 

 F. nubicola 8447 198 59 26 59 

 F. orientalis 10,147 279 112 16 72 

 F. × ananassa 5866 365 201 44 109 

Rascaf with SRR1930097 (F. vesca) 

 F. iinumae 1613 5 0 1 0 

 F. nipponica 2710 6 1 1 3 

 F. nubicola 3644 14 5 6 3 

 F. orientalis 3880 25 9 2 7 

 F. × ananassa 1876 36 9 6 8 
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We further assessed the impact on the completeness and accuracy of the gene annotations as 

an overall measure of assembly accuracy in gene regions. For this purpose, sequences of F. 

vesca RefSeq mRNA transcripts were mapped to each of the assemblies using ESTmapper and 

sim4db, and the portion of the bases contained in the primary alignment of each sequence was 

measured. The cumulative coverage plots were then computed as described in the previous 

section. Figure 5-7 shows the coverage plots for five of the species. For example, using 

ERR430941 leads to a significant increase (>5%) in the coverage of 6684 RefSeq transcripts in F. 

iinumae and 8967 in F. nipponica, with 3192 to 10,302 transcripts showing gains in coverage in 

the remaining species (Table 5-6). It also increases the numbers of complete or near-complete 

transcripts, defined as having 90% or more bases in a single alignment, from 10,800 to 14,562 

(34.8% increase) for F. iinumae and from 5997 to 8918 (48.7% increase) for F. nipponica. These 

results are consistent with those in Table 5-5 and demonstrate that Rascaf significantly 

improves the completeness of genes in all five of these species. 
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Figure 5-7 Gene content evaluation of the Fragaria species assemblies before and after 
improvement with RNA-seq data 

(Coverage plots show the number of transcripts with a fraction x or more contained in the 
primary alignment.) 
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Table 5-6 Evaluation of gene content for the five Fragaria assemblies before and after 
improvement using RNA sequencing (RNA-seq) data 

Data set Transcripts with >90% coverage 
Gain 
(>0) 

Gain 
(>5%) 

  Before After     

RNA-seq accession: ERR430941 

 F. iinumae 10,800 14,562 6931 6684 

 F. nipponica 5997 8918 9399 8967 

 F. nubicola 6468 9772 9928 9470 

 F. orientalis 1747 3262 11,033 10,302 

 F. × ananassa 6325 6711 3812 3192 

RNA-seq accession: SRR1930097 

 F. iinumae 10,800 11,699 1899 1816 

 F. nipponica 5997 6722 2782 2543 

 F. nubicola 6468 7495 3703 3441 

 F. orientalis 1747 2222 3687 3263 

 F. × ananassa 6325 6445 1019 834 

(Shown are the numbers of transcripts with 90% or more base coverage as well as the total 
number of transcripts that experienced gains in coverage.) 

5.3.7 Availability and Run-Time Considerations 

The Rascaf package was developed using a combination of C++ and Perl modules. More 

specifically, source code for the two executables rascaf and rascaf-join was written in C++. A 

Perl module implementing the in silico BLAST evaluation against an external National Center for 

Biotechnology Information database, as an optional postprocessing step, is included in the 

package. The user can optionally invoke the search and modify it to point to a local or external 

database and to the BLAST search program of choice. Run times for analyses illustrated in this 

manuscript were roughly 15 min when using a single RNA-seq data set and <2 h for 11 RNA-seq 

samples when run sequentially on a machine with 512 GB RAM and AMD Opteron 2.1 GHz 

processor not including the HISAT alignment step. Memory used was <1 GB RAM in all cases, as 

alignment files are being read and processed sequentially. Running times for AGOUTI and 
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L_RNA_scaffolder alone were comparable; however, application of these tools in practice 

incurred additional run times for preassembling the RNA-seq reads into transcripts with Trinity 

(up to 1 d) and for generating the Cufflinks gene annotations. Therefore, Rascaf is highly 

memory and time efficient and can be readily used in assembly projects large and small and on 

a wide variety of platforms. 

5.4 Conclusions 

Fast and affordable next-generation sequencing has brought genome sequencing to the 

fingertips of groups and even individual researchers. However, assembling the short reads into 

a finished genome represents a significant challenge, demanding highly specialized expertise 

and sophisticated bioinformatics methods. Most of the genomes thus produced will be in draft 

form, consisting largely of ordered and oriented contigs grouped in scaffolds, but also many 

orphan contigs for which there may not be sufficient information to allow placement into 

scaffolds or chromosomes. We present a software tool, called Rascaf, that takes advantage of 

the continuity information from paired-end Illumina RNA-seq reads to identify new connections 

among contigs and use them to recruit additional contigs into an assembly and to improve the 

organization of scaffolds. As most genome sequencing projects also deep sequence the 

transcriptome, often of multiple tissues or organs, as part of gene annotation efforts, these 

RNA-seq sequences represent an abundant and readily available resource that can be 

effectively used to improve the genome sequence. Several genome sequencing projects have 

already used gene structure information to further help orient contigs and recruit additional 

contigs. However, these efforts largely used locally developed methods and relied on long cDNA 
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and mRNA sequences and more recently transcripts assembled de novo from Illumina reads, 

which are prone to introducing chimeric connections. These programs often rely on 

parameters, for instance to specify the criteria for alignments to be deemed significant, which 

need to be adjusted by the expert user. We present a practical and easy-to-use software tool, 

Rascaf, that can be universally used for any genome with no or very little need for calibration. 

Rascaf improves the assembly and its gene annotations simultaneously, finding thousands of 

contig connections and contributing additional sequence to thousands of genes in the tested 

Rosaceae draft assemblies. It is also very precise, and almost every contig connection could be 

verified by independent evidence. Importantly, by separating the connection detection and 

scaffolding processes, Rascaf can incorporate multiple RNA-seq data sets, thus compensating 

for low-expression genes in any one sample while also eliminating likely errors that are 

revealed as incompatibilities. As an ancillary benefit, the split design reduces the end-to-end 

running time, allowing for parallelization of RNA-seq alignments across data sets as well as 

eliminating the overhead with building intermediate genome indices. Lastly, it provides a built-

in mechanism for the user to intervene in the curation process; the user can manually inspect 

and edit the connections file to filter or add connections before processing them through the 

rascaf-join scaffolder. For convenience, scripts are provided to search and filter the connections 

against databases of proteins and cDNA sequences before scaffolding. 

As another unique feature, Rascaf can incorporate partial alignment information, which is 

particularly beneficial for RNA-seq libraries with short insert sizes. Future work will assess 

incorporating alignments spliced across contigs, which cannot be generated by current 

alignment programs. Also, while Rascaf appears to work reasonably well with RNA-seq 
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sequences from a very close relative, the performance is likely limited, since current alignment 

tools are not equipped to handle sequence differences that arise from evolutionary changes, 

including block insertion–deletion mutations and evolutionary mutation patterns. 

In comparisons with the only two other programs, Rascaf had higher or comparable accuracy in 

all tests and the lowest overall processing times. Fast and accurate, Rascaf is a highly practical 

and much needed addition to the current genome assembly and assembly curation 

compendium of tools. 

Work on this project was supported in part by NSF grant IOS-1339134 to L.F. Rascaf is available 

free of charge for all distributed under a GNU General Public License and can be obtained from 

https://github.com/mourisl/Rascaf.  

https://github.com/mourisl/Rascaf
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